Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * processor_idle - idle state submodule to the ACPI processor driver
4 *
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 * - Added processor hotplug support
10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 * - Added support for C3 on SMP
12 */
13#define pr_fmt(fmt) "ACPI: " fmt
14
15#include <linux/module.h>
16#include <linux/acpi.h>
17#include <linux/dmi.h>
18#include <linux/sched.h> /* need_resched() */
19#include <linux/tick.h>
20#include <linux/cpuidle.h>
21#include <linux/cpu.h>
22#include <acpi/processor.h>
23
24/*
25 * Include the apic definitions for x86 to have the APIC timer related defines
26 * available also for UP (on SMP it gets magically included via linux/smp.h).
27 * asm/acpi.h is not an option, as it would require more include magic. Also
28 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
29 */
30#ifdef CONFIG_X86
31#include <asm/apic.h>
32#endif
33
34#define ACPI_PROCESSOR_CLASS "processor"
35#define _COMPONENT ACPI_PROCESSOR_COMPONENT
36ACPI_MODULE_NAME("processor_idle");
37
38#define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
39
40static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41module_param(max_cstate, uint, 0000);
42static unsigned int nocst __read_mostly;
43module_param(nocst, uint, 0000);
44static int bm_check_disable __read_mostly;
45module_param(bm_check_disable, uint, 0000);
46
47static unsigned int latency_factor __read_mostly = 2;
48module_param(latency_factor, uint, 0644);
49
50static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
51
52struct cpuidle_driver acpi_idle_driver = {
53 .name = "acpi_idle",
54 .owner = THIS_MODULE,
55};
56
57#ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58static
59DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
60
61static int disabled_by_idle_boot_param(void)
62{
63 return boot_option_idle_override == IDLE_POLL ||
64 boot_option_idle_override == IDLE_HALT;
65}
66
67/*
68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69 * For now disable this. Probably a bug somewhere else.
70 *
71 * To skip this limit, boot/load with a large max_cstate limit.
72 */
73static int set_max_cstate(const struct dmi_system_id *id)
74{
75 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76 return 0;
77
78 pr_notice("%s detected - limiting to C%ld max_cstate."
79 " Override with \"processor.max_cstate=%d\"\n", id->ident,
80 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
81
82 max_cstate = (long)id->driver_data;
83
84 return 0;
85}
86
87static const struct dmi_system_id processor_power_dmi_table[] = {
88 { set_max_cstate, "Clevo 5600D", {
89 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91 (void *)2},
92 { set_max_cstate, "Pavilion zv5000", {
93 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95 (void *)1},
96 { set_max_cstate, "Asus L8400B", {
97 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99 (void *)1},
100 {},
101};
102
103
104/*
105 * Callers should disable interrupts before the call and enable
106 * interrupts after return.
107 */
108static void __cpuidle acpi_safe_halt(void)
109{
110 if (!tif_need_resched()) {
111 safe_halt();
112 local_irq_disable();
113 }
114}
115
116#ifdef ARCH_APICTIMER_STOPS_ON_C3
117
118/*
119 * Some BIOS implementations switch to C3 in the published C2 state.
120 * This seems to be a common problem on AMD boxen, but other vendors
121 * are affected too. We pick the most conservative approach: we assume
122 * that the local APIC stops in both C2 and C3.
123 */
124static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125 struct acpi_processor_cx *cx)
126{
127 struct acpi_processor_power *pwr = &pr->power;
128 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
129
130 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131 return;
132
133 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134 type = ACPI_STATE_C1;
135
136 /*
137 * Check, if one of the previous states already marked the lapic
138 * unstable
139 */
140 if (pwr->timer_broadcast_on_state < state)
141 return;
142
143 if (cx->type >= type)
144 pr->power.timer_broadcast_on_state = state;
145}
146
147static void __lapic_timer_propagate_broadcast(void *arg)
148{
149 struct acpi_processor *pr = (struct acpi_processor *) arg;
150
151 if (pr->power.timer_broadcast_on_state < INT_MAX)
152 tick_broadcast_enable();
153 else
154 tick_broadcast_disable();
155}
156
157static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
158{
159 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160 (void *)pr, 1);
161}
162
163/* Power(C) State timer broadcast control */
164static void lapic_timer_state_broadcast(struct acpi_processor *pr,
165 struct acpi_processor_cx *cx,
166 int broadcast)
167{
168 int state = cx - pr->power.states;
169
170 if (state >= pr->power.timer_broadcast_on_state) {
171 if (broadcast)
172 tick_broadcast_enter();
173 else
174 tick_broadcast_exit();
175 }
176}
177
178#else
179
180static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181 struct acpi_processor_cx *cstate) { }
182static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183static void lapic_timer_state_broadcast(struct acpi_processor *pr,
184 struct acpi_processor_cx *cx,
185 int broadcast)
186{
187}
188
189#endif
190
191#if defined(CONFIG_X86)
192static void tsc_check_state(int state)
193{
194 switch (boot_cpu_data.x86_vendor) {
195 case X86_VENDOR_HYGON:
196 case X86_VENDOR_AMD:
197 case X86_VENDOR_INTEL:
198 case X86_VENDOR_CENTAUR:
199 case X86_VENDOR_ZHAOXIN:
200 /*
201 * AMD Fam10h TSC will tick in all
202 * C/P/S0/S1 states when this bit is set.
