at v5.9-rc1 40 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#ifndef __ASSEMBLY__ 9#ifdef CONFIG_MMU 10 11#include <linux/mm_types.h> 12#include <linux/bug.h> 13#include <linux/errno.h> 14#include <asm-generic/pgtable_uffd.h> 15 16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 19#endif 20 21/* 22 * On almost all architectures and configurations, 0 can be used as the 23 * upper ceiling to free_pgtables(): on many architectures it has the same 24 * effect as using TASK_SIZE. However, there is one configuration which 25 * must impose a more careful limit, to avoid freeing kernel pgtables. 26 */ 27#ifndef USER_PGTABLES_CEILING 28#define USER_PGTABLES_CEILING 0UL 29#endif 30 31/* 32 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 33 * 34 * The pXx_index() functions return the index of the entry in the page 35 * table page which would control the given virtual address 36 * 37 * As these functions may be used by the same code for different levels of 38 * the page table folding, they are always available, regardless of 39 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 40 * because in such cases PTRS_PER_PxD equals 1. 41 */ 42 43static inline unsigned long pte_index(unsigned long address) 44{ 45 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 46} 47 48#ifndef pmd_index 49static inline unsigned long pmd_index(unsigned long address) 50{ 51 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 52} 53#define pmd_index pmd_index 54#endif 55 56#ifndef pud_index 57static inline unsigned long pud_index(unsigned long address) 58{ 59 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 60} 61#define pud_index pud_index 62#endif 63 64#ifndef pgd_index 65/* Must be a compile-time constant, so implement it as a macro */ 66#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 67#endif 68 69#ifndef pte_offset_kernel 70static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 71{ 72 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 73} 74#define pte_offset_kernel pte_offset_kernel 75#endif 76 77#if defined(CONFIG_HIGHPTE) 78#define pte_offset_map(dir, address) \ 79 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ 80 pte_index((address))) 81#define pte_unmap(pte) kunmap_atomic((pte)) 82#else 83#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) 84#define pte_unmap(pte) ((void)(pte)) /* NOP */ 85#endif 86 87/* Find an entry in the second-level page table.. */ 88#ifndef pmd_offset 89static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 90{ 91 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 92} 93#define pmd_offset pmd_offset 94#endif 95 96#ifndef pud_offset 97static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 98{ 99 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); 100} 101#define pud_offset pud_offset 102#endif 103 104static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 105{ 106 return (pgd + pgd_index(address)); 107}; 108 109/* 110 * a shortcut to get a pgd_t in a given mm 111 */ 112#ifndef pgd_offset 113#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 114#endif 115 116/* 117 * a shortcut which implies the use of the kernel's pgd, instead 118 * of a process's 119 */ 120#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 121 122/* 123 * In many cases it is known that a virtual address is mapped at PMD or PTE 124 * level, so instead of traversing all the page table levels, we can get a 125 * pointer to the PMD entry in user or kernel page table or translate a virtual 126 * address to the pointer in the PTE in the kernel page tables with simple 127 * helpers. 128 */ 129static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 130{ 131 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 132} 133 134static inline pmd_t *pmd_off_k(unsigned long va) 135{ 136 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 137} 138 139static inline pte_t *virt_to_kpte(unsigned long vaddr) 140{ 141 pmd_t *pmd = pmd_off_k(vaddr); 142 143 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 144} 145 146#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 147extern int ptep_set_access_flags(struct vm_area_struct *vma, 148 unsigned long address, pte_t *ptep, 149 pte_t entry, int dirty); 150#endif 151 152#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 153#ifdef CONFIG_TRANSPARENT_HUGEPAGE 154extern int pmdp_set_access_flags(struct vm_area_struct *vma, 155 unsigned long address, pmd_t *pmdp, 156 pmd_t entry, int dirty); 157extern int pudp_set_access_flags(struct vm_area_struct *vma, 158 unsigned long address, pud_t *pudp, 159 pud_t entry, int dirty); 160#else 161static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 162 unsigned long address, pmd_t *pmdp, 163 pmd_t entry, int dirty) 164{ 165 BUILD_BUG(); 166 return 0; 167} 168static inline int pudp_set_access_flags(struct vm_area_struct *vma, 169 unsigned long address, pud_t *pudp, 170 pud_t entry, int dirty) 171{ 172 BUILD_BUG(); 173 return 0; 174} 175#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 176#endif 177 178#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 179static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 180 unsigned long address, 181 pte_t *ptep) 182{ 183 pte_t pte = *ptep; 184 int r = 1; 185 if (!pte_young(pte)) 186 r = 0; 187 else 188 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 189 return r; 190} 191#endif 192 