Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_LIST_H
3#define _LINUX_LIST_H
4
5#include <linux/types.h>
6#include <linux/stddef.h>
7#include <linux/poison.h>
8#include <linux/const.h>
9#include <linux/kernel.h>
10
11/*
12 * Simple doubly linked list implementation.
13 *
14 * Some of the internal functions ("__xxx") are useful when
15 * manipulating whole lists rather than single entries, as
16 * sometimes we already know the next/prev entries and we can
17 * generate better code by using them directly rather than
18 * using the generic single-entry routines.
19 */
20
21#define LIST_HEAD_INIT(name) { &(name), &(name) }
22
23#define LIST_HEAD(name) \
24 struct list_head name = LIST_HEAD_INIT(name)
25
26/**
27 * INIT_LIST_HEAD - Initialize a list_head structure
28 * @list: list_head structure to be initialized.
29 *
30 * Initializes the list_head to point to itself. If it is a list header,
31 * the result is an empty list.
32 */
33static inline void INIT_LIST_HEAD(struct list_head *list)
34{
35 WRITE_ONCE(list->next, list);
36 list->prev = list;
37}
38
39#ifdef CONFIG_DEBUG_LIST
40extern bool __list_add_valid(struct list_head *new,
41 struct list_head *prev,
42 struct list_head *next);
43extern bool __list_del_entry_valid(struct list_head *entry);
44#else
45static inline bool __list_add_valid(struct list_head *new,
46 struct list_head *prev,
47 struct list_head *next)
48{
49 return true;
50}
51static inline bool __list_del_entry_valid(struct list_head *entry)
52{
53 return true;
54}
55#endif
56
57/*
58 * Insert a new entry between two known consecutive entries.
59 *
60 * This is only for internal list manipulation where we know
61 * the prev/next entries already!
62 */
63static inline void __list_add(struct list_head *new,
64 struct list_head *prev,
65 struct list_head *next)
66{
67 if (!__list_add_valid(new, prev, next))
68 return;
69
70 next->prev = new;
71 new->next = next;
72 new->prev = prev;
73 WRITE_ONCE(prev->next, new);
74}
75
76/**
77 * list_add - add a new entry
78 * @new: new entry to be added
79 * @head: list head to add it after
80 *
81 * Insert a new entry after the specified head.
82 * This is good for implementing stacks.
83 */
84static inline void list_add(struct list_head *new, struct list_head *head)
85{
86 __list_add(new, head, head->next);
87}
88
89
90/**
91 * list_add_tail - add a new entry
92 * @new: new entry to be added
93 * @head: list head to add it before
94 *
95 * Insert a new entry before the specified head.
96 * This is useful for implementing queues.
97 */
98static inline void list_add_tail(struct list_head *new, struct list_head *head)
99{
100 __list_add(new, head->prev, head);
101}
102
103/*
104 * Delete a list entry by making the prev/next entries
105 * point to each other.
106 *
107 * This is only for internal list manipulation where we know
108 * the prev/next entries already!
109 */
110static inline void __list_del(struct list_head * prev, struct list_head * next)
111{
112 next->prev = prev;
113 WRITE_ONCE(prev->next, next);
114}
115
116/*
117 * Delete a list entry and clear the 'prev' pointer.
118 *
119 * This is a special-purpose list clearing method used in the networking code
120 * for lists allocated as per-cpu, where we don't want to incur the extra
121 * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
122 * needs to check the node 'prev' pointer instead of calling list_empty().
123 */
124static inline void __list_del_clearprev(struct list_head *entry)
125{
126 __list_del(entry->prev, entry->next);
127 entry->prev = NULL;
128}
129
130static inline void __list_del_entry(struct list_head *entry)
131{
132 if (!__list_del_entry_valid(entry))
133 return;
134
135 __list_del(entry->prev, entry->next);
136}
137
138/**
139 * list_del - deletes entry from list.
140 * @entry: the element to delete from the list.
