at v5.9-rc2 40 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct obj_cgroup; 27struct page; 28struct mm_struct; 29struct kmem_cache; 30 31/* Cgroup-specific page state, on top of universal node page state */ 32enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_NR_STAT, 37}; 38 39enum memcg_memory_event { 40 MEMCG_LOW, 41 MEMCG_HIGH, 42 MEMCG_MAX, 43 MEMCG_OOM, 44 MEMCG_OOM_KILL, 45 MEMCG_SWAP_HIGH, 46 MEMCG_SWAP_MAX, 47 MEMCG_SWAP_FAIL, 48 MEMCG_NR_MEMORY_EVENTS, 49}; 50 51struct mem_cgroup_reclaim_cookie { 52 pg_data_t *pgdat; 53 unsigned int generation; 54}; 55 56#ifdef CONFIG_MEMCG 57 58#define MEM_CGROUP_ID_SHIFT 16 59#define MEM_CGROUP_ID_MAX USHRT_MAX 60 61struct mem_cgroup_id { 62 int id; 63 refcount_t ref; 64}; 65 66/* 67 * Per memcg event counter is incremented at every pagein/pageout. With THP, 68 * it will be incremented by the number of pages. This counter is used 69 * to trigger some periodic events. This is straightforward and better 70 * than using jiffies etc. to handle periodic memcg event. 71 */ 72enum mem_cgroup_events_target { 73 MEM_CGROUP_TARGET_THRESH, 74 MEM_CGROUP_TARGET_SOFTLIMIT, 75 MEM_CGROUP_NTARGETS, 76}; 77 78struct memcg_vmstats_percpu { 79 long stat[MEMCG_NR_STAT]; 80 unsigned long events[NR_VM_EVENT_ITEMS]; 81 unsigned long nr_page_events; 82 unsigned long targets[MEM_CGROUP_NTARGETS]; 83}; 84 85struct mem_cgroup_reclaim_iter { 86 struct mem_cgroup *position; 87 /* scan generation, increased every round-trip */ 88 unsigned int generation; 89}; 90 91struct lruvec_stat { 92 long count[NR_VM_NODE_STAT_ITEMS]; 93}; 94 95/* 96 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 97 * which have elements charged to this memcg. 98 */ 99struct memcg_shrinker_map { 100 struct rcu_head rcu; 101 unsigned long map[]; 102}; 103 104/* 105 * per-node information in memory controller. 106 */ 107struct mem_cgroup_per_node { 108 struct lruvec lruvec; 109 110 /* Legacy local VM stats */ 111 struct lruvec_stat __percpu *lruvec_stat_local; 112 113 /* Subtree VM stats (batched updates) */ 114 struct lruvec_stat __percpu *lruvec_stat_cpu; 115 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 116 117 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 118 119 struct mem_cgroup_reclaim_iter iter; 120 121 struct memcg_shrinker_map __rcu *shrinker_map; 122 123 struct rb_node tree_node; /* RB tree node */ 124 unsigned long usage_in_excess;/* Set to the value by which */ 125 /* the soft limit is exceeded*/ 126 bool on_tree; 127 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 128 /* use container_of */ 129}; 130 131struct mem_cgroup_threshold { 132 struct eventfd_ctx *eventfd; 133 unsigned long threshold; 134}; 135 136/* For threshold */ 137struct mem_cgroup_threshold_ary { 138 /* An array index points to threshold just below or equal to usage. */ 139 int current_threshold; 140 /* Size of entries[] */ 141 unsigned int size; 142 /* Array of thresholds */ 143 struct mem_cgroup_threshold entries[]; 144}; 145 146struct mem_cgroup_thresholds { 147 /* Primary thresholds array */ 148 struct mem_cgroup_threshold_ary *primary; 149 /* 150 * Spare threshold array. 151 * This is needed to make mem_cgroup_unregister_event() "never fail". 152 * It must be able to store at least primary->size - 1 entries. 153 */ 154 struct mem_cgroup_threshold_ary *spare; 155}; 156 157enum memcg_kmem_state { 158 KMEM_NONE, 159 KMEM_ALLOCATED, 160 KMEM_ONLINE, 161}; 162 163#if defined(CONFIG_SMP) 164struct memcg_padding { 165 char x[0]; 166} ____cacheline_internodealigned_in_smp; 167#define MEMCG_PADDING(name) struct memcg_padding name; 168#else 169#define MEMCG_PADDING(name) 170#endif 171 172/* 173 * Remember four most recent foreign writebacks with dirty pages in this 174 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 175 * one in a given round, we're likely to catch it later if it keeps 176 * foreign-dirtying, so a fairly low count should be enough. 177 * 178 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 179 */ 180#define MEMCG_CGWB_FRN_CNT 4 181 182struct memcg_cgwb_frn { 183 u64 bdi_id; /* bdi->id of the foreign inode */ 184 int memcg_id; /* memcg->css.id of foreign inode */ 185 u64 at; /* jiffies_64 at the time of dirtying */ 186 struct wb_completion done; /* tracks in-flight foreign writebacks */ 187}; 188 189/* 190 * Bucket for arbitrarily byte-sized objects charged to a memory 191 * cgroup. The bucket can be reparented in one piece when the cgroup 192 * is destroyed, without having to round up the individual references 193 * of all live memory objects in the wild. 194 */ 195struct obj_cgroup { 196 struct percpu_ref refcnt; 197 struct mem_cgroup *memcg; 198 atomic_t nr_charged_bytes; 199 union { 200 struct list_head list; 201 struct rcu_head rcu; 202 }; 203}; 204 205/* 206 * The memory controller data structure. The memory controller controls both 207 * page cache and RSS per cgroup. We would eventually like to provide 208 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 209 * to help the administrator determine what knobs to tune. 210 */ 211struct mem_cgroup { 212 struct cgroup_subsys_state css; 213 214 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 215 struct mem_cgroup_id id; 216 217 /* Accounted resources */ 218 struct page_counter memory; 219 struct page_counter swap; 220 221 /* Legacy consumer-oriented counters */ 222 struct page_counter memsw; 223 struct page_counter kmem; 224 struct page_counter tcpmem; 225 226 /* Range enforcement for interrupt charges */ 227 struct work_struct high_work; 228 229 unsigned long soft_limit; 230 231 /* vmpressure notifications */ 232 struct vmpressure vmpressure; 233 234 /* 235 * Should the accounting and control be hierarchical, per subtree? 