193#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 194#ifdef CONFIG_TRANSPARENT_HUGEPAGE 195static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 196 unsigned long address, 197 pmd_t *pmdp) 198{ 199 pmd_t pmd = *pmdp; 200 int r = 1; 201 if (!pmd_young(pmd)) 202 r = 0; 203 else 204 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 205 return r; 206} 207#else 208static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 209 unsigned long address, 210 pmd_t *pmdp) 211{ 212 BUILD_BUG(); 213 return 0; 214} 215#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 216#endif 217 218#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 219int ptep_clear_flush_young(struct vm_area_struct *vma, 220 unsigned long address, pte_t *ptep); 221#endif 222 223#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 224#ifdef CONFIG_TRANSPARENT_HUGEPAGE 225extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 226 unsigned long address, pmd_t *pmdp); 227#else 228/* 229 * Despite relevant to THP only, this API is called from generic rmap code 230 * under PageTransHuge(), hence needs a dummy implementation for !THP 231 */ 232static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 233 unsigned long address, pmd_t *pmdp) 234{ 235 BUILD_BUG(); 236 return 0; 237} 238#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 239#endif 240 241#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 242static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 243 unsigned long address, 244 pte_t *ptep) 245{ 246 pte_t pte = *ptep; 247 pte_clear(mm, address, ptep); 248 return pte; 249} 250#endif 251 252#ifndef __HAVE_ARCH_PTEP_GET 253static inline pte_t ptep_get(pte_t *ptep) 254{ 255 return READ_ONCE(*ptep); 256} 257#endif 258 259#ifdef CONFIG_TRANSPARENT_HUGEPAGE 260#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 261static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 262 unsigned long address, 263 pmd_t *pmdp) 264{ 265 pmd_t pmd = *pmdp; 266 pmd_clear(pmdp); 267 return pmd; 268} 269#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 270#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 271static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 272 unsigned long address, 273 pud_t *pudp) 274{ 275 pud_t pud = *pudp; 276 277 pud_clear(pudp); 278 return pud; 279} 280#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 281#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 282 283#ifdef CONFIG_TRANSPARENT_HUGEPAGE 284#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 285static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 286 unsigned long address, pmd_t *pmdp, 287 int full) 288{ 289 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 290} 291#endif 292 293#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 294static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 295 unsigned long address, pud_t *pudp, 296 int full) 297{ 298 return pudp_huge_get_and_clear(mm, address, pudp); 299} 300#endif 301#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 302 303#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 304static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 305 unsigned long address, pte_t *ptep, 306 int full) 307{ 308 pte_t pte; 309 pte = ptep_get_and_clear(mm, address, ptep); 310 return pte; 311} 312#endif 313 314 315/* 316 * If two threads concurrently fault at the same page, the thread that 317 * won the race updates the PTE and its local TLB/Cache. The other thread 318 * gives up, simply does nothing, and continues; on architectures where 319 * software can update TLB, local TLB can be updated here to avoid next page 320 * fault. This function updates TLB only, do nothing with cache or others. 321 * It is the difference with function update_mmu_cache. 322 */ 323#ifndef __HAVE_ARCH_UPDATE_MMU_TLB 324static inline void update_mmu_tlb(struct vm_area_struct *vma, 325 unsigned long address, pte_t *ptep) 326{ 327} 328#define __HAVE_ARCH_UPDATE_MMU_TLB 329#endif 330 331/* 332 * Some architectures may be able to avoid expensive synchronization 333 * primitives when modifications are made to PTE's which are already 334 * not present, or in the process of an address space destruction. 335 */ 336#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 337static inline void pte_clear_not_present_full(struct mm_struct *mm, 338 unsigned long address, 339 pte_t *ptep, 340 int full) 341{ 342 pte_clear(mm, address, ptep); 343} 344#endif 345 346#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 347extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 348 unsigned long address, 349 pte_t *ptep); 350#endif 351 352#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 353extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 354 unsigned long address, 355 pmd_t *pmdp); 356extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 357 unsigned long address, 358 pud_t *pudp); 359#endif 360 361#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 362struct mm_struct; 363static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 364{ 365 pte_t old_pte = *ptep; 366 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 367} 368#endif 369 370/* 371 * On some architectures hardware does not set page access bit when accessing 372 * memory page, it is responsibilty of software setting this bit. It brings 373 * out extra page fault penalty to track page access bit. For optimization page 374 * access bit can be set during all page fault flow on these arches. 