203 */
204 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
205 return;
206 fallthrough;
207 default:
208 /* TSC could halt in idle, so notify users */
209 if (state > ACPI_STATE_C1)
210 mark_tsc_unstable("TSC halts in idle");
211 }
212}
213#else
214static void tsc_check_state(int state) { return; }
215#endif
216
217static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
218{
219
220 if (!pr->pblk)
221 return -ENODEV;
222
223 /* if info is obtained from pblk/fadt, type equals state */
224 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
225 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
226
227#ifndef CONFIG_HOTPLUG_CPU
228 /*
229 * Check for P_LVL2_UP flag before entering C2 and above on
230 * an SMP system.
231 */
232 if ((num_online_cpus() > 1) &&
233 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
234 return -ENODEV;
235#endif
236
237 /* determine C2 and C3 address from pblk */
238 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
239 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
240
241 /* determine latencies from FADT */
242 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
243 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
244
245 /*
246 * FADT specified C2 latency must be less than or equal to
247 * 100 microseconds.
248 */
249 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
250 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
251 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
252 /* invalidate C2 */
253 pr->power.states[ACPI_STATE_C2].address = 0;
254 }
255
256 /*
257 * FADT supplied C3 latency must be less than or equal to
258 * 1000 microseconds.
259 */
260 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
261 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
262 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
263 /* invalidate C3 */
264 pr->power.states[ACPI_STATE_C3].address = 0;
265 }
266
267 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
268 "lvl2[0x%08x] lvl3[0x%08x]\n",
269 pr->power.states[ACPI_STATE_C2].address,
270 pr->power.states[ACPI_STATE_C3].address));
271
272 snprintf(pr->power.states[ACPI_STATE_C2].desc,
273 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
274 pr->power.states[ACPI_STATE_C2].address);
275 snprintf(pr->power.states[ACPI_STATE_C3].desc,
276 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
277 pr->power.states[ACPI_STATE_C3].address);
278
279 return 0;
280}
281
282static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
283{
284 if (!pr->power.states[ACPI_STATE_C1].valid) {
285 /* set the first C-State to C1 */
286 /* all processors need to support C1 */
287 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
288 pr->power.states[ACPI_STATE_C1].valid = 1;
289 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
290
291 snprintf(pr->power.states[ACPI_STATE_C1].desc,
292 ACPI_CX_DESC_LEN, "ACPI HLT");
293 }
294 /* the C0 state only exists as a filler in our array */
295 pr->power.states[ACPI_STATE_C0].valid = 1;
296 return 0;
297}
298
299static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
300{
301 int ret;
302
303 if (nocst)
304 return -ENODEV;
305
306 ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
307 if (ret)
308 return ret;
309
310 if (!pr->power.count)
311 return -EFAULT;
312
313 pr->flags.has_cst = 1;
314 return 0;
315}
316
317static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
318 struct acpi_processor_cx *cx)
319{
320 static int bm_check_flag = -1;
321 static int bm_control_flag = -1;
322
323
324 if (!cx->address)
325 return;
326
327 /*
328 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
329 * DMA transfers are used by any ISA device to avoid livelock.
330 * Note that we could disable Type-F DMA (as recommended by
331 * the erratum), but this is known to disrupt certain ISA
332 * devices thus we take the conservative approach.
333 */
334 else if (errata.piix4.fdma) {
335 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
336 "C3 not supported on PIIX4 with Type-F DMA\n"));
337 return;
338 }
339
340 /* All the logic here assumes flags.bm_check is same across all CPUs */
341 if (bm_check_flag == -1) {
342 /* Determine whether bm_check is needed based on CPU */
343 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
344 bm_check_flag = pr->flags.bm_check;
345 bm_control_flag = pr->flags.bm_control;
346 } else {
347 pr->flags.bm_check = bm_check_flag;
348 pr->flags.bm_control = bm_control_flag;
349 }
350
351 if (pr->flags.bm_check) {
352 if (!pr->flags.bm_control) {
353 if (pr->flags.has_cst != 1) {
354 /* bus mastering control is necessary */
355 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
356 "C3 support requires BM control\n"));
357 return;
358 } else {
359 /* Here we enter C3 without bus mastering */
360 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
361 "C3 support without BM control\n"));
362 }
363 }
364 } else {
365 /*
366 * WBINVD should be set in fadt, for C3 state to be
367 * supported on when bm_check is not required.