236 */ 237 bool use_hierarchy; 238 239 /* 240 * Should the OOM killer kill all belonging tasks, had it kill one? 241 */ 242 bool oom_group; 243 244 /* protected by memcg_oom_lock */ 245 bool oom_lock; 246 int under_oom; 247 248 int swappiness; 249 /* OOM-Killer disable */ 250 int oom_kill_disable; 251 252 /* memory.events and memory.events.local */ 253 struct cgroup_file events_file; 254 struct cgroup_file events_local_file; 255 256 /* handle for "memory.swap.events" */ 257 struct cgroup_file swap_events_file; 258 259 /* protect arrays of thresholds */ 260 struct mutex thresholds_lock; 261 262 /* thresholds for memory usage. RCU-protected */ 263 struct mem_cgroup_thresholds thresholds; 264 265 /* thresholds for mem+swap usage. RCU-protected */ 266 struct mem_cgroup_thresholds memsw_thresholds; 267 268 /* For oom notifier event fd */ 269 struct list_head oom_notify; 270 271 /* 272 * Should we move charges of a task when a task is moved into this 273 * mem_cgroup ? And what type of charges should we move ? 274 */ 275 unsigned long move_charge_at_immigrate; 276 /* taken only while moving_account > 0 */ 277 spinlock_t move_lock; 278 unsigned long move_lock_flags; 279 280 MEMCG_PADDING(_pad1_); 281 282 /* 283 * set > 0 if pages under this cgroup are moving to other cgroup. 284 */ 285 atomic_t moving_account; 286 struct task_struct *move_lock_task; 287 288 /* Legacy local VM stats and events */ 289 struct memcg_vmstats_percpu __percpu *vmstats_local; 290 291 /* Subtree VM stats and events (batched updates) */ 292 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 293 294 MEMCG_PADDING(_pad2_); 295 296 atomic_long_t vmstats[MEMCG_NR_STAT]; 297 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 298 299 /* memory.events */ 300 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 301 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 302 303 unsigned long socket_pressure; 304 305 /* Legacy tcp memory accounting */ 306 bool tcpmem_active; 307 int tcpmem_pressure; 308 309#ifdef CONFIG_MEMCG_KMEM 310 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 311 int kmemcg_id; 312 enum memcg_kmem_state kmem_state; 313 struct obj_cgroup __rcu *objcg; 314 struct list_head objcg_list; /* list of inherited objcgs */ 315#endif 316 317#ifdef CONFIG_CGROUP_WRITEBACK 318 struct list_head cgwb_list; 319 struct wb_domain cgwb_domain; 320 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 321#endif 322 323 /* List of events which userspace want to receive */ 324 struct list_head event_list; 325 spinlock_t event_list_lock; 326 327#ifdef CONFIG_TRANSPARENT_HUGEPAGE 328 struct deferred_split deferred_split_queue; 329#endif 330 331 struct mem_cgroup_per_node *nodeinfo[0]; 332 /* WARNING: nodeinfo must be the last member here */ 333}; 334 335/* 336 * size of first charge trial. "32" comes from vmscan.c's magic value. 337 * TODO: maybe necessary to use big numbers in big irons. 338 */ 339#define MEMCG_CHARGE_BATCH 32U 340 341extern struct mem_cgroup *root_mem_cgroup; 342 343static __always_inline bool memcg_stat_item_in_bytes(int idx) 344{ 345 if (idx == MEMCG_PERCPU_B) 346 return true; 347 return vmstat_item_in_bytes(idx); 348} 349 350static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 351{ 352 return (memcg == root_mem_cgroup); 353} 354 355static inline bool mem_cgroup_disabled(void) 356{ 357 return !cgroup_subsys_enabled(memory_cgrp_subsys); 358} 359 360static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 361 struct mem_cgroup *memcg, 362 bool in_low_reclaim) 363{ 364 if (mem_cgroup_disabled()) 365 return 0; 366 367 /* 368 * There is no reclaim protection applied to a targeted reclaim. 369 * We are special casing this specific case here because 370 * mem_cgroup_protected calculation is not robust enough to keep 371 * the protection invariant for calculated effective values for 372 * parallel reclaimers with different reclaim target. This is 373 * especially a problem for tail memcgs (as they have pages on LRU) 374 * which would want to have effective values 0 for targeted reclaim 375 * but a different value for external reclaim. 376 * 377 * Example 378 * Let's have global and A's reclaim in parallel: 379 * | 380 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 381 * |\ 382 * | C (low = 1G, usage = 2.5G) 383 * B (low = 1G, usage = 0.5G) 384 * 385 * For the global reclaim 386 * A.elow = A.low 387 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 388 * C.elow = min(C.usage, C.low) 389 * 390 * With the effective values resetting we have A reclaim 391 * A.elow = 0 392 * B.elow = B.low 393 * C.elow = C.low 394 * 395 * If the global reclaim races with A's reclaim then 396 * B.elow = C.elow = 0 because children_low_usage > A.elow) 397 * is possible and reclaiming B would be violating the protection. 