375 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 376 * where software maintains page access bit. 377 */ 378#ifndef pte_sw_mkyoung 379static inline pte_t pte_sw_mkyoung(pte_t pte) 380{ 381 return pte; 382} 383#define pte_sw_mkyoung pte_sw_mkyoung 384#endif 385 386#ifndef pte_savedwrite 387#define pte_savedwrite pte_write 388#endif 389 390#ifndef pte_mk_savedwrite 391#define pte_mk_savedwrite pte_mkwrite 392#endif 393 394#ifndef pte_clear_savedwrite 395#define pte_clear_savedwrite pte_wrprotect 396#endif 397 398#ifndef pmd_savedwrite 399#define pmd_savedwrite pmd_write 400#endif 401 402#ifndef pmd_mk_savedwrite 403#define pmd_mk_savedwrite pmd_mkwrite 404#endif 405 406#ifndef pmd_clear_savedwrite 407#define pmd_clear_savedwrite pmd_wrprotect 408#endif 409 410#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 411#ifdef CONFIG_TRANSPARENT_HUGEPAGE 412static inline void pmdp_set_wrprotect(struct mm_struct *mm, 413 unsigned long address, pmd_t *pmdp) 414{ 415 pmd_t old_pmd = *pmdp; 416 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 417} 418#else 419static inline void pmdp_set_wrprotect(struct mm_struct *mm, 420 unsigned long address, pmd_t *pmdp) 421{ 422 BUILD_BUG(); 423} 424#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 425#endif 426#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 427#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 428static inline void pudp_set_wrprotect(struct mm_struct *mm, 429 unsigned long address, pud_t *pudp) 430{ 431 pud_t old_pud = *pudp; 432 433 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 434} 435#else 436static inline void pudp_set_wrprotect(struct mm_struct *mm, 437 unsigned long address, pud_t *pudp) 438{ 439 BUILD_BUG(); 440} 441#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 442#endif 443 444#ifndef pmdp_collapse_flush 445#ifdef CONFIG_TRANSPARENT_HUGEPAGE 446extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 447 unsigned long address, pmd_t *pmdp); 448#else 449static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 450 unsigned long address, 451 pmd_t *pmdp) 452{ 453 BUILD_BUG(); 454 return *pmdp; 455} 456#define pmdp_collapse_flush pmdp_collapse_flush 457#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 458#endif 459 460#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 461extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 462 pgtable_t pgtable); 463#endif 464 465#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 466extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 467#endif 468 469#ifdef CONFIG_TRANSPARENT_HUGEPAGE 470/* 471 * This is an implementation of pmdp_establish() that is only suitable for an 472 * architecture that doesn't have hardware dirty/accessed bits. In this case we 473 * can't race with CPU which sets these bits and non-atomic aproach is fine. 474 */ 475static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 476 unsigned long address, pmd_t *pmdp, pmd_t pmd) 477{ 478 pmd_t old_pmd = *pmdp; 479 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 480 return old_pmd; 481} 482#endif 483 484#ifndef __HAVE_ARCH_PMDP_INVALIDATE 485extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 486 pmd_t *pmdp); 487#endif 488 489#ifndef __HAVE_ARCH_PTE_SAME 490static inline int pte_same(pte_t pte_a, pte_t pte_b) 491{ 492 return pte_val(pte_a) == pte_val(pte_b); 493} 494#endif 495 496#ifndef __HAVE_ARCH_PTE_UNUSED 497/* 498 * Some architectures provide facilities to virtualization guests 499 * so that they can flag allocated pages as unused. This allows the 500 * host to transparently reclaim unused pages. This function returns 501 * whether the pte's page is unused. 502 */ 503static inline int pte_unused(pte_t pte) 504{ 505 return 0; 506} 507#endif 508 509#ifndef pte_access_permitted 510#define pte_access_permitted(pte, write) \ 511 (pte_present(pte) && (!(write) || pte_write(pte))) 512#endif 513 514#ifndef pmd_access_permitted 515#define pmd_access_permitted(pmd, write) \ 516 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 517#endif 518 519#ifndef pud_access_permitted 520#define pud_access_permitted(pud, write) \ 521 (pud_present(pud) && (!(write) || pud_write(pud))) 522#endif 523 524#ifndef p4d_access_permitted 525#define p4d_access_permitted(p4d, write) \ 526 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 527#endif 528 529#ifndef pgd_access_permitted 530#define pgd_access_permitted(pgd, write) \ 531 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 532#endif 533 534#ifndef __HAVE_ARCH_PMD_SAME 535static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 536{ 537 return pmd_val(pmd_a) == pmd_val(pmd_b); 538} 539 540static inline int pud_same(pud_t pud_a, pud_t pud_b) 541{ 542 return pud_val(pud_a) == pud_val(pud_b); 543} 544#endif 545 546#ifndef __HAVE_ARCH_P4D_SAME 547static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 548{ 549 return p4d_val(p4d_a) == p4d_val(p4d_b); 550} 551#endif 552 553#ifndef __HAVE_ARCH_PGD_SAME 554static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 555{ 556 return pgd_val(pgd_a) == pgd_val(pgd_b); 557} 558#endif 559 560/* 561 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 562 * TLB flush will be required as a result of the "set". For example, use 563 * in scenarios where it is known ahead of time that the routine is 564 * setting