141 * Note: list_empty() on entry does not return true after this, the entry is
142 * in an undefined state.
143 */
144static inline void list_del(struct list_head *entry)
145{
146 __list_del_entry(entry);
147 entry->next = LIST_POISON1;
148 entry->prev = LIST_POISON2;
149}
150
151/**
152 * list_replace - replace old entry by new one
153 * @old : the element to be replaced
154 * @new : the new element to insert
155 *
156 * If @old was empty, it will be overwritten.
157 */
158static inline void list_replace(struct list_head *old,
159 struct list_head *new)
160{
161 new->next = old->next;
162 new->next->prev = new;
163 new->prev = old->prev;
164 new->prev->next = new;
165}
166
167/**
168 * list_replace_init - replace old entry by new one and initialize the old one
169 * @old : the element to be replaced
170 * @new : the new element to insert
171 *
172 * If @old was empty, it will be overwritten.
173 */
174static inline void list_replace_init(struct list_head *old,
175 struct list_head *new)
176{
177 list_replace(old, new);
178 INIT_LIST_HEAD(old);
179}
180
181/**
182 * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
183 * @entry1: the location to place entry2
184 * @entry2: the location to place entry1
185 */
186static inline void list_swap(struct list_head *entry1,
187 struct list_head *entry2)
188{
189 struct list_head *pos = entry2->prev;
190
191 list_del(entry2);
192 list_replace(entry1, entry2);
193 if (pos == entry1)
194 pos = entry2;
195 list_add(entry1, pos);
196}
197
198/**
199 * list_del_init - deletes entry from list and reinitialize it.
200 * @entry: the element to delete from the list.
201 */
202static inline void list_del_init(struct list_head *entry)
203{
204 __list_del_entry(entry);
205 INIT_LIST_HEAD(entry);
206}
207
208/**
209 * list_move - delete from one list and add as another's head
210 * @list: the entry to move
211 * @head: the head that will precede our entry
212 */
213static inline void list_move(struct list_head *list, struct list_head *head)
214{
215 __list_del_entry(list);
216 list_add(list, head);
217}
218
219/**
220 * list_move_tail - delete from one list and add as another's tail
221 * @list: the entry to move
222 * @head: the head that will follow our entry
223 */
224static inline void list_move_tail(struct list_head *list,
225 struct list_head *head)
226{
227 __list_del_entry(list);
228 list_add_tail(list, head);
229}
230
231/**
232 * list_bulk_move_tail - move a subsection of a list to its tail
233 * @head: the head that will follow our entry
234 * @first: first entry to move
235 * @last: last entry to move, can be the same as first
236 *
237 * Move all entries between @first and including @last before @head.
238 * All three entries must belong to the same linked list.
239 */
240static inline void list_bulk_move_tail(struct list_head *head,
241 struct list_head *first,
242 struct list_head *last)
243{
244 first->prev->next = last->next;
245 last->next->prev = first->prev;
246
247 head->prev->next = first;
248 first->prev = head->prev;
249
250 last->next = head;
251 head->prev = last;
252}
253
254/**
255 * list_is_first -- tests whether @list is the first entry in list @head
256 * @list: the entry to test
257 * @head: the head of the list
258 */
259static inline int list_is_first(const struct list_head *list,
260 const struct list_head *head)
261{
262 return list->prev == head;
263}
264
265/**
266 * list_is_last - tests whether @list is the last entry in list @head
267 * @list: the entry to test
268 * @head: the head of the list
269 */
270static inline int list_is_last(const struct list_head *list,
271 const struct list_head *head)
272{
273 return list->next == head;
274}
275
276/**
277 * list_empty - tests whether a list is empty
278 * @head: the list to test.
279 */
280static inline int list_empty(const struct list_head *head)
281{
282 return READ_ONCE(head->next) == head;
283}
284
285/**
286 * list_del_init_careful - deletes entry from list and reinitialize it.
287 * @entry: the element to delete from the list.