398 * 399 */ 400 if (root == memcg) 401 return 0; 402 403 if (in_low_reclaim) 404 return READ_ONCE(memcg->memory.emin); 405 406 return max(READ_ONCE(memcg->memory.emin), 407 READ_ONCE(memcg->memory.elow)); 408} 409 410void mem_cgroup_calculate_protection(struct mem_cgroup *root, 411 struct mem_cgroup *memcg); 412 413static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 414{ 415 /* 416 * The root memcg doesn't account charges, and doesn't support 417 * protection. 418 */ 419 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 420 421} 422 423static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 424{ 425 if (!mem_cgroup_supports_protection(memcg)) 426 return false; 427 428 return READ_ONCE(memcg->memory.elow) >= 429 page_counter_read(&memcg->memory); 430} 431 432static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 433{ 434 if (!mem_cgroup_supports_protection(memcg)) 435 return false; 436 437 return READ_ONCE(memcg->memory.emin) >= 438 page_counter_read(&memcg->memory); 439} 440 441int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); 442 443void mem_cgroup_uncharge(struct page *page); 444void mem_cgroup_uncharge_list(struct list_head *page_list); 445 446void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 447 448static struct mem_cgroup_per_node * 449mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 450{ 451 return memcg->nodeinfo[nid]; 452} 453 454/** 455 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 456 * @memcg: memcg of the wanted lruvec 457 * 458 * Returns the lru list vector holding pages for a given @memcg & 459 * @node combination. This can be the node lruvec, if the memory 460 * controller is disabled. 461 */ 462static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 463 struct pglist_data *pgdat) 464{ 465 struct mem_cgroup_per_node *mz; 466 struct lruvec *lruvec; 467 468 if (mem_cgroup_disabled()) { 469 lruvec = &pgdat->__lruvec; 470 goto out; 471 } 472 473 if (!memcg) 474 memcg = root_mem_cgroup; 475 476 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 477 lruvec = &mz->lruvec; 478out: 479 /* 480 * Since a node can be onlined after the mem_cgroup was created, 481 * we have to be prepared to initialize lruvec->pgdat here; 482 * and if offlined then reonlined, we need to reinitialize it. 483 */ 484 if (unlikely(lruvec->pgdat != pgdat)) 485 lruvec->pgdat = pgdat; 486 return lruvec; 487} 488 489struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 490 491struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 492 493struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 494 495struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 496 497static inline 498struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 499 return css ? container_of(css, struct mem_cgroup, css) : NULL; 500} 501 502static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 503{ 504 return percpu_ref_tryget(&objcg->refcnt); 505} 506 507static inline void obj_cgroup_get(struct obj_cgroup *objcg) 508{ 509 percpu_ref_get(&objcg->refcnt); 510} 511 512static inline void obj_cgroup_put(struct obj_cgroup *objcg) 513{ 514 percpu_ref_put(&objcg->refcnt); 515} 516 517/* 518 * After the initialization objcg->memcg is always pointing at 519 * a valid memcg, but can be atomically swapped to the parent memcg. 520 * 521 * The caller must ensure that the returned memcg won't be released: 522 * e.g. acquire the rcu_read_lock or css_set_lock. 523 */ 524static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 525{ 526 return READ_ONCE(objcg->memcg); 527} 528 529static inline void mem_cgroup_put(struct mem_cgroup *memcg) 530{ 531 if (memcg) 532 css_put(&memcg->css); 533} 534 535#define mem_cgroup_from_counter(counter, member) \ 536 container_of(counter, struct mem_cgroup, member) 537 538struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 539 struct mem_cgroup *, 540 struct mem_cgroup_reclaim_cookie *); 541void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 542int mem_cgroup_scan_tasks(struct mem_cgroup *, 543 int (*)(struct task_struct *, void *), void *); 544 545static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 546{ 547 if (mem_cgroup_disabled()) 548 return 0; 549 550 return memcg->id.id; 551} 552struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 553 554static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 555{ 556 return mem_cgroup_from_css(seq_css(m)); 557} 558 559static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 560{ 561 struct mem_cgroup_per_node *mz; 562 563 if (mem_cgroup_disabled()) 564 return NULL; 565 566 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 567 return mz->memcg; 568} 569 570/** 571 * parent_mem_cgroup - find the accounting parent of a memcg 572 * @memcg: memcg whose parent to find 573 * 574 * Returns the parent memcg, or NULL if this is the root or the memory 575 * controller is in legacy no-hierarchy mode. 576 */ 577static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 578{ 579 if (!memcg->memory.parent) 580 return NULL; 581 return mem_cgroup_from_counter(memcg->memory.parent, memory); 582} 583 584static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 585 struct mem_cgroup *root) 586{ 587 if (root == memcg) 588 return true; 589 if (!root->use_hierarchy) 590 return false; 591 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 592} 593 594static inline bool mm_match_cgroup(struct mm_struct *mm, 595 struct mem_cgroup *memcg) 596{ 597 struct mem_cgroup *task_memcg; 598 bool match = false; 599 600 rcu_read_lock(); 601 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 602 if (task_memcg) 603 match = mem_cgroup_is_descendant(task_memcg, memcg); 604 rcu_read_unlock(); 605 return match; 606} 607 608struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 609ino_t page_cgroup_ino(struct page *page); 610 611static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 612{ 613 if (mem_cgroup_disabled()) 614 return true; 615 return !!