368 */
369 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
370 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
371 "Cache invalidation should work properly"
372 " for C3 to be enabled on SMP systems\n"));
373 return;
374 }
375 }
376
377 /*
378 * Otherwise we've met all of our C3 requirements.
379 * Normalize the C3 latency to expidite policy. Enable
380 * checking of bus mastering status (bm_check) so we can
381 * use this in our C3 policy
382 */
383 cx->valid = 1;
384
385 /*
386 * On older chipsets, BM_RLD needs to be set
387 * in order for Bus Master activity to wake the
388 * system from C3. Newer chipsets handle DMA
389 * during C3 automatically and BM_RLD is a NOP.
390 * In either case, the proper way to
391 * handle BM_RLD is to set it and leave it set.
392 */
393 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
394
395 return;
396}
397
398static int acpi_processor_power_verify(struct acpi_processor *pr)
399{
400 unsigned int i;
401 unsigned int working = 0;
402
403 pr->power.timer_broadcast_on_state = INT_MAX;
404
405 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
406 struct acpi_processor_cx *cx = &pr->power.states[i];
407
408 switch (cx->type) {
409 case ACPI_STATE_C1:
410 cx->valid = 1;
411 break;
412
413 case ACPI_STATE_C2:
414 if (!cx->address)
415 break;
416 cx->valid = 1;
417 break;
418
419 case ACPI_STATE_C3:
420 acpi_processor_power_verify_c3(pr, cx);
421 break;
422 }
423 if (!cx->valid)
424 continue;
425
426 lapic_timer_check_state(i, pr, cx);
427 tsc_check_state(cx->type);
428 working++;
429 }
430
431 lapic_timer_propagate_broadcast(pr);
432
433 return (working);
434}
435
436static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
437{
438 unsigned int i;
439 int result;
440
441
442 /* NOTE: the idle thread may not be running while calling
443 * this function */
444
445 /* Zero initialize all the C-states info. */
446 memset(pr->power.states, 0, sizeof(pr->power.states));
447
448 result = acpi_processor_get_power_info_cst(pr);
449 if (result == -ENODEV)
450 result = acpi_processor_get_power_info_fadt(pr);
451
452 if (result)
453 return result;
454
455 acpi_processor_get_power_info_default(pr);
456
457 pr->power.count = acpi_processor_power_verify(pr);
458
459 /*
460 * if one state of type C2 or C3 is available, mark this
461 * CPU as being "idle manageable"
462 */
463 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
464 if (pr->power.states[i].valid) {
465 pr->power.count = i;
466 pr->flags.power = 1;
467 }
468 }
469
470 return 0;
471}
472
473/**
474 * acpi_idle_bm_check - checks if bus master activity was detected
475 */
476static int acpi_idle_bm_check(void)
477{
478 u32 bm_status = 0;
479
480 if (bm_check_disable)
481 return 0;
482
483 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
484 if (bm_status)
485 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
486 /*
487 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
488 * the true state of bus mastering activity; forcing us to
489 * manually check the BMIDEA bit of each IDE channel.
490 */
491 else if (errata.piix4.bmisx) {
492 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
493 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
494 bm_status = 1;
495 }
496 return bm_status;
497}
498
499static void wait_for_freeze(void)
500{
501#ifdef CONFIG_X86
502 /* No delay is needed if we are in guest */
503 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
504 return;
505#endif
506 /* Dummy wait op - must do something useless after P_LVL2 read
507 because chipsets cannot guarantee that STPCLK# signal
508 gets asserted in time to freeze execution properly. */
509 inl(acpi_gbl_FADT.xpm_timer_block.address);
510}
511
512/**
513 * acpi_idle_do_entry - enter idle state using the appropriate method
514 * @cx: cstate data
515 *
516 * Caller disables interrupt before call and enables interrupt after return.