288 *
289 * This is the same as list_del_init(), except designed to be used
290 * together with list_empty_careful() in a way to guarantee ordering
291 * of other memory operations.
292 *
293 * Any memory operations done before a list_del_init_careful() are
294 * guaranteed to be visible after a list_empty_careful() test.
295 */
296static inline void list_del_init_careful(struct list_head *entry)
297{
298 __list_del_entry(entry);
299 entry->prev = entry;
300 smp_store_release(&entry->next, entry);
301}
302
303/**
304 * list_empty_careful - tests whether a list is empty and not being modified
305 * @head: the list to test
306 *
307 * Description:
308 * tests whether a list is empty _and_ checks that no other CPU might be
309 * in the process of modifying either member (next or prev)
310 *
311 * NOTE: using list_empty_careful() without synchronization
312 * can only be safe if the only activity that can happen
313 * to the list entry is list_del_init(). Eg. it cannot be used
314 * if another CPU could re-list_add() it.
315 */
316static inline int list_empty_careful(const struct list_head *head)
317{
318 struct list_head *next = smp_load_acquire(&head->next);
319 return (next == head) && (next == head->prev);
320}
321
322/**
323 * list_rotate_left - rotate the list to the left
324 * @head: the head of the list
325 */
326static inline void list_rotate_left(struct list_head *head)
327{
328 struct list_head *first;
329
330 if (!list_empty(head)) {
331 first = head->next;
332 list_move_tail(first, head);
333 }
334}
335
336/**
337 * list_rotate_to_front() - Rotate list to specific item.
338 * @list: The desired new front of the list.
339 * @head: The head of the list.
340 *
341 * Rotates list so that @list becomes the new front of the list.
342 */
343static inline void list_rotate_to_front(struct list_head *list,
344 struct list_head *head)
345{
346 /*
347 * Deletes the list head from the list denoted by @head and
348 * places it as the tail of @list, this effectively rotates the
349 * list so that @list is at the front.
350 */
351 list_move_tail(head, list);
352}
353
354/**
355 * list_is_singular - tests whether a list has just one entry.
356 * @head: the list to test.
357 */
358static inline int list_is_singular(const struct list_head *head)
359{
360 return !list_empty(head) && (head->next == head->prev);
361}
362
363static inline void __list_cut_position(struct list_head *list,
364 struct list_head *head, struct list_head *entry)
365{
366 struct list_head *new_first = entry->next;
367 list->next = head->next;
368 list->next->prev = list;
369 list->prev = entry;
370 entry->next = list;
371 head->next = new_first;
372 new_first->prev = head;
373}
374
375/**
376 * list_cut_position - cut a list into two
377 * @list: a new list to add all removed entries
378 * @head: a list with entries
379 * @entry: an entry within head, could be the head itself
380 * and if so we won't cut the list
381 *
382 * This helper moves the initial part of @head, up to and
383 * including @entry, from @head to @list. You should
384 * pass on @entry an element you know is on @head. @list
385 * should be an empty list or a list you do not care about
386 * losing its data.
387 *
388 */
389static inline void list_cut_position(struct list_head *list,
390 struct list_head *head, struct list_head *entry)
391{
392 if (list_empty(head))
393 return;
394 if (list_is_singular(head) &&
395 (head->next != entry && head != entry))
396 return;
397 if (entry == head)
398 INIT_LIST_HEAD(list);
399 else
400 __list_cut_position(list, head, entry);
401}
402
403/**
404 * list_cut_before - cut a list into two, before given entry
405 * @list: a new list to add all removed entries
406 * @head: a list with entries
407 * @entry: an entry within head, could be the head itself
408 *
409 * This helper moves the initial part of @head, up to but
410 * excluding @entry, from @head to @list. You should pass
411 * in @entry an element you know is on @head. @list should
412 * be an empty list or a list you do not care about losing
413 * its data.
414 * If @entry == @head, all entries on @head are moved to
415 * @list.