(memcg->css.flags & CSS_ONLINE); 616} 617 618/* 619 * For memory reclaim. 620 */ 621int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 622 623void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 624 int zid, int nr_pages); 625 626static inline 627unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 628 enum lru_list lru, int zone_idx) 629{ 630 struct mem_cgroup_per_node *mz; 631 632 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 633 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 634} 635 636void mem_cgroup_handle_over_high(void); 637 638unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 639 640unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 641 642void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 643 struct task_struct *p); 644 645void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 646 647static inline void mem_cgroup_enter_user_fault(void) 648{ 649 WARN_ON(current->in_user_fault); 650 current->in_user_fault = 1; 651} 652 653static inline void mem_cgroup_exit_user_fault(void) 654{ 655 WARN_ON(!current->in_user_fault); 656 current->in_user_fault = 0; 657} 658 659static inline bool task_in_memcg_oom(struct task_struct *p) 660{ 661 return p->memcg_in_oom; 662} 663 664bool mem_cgroup_oom_synchronize(bool wait); 665struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 666 struct mem_cgroup *oom_domain); 667void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 668 669#ifdef CONFIG_MEMCG_SWAP 670extern bool cgroup_memory_noswap; 671#endif 672 673struct mem_cgroup *lock_page_memcg(struct page *page); 674void __unlock_page_memcg(struct mem_cgroup *memcg); 675void unlock_page_memcg(struct page *page); 676 677/* 678 * idx can be of type enum memcg_stat_item or node_stat_item. 679 * Keep in sync with memcg_exact_page_state(). 680 */ 681static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 682{ 683 long x = atomic_long_read(&memcg->vmstats[idx]); 684#ifdef CONFIG_SMP 685 if (x < 0) 686 x = 0; 687#endif 688 return x; 689} 690 691/* 692 * idx can be of type enum memcg_stat_item or node_stat_item. 693 * Keep in sync with memcg_exact_page_state(). 694 */ 695static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 696 int idx) 697{ 698 long x = 0; 699 int cpu; 700 701 for_each_possible_cpu(cpu) 702 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 703#ifdef CONFIG_SMP 704 if (x < 0) 705 x = 0; 706#endif 707 return x; 708} 709 710void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 711 712/* idx can be of type enum memcg_stat_item or node_stat_item */ 713static inline void mod_memcg_state(struct mem_cgroup *memcg, 714 int idx, int val) 715{ 716 unsigned long flags; 717 718 local_irq_save(flags); 719 __mod_memcg_state(memcg, idx, val); 720 local_irq_restore(flags); 721} 722 723/** 724 * mod_memcg_page_state - update page state statistics 725 * @page: the page 726 * @idx: page state item to account 727 * @val: number of pages (positive or negative) 728 * 729 * The @page must be locked or the caller must use lock_page_memcg() 730 * to prevent double accounting when the page is concurrently being 731 * moved to another memcg: 732 * 733 * lock_page(page) or lock_page_memcg(page) 734 * if (TestClearPageState(page)) 735 * mod_memcg_page_state(page, state, -1); 736 * unlock_page(page) or unlock_page_memcg(page) 737 * 738 * Kernel pages are an exception to this, since they'll never move. 739 */ 740static inline void __mod_memcg_page_state(struct page *page, 741 int idx, int val) 742{ 743 if (page->mem_cgroup) 744 __mod_memcg_state(page->mem_cgroup, idx, val); 745} 746 747static inline void mod_memcg_page_state(struct page *page, 748 int idx, int val) 749{ 750 if (page->mem_cgroup) 751 mod_memcg_state(page->mem_cgroup, idx, val); 752} 753 754static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 755 enum node_stat_item idx) 756{ 757 struct mem_cgroup_per_node *pn; 758 long x; 759 760 if (mem_cgroup_disabled()) 761 return node_page_state(lruvec_pgdat(lruvec), idx); 762 763 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 764 x = atomic_long_read(&pn->lruvec_stat[idx]); 765#ifdef CONFIG_SMP 766 if (x < 0) 767 x = 0; 768#endif 769 return x; 770} 771 772static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 773 enum node_stat_item idx) 774{ 775 struct mem_cgroup_per_node *pn; 776 long x = 0; 777 int cpu; 778 779 if (mem_cgroup_disabled()) 780 return node_page_state(lruvec_pgdat(lruvec), idx); 781 782 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 783 for_each_possible_cpu(cpu) 784 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 