non-present entries, or re-setting an existing entry to the 565 * same value. Otherwise, use the typical "set" helpers and flush the 566 * TLB. 567 */ 568#define set_pte_safe(ptep, pte) \ 569({ \ 570 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 571 set_pte(ptep, pte); \ 572}) 573 574#define set_pmd_safe(pmdp, pmd) \ 575({ \ 576 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 577 set_pmd(pmdp, pmd); \ 578}) 579 580#define set_pud_safe(pudp, pud) \ 581({ \ 582 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 583 set_pud(pudp, pud); \ 584}) 585 586#define set_p4d_safe(p4dp, p4d) \ 587({ \ 588 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 589 set_p4d(p4dp, p4d); \ 590}) 591 592#define set_pgd_safe(pgdp, pgd) \ 593({ \ 594 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 595 set_pgd(pgdp, pgd); \ 596}) 597 598#ifndef __HAVE_ARCH_DO_SWAP_PAGE 599/* 600 * Some architectures support metadata associated with a page. When a 601 * page is being swapped out, this metadata must be saved so it can be 602 * restored when the page is swapped back in. SPARC M7 and newer 603 * processors support an ADI (Application Data Integrity) tag for the 604 * page as metadata for the page. arch_do_swap_page() can restore this 605 * metadata when a page is swapped back in. 606 */ 607static inline void arch_do_swap_page(struct mm_struct *mm, 608 struct vm_area_struct *vma, 609 unsigned long addr, 610 pte_t pte, pte_t oldpte) 611{ 612 613} 614#endif 615 616#ifndef __HAVE_ARCH_UNMAP_ONE 617/* 618 * Some architectures support metadata associated with a page. When a 619 * page is being swapped out, this metadata must be saved so it can be 620 * restored when the page is swapped back in. SPARC M7 and newer 621 * processors support an ADI (Application Data Integrity) tag for the 622 * page as metadata for the page. arch_unmap_one() can save this 623 * metadata on a swap-out of a page. 624 */ 625static inline int arch_unmap_one(struct mm_struct *mm, 626 struct vm_area_struct *vma, 627 unsigned long addr, 628 pte_t orig_pte) 629{ 630 return 0; 631} 632#endif 633 634#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 635#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 636#endif 637 638#ifndef __HAVE_ARCH_MOVE_PTE 639#define move_pte(pte, prot, old_addr, new_addr) (pte) 640#endif 641 642#ifndef pte_accessible 643# define pte_accessible(mm, pte) ((void)(pte), 1) 644#endif 645 646#ifndef flush_tlb_fix_spurious_fault 647#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 648#endif 649 650/* 651 * When walking page tables, get the address of the next boundary, 652 * or the end address of the range if that comes earlier. Although no 653 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 654 */ 655 656#define pgd_addr_end(addr, end) \ 657({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 658 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 659}) 660 661#ifndef p4d_addr_end 662#define p4d_addr_end(addr, end) \ 663({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 664 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 665}) 666#endif 667 668#ifndef pud_addr_end 669#define pud_addr_end(addr, end) \ 670({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 671 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 672}) 673#endif 674 675#ifndef pmd_addr_end 676#define pmd_addr_end(addr, end) \ 677({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 678 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 679}) 680#endif 681 682/* 683 * When walking page tables, we usually want to skip any p?d_none entries; 684 * and any p?d_bad entries - reporting the error before resetting to none. 685 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 686 */ 687void pgd_clear_bad(pgd_t *); 688 689#ifndef __PAGETABLE_P4D_FOLDED 690void p4d_clear_bad(p4d_t *); 691#else 692#define p4d_clear_bad(p4d) do { } while (0) 693#endif 694 695#ifndef __PAGETABLE_PUD_FOLDED 696void pud_clear_bad(pud_t *); 697#else 698#define pud_clear_bad(p4d) do { } while (0) 699#endif 700 701void pmd_clear_bad(pmd_t *); 702 703static inline int pgd_none_or_clear_bad(pgd_t *pgd) 704{ 705 if (pgd_none(*pgd)) 706 return 1; 707 if (unlikely(pgd_bad(*pgd))) { 708 pgd_clear_bad(pgd); 709 return 1; 710 } 711 return 0; 712} 713 714static inline int p4d_none_or_clear_bad(p4d_t *p4d) 715{ 716 if (p4d_none(*p4d)) 717 return 1; 718 if (unlikely(p4d_bad(*p4d))) { 719 p4d_clear_bad(p4d); 720 return 1; 721 } 722 return 0; 723} 724 725static inline int pud_none_or_clear_bad(pud_t *pud) 726{ 727 if (pud_none(*pud)) 728 return 1; 729 if (unlikely(pud_bad(*pud))) { 730 pud_clear_bad(pud); 731 return 1; 732 } 733 return 0; 734} 735 736static inline int pmd_none_or_clear_bad(pmd_t *pmd) 737{ 738 if (pmd_none(*pmd)) 739 return 1; 740 if (unlikely(pmd_bad(*pmd))) { 741 pmd_clear_bad(pmd); 742 return 1; 743 } 744 return 0; 745} 746 747static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 748 unsigned long addr, 749 pte_t *ptep) 750{ 751 /* 752 * Get the current pte state, but zero it out to make it 753 * non-present, preventing the hardware from asynchronously 754 * updating it. 755 */ 756 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 757} 758 759static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 760 unsigned long addr, 761 pte_t *ptep, pte_t pte) 762{ 763 /* 764 * The pte is non-present, so there's no hardware state to 765 * preserve. 