517 */
518static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
519{
520 if (cx->entry_method == ACPI_CSTATE_FFH) {
521 /* Call into architectural FFH based C-state */
522 acpi_processor_ffh_cstate_enter(cx);
523 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
524 acpi_safe_halt();
525 } else {
526 /* IO port based C-state */
527 inb(cx->address);
528 wait_for_freeze();
529 }
530}
531
532/**
533 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
534 * @dev: the target CPU
535 * @index: the index of suggested state
536 */
537static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
538{
539 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
540
541 ACPI_FLUSH_CPU_CACHE();
542
543 while (1) {
544
545 if (cx->entry_method == ACPI_CSTATE_HALT)
546 safe_halt();
547 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
548 inb(cx->address);
549 wait_for_freeze();
550 } else
551 return -ENODEV;
552 }
553
554 /* Never reached */
555 return 0;
556}
557
558static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
559{
560 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
561 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
562}
563
564static int c3_cpu_count;
565static DEFINE_RAW_SPINLOCK(c3_lock);
566
567/**
568 * acpi_idle_enter_bm - enters C3 with proper BM handling
569 * @pr: Target processor
570 * @cx: Target state context
571 * @timer_bc: Whether or not to change timer mode to broadcast
572 */
573static void acpi_idle_enter_bm(struct acpi_processor *pr,
574 struct acpi_processor_cx *cx, bool timer_bc)
575{
576 acpi_unlazy_tlb(smp_processor_id());
577
578 /*
579 * Must be done before busmaster disable as we might need to
580 * access HPET !
581 */
582 if (timer_bc)
583 lapic_timer_state_broadcast(pr, cx, 1);
584
585 /*
586 * disable bus master
587 * bm_check implies we need ARB_DIS
588 * bm_control implies whether we can do ARB_DIS
589 *
590 * That leaves a case where bm_check is set and bm_control is
591 * not set. In that case we cannot do much, we enter C3
592 * without doing anything.
593 */
594 if (pr->flags.bm_control) {
595 raw_spin_lock(&c3_lock);
596 c3_cpu_count++;
597 /* Disable bus master arbitration when all CPUs are in C3 */
598 if (c3_cpu_count == num_online_cpus())
599 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
600 raw_spin_unlock(&c3_lock);
601 }
602
603 acpi_idle_do_entry(cx);
604
605 /* Re-enable bus master arbitration */
606 if (pr->flags.bm_control) {
607 raw_spin_lock(&c3_lock);
608 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
609 c3_cpu_count--;
610 raw_spin_unlock(&c3_lock);
611 }
612
613 if (timer_bc)
614 lapic_timer_state_broadcast(pr, cx, 0);
615}
616
617static int acpi_idle_enter(struct cpuidle_device *dev,
618 struct cpuidle_driver *drv, int index)
619{
620 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
621 struct acpi_processor *pr;
622
623 pr = __this_cpu_read(processors);
624 if (unlikely(!pr))
625 return -EINVAL;
626
627 if (cx->type != ACPI_STATE_C1) {
628 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
629 index = ACPI_IDLE_STATE_START;
630 cx = per_cpu(acpi_cstate[index], dev->cpu);
631 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
632 if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
633 acpi_idle_enter_bm(pr, cx, true);
634 return index;
635 } else if (drv->safe_state_index >= 0) {
636 index = drv->safe_state_index;
637 cx = per_cpu(acpi_cstate[index], dev->cpu);
638 } else {
639 acpi_safe_halt();
640 return -EBUSY;
641 }
642 }
643 }
644
645 lapic_timer_state_broadcast(pr, cx, 1);
646
647 if (cx->type == ACPI_STATE_C3)
648 ACPI_FLUSH_CPU_CACHE();
649
650 acpi_idle_do_entry(cx);
651
652 lapic_timer_state_broadcast(pr, cx, 0);
653
654 return index;
655}
656
657static int acpi_idle_enter_s2idle(struct cpuidle_device *dev,
658 struct cpuidle_driver *drv, int index)
659{
660 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
661
662 if (cx->type == ACPI_STATE_C3) {
663 struct acpi_processor *pr = __this_cpu_read(processors);
664
665 if (unlikely(!pr))
666 return 0;
667
668 if (pr->flags.bm_check) {
669 acpi_idle_enter_bm(pr, cx, false);
670 return 0;
671 } else {
672 ACPI_FLUSH_CPU_CACHE();
673 }
674 }
675 acpi_idle_do_entry(cx);
676
677 return 0;
678}
679
680static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
681 struct cpuidle_device *dev)
682{
683 int i, count = ACPI_IDLE_STATE_START;
684 struct acpi_processor_cx *cx;
685
686 if (max_cstate == 0)
687 max_cstate = 1;
688
689 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
690 cx = &pr->power.states[i];
691
692 if (!cx->valid)
693 continue;
694
695 per_cpu(acpi_cstate[count], dev->cpu) = cx;
696
697 count++;
698 if (count == CPUIDLE_STATE_MAX)
699 break;
700 }
701
702 if (!count)
703 return -EINVAL;
704
705 return 0;
706}
707
708static int acpi_processor_setup_cstates(struct acpi_processor *pr)
709{
710 int i, count;
711 struct acpi_processor_cx *cx;
712 struct cpuidle_state *state;
713 struct cpuidle_driver *drv = &acpi_idle_driver;
714
715 if (max_cstate == 0)
716 max_cstate = 1;
717
718 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
719 cpuidle_poll_state_init(drv);
720 count = 1;
721 } else {
722 count = 0;
723 }
724
725 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
726 cx = &pr->power.states[i];
727
728 if (!cx->valid)
729 continue;
730
731 state = &drv->states[count];
732 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
733 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
734 state->exit_latency = cx->latency;
735 state->target_residency = cx->latency * latency_factor;
736 state->enter = acpi_idle_enter;
737
738 state->flags = 0;
739 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
740 state->enter_dead = acpi_idle_play_dead;
741 drv->safe_state_index = count;
742 }
743 /*
744 * Halt-induced C1 is not good for ->enter_s2idle, because it
745 * re-enables interrupts on exit. Moreover, C1 is generally not
746 * particularly interesting from the suspend-to-idle angle, so
747 * avoid C1 and the situations in which we may need to fall back
748 * to it altogether.