785#ifdef CONFIG_SMP 786 if (x < 0) 787 x = 0; 788#endif 789 return x; 790} 791 792void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 793 int val); 794void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 795 int val); 796void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); 797 798void mod_memcg_obj_state(void *p, int idx, int val); 799 800static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, 801 int val) 802{ 803 unsigned long flags; 804 805 local_irq_save(flags); 806 __mod_lruvec_slab_state(p, idx, val); 807 local_irq_restore(flags); 808} 809 810static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 811 enum node_stat_item idx, int val) 812{ 813 unsigned long flags; 814 815 local_irq_save(flags); 816 __mod_memcg_lruvec_state(lruvec, idx, val); 817 local_irq_restore(flags); 818} 819 820static inline void mod_lruvec_state(struct lruvec *lruvec, 821 enum node_stat_item idx, int val) 822{ 823 unsigned long flags; 824 825 local_irq_save(flags); 826 __mod_lruvec_state(lruvec, idx, val); 827 local_irq_restore(flags); 828} 829 830static inline void __mod_lruvec_page_state(struct page *page, 831 enum node_stat_item idx, int val) 832{ 833 struct page *head = compound_head(page); /* rmap on tail pages */ 834 pg_data_t *pgdat = page_pgdat(page); 835 struct lruvec *lruvec; 836 837 /* Untracked pages have no memcg, no lruvec. Update only the node */ 838 if (!head->mem_cgroup) { 839 __mod_node_page_state(pgdat, idx, val); 840 return; 841 } 842 843 lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat); 844 __mod_lruvec_state(lruvec, idx, val); 845} 846 847static inline void mod_lruvec_page_state(struct page *page, 848 enum node_stat_item idx, int val) 849{ 850 unsigned long flags; 851 852 local_irq_save(flags); 853 __mod_lruvec_page_state(page, idx, val); 854 local_irq_restore(flags); 855} 856 857unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 858 gfp_t gfp_mask, 859 unsigned long *total_scanned); 860 861void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 862 unsigned long count); 863 864static inline void count_memcg_events(struct mem_cgroup *memcg, 865 enum vm_event_item idx, 866 unsigned long count) 867{ 868 unsigned long flags; 869 870 local_irq_save(flags); 871 __count_memcg_events(memcg, idx, count); 872 local_irq_restore(flags); 873} 874 875static inline void count_memcg_page_event(struct page *page, 876 enum vm_event_item idx) 877{ 878 if (page->mem_cgroup) 879 count_memcg_events(page->mem_cgroup, idx, 1); 880} 881 882static inline void count_memcg_event_mm(struct mm_struct *mm, 883 enum vm_event_item idx) 884{ 885 struct mem_cgroup *memcg; 886 887 if (mem_cgroup_disabled()) 888 return; 889 890 rcu_read_lock(); 891 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 892 if (likely(memcg)) 893 count_memcg_events(memcg, idx, 1); 894 rcu_read_unlock(); 895} 896 897static inline void memcg_memory_event(struct mem_cgroup *memcg, 898 enum memcg_memory_event event) 899{ 900 atomic_long_inc(&memcg->memory_events_local[event]); 901 cgroup_file_notify(&memcg->events_local_file); 902 903 do { 904 atomic_long_inc(&memcg->memory_events[event]); 905 cgroup_file_notify(&memcg->events_file); 906 907 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 908 break; 909 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 910 break; 911 } while ((memcg = parent_mem_cgroup(memcg)) && 912 !mem_cgroup_is_root(memcg)); 913} 914 915static inline void memcg_memory_event_mm(struct mm_struct *mm, 916 enum memcg_memory_event event) 917{ 918 struct mem_cgroup *memcg; 919 920 if (mem_cgroup_disabled()) 921 return; 922 923 rcu_read_lock(); 924 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 925 if (likely(memcg)) 926 memcg_memory_event(memcg, event); 927 rcu_read_unlock(); 928} 929 930#ifdef CONFIG_TRANSPARENT_HUGEPAGE 931void mem_cgroup_split_huge_fixup(struct page *head); 932#endif 933 934#else /* CONFIG_MEMCG */ 935 936#define MEM_CGROUP_ID_SHIFT 0 937#define MEM_CGROUP_ID_MAX 0 938 939struct mem_cgroup; 940 941static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 942{ 943 return true; 944} 945 946static inline bool mem_cgroup_disabled(void) 947{ 948 return true; 949} 950 951static inline void memcg_memory_event(struct mem_cgroup *memcg, 952 enum memcg_memory_event event) 953{ 954} 955 956static inline void memcg_memory_event_mm(struct mm_struct *mm, 957 enum memcg_memory_event event) 958{ 959} 960 961static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root, 962 struct mem_cgroup *memcg, 963 bool in_low_reclaim) 964{ 965 return 0; 966} 967 968static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 969 struct mem_cgroup *memcg) 970{ 971} 972 973static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 974{ 975 return false; 976} 977 978static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 979{ 980 return false; 981} 982 983static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 984 gfp_t gfp_mask) 985{ 986 return 0; 987} 988 989static inline void mem_cgroup_uncharge(struct page *page) 990{ 991} 992 993static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 994{ 995} 996 997static inline void mem_cgroup_migrate(struct page *old, struct page *new) 998{ 999} 1000 1001static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1002 