766 */ 767 set_pte_at(vma->vm_mm, addr, ptep, pte); 768} 769 770#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 771/* 772 * Start a pte protection read-modify-write transaction, which 773 * protects against asynchronous hardware modifications to the pte. 774 * The intention is not to prevent the hardware from making pte 775 * updates, but to prevent any updates it may make from being lost. 776 * 777 * This does not protect against other software modifications of the 778 * pte; the appropriate pte lock must be held over the transation. 779 * 780 * Note that this interface is intended to be batchable, meaning that 781 * ptep_modify_prot_commit may not actually update the pte, but merely 782 * queue the update to be done at some later time. The update must be 783 * actually committed before the pte lock is released, however. 784 */ 785static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 786 unsigned long addr, 787 pte_t *ptep) 788{ 789 return __ptep_modify_prot_start(vma, addr, ptep); 790} 791 792/* 793 * Commit an update to a pte, leaving any hardware-controlled bits in 794 * the PTE unmodified. 795 */ 796static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 797 unsigned long addr, 798 pte_t *ptep, pte_t old_pte, pte_t pte) 799{ 800 __ptep_modify_prot_commit(vma, addr, ptep, pte); 801} 802#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 803#endif /* CONFIG_MMU */ 804 805/* 806 * No-op macros that just return the current protection value. Defined here 807 * because these macros can be used even if CONFIG_MMU is not defined. 808 */ 809 810#ifndef pgprot_nx 811#define pgprot_nx(prot) (prot) 812#endif 813 814#ifndef pgprot_noncached 815#define pgprot_noncached(prot) (prot) 816#endif 817 818#ifndef pgprot_writecombine 819#define pgprot_writecombine pgprot_noncached 820#endif 821 822#ifndef pgprot_writethrough 823#define pgprot_writethrough pgprot_noncached 824#endif 825 826#ifndef pgprot_device 827#define pgprot_device pgprot_noncached 828#endif 829 830#ifdef CONFIG_MMU 831#ifndef pgprot_modify 832#define pgprot_modify pgprot_modify 833static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 834{ 835 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 836 newprot = pgprot_noncached(newprot); 837 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 838 newprot = pgprot_writecombine(newprot); 839 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 840 newprot = pgprot_device(newprot); 841 return newprot; 842} 843#endif 844#endif /* CONFIG_MMU */ 845 846#ifndef pgprot_encrypted 847#define pgprot_encrypted(prot) (prot) 848#endif 849 850#ifndef pgprot_decrypted 851#define pgprot_decrypted(prot) (prot) 852#endif 853 854/* 855 * A facility to provide lazy MMU batching. This allows PTE updates and 856 * page invalidations to be delayed until a call to leave lazy MMU mode 857 * is issued. Some architectures may benefit from doing this, and it is 858 * beneficial for both shadow and direct mode hypervisors, which may batch 859 * the PTE updates which happen during this window. Note that using this 860 * interface requires that read hazards be removed from the code. A read 861 * hazard could result in the direct mode hypervisor case, since the actual 862 * write to the page tables may not yet have taken place, so reads though 863 * a raw PTE pointer after it has been modified are not guaranteed to be 864 * up to date. This mode can only be entered and left under the protection of 865 * the page table locks for all page tables which may be modified. In the UP 866 * case, this is required so that preemption is disabled, and in the SMP case, 867 * it must synchronize the delayed page table writes properly on other CPUs. 868 */ 869#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 870#define arch_enter_lazy_mmu_mode() do {} while (0) 871#define arch_leave_lazy_mmu_mode() do {} while (0) 872#define arch_flush_lazy_mmu_mode() do {} while (0) 873#endif 874 875/* 876 * A facility to provide batching of the reload of page tables and 877 * other process state with the actual context switch code for 878 * paravirtualized guests. By convention, only one of the batched 879 * update (lazy) modes (CPU, MMU) should be active at any given time, 880 * entry should never be nested, and entry and exits should always be 881 * paired. This is for sanity of maintaining and reasoning about the 882 * kernel code. In this case, the exit (end of the context switch) is 883 * in architecture-specific code, and so doesn't need a generic 884 * definition. 885 */ 886#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 887#define arch_start_context_switch(prev) do {} while (0) 888#endif 889 890#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 891#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 892static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 893{ 894 return pmd; 895} 896 897static inline int pmd_swp_soft_dirty(pmd_t pmd) 898{ 899 return 0; 900} 901 902static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 903{ 904 return pmd; 905} 906#endif 907#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 908static inline int pte_soft_dirty(pte_t pte) 909{ 910 return 0; 911} 912 913static inline int pmd_soft_dirty(pmd_t pmd) 914{ 915 return 0; 916} 917 918static inline pte_t pte_mksoft_dirty(pte_t pte) 919{ 920 return pte; 921} 922 923static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 