416 */
417static inline void list_cut_before(struct list_head *list,
418 struct list_head *head,
419 struct list_head *entry)
420{
421 if (head->next == entry) {
422 INIT_LIST_HEAD(list);
423 return;
424 }
425 list->next = head->next;
426 list->next->prev = list;
427 list->prev = entry->prev;
428 list->prev->next = list;
429 head->next = entry;
430 entry->prev = head;
431}
432
433static inline void __list_splice(const struct list_head *list,
434 struct list_head *prev,
435 struct list_head *next)
436{
437 struct list_head *first = list->next;
438 struct list_head *last = list->prev;
439
440 first->prev = prev;
441 prev->next = first;
442
443 last->next = next;
444 next->prev = last;
445}
446
447/**
448 * list_splice - join two lists, this is designed for stacks
449 * @list: the new list to add.
450 * @head: the place to add it in the first list.
451 */
452static inline void list_splice(const struct list_head *list,
453 struct list_head *head)
454{
455 if (!list_empty(list))
456 __list_splice(list, head, head->next);
457}
458
459/**
460 * list_splice_tail - join two lists, each list being a queue
461 * @list: the new list to add.
462 * @head: the place to add it in the first list.
463 */
464static inline void list_splice_tail(struct list_head *list,
465 struct list_head *head)
466{
467 if (!list_empty(list))
468 __list_splice(list, head->prev, head);
469}
470
471/**
472 * list_splice_init - join two lists and reinitialise the emptied list.
473 * @list: the new list to add.
474 * @head: the place to add it in the first list.
475 *
476 * The list at @list is reinitialised
477 */
478static inline void list_splice_init(struct list_head *list,
479 struct list_head *head)
480{
481 if (!list_empty(list)) {
482 __list_splice(list, head, head->next);
483 INIT_LIST_HEAD(list);
484 }
485}
486
487/**
488 * list_splice_tail_init - join two lists and reinitialise the emptied list
489 * @list: the new list to add.
490 * @head: the place to add it in the first list.
491 *
492 * Each of the lists is a queue.
493 * The list at @list is reinitialised
494 */
495static inline void list_splice_tail_init(struct list_head *list,
496 struct list_head *head)
497{
498 if (!list_empty(list)) {
499 __list_splice(list, head->prev, head);
500 INIT_LIST_HEAD(list);
501 }
502}
503
504/**
505 * list_entry - get the struct for this entry
506 * @ptr: the &struct list_head pointer.
507 * @type: the type of the struct this is embedded in.
508 * @member: the name of the list_head within the struct.
509 */
510#define list_entry(ptr, type, member) \
511 container_of(ptr, type, member)
512
513/**
514 * list_first_entry - get the first element from a list
515 * @ptr: the list head to take the element from.
516 * @type: the type of the struct this is embedded in.
517 * @member: the name of the list_head within the struct.
518 *
519 * Note, that list is expected to be not empty.
520 */
521#define list_first_entry(ptr, type, member) \
522 list_entry((ptr)->next, type, member)
523
524/**
525 * list_last_entry - get the last element from a list
526 * @ptr: the list head to take the element from.
527 * @type: the type of the struct this is embedded in.
528 * @member: the name of the list_head within the struct.
529 *
530 * Note, that list is expected to be not empty.
531 */
532#define list_last_entry(ptr, type, member) \
533 list_entry((ptr)->prev, type, member)
534
535/**
536 * list_first_entry_or_null - get the first element from a list
537 * @ptr: the list head to take the element from.
538 * @type: the type of the struct this is embedded in.
539 * @member: the name of the list_head within the struct.
540 *
541 * Note that if the list is empty, it returns NULL.
542 */
543#define list_first_entry_or_null(ptr, type, member) ({ \
544 struct list_head *head__ = (ptr); \
545 struct list_head *pos__ = READ_ONCE(head__->next); \
546 pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
547})
548
549/**
550 * list_next_entry - get the next element in list
551 * @pos: the type * to cursor
552 * @member: the name of the list_head within the struct.