struct pglist_data *pgdat) 1003{ 1004 return &pgdat->__lruvec; 1005} 1006 1007static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 1008 struct pglist_data *pgdat) 1009{ 1010 return &pgdat->__lruvec; 1011} 1012 1013static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1014{ 1015 return NULL; 1016} 1017 1018static inline bool mm_match_cgroup(struct mm_struct *mm, 1019 struct mem_cgroup *memcg) 1020{ 1021 return true; 1022} 1023 1024static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1025{ 1026 return NULL; 1027} 1028 1029static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 1030{ 1031 return NULL; 1032} 1033 1034static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1035{ 1036} 1037 1038static inline struct mem_cgroup * 1039mem_cgroup_iter(struct mem_cgroup *root, 1040 struct mem_cgroup *prev, 1041 struct mem_cgroup_reclaim_cookie *reclaim) 1042{ 1043 return NULL; 1044} 1045 1046static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1047 struct mem_cgroup *prev) 1048{ 1049} 1050 1051static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1052 int (*fn)(struct task_struct *, void *), void *arg) 1053{ 1054 return 0; 1055} 1056 1057static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1058{ 1059 return 0; 1060} 1061 1062static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1063{ 1064 WARN_ON_ONCE(id); 1065 /* XXX: This should always return root_mem_cgroup */ 1066 return NULL; 1067} 1068 1069static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1070{ 1071 return NULL; 1072} 1073 1074static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1075{ 1076 return NULL; 1077} 1078 1079static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1080{ 1081 return true; 1082} 1083 1084static inline 1085unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1086 enum lru_list lru, int zone_idx) 1087{ 1088 return 0; 1089} 1090 1091static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1092{ 1093 return 0; 1094} 1095 1096static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1097{ 1098 return 0; 1099} 1100 1101static inline void 1102mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1103{ 1104} 1105 1106static inline void 1107mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1108{ 1109} 1110 1111static inline struct mem_cgroup *lock_page_memcg(struct page *page) 1112{ 1113 return NULL; 1114} 1115 1116static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 1117{ 1118} 1119 1120static inline void unlock_page_memcg(struct page *page) 1121{ 1122} 1123 1124static inline void mem_cgroup_handle_over_high(void) 1125{ 1126} 1127 1128static inline void mem_cgroup_enter_user_fault(void) 1129{ 1130} 1131 1132static inline void mem_cgroup_exit_user_fault(void) 1133{ 1134} 1135 1136static inline bool task_in_memcg_oom(struct task_struct *p) 1137{ 1138 return false; 1139} 1140 1141static inline bool mem_cgroup_oom_synchronize(bool wait) 1142{ 1143 return false; 1144} 1145 1146static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1147 struct task_struct *victim, struct mem_cgroup *oom_domain) 1148{ 1149 return NULL; 1150} 1151 1152static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1153{ 1154} 1155 1156static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1157{ 1158 return 0; 1159} 1160 1161static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1162 int idx) 1163{ 1164 return 0; 1165} 1166 1167static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1168 int idx, 1169 int nr) 1170{ 1171} 1172 1173static inline void mod_memcg_state(struct mem_cgroup *memcg, 1174 int idx, 1175 int nr) 1176{ 1177} 1178 1179static inline void __mod_memcg_page_state(struct page *page, 1180 int idx, 1181 int nr) 1182{ 1183} 1184 1185static inline void mod_memcg_page_state(struct page *page, 1186 int idx, 1187 int nr) 1188{ 1189} 1190 1191static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1192 enum node_stat_item idx) 1193{ 1194 return node_page_state(lruvec_pgdat(lruvec), idx); 1195} 1196 1197static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1198 enum node_stat_item idx) 1199{ 1200 return node_page_state(lruvec_pgdat(lruvec), idx); 1201} 1202 1203static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1204 enum node_stat_item idx, int val) 1205{ 1206} 1207 1208static inline void __mod_lruvec_state(struct lruvec *lruvec, 1209 enum node_stat_item idx, int val) 1210{ 1211 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1212} 1213 1214static inline void mod_lruvec_state(struct lruvec *lruvec, 1215 enum node_stat_item idx, int val) 1216{ 1217 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1218} 1219 1220static inline void __mod_lruvec_page_state(struct page *page, 1221 enum node_stat_item idx, int val) 1222{ 1223 __mod_node_page_state(page_pgdat(page), idx, val); 1224} 1225 1226static inline void mod_lruvec_page_state(struct page *page, 1227 enum node_stat_item idx, int val) 1228{ 1229 mod_node_page_state(page_pgdat(page), idx, val); 1230} 1231 1232static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1233 int val) 1234{ 1235 struct page *page = virt_to_head_page(p); 1236 1237 __mod_node_page_state(page_pgdat(page), idx, val); 1238} 1239 