924{ 925 return pmd; 926} 927 928static inline pte_t pte_clear_soft_dirty(pte_t pte) 929{ 930 return pte; 931} 932 933static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 934{ 935 return pmd; 936} 937 938static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 939{ 940 return pte; 941} 942 943static inline int pte_swp_soft_dirty(pte_t pte) 944{ 945 return 0; 946} 947 948static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 949{ 950 return pte; 951} 952 953static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 954{ 955 return pmd; 956} 957 958static inline int pmd_swp_soft_dirty(pmd_t pmd) 959{ 960 return 0; 961} 962 963static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 964{ 965 return pmd; 966} 967#endif 968 969#ifndef __HAVE_PFNMAP_TRACKING 970/* 971 * Interfaces that can be used by architecture code to keep track of 972 * memory type of pfn mappings specified by the remap_pfn_range, 973 * vmf_insert_pfn. 974 */ 975 976/* 977 * track_pfn_remap is called when a _new_ pfn mapping is being established 978 * by remap_pfn_range() for physical range indicated by pfn and size. 979 */ 980static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 981 unsigned long pfn, unsigned long addr, 982 unsigned long size) 983{ 984 return 0; 985} 986 987/* 988 * track_pfn_insert is called when a _new_ single pfn is established 989 * by vmf_insert_pfn(). 990 */ 991static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 992 pfn_t pfn) 993{ 994} 995 996/* 997 * track_pfn_copy is called when vma that is covering the pfnmap gets 998 * copied through copy_page_range(). 999 */ 1000static inline int track_pfn_copy(struct vm_area_struct *vma) 1001{ 1002 return 0; 1003} 1004 1005/* 1006 * untrack_pfn is called while unmapping a pfnmap for a region. 1007 * untrack can be called for a specific region indicated by pfn and size or 1008 * can be for the entire vma (in which case pfn, size are zero). 1009 */ 1010static inline void untrack_pfn(struct vm_area_struct *vma, 1011 unsigned long pfn, unsigned long size) 1012{ 1013} 1014 1015/* 1016 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 1017 */ 1018static inline void untrack_pfn_moved(struct vm_area_struct *vma) 1019{ 1020} 1021#else 1022extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1023 unsigned long pfn, unsigned long addr, 1024 unsigned long size); 1025extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1026 pfn_t pfn); 1027extern int track_pfn_copy(struct vm_area_struct *vma); 1028extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1029 unsigned long size); 1030extern void untrack_pfn_moved(struct vm_area_struct *vma); 1031#endif 1032 1033#ifdef __HAVE_COLOR_ZERO_PAGE 1034static inline int is_zero_pfn(unsigned long pfn) 1035{ 1036 extern unsigned long zero_pfn; 1037 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1038 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1039} 1040 1041#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1042 1043#else 1044static inline int is_zero_pfn(unsigned long pfn) 1045{ 1046 extern unsigned long zero_pfn; 1047 return pfn == zero_pfn; 1048} 1049 1050static inline unsigned long my_zero_pfn(unsigned long addr) 1051{ 1052 extern unsigned long zero_pfn; 1053 return zero_pfn; 1054} 1055#endif 1056 1057#ifdef CONFIG_MMU 1058 1059#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1060static inline int pmd_trans_huge(pmd_t pmd) 1061{ 1062 return 0; 1063} 1064#ifndef pmd_write 1065static inline int pmd_write(pmd_t pmd) 1066{ 1067 BUG(); 1068 return 0; 1069} 1070#endif /* pmd_write */ 1071#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1072 1073#ifndef pud_write 1074static inline int pud_write(pud_t pud) 1075{ 1076 BUG(); 1077 return 0; 1078} 1079#endif /* pud_write */ 1080 1081#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1082static inline int pmd_devmap(pmd_t pmd) 1083{ 1084 return 0; 1085} 1086static inline int pud_devmap(pud_t pud) 1087{ 1088 return 0; 1089} 1090static inline int pgd_devmap(pgd_t pgd) 1091{ 1092 return 0; 1093} 1094#endif 1095 1096#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1097 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1098 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 1099static inline int pud_trans_huge(pud_t pud) 1100{ 1101 return 0; 1102} 1103#endif 1104 1105/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ 1106static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) 1107{ 1108 pud_t pudval = READ_ONCE(*pud); 1109 1110 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1111 return 1; 1112 if (unlikely(pud_bad(pudval))) { 1113 pud_clear_bad(pud); 1114 return 1; 1115 } 1116 return 0; 1117} 1118 1119/* See pmd_trans_unstable for discussion. */ 1120static inline int pud_trans_unstable(pud_t *pud) 1121{ 1122#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1123 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1124 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); 1125#else 1126 return 0; 1127#endif 1128} 1129 1130#ifndef pmd_read_atomic 1131static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 1132{ 1133 /* 1134 * Depend on compiler for an atomic pmd read. NOTE: this is 1135 * only going to work, if the pmdval_t isn't larger than 1136 * an unsigned long. 1137 */ 1138 return *pmdp; 1139} 1140#endif 1141 1142#ifndef arch_needs_pgtable_deposit 1143#define