Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30/* Lock to allow exclusive modification to the device and opp lists */
31DEFINE_MUTEX(opp_table_lock);
32
33static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35{
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43}
44
45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46{
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63}
64
65/**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76struct opp_table *_find_opp_table(struct device *dev)
77{
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90}
91
92/**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102{
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109}
110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112/**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120{
121 if (IS_ERR_OR_NULL(opp)) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127}
128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130/**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148/**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159{
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166}
167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169/**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176{
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189}
190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192/**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199{
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259}
260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262/**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271{
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274}
275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277/**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285{
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299}
300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
302int _get_opp_count(struct opp_table *opp_table)
303{
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317}
318
319/**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
326int dev_pm_opp_get_opp_count(struct device *dev)
327{
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343}
344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346/**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372{
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401}
402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404/**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421{
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449}
450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454{
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473}
474
475/**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495{
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513}
514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516/**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571}
572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574/**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593{
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625}
626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630{
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651}
652
653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655{
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665}
666
667static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673{
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 /*
703 * Enable the regulator after setting its voltages, otherwise it breaks
704 * some boot-enabled regulators.
705 */
706 if (unlikely(!opp_table->regulator_enabled)) {
707 ret = regulator_enable(reg);
708 if (ret < 0)
709 dev_warn(dev, "Failed to enable regulator: %d", ret);
710 else
711 opp_table->regulator_enabled = true;
712 }
713
714 return 0;
715
716restore_freq:
717 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
718 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
719 __func__, old_freq);
720restore_voltage:
721 /* This shouldn't harm even if the voltages weren't updated earlier */
722 if (old_supply)
723 _set_opp_voltage(dev, reg, old_supply);
724
725 return ret;
726}
727
728static int _set_opp_bw(const struct opp_table *opp_table,
729 struct dev_pm_opp *opp, struct device *dev, bool remove)
730{
731 u32 avg, peak;
732 int i, ret;
733
734 if (!opp_table->paths)
735 return 0;
736
737 for (i = 0; i < opp_table->path_count; i++) {
738 if (remove) {
739 avg = 0;
740 peak = 0;
741 } else {
742 avg = opp->bandwidth[i].avg;
743 peak = opp->bandwidth[i].peak;
744 }
745 ret = icc_set_bw(opp_table->paths[i], avg, peak);
746 if (ret) {
747 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
748 remove ? "remove" : "set", i, ret);
749 return ret;
750 }
751 }
752
753 return 0;
754}
755
756static int _set_opp_custom(const struct opp_table *opp_table,
757 struct device *dev, unsigned long old_freq,
758 unsigned long freq,
759 struct dev_pm_opp_supply *old_supply,
760 struct dev_pm_opp_supply *new_supply)
761{
762 struct dev_pm_set_opp_data *data;
763 int size;
764
765 data = opp_table->set_opp_data;
766 data->regulators = opp_table->regulators;
767 data->regulator_count = opp_table->regulator_count;
768 data->clk = opp_table->clk;
769 data->dev = dev;
770
771 data->old_opp.rate = old_freq;
772 size = sizeof(*old_supply) * opp_table->regulator_count;
773 if (!old_supply)
774 memset(data->old_opp.supplies, 0, size);
775 else
776 memcpy(data->old_opp.supplies, old_supply, size);
777
778 data->new_opp.rate = freq;
779 memcpy(data->new_opp.supplies, new_supply, size);
780
781 return opp_table->set_opp(data);
782}
783
784/* This is only called for PM domain for now */
785static int _set_required_opps(struct device *dev,
786 struct opp_table *opp_table,
787 struct dev_pm_opp *opp)
788{
789 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
790 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
791 unsigned int pstate;
792 int i, ret = 0;
793
794 if (!required_opp_tables)
795 return 0;
796
797 /* Single genpd case */
798 if (!genpd_virt_devs) {
799 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
800 ret = dev_pm_genpd_set_performance_state(dev, pstate);
801 if (ret) {
802 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
803 dev_name(dev), pstate, ret);
804 }
805 return ret;
806 }
807
808 /* Multiple genpd case */
809
810 /*
811 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
812 * after it is freed from another thread.