553 */
554#define list_next_entry(pos, member) \
555 list_entry((pos)->member.next, typeof(*(pos)), member)
556
557/**
558 * list_prev_entry - get the prev element in list
559 * @pos: the type * to cursor
560 * @member: the name of the list_head within the struct.
561 */
562#define list_prev_entry(pos, member) \
563 list_entry((pos)->member.prev, typeof(*(pos)), member)
564
565/**
566 * list_for_each - iterate over a list
567 * @pos: the &struct list_head to use as a loop cursor.
568 * @head: the head for your list.
569 */
570#define list_for_each(pos, head) \
571 for (pos = (head)->next; pos != (head); pos = pos->next)
572
573/**
574 * list_for_each_continue - continue iteration over a list
575 * @pos: the &struct list_head to use as a loop cursor.
576 * @head: the head for your list.
577 *
578 * Continue to iterate over a list, continuing after the current position.
579 */
580#define list_for_each_continue(pos, head) \
581 for (pos = pos->next; pos != (head); pos = pos->next)
582
583/**
584 * list_for_each_prev - iterate over a list backwards
585 * @pos: the &struct list_head to use as a loop cursor.
586 * @head: the head for your list.
587 */
588#define list_for_each_prev(pos, head) \
589 for (pos = (head)->prev; pos != (head); pos = pos->prev)
590
591/**
592 * list_for_each_safe - iterate over a list safe against removal of list entry
593 * @pos: the &struct list_head to use as a loop cursor.
594 * @n: another &struct list_head to use as temporary storage
595 * @head: the head for your list.
596 */
597#define list_for_each_safe(pos, n, head) \
598 for (pos = (head)->next, n = pos->next; pos != (head); \
599 pos = n, n = pos->next)
600
601/**
602 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
603 * @pos: the &struct list_head to use as a loop cursor.
604 * @n: another &struct list_head to use as temporary storage
605 * @head: the head for your list.
606 */
607#define list_for_each_prev_safe(pos, n, head) \
608 for (pos = (head)->prev, n = pos->prev; \
609 pos != (head); \
610 pos = n, n = pos->prev)
611
612/**
613 * list_for_each_entry - iterate over list of given type
614 * @pos: the type * to use as a loop cursor.
615 * @head: the head for your list.
616 * @member: the name of the list_head within the struct.
617 */
618#define list_for_each_entry(pos, head, member) \
619 for (pos = list_first_entry(head, typeof(*pos), member); \
620 &pos->member != (head); \
621 pos = list_next_entry(pos, member))
622
623/**
624 * list_for_each_entry_reverse - iterate backwards over list of given type.
625 * @pos: the type * to use as a loop cursor.
626 * @head: the head for your list.
627 * @member: the name of the list_head within the struct.
628 */
629#define list_for_each_entry_reverse(pos, head, member) \
630 for (pos = list_last_entry(head, typeof(*pos), member); \
631 &pos->member != (head); \
632 pos = list_prev_entry(pos, member))
633
634/**
635 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
636 * @pos: the type * to use as a start point
637 * @head: the head of the list
638 * @member: the name of the list_head within the struct.
639 *
640 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
641 */
642#define list_prepare_entry(pos, head, member) \
643 ((pos) ? : list_entry(head, typeof(*pos), member))
644
645/**
646 * list_for_each_entry_continue - continue iteration over list of given type
647 * @pos: the type * to use as a loop cursor.
648 * @head: the head for your list.
649 * @member: the name of the list_head within the struct.
650 *
651 * Continue to iterate over list of given type, continuing after
652 * the current position.
653 */
654#define list_for_each_entry_continue(pos, head, member) \
655 for (pos = list_next_entry(pos, member); \
656 &pos->member != (head); \
657 pos = list_next_entry(pos, member))
658
659/**
660 * list_for_each_entry_continue_reverse - iterate backwards from the given point
661 * @pos: the type * to use as a loop cursor.