arch_needs_pgtable_deposit() (false) 1144#endif 1145/* 1146 * This function is meant to be used by sites walking pagetables with 1147 * the mmap_lock held in read mode to protect against MADV_DONTNEED and 1148 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 1149 * into a null pmd and the transhuge page fault can convert a null pmd 1150 * into an hugepmd or into a regular pmd (if the hugepage allocation 1151 * fails). While holding the mmap_lock in read mode the pmd becomes 1152 * stable and stops changing under us only if it's not null and not a 1153 * transhuge pmd. When those races occurs and this function makes a 1154 * difference vs the standard pmd_none_or_clear_bad, the result is 1155 * undefined so behaving like if the pmd was none is safe (because it 1156 * can return none anyway). The compiler level barrier() is critically 1157 * important to compute the two checks atomically on the same pmdval. 1158 * 1159 * For 32bit kernels with a 64bit large pmd_t this automatically takes 1160 * care of reading the pmd atomically to avoid SMP race conditions 1161 * against pmd_populate() when the mmap_lock is hold for reading by the 1162 * caller (a special atomic read not done by "gcc" as in the generic 1163 * version above, is also needed when THP is disabled because the page 1164 * fault can populate the pmd from under us). 1165 */ 1166static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 1167{ 1168 pmd_t pmdval = pmd_read_atomic(pmd); 1169 /* 1170 * The barrier will stabilize the pmdval in a register or on 1171 * the stack so that it will stop changing under the code. 1172 * 1173 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 1174 * pmd_read_atomic is allowed to return a not atomic pmdval 1175 * (for example pointing to an hugepage that has never been 1176 * mapped in the pmd). The below checks will only care about 1177 * the low part of the pmd with 32bit PAE x86 anyway, with the 1178 * exception of pmd_none(). So the important thing is that if 1179 * the low part of the pmd is found null, the high part will 1180 * be also null or the pmd_none() check below would be 1181 * confused. 1182 */ 1183#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1184 barrier(); 1185#endif 1186 /* 1187 * !pmd_present() checks for pmd migration entries 1188 * 1189 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 1190 * But using that requires moving current function and pmd_trans_unstable() 1191 * to linux/swapops.h to resovle dependency, which is too much code move. 1192 * 1193 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 1194 * because !pmd_present() pages can only be under migration not swapped 1195 * out. 1196 * 1197 * pmd_none() is preseved for future condition checks on pmd migration 1198 * entries and not confusing with this function name, although it is 1199 * redundant with !pmd_present(). 1200 */ 1201 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 1202 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 1203 return 1; 1204 if (unlikely(pmd_bad(pmdval))) { 1205 pmd_clear_bad(pmd); 1206 return 1; 1207 } 1208 return 0; 1209} 1210 1211/* 1212 * This is a noop if Transparent Hugepage Support is not built into 1213 * the kernel. Otherwise it is equivalent to 1214 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 1215 * places that already verified the pmd is not none and they want to 1216 * walk ptes while holding the mmap sem in read mode (write mode don't 1217 * need this). If THP is not enabled, the pmd can't go away under the 1218 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 1219 * run a pmd_trans_unstable before walking the ptes after 1220 * split_huge_pmd returns (because it may have run when the pmd become 1221 * null, but then a page fault can map in a THP and not a regular page). 1222 */ 1223static inline int pmd_trans_unstable(pmd_t *pmd) 1224{ 1225#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1226 return pmd_none_or_trans_huge_or_clear_bad(pmd); 1227#else 1228 return 0; 1229#endif 1230} 1231 1232#ifndef CONFIG_NUMA_BALANCING 1233/* 1234 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 1235 * the only case the kernel cares is for NUMA balancing and is only ever set 1236 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 1237 * _PAGE_PROTNONE so by default, implement the helper as "always no". It 1238 * is the responsibility of the caller to distinguish between PROT_NONE 1239 * protections and NUMA hinting fault protections. 1240 */ 1241static inline int pte_protnone(pte_t pte) 1242{ 1243 return 0; 1244} 1245 1246static inline int pmd_protnone(pmd_t pmd) 1247{ 1248 return 0; 1249} 1250#endif /* CONFIG_NUMA_BALANCING */ 1251 1252#endif /* CONFIG_MMU */ 1253 1254#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1255 1256#ifndef __PAGETABLE_P4D_FOLDED 1257int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1258int p4d_clear_huge(p4d_t *p4d); 1259#else 1260static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1261{ 1262 return 0; 1263} 1264static inline int p4d_clear_huge(p4d_t *p4d) 1265{ 1266 return 0; 1267} 1268#endif /* !