749 */
750 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
751 state->enter_s2idle = acpi_idle_enter_s2idle;
752
753 count++;
754 if (count == CPUIDLE_STATE_MAX)
755 break;
756 }
757
758 drv->state_count = count;
759
760 if (!count)
761 return -EINVAL;
762
763 return 0;
764}
765
766static inline void acpi_processor_cstate_first_run_checks(void)
767{
768 static int first_run;
769
770 if (first_run)
771 return;
772 dmi_check_system(processor_power_dmi_table);
773 max_cstate = acpi_processor_cstate_check(max_cstate);
774 if (max_cstate < ACPI_C_STATES_MAX)
775 pr_notice("ACPI: processor limited to max C-state %d\n",
776 max_cstate);
777 first_run++;
778
779 if (nocst)
780 return;
781
782 acpi_processor_claim_cst_control();
783}
784#else
785
786static inline int disabled_by_idle_boot_param(void) { return 0; }
787static inline void acpi_processor_cstate_first_run_checks(void) { }
788static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
789{
790 return -ENODEV;
791}
792
793static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
794 struct cpuidle_device *dev)
795{
796 return -EINVAL;
797}
798
799static int acpi_processor_setup_cstates(struct acpi_processor *pr)
800{
801 return -EINVAL;
802}
803
804#endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
805
806struct acpi_lpi_states_array {
807 unsigned int size;
808 unsigned int composite_states_size;
809 struct acpi_lpi_state *entries;
810 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
811};
812
813static int obj_get_integer(union acpi_object *obj, u32 *value)
814{
815 if (obj->type != ACPI_TYPE_INTEGER)
816 return -EINVAL;
817
818 *value = obj->integer.value;
819 return 0;
820}
821
822static int acpi_processor_evaluate_lpi(acpi_handle handle,
823 struct acpi_lpi_states_array *info)
824{
825 acpi_status status;
826 int ret = 0;
827 int pkg_count, state_idx = 1, loop;
828 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
829 union acpi_object *lpi_data;
830 struct acpi_lpi_state *lpi_state;
831
832 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
833 if (ACPI_FAILURE(status)) {
834 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
835 return -ENODEV;
836 }
837
838 lpi_data = buffer.pointer;
839
840 /* There must be at least 4 elements = 3 elements + 1 package */
841 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
842 lpi_data->package.count < 4) {
843 pr_debug("not enough elements in _LPI\n");
844 ret = -ENODATA;
845 goto end;
846 }
847
848 pkg_count = lpi_data->package.elements[2].integer.value;
849
850 /* Validate number of power states. */
851 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
852 pr_debug("count given by _LPI is not valid\n");
853 ret = -ENODATA;
854 goto end;
855 }
856
857 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
858 if (!lpi_state) {
859 ret = -ENOMEM;
860 goto end;
861 }
862
863 info->size = pkg_count;
864 info->entries = lpi_state;
865
866 /* LPI States start at index 3 */
867 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
868 union acpi_object *element, *pkg_elem, *obj;
869
870 element = &lpi_data->package.elements[loop];
871 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
872 continue;
873
874 pkg_elem = element->package.elements;
875
876 obj = pkg_elem + 6;
877 if (obj->type == ACPI_TYPE_BUFFER) {
878 struct acpi_power_register *reg;
879
880 reg = (struct acpi_power_register *)obj->buffer.pointer;
881 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
882 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
883 continue;
884
885 lpi_state->address = reg->address;
886 lpi_state->entry_method =
887 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
888 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
889 } else if (obj->type == ACPI_TYPE_INTEGER) {
890 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
891 lpi_state->address = obj->integer.value;
892 } else {
893 continue;
894 }
895
896 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
897
898 obj = pkg_elem + 9;
899 if (obj->type == ACPI_TYPE_STRING)
900 strlcpy(lpi_state->desc, obj->string.pointer,
901 ACPI_CX_DESC_LEN);
902
903 lpi_state->index = state_idx;
904 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
905 pr_debug("No min. residency found, assuming 10 us\n");
906 lpi_state->min_residency = 10;
907 }
908
909 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
910 pr_debug("No wakeup residency found, assuming 10 us\n");
911 lpi_state->wake_latency = 10;
912 }
913
914 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