662 * @head: the head for your list.
663 * @member: the name of the list_head within the struct.
664 *
665 * Start to iterate over list of given type backwards, continuing after
666 * the current position.
667 */
668#define list_for_each_entry_continue_reverse(pos, head, member) \
669 for (pos = list_prev_entry(pos, member); \
670 &pos->member != (head); \
671 pos = list_prev_entry(pos, member))
672
673/**
674 * list_for_each_entry_from - iterate over list of given type from the current point
675 * @pos: the type * to use as a loop cursor.
676 * @head: the head for your list.
677 * @member: the name of the list_head within the struct.
678 *
679 * Iterate over list of given type, continuing from current position.
680 */
681#define list_for_each_entry_from(pos, head, member) \
682 for (; &pos->member != (head); \
683 pos = list_next_entry(pos, member))
684
685/**
686 * list_for_each_entry_from_reverse - iterate backwards over list of given type
687 * from the current point
688 * @pos: the type * to use as a loop cursor.
689 * @head: the head for your list.
690 * @member: the name of the list_head within the struct.
691 *
692 * Iterate backwards over list of given type, continuing from current position.
693 */
694#define list_for_each_entry_from_reverse(pos, head, member) \
695 for (; &pos->member != (head); \
696 pos = list_prev_entry(pos, member))
697
698/**
699 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
700 * @pos: the type * to use as a loop cursor.
701 * @n: another type * to use as temporary storage
702 * @head: the head for your list.
703 * @member: the name of the list_head within the struct.
704 */
705#define list_for_each_entry_safe(pos, n, head, member) \
706 for (pos = list_first_entry(head, typeof(*pos), member), \
707 n = list_next_entry(pos, member); \
708 &pos->member != (head); \
709 pos = n, n = list_next_entry(n, member))
710
711/**
712 * list_for_each_entry_safe_continue - continue list iteration safe against removal
713 * @pos: the type * to use as a loop cursor.
714 * @n: another type * to use as temporary storage
715 * @head: the head for your list.
716 * @member: the name of the list_head within the struct.
717 *
718 * Iterate over list of given type, continuing after current point,
719 * safe against removal of list entry.
720 */
721#define list_for_each_entry_safe_continue(pos, n, head, member) \
722 for (pos = list_next_entry(pos, member), \
723 n = list_next_entry(pos, member); \
724 &pos->member != (head); \
725 pos = n, n = list_next_entry(n, member))
726
727/**
728 * list_for_each_entry_safe_from - iterate over list from current point safe against removal
729 * @pos: the type * to use as a loop cursor.
730 * @n: another type * to use as temporary storage
731 * @head: the head for your list.
732 * @member: the name of the list_head within the struct.
733 *
734 * Iterate over list of given type from current point, safe against
735 * removal of list entry.
736 */
737#define list_for_each_entry_safe_from(pos, n, head, member) \
738 for (n = list_next_entry(pos, member); \
739 &pos->member != (head); \
740 pos = n, n = list_next_entry(n, member))
741
742/**
743 * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
744 * @pos: the type * to use as a loop cursor.
745 * @n: another type * to use as temporary storage
746 * @head: the head for your list.
747 * @member: the name of the list_head within the struct.
748 *
749 * Iterate backwards over list of given type, safe against removal
750 * of list entry.
751 */
752#define list_for_each_entry_safe_reverse(pos, n, head, member) \
753 for (pos = list_last_entry(head, typeof(*pos), member), \
754 n = list_prev_entry(pos, member); \
755 &pos->member != (head); \
756 pos = n, n = list_prev_entry(n, member))
757
758/**
759 * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
760 * @pos: the loop cursor used in the list_for_each_entry_safe loop
761 * @n: temporary storage used in list_for_each_entry_safe
762 * @member: the name of the list_head within the struct.