1240static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1241 int val) 1242{ 1243 struct page *page = virt_to_head_page(p); 1244 1245 mod_node_page_state(page_pgdat(page), idx, val); 1246} 1247 1248static inline void mod_memcg_obj_state(void *p, int idx, int val) 1249{ 1250} 1251 1252static inline 1253unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1254 gfp_t gfp_mask, 1255 unsigned long *total_scanned) 1256{ 1257 return 0; 1258} 1259 1260static inline void mem_cgroup_split_huge_fixup(struct page *head) 1261{ 1262} 1263 1264static inline void count_memcg_events(struct mem_cgroup *memcg, 1265 enum vm_event_item idx, 1266 unsigned long count) 1267{ 1268} 1269 1270static inline void __count_memcg_events(struct mem_cgroup *memcg, 1271 enum vm_event_item idx, 1272 unsigned long count) 1273{ 1274} 1275 1276static inline void count_memcg_page_event(struct page *page, 1277 int idx) 1278{ 1279} 1280 1281static inline 1282void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1283{ 1284} 1285#endif /* CONFIG_MEMCG */ 1286 1287/* idx can be of type enum memcg_stat_item or node_stat_item */ 1288static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1289 int idx) 1290{ 1291 __mod_memcg_state(memcg, idx, 1); 1292} 1293 1294/* idx can be of type enum memcg_stat_item or node_stat_item */ 1295static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1296 int idx) 1297{ 1298 __mod_memcg_state(memcg, idx, -1); 1299} 1300 1301/* idx can be of type enum memcg_stat_item or node_stat_item */ 1302static inline void __inc_memcg_page_state(struct page *page, 1303 int idx) 1304{ 1305 __mod_memcg_page_state(page, idx, 1); 1306} 1307 1308/* idx can be of type enum memcg_stat_item or node_stat_item */ 1309static inline void __dec_memcg_page_state(struct page *page, 1310 int idx) 1311{ 1312 __mod_memcg_page_state(page, idx, -1); 1313} 1314 1315static inline void __inc_lruvec_state(struct lruvec *lruvec, 1316 enum node_stat_item idx) 1317{ 1318 __mod_lruvec_state(lruvec, idx, 1); 1319} 1320 1321static inline void __dec_lruvec_state(struct lruvec *lruvec, 1322 enum node_stat_item idx) 1323{ 1324 __mod_lruvec_state(lruvec, idx, -1); 1325} 1326 1327static inline void __inc_lruvec_page_state(struct page *page, 1328 enum node_stat_item idx) 1329{ 1330 __mod_lruvec_page_state(page, idx, 1); 1331} 1332 1333static inline void __dec_lruvec_page_state(struct page *page, 1334 enum node_stat_item idx) 1335{ 1336 __mod_lruvec_page_state(page, idx, -1); 1337} 1338 1339static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) 1340{ 1341 __mod_lruvec_slab_state(p, idx, 1); 1342} 1343 1344static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) 1345{ 1346 __mod_lruvec_slab_state(p, idx, -1); 1347} 1348 1349/* idx can be of type enum memcg_stat_item or node_stat_item */ 1350static inline void inc_memcg_state(struct mem_cgroup *memcg, 1351 int idx) 1352{ 1353 mod_memcg_state(memcg, idx, 1); 1354} 1355 1356/* idx can be of type enum memcg_stat_item or node_stat_item */ 1357static inline void dec_memcg_state(struct mem_cgroup *memcg, 1358 int idx) 1359{ 1360 mod_memcg_state(memcg, idx, -1); 1361} 1362 1363/* idx can be of type enum memcg_stat_item or node_stat_item */ 1364static inline void inc_memcg_page_state(struct page *page, 1365 int idx) 1366{ 1367 mod_memcg_page_state(page, idx, 1); 1368} 1369 1370/* idx can be of type enum memcg_stat_item or node_stat_item */ 1371static inline void dec_memcg_page_state(struct page *page, 1372 int idx) 1373{ 1374 mod_memcg_page_state(page, idx, -1); 1375} 1376 1377static inline void inc_lruvec_state(struct lruvec *lruvec, 1378 enum node_stat_item idx) 1379{ 1380 mod_lruvec_state(lruvec, idx, 1); 1381} 1382 1383static inline void dec_lruvec_state(struct lruvec *lruvec, 1384 enum node_stat_item idx) 1385{ 1386 mod_lruvec_state(lruvec, idx, -1); 1387} 1388 1389static inline void inc_lruvec_page_state(struct page *page, 1390 enum node_stat_item idx) 1391{ 1392 mod_lruvec_page_state(page, idx, 1); 1393} 1394 1395static inline void dec_lruvec_page_state(struct page *page, 1396 enum node_stat_item idx) 1397{ 1398 mod_lruvec_page_state(page, idx, -1); 1399} 1400 1401static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1402{ 1403 struct mem_cgroup *memcg; 1404 1405 memcg = lruvec_memcg(lruvec); 1406 if (!memcg) 1407 return NULL; 1408 memcg = parent_mem_cgroup(memcg); 1409 if (!memcg) 1410 return NULL; 1411 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1412} 1413 1414#ifdef CONFIG_CGROUP_WRITEBACK 1415 1416struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1417void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1418 unsigned long *pheadroom, unsigned long *pdirty, 1419 unsigned long *pwriteback); 1420 1421void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1422 struct bdi_writeback *wb); 1423 1424static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1425 struct bdi_writeback *wb) 1426{ 1427 if (mem_cgroup_disabled()) 1428 return; 1429 1430 if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) 1431 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1432} 1433 1434void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1435 1436#else /* CONFIG_CGROUP_WRITEBACK */ 1437 1438static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1439{ 1440 return