915 lpi_state->flags = 0;
916
917 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
918 lpi_state->arch_flags = 0;
919
920 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
921 lpi_state->res_cnt_freq = 1;
922
923 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
924 lpi_state->enable_parent_state = 0;
925 }
926
927 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
928end:
929 kfree(buffer.pointer);
930 return ret;
931}
932
933/*
934 * flat_state_cnt - the number of composite LPI states after the process of flattening
935 */
936static int flat_state_cnt;
937
938/**
939 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
940 *
941 * @local: local LPI state
942 * @parent: parent LPI state
943 * @result: composite LPI state
944 */
945static bool combine_lpi_states(struct acpi_lpi_state *local,
946 struct acpi_lpi_state *parent,
947 struct acpi_lpi_state *result)
948{
949 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
950 if (!parent->address) /* 0 means autopromotable */
951 return false;
952 result->address = local->address + parent->address;
953 } else {
954 result->address = parent->address;
955 }
956
957 result->min_residency = max(local->min_residency, parent->min_residency);
958 result->wake_latency = local->wake_latency + parent->wake_latency;
959 result->enable_parent_state = parent->enable_parent_state;
960 result->entry_method = local->entry_method;
961
962 result->flags = parent->flags;
963 result->arch_flags = parent->arch_flags;
964 result->index = parent->index;
965
966 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
967 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
968 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
969 return true;
970}
971
972#define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
973
974static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
975 struct acpi_lpi_state *t)
976{
977 curr_level->composite_states[curr_level->composite_states_size++] = t;
978}
979
980static int flatten_lpi_states(struct acpi_processor *pr,
981 struct acpi_lpi_states_array *curr_level,
982 struct acpi_lpi_states_array *prev_level)
983{
984 int i, j, state_count = curr_level->size;
985 struct acpi_lpi_state *p, *t = curr_level->entries;
986
987 curr_level->composite_states_size = 0;
988 for (j = 0; j < state_count; j++, t++) {
989 struct acpi_lpi_state *flpi;
990
991 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
992 continue;
993
994 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
995 pr_warn("Limiting number of LPI states to max (%d)\n",
996 ACPI_PROCESSOR_MAX_POWER);
997 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
998 break;
999 }
1000
1001 flpi = &pr->power.lpi_states[flat_state_cnt];
1002
1003 if (!prev_level) { /* leaf/processor node */
1004 memcpy(flpi, t, sizeof(*t));
1005 stash_composite_state(curr_level, flpi);
1006 flat_state_cnt++;
1007 continue;
1008 }
1009
1010 for (i = 0; i < prev_level->composite_states_size; i++) {
1011 p = prev_level->composite_states[i];
1012 if (t->index <= p->enable_parent_state &&
1013 combine_lpi_states(p, t, flpi)) {
1014 stash_composite_state(curr_level, flpi);
1015 flat_state_cnt++;
1016 flpi++;
1017 }
1018 }
1019 }
1020
1021 kfree(curr_level->entries);
1022 return 0;
1023}
1024
1025static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1026{
1027 int ret, i;
1028 acpi_status status;
1029 acpi_handle handle = pr->handle, pr_ahandle;
1030 struct acpi_device *d = NULL;
1031 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1032
1033 if (!osc_pc_lpi_support_confirmed)
1034 return -EOPNOTSUPP;
1035
1036 if (!acpi_has_method(handle, "_LPI"))
1037 return -EINVAL;
1038
1039 flat_state_cnt = 0;
1040 prev = &info[0];
1041 curr = &info[1];
1042 handle = pr->handle;
1043 ret = acpi_processor_evaluate_lpi(handle, prev);
1044 if (ret)
1045 return ret;
1046 flatten_lpi_states(pr, prev, NULL);
1047
1048 status = acpi_get_parent(handle, &pr_ahandle);
1049 while (ACPI_SUCCESS(status)) {
1050 acpi_bus_get_device(pr_ahandle, &d);
1051 handle = pr_ahandle;
1052
1053 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1054 break;
1055
1056 /* can be optional ? */
1057 if (!acpi_has_method(handle, "_LPI"))
1058 break;
1059
1060 ret = acpi_processor_evaluate_lpi(handle, curr);
1061 if (ret)
1062 break;
1063
1064 /* flatten all the LPI states in this level of hierarchy */
1065 flatten_lpi_states(pr, curr, prev);
1066
1067 tmp = prev, prev = curr, curr = tmp;
1068
1069 status = acpi_get_parent(handle, &pr_ahandle);
1070 }
1071
1072 pr->power.count = flat_state_cnt;