__PAGETABLE_P4D_FOLDED */ 1269 1270int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1271int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1272int pud_clear_huge(pud_t *pud); 1273int pmd_clear_huge(pmd_t *pmd); 1274int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1275int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1276int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1277#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1278static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1279{ 1280 return 0; 1281} 1282static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1283{ 1284 return 0; 1285} 1286static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1287{ 1288 return 0; 1289} 1290static inline int p4d_clear_huge(p4d_t *p4d) 1291{ 1292 return 0; 1293} 1294static inline int pud_clear_huge(pud_t *pud) 1295{ 1296 return 0; 1297} 1298static inline int pmd_clear_huge(pmd_t *pmd) 1299{ 1300 return 0; 1301} 1302static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1303{ 1304 return 0; 1305} 1306static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1307{ 1308 return 0; 1309} 1310static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1311{ 1312 return 0; 1313} 1314#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1315 1316#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1317#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1318/* 1319 * ARCHes with special requirements for evicting THP backing TLB entries can 1320 * implement this. Otherwise also, it can help optimize normal TLB flush in 1321 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the 1322 * entire TLB if flush span is greater than a threshold, which will 1323 * likely be true for a single huge page. Thus a single THP flush will 1324 * invalidate the entire TLB which is not desirable. 1325 * e.g. see arch/arc: flush_pmd_tlb_range 1326 */ 1327#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1328#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1329#else 1330#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1331#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1332#endif 1333#endif 1334 1335struct file; 1336int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1337 unsigned long size, pgprot_t *vma_prot); 1338 1339#ifndef CONFIG_X86_ESPFIX64 1340static inline void init_espfix_bsp(void) { } 1341#endif 1342 1343extern void __init pgtable_cache_init(void); 1344 1345#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1346static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1347{ 1348 return true; 1349} 1350 1351static inline bool arch_has_pfn_modify_check(void) 1352{ 1353 return false; 1354} 1355#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1356 1357/* 1358 * Architecture PAGE_KERNEL_* fallbacks 1359 * 1360 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1361 * because they really don't support them, or the port needs to be updated to 1362 * reflect the required functionality. Below are a set of relatively safe 1363 * fallbacks, as best effort, which we can count on in lieu of the architectures 1364 * not defining them on their own yet. 1365 */ 1366 1367#ifndef PAGE_KERNEL_RO 1368# define PAGE_KERNEL_RO PAGE_KERNEL 1369#endif 1370 1371#ifndef PAGE_KERNEL_EXEC 1372# define PAGE_KERNEL_EXEC PAGE_KERNEL 1373#endif 1374 1375/* 1376 * Page Table Modification bits for pgtbl_mod_mask. 1377 * 1378 * These are used by the p?d_alloc_track*() set of functions an in the generic 1379 * vmalloc/ioremap code to track at which page-table levels entries have been 1380 * modified. Based on that the code can better decide when vmalloc and ioremap 1381 * mapping changes need to be synchronized to other page-tables in the system. 1382 */ 1383#define __PGTBL_PGD_MODIFIED 0 1384#define __PGTBL_P4D_MODIFIED 1 1385#define __PGTBL_PUD_MODIFIED 2 1386#define __PGTBL_PMD_MODIFIED 3 1387#define __PGTBL_PTE_MODIFIED 4 1388 1389#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1390#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1391#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1392#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1393#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1394 1395/* Page-Table Modification Mask */ 1396typedef unsigned int pgtbl_mod_mask; 1397 1398#endif /* !__ASSEMBLY__ */ 1399 1400#ifndef io_remap_pfn_range 1401#define io_remap_pfn_range remap_pfn_range 1402#endif 1403 1404#ifndef has_transparent_hugepage 1405#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1406#define has_transparent_hugepage() 1 1407#else 1408#define has_transparent_hugepage() 0 1409#endif 1410#endif 1411 1412/* 1413 * On some architectures it depends on the mm if the p4d/pud or pmd 1414 * layer of the page table hierarchy is folded or not. 1415 */ 1416#ifndef mm_p4d_folded 1417#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1418#endif 1419 1420#ifndef mm_pud_folded 1421#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1422#endif 1423 1424#ifndef mm_pmd_folded 1425#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1426#endif 1427 1428/* 1429 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1430 * This differs from p?d_huge() by the fact that they are always available (if 1431 * the architecture supports large pages at the appropriate level) even 1432 * if CONFIG_HUGETLB_PAGE is not defined. 1433 * Only meaningful when called on a valid entry. 1434 */ 1435#ifndef pgd_leaf 1436#define pgd_leaf(x) 0 1437#endif 1438#ifndef p4d_leaf 1439#define p4d_leaf(x) 0 1440#endif 1441#ifndef pud_leaf 1442#define pud_leaf(x) 0 1443#endif 1444#ifndef pmd_leaf 1445#define pmd_leaf(x) 0 1446#endif 1447 1448#endif /* _LINUX_PGTABLE_H */