763 *
764 * list_safe_reset_next is not safe to use in general if the list may be
765 * modified concurrently (eg. the lock is dropped in the loop body). An
766 * exception to this is if the cursor element (pos) is pinned in the list,
767 * and list_safe_reset_next is called after re-taking the lock and before
768 * completing the current iteration of the loop body.
769 */
770#define list_safe_reset_next(pos, n, member) \
771 n = list_next_entry(pos, member)
772
773/*
774 * Double linked lists with a single pointer list head.
775 * Mostly useful for hash tables where the two pointer list head is
776 * too wasteful.
777 * You lose the ability to access the tail in O(1).
778 */
779
780#define HLIST_HEAD_INIT { .first = NULL }
781#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
782#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
783static inline void INIT_HLIST_NODE(struct hlist_node *h)
784{
785 h->next = NULL;
786 h->pprev = NULL;
787}
788
789/**
790 * hlist_unhashed - Has node been removed from list and reinitialized?
791 * @h: Node to be checked
792 *
793 * Not that not all removal functions will leave a node in unhashed
794 * state. For example, hlist_nulls_del_init_rcu() does leave the
795 * node in unhashed state, but hlist_nulls_del() does not.
796 */
797static inline int hlist_unhashed(const struct hlist_node *h)
798{
799 return !h->pprev;
800}
801
802/**
803 * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
804 * @h: Node to be checked
805 *
806 * This variant of hlist_unhashed() must be used in lockless contexts
807 * to avoid potential load-tearing. The READ_ONCE() is paired with the
808 * various WRITE_ONCE() in hlist helpers that are defined below.
809 */
810static inline int hlist_unhashed_lockless(const struct hlist_node *h)
811{
812 return !READ_ONCE(h->pprev);
813}
814
815/**
816 * hlist_empty - Is the specified hlist_head structure an empty hlist?
817 * @h: Structure to check.
818 */
819static inline int hlist_empty(const struct hlist_head *h)
820{
821 return !READ_ONCE(h->first);
822}
823
824static inline void __hlist_del(struct hlist_node *n)
825{
826 struct hlist_node *next = n->next;
827 struct hlist_node **pprev = n->pprev;
828
829 WRITE_ONCE(*pprev, next);
830 if (next)
831 WRITE_ONCE(next->pprev, pprev);
832}
833
834/**
835 * hlist_del - Delete the specified hlist_node from its list
836 * @n: Node to delete.
837 *
838 * Note that this function leaves the node in hashed state. Use
839 * hlist_del_init() or similar instead to unhash @n.
840 */
841static inline void hlist_del(struct hlist_node *n)
842{
843 __hlist_del(n);
844 n->next = LIST_POISON1;
845 n->pprev = LIST_POISON2;
846}
847
848/**
849 * hlist_del_init - Delete the specified hlist_node from its list and initialize
850 * @n: Node to delete.
851 *
852 * Note that this function leaves the node in unhashed state.
853 */
854static inline void hlist_del_init(struct hlist_node *n)
855{
856 if (!hlist_unhashed(n)) {
857 __hlist_del(n);
858 INIT_HLIST_NODE(n);
859 }
860}
861
862/**
863 * hlist_add_head - add a new entry at the beginning of the hlist
864 * @n: new entry to be added
865 * @h: hlist head to add it after
866 *
867 * Insert a new entry after the specified head.
868 * This is good for implementing stacks.