1073 /* reset the index after flattening */
1074 for (i = 0; i < pr->power.count; i++)
1075 pr->power.lpi_states[i].index = i;
1076
1077 /* Tell driver that _LPI is supported. */
1078 pr->flags.has_lpi = 1;
1079 pr->flags.power = 1;
1080
1081 return 0;
1082}
1083
1084int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1085{
1086 return -ENODEV;
1087}
1088
1089int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1090{
1091 return -ENODEV;
1092}
1093
1094/**
1095 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1096 * @dev: the target CPU
1097 * @drv: cpuidle driver containing cpuidle state info
1098 * @index: index of target state
1099 *
1100 * Return: 0 for success or negative value for error
1101 */
1102static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1103 struct cpuidle_driver *drv, int index)
1104{
1105 struct acpi_processor *pr;
1106 struct acpi_lpi_state *lpi;
1107
1108 pr = __this_cpu_read(processors);
1109
1110 if (unlikely(!pr))
1111 return -EINVAL;
1112
1113 lpi = &pr->power.lpi_states[index];
1114 if (lpi->entry_method == ACPI_CSTATE_FFH)
1115 return acpi_processor_ffh_lpi_enter(lpi);
1116
1117 return -EINVAL;
1118}
1119
1120static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1121{
1122 int i;
1123 struct acpi_lpi_state *lpi;
1124 struct cpuidle_state *state;
1125 struct cpuidle_driver *drv = &acpi_idle_driver;
1126
1127 if (!pr->flags.has_lpi)
1128 return -EOPNOTSUPP;
1129
1130 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1131 lpi = &pr->power.lpi_states[i];
1132
1133 state = &drv->states[i];
1134 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1135 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1136 state->exit_latency = lpi->wake_latency;
1137 state->target_residency = lpi->min_residency;
1138 if (lpi->arch_flags)
1139 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1140 state->enter = acpi_idle_lpi_enter;
1141 drv->safe_state_index = i;
1142 }
1143
1144 drv->state_count = i;
1145
1146 return 0;
1147}
1148
1149/**
1150 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1151 * global state data i.e. idle routines
1152 *
1153 * @pr: the ACPI processor
1154 */
1155static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1156{
1157 int i;
1158 struct cpuidle_driver *drv = &acpi_idle_driver;
1159
1160 if (!pr->flags.power_setup_done || !pr->flags.power)
1161 return -EINVAL;
1162
1163 drv->safe_state_index = -1;
1164 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1165 drv->states[i].name[0] = '\0';
1166 drv->states[i].desc[0] = '\0';
1167 }
1168
1169 if (pr->flags.has_lpi)
1170 return acpi_processor_setup_lpi_states(pr);
1171
1172 return acpi_processor_setup_cstates(pr);
1173}
1174
1175/**
1176 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1177 * device i.e. per-cpu data
1178 *
1179 * @pr: the ACPI processor
1180 * @dev : the cpuidle device
1181 */
1182static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1183 struct cpuidle_device *dev)
1184{
1185 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1186 return -EINVAL;
1187
1188 dev->cpu = pr->id;
1189 if (pr->flags.has_lpi)
1190 return acpi_processor_ffh_lpi_probe(pr->id);
1191
1192 return acpi_processor_setup_cpuidle_cx(pr, dev);
1193}
1194
1195static int acpi_processor_get_power_info(struct acpi_processor *pr)
1196{
1197 int ret;
1198
1199 ret = acpi_processor_get_lpi_info(pr);
1200 if (ret)
1201 ret = acpi_processor_get_cstate_info(pr);
1202
1203 return ret;
1204}
1205
1206int acpi_processor_hotplug(struct acpi_processor *pr)
1207{
1208 int ret = 0;
1209 struct cpuidle_device *dev;
1210
1211 if (disabled_by_idle_boot_param())
1212 return 0;
1213
1214 if (!pr->flags.power_setup_done)
1215 return -ENODEV;
1216
1217 dev = per_cpu(acpi_cpuidle_device, pr->id);
1218 cpuidle_pause_and_lock();
1219 cpuidle_disable_device(dev);
1220 ret = acpi_processor_get_power_info(pr);
1221 if (!ret && pr->flags.power) {
1222 acpi_processor_setup_cpuidle_dev(pr, dev);
1223 ret = cpuidle_enable_device(dev);
1224 }
1225 cpuidle_resume_and_unlock();
1226
1227 return ret;
1228}
1229
1230int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1231{
1232 int cpu;
1233 struct acpi_processor *_pr;
1234 struct cpuidle_device *dev;
1235
1236 if (disabled_by_idle_boot_param())
1237 return 0;
1238
1239 if (!pr->flags.power_setup_done)
1240 return -ENODEV;
1241
1242 /*
1243 * FIXME: Design the ACPI notification to make it once per
1244 * system instead of once per-cpu. This condition is a hack
1245 * to make the code that updates C-States be called once.