NULL; 1441} 1442 1443static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1444 unsigned long *pfilepages, 1445 unsigned long *pheadroom, 1446 unsigned long *pdirty, 1447 unsigned long *pwriteback) 1448{ 1449} 1450 1451static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1452 struct bdi_writeback *wb) 1453{ 1454} 1455 1456static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1457{ 1458} 1459 1460#endif /* CONFIG_CGROUP_WRITEBACK */ 1461 1462struct sock; 1463bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1464void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1465#ifdef CONFIG_MEMCG 1466extern struct static_key_false memcg_sockets_enabled_key; 1467#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1468void mem_cgroup_sk_alloc(struct sock *sk); 1469void mem_cgroup_sk_free(struct sock *sk); 1470static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1471{ 1472 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1473 return true; 1474 do { 1475 if (time_before(jiffies, memcg->socket_pressure)) 1476 return true; 1477 } while ((memcg = parent_mem_cgroup(memcg))); 1478 return false; 1479} 1480 1481extern int memcg_expand_shrinker_maps(int new_id); 1482 1483extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1484 int nid, int shrinker_id); 1485#else 1486#define mem_cgroup_sockets_enabled 0 1487static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1488static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1489static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1490{ 1491 return false; 1492} 1493 1494static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1495 int nid, int shrinker_id) 1496{ 1497} 1498#endif 1499 1500#ifdef CONFIG_MEMCG_KMEM 1501int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1502 unsigned int nr_pages); 1503void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 1504int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1505void __memcg_kmem_uncharge_page(struct page *page, int order); 1506 1507struct obj_cgroup *get_obj_cgroup_from_current(void); 1508 1509int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1510void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1511 1512extern struct static_key_false memcg_kmem_enabled_key; 1513 1514extern int memcg_nr_cache_ids; 1515void memcg_get_cache_ids(void); 1516void memcg_put_cache_ids(void); 1517 1518/* 1519 * Helper macro to loop through all memcg-specific caches. Callers must still 1520 * check if the cache is valid (it is either valid or NULL). 1521 * the slab_mutex must be held when looping through those caches 1522 */ 1523#define for_each_memcg_cache_index(_idx) \ 1524 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1525 1526static inline bool memcg_kmem_enabled(void) 1527{ 1528 return static_branch_likely(&memcg_kmem_enabled_key); 1529} 1530 1531static inline bool memcg_kmem_bypass(void) 1532{ 1533 if (in_interrupt()) 1534 return true; 1535 1536 /* Allow remote memcg charging in kthread contexts. */ 1537 if ((!current->mm || (current->flags & PF_KTHREAD)) && 1538 !current->active_memcg) 1539 return true; 1540 return false; 1541} 1542 1543static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1544 int order) 1545{ 1546 if (memcg_kmem_enabled()) 1547 return __memcg_kmem_charge_page(page, gfp, order); 1548 return 0; 1549} 1550 1551static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1552{ 1553 if (memcg_kmem_enabled()) 1554 __memcg_kmem_uncharge_page(page, order); 1555} 1556 1557static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1558 unsigned int nr_pages) 1559{ 1560 if (memcg_kmem_enabled()) 1561 return __memcg_kmem_charge(memcg, gfp, nr_pages); 1562 return 0; 1563} 1564 1565static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg, 1566 unsigned int nr_pages) 1567{ 1568 if (memcg_kmem_enabled()) 1569 __memcg_kmem_uncharge(memcg, nr_pages); 1570} 1571 1572/* 1573 * helper for accessing a memcg's index. It will be used as an index in the 1574 * child cache array in kmem_cache, and also to derive its name. This function 1575 * will return -1 when this is not a kmem-limited memcg. 1576 */ 1577static inline int memcg_cache_id(struct mem_cgroup *memcg) 1578{ 1579 return memcg ? memcg->kmemcg_id : -1; 1580} 1581 1582struct mem_cgroup *mem_cgroup_from_obj(void *p); 1583 1584#else 1585 1586static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1587 int order) 1588{ 1589 return 0; 1590} 1591 1592static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1593{ 1594} 1595 1596static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1597 int order) 1598{ 1599 return 0; 1600} 1601 1602static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1603{ 1604} 1605 1606#define for_each_memcg_cache_index(_idx) \ 1607 for (; NULL; ) 1608 1609static inline bool memcg_kmem_enabled(void) 1610{ 1611 return false; 1612} 1613 1614static inline int memcg_cache_id(struct mem_cgroup *memcg) 1615{ 1616 return -1; 1617} 1618 1619static inline void memcg_get_cache_ids(void) 1620{ 1621} 1622 1623static inline void memcg_put_cache_ids(void) 1624{ 1625} 1626 1627static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1628{ 1629 return NULL; 1630} 1631 1632#endif /* CONFIG_MEMCG_KMEM */ 1633 1634#endif /* _LINUX_MEMCONTROL_H */