869 */
870static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
871{
872 struct hlist_node *first = h->first;
873 WRITE_ONCE(n->next, first);
874 if (first)
875 WRITE_ONCE(first->pprev, &n->next);
876 WRITE_ONCE(h->first, n);
877 WRITE_ONCE(n->pprev, &h->first);
878}
879
880/**
881 * hlist_add_before - add a new entry before the one specified
882 * @n: new entry to be added
883 * @next: hlist node to add it before, which must be non-NULL
884 */
885static inline void hlist_add_before(struct hlist_node *n,
886 struct hlist_node *next)
887{
888 WRITE_ONCE(n->pprev, next->pprev);
889 WRITE_ONCE(n->next, next);
890 WRITE_ONCE(next->pprev, &n->next);
891 WRITE_ONCE(*(n->pprev), n);
892}
893
894/**
895 * hlist_add_behing - add a new entry after the one specified
896 * @n: new entry to be added
897 * @prev: hlist node to add it after, which must be non-NULL
898 */
899static inline void hlist_add_behind(struct hlist_node *n,
900 struct hlist_node *prev)
901{
902 WRITE_ONCE(n->next, prev->next);
903 WRITE_ONCE(prev->next, n);
904 WRITE_ONCE(n->pprev, &prev->next);
905
906 if (n->next)
907 WRITE_ONCE(n->next->pprev, &n->next);
908}
909
910/**
911 * hlist_add_fake - create a fake hlist consisting of a single headless node
912 * @n: Node to make a fake list out of
913 *
914 * This makes @n appear to be its own predecessor on a headless hlist.
915 * The point of this is to allow things like hlist_del() to work correctly
916 * in cases where there is no list.
917 */
918static inline void hlist_add_fake(struct hlist_node *n)
919{
920 n->pprev = &n->next;
921}
922
923/**
924 * hlist_fake: Is this node a fake hlist?
925 * @h: Node to check for being a self-referential fake hlist.
926 */
927static inline bool hlist_fake(struct hlist_node *h)
928{
929 return h->pprev == &h->next;
930}
931
932/**
933 * hlist_is_singular_node - is node the only element of the specified hlist?
934 * @n: Node to check for singularity.
935 * @h: Header for potentially singular list.
936 *
937 * Check whether the node is the only node of the head without
938 * accessing head, thus avoiding unnecessary cache misses.
939 */
940static inline bool
941hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
942{
943 return !n->next && n->pprev == &h->first;
944}
945
946/**
947 * hlist_move_list - Move an hlist
948 * @old: hlist_head for old list.
949 * @new: hlist_head for new list.
950 *
951 * Move a list from one list head to another. Fixup the pprev
952 * reference of the first entry if it exists.
953 */
954static inline void hlist_move_list(struct hlist_head *old,
955 struct hlist_head *new)
956{
957 new->first = old->first;
958 if (new->first)
959 new->first->pprev = &new->first;
960 old->first = NULL;
961}
962
963#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
964
965#define hlist_for_each(pos, head) \
966 for (pos = (head)->first; pos ; pos = pos->next)
967
968#define hlist_for_each_safe(pos, n, head) \
969 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
970 pos = n)
971
972#define hlist_entry_safe(ptr, type, member) \
973 ({ typeof(ptr) ____ptr = (ptr); \
974 ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
975 })
976
977/**
978 * hlist_for_each_entry - iterate over list of given type
979 * @pos: the type * to use as a loop cursor.
980 * @head: the head for your list.
981 * @member: the name of the hlist_node within the struct.
982 */
983#define hlist_for_each_entry(pos, head, member) \
984 for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
985 pos; \
986 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
987
988/**
989 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
990 * @pos: the type * to use as a loop cursor.
991 * @member: the name of the hlist_node within the struct.
992 */
993#define hlist_for_each_entry_continue(pos, member) \
994 for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
995 pos; \
996 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
997
998/**
999 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
1000 * @pos: the type * to use as a loop cursor.
1001 * @member: the name of the hlist_node within the struct.
1002 */
1003#define hlist_for_each_entry_from(pos, member) \
1004 for (; pos; \
1005 pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
1006
1007/**
1008 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
1009 * @pos: the type * to use as a loop cursor.
1010 * @n: a &struct hlist_node to use as temporary storage
1011 * @head: the head for your list.
1012 * @member: the name of the hlist_node within the struct.
1013 */
1014#define hlist_for_each_entry_safe(pos, n, head, member) \
1015 for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
1016 pos && ({ n = pos->member.next; 1; }); \
1017 pos = hlist_entry_safe(n, typeof(*pos), member))
1018
1019#endif