1246 */
1247
1248 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1249
1250 /* Protect against cpu-hotplug */
1251 get_online_cpus();
1252 cpuidle_pause_and_lock();
1253
1254 /* Disable all cpuidle devices */
1255 for_each_online_cpu(cpu) {
1256 _pr = per_cpu(processors, cpu);
1257 if (!_pr || !_pr->flags.power_setup_done)
1258 continue;
1259 dev = per_cpu(acpi_cpuidle_device, cpu);
1260 cpuidle_disable_device(dev);
1261 }
1262
1263 /* Populate Updated C-state information */
1264 acpi_processor_get_power_info(pr);
1265 acpi_processor_setup_cpuidle_states(pr);
1266
1267 /* Enable all cpuidle devices */
1268 for_each_online_cpu(cpu) {
1269 _pr = per_cpu(processors, cpu);
1270 if (!_pr || !_pr->flags.power_setup_done)
1271 continue;
1272 acpi_processor_get_power_info(_pr);
1273 if (_pr->flags.power) {
1274 dev = per_cpu(acpi_cpuidle_device, cpu);
1275 acpi_processor_setup_cpuidle_dev(_pr, dev);
1276 cpuidle_enable_device(dev);
1277 }
1278 }
1279 cpuidle_resume_and_unlock();
1280 put_online_cpus();
1281 }
1282
1283 return 0;
1284}
1285
1286static int acpi_processor_registered;
1287
1288int acpi_processor_power_init(struct acpi_processor *pr)
1289{
1290 int retval;
1291 struct cpuidle_device *dev;
1292
1293 if (disabled_by_idle_boot_param())
1294 return 0;
1295
1296 acpi_processor_cstate_first_run_checks();
1297
1298 if (!acpi_processor_get_power_info(pr))
1299 pr->flags.power_setup_done = 1;
1300
1301 /*
1302 * Install the idle handler if processor power management is supported.
1303 * Note that we use previously set idle handler will be used on
1304 * platforms that only support C1.
1305 */
1306 if (pr->flags.power) {
1307 /* Register acpi_idle_driver if not already registered */
1308 if (!acpi_processor_registered) {
1309 acpi_processor_setup_cpuidle_states(pr);
1310 retval = cpuidle_register_driver(&acpi_idle_driver);
1311 if (retval)
1312 return retval;
1313 pr_debug("%s registered with cpuidle\n",
1314 acpi_idle_driver.name);
1315 }
1316
1317 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1318 if (!dev)
1319 return -ENOMEM;
1320 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1321
1322 acpi_processor_setup_cpuidle_dev(pr, dev);
1323
1324 /* Register per-cpu cpuidle_device. Cpuidle driver
1325 * must already be registered before registering device
1326 */
1327 retval = cpuidle_register_device(dev);
1328 if (retval) {
1329 if (acpi_processor_registered == 0)
1330 cpuidle_unregister_driver(&acpi_idle_driver);
1331 return retval;
1332 }
1333 acpi_processor_registered++;
1334 }
1335 return 0;
1336}
1337
1338int acpi_processor_power_exit(struct acpi_processor *pr)
1339{
1340 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1341
1342 if (disabled_by_idle_boot_param())
1343 return 0;
1344
1345 if (pr->flags.power) {
1346 cpuidle_unregister_device(dev);
1347 acpi_processor_registered--;
1348 if (acpi_processor_registered == 0)
1349 cpuidle_unregister_driver(&acpi_idle_driver);
1350 }
1351
1352 pr->flags.power_setup_done = 0;
1353 return 0;
1354}