813 */
814 mutex_lock(&opp_table->genpd_virt_dev_lock);
815
816 for (i = 0; i < opp_table->required_opp_count; i++) {
817 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
818
819 if (!genpd_virt_devs[i])
820 continue;
821
822 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
823 if (ret) {
824 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
825 dev_name(genpd_virt_devs[i]), pstate, ret);
826 break;
827 }
828 }
829 mutex_unlock(&opp_table->genpd_virt_dev_lock);
830
831 return ret;
832}
833
834/**
835 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
836 * @dev: device for which we do this operation
837 * @opp: opp based on which the bandwidth levels are to be configured
838 *
839 * This configures the bandwidth to the levels specified by the OPP. However
840 * if the OPP specified is NULL the bandwidth levels are cleared out.
841 *
842 * Return: 0 on success or a negative error value.
843 */
844int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
845{
846 struct opp_table *opp_table;
847 int ret;
848
849 opp_table = _find_opp_table(dev);
850 if (IS_ERR(opp_table)) {
851 dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
852 return PTR_ERR(opp_table);
853 }
854
855 if (opp)
856 ret = _set_opp_bw(opp_table, opp, dev, false);
857 else
858 ret = _set_opp_bw(opp_table, NULL, dev, true);
859
860 dev_pm_opp_put_opp_table(opp_table);
861 return ret;
862}
863EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
864
865/**
866 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
867 * @dev: device for which we do this operation
868 * @target_freq: frequency to achieve
869 *
870 * This configures the power-supplies to the levels specified by the OPP
871 * corresponding to the target_freq, and programs the clock to a value <=
872 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
873 * provided by the opp, should have already rounded to the target OPP's
874 * frequency.
875 */
876int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
877{
878 struct opp_table *opp_table;
879 unsigned long freq, old_freq, temp_freq;
880 struct dev_pm_opp *old_opp, *opp;
881 struct clk *clk;
882 int ret;
883
884 opp_table = _find_opp_table(dev);
885 if (IS_ERR(opp_table)) {
886 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
887 return PTR_ERR(opp_table);
888 }
889
890 if (unlikely(!target_freq)) {
891 /*
892 * Some drivers need to support cases where some platforms may
893 * have OPP table for the device, while others don't and
894 * opp_set_rate() just needs to behave like clk_set_rate().
895 */
896 if (!_get_opp_count(opp_table))
897 return 0;
898
899 if (!opp_table->required_opp_tables && !opp_table->regulators &&
900 !opp_table->paths) {
901 dev_err(dev, "target frequency can't be 0\n");
902 ret = -EINVAL;
903 goto put_opp_table;
904 }
905
906 ret = _set_opp_bw(opp_table, NULL, dev, true);
907 if (ret)
908 return ret;
909
910 if (opp_table->regulator_enabled) {
911 regulator_disable(opp_table->regulators[0]);
912 opp_table->regulator_enabled = false;
913 }
914
915 ret = _set_required_opps(dev, opp_table, NULL);
916 goto put_opp_table;
917 }
918
919 clk = opp_table->clk;
920 if (IS_ERR(clk)) {
921 dev_err(dev, "%s: No clock available for the device\n",
922 __func__);
923 ret = PTR_ERR(clk);
924 goto put_opp_table;
925 }
926
927 freq = clk_round_rate(clk, target_freq);
928 if ((long)freq <= 0)
929 freq = target_freq;
930
931 old_freq = clk_get_rate(clk);
932
933 /* Return early if nothing to do */
934 if (old_freq == freq) {
935 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
936 __func__, freq);
937 ret = 0;
938 goto put_opp_table;
939 }
940
941 /*
942 * For IO devices which require an OPP on some platforms/SoCs
943 * while just needing to scale the clock on some others
944 * we look for empty OPP tables with just a clock handle and
945 * scale only the clk. This makes dev_pm_opp_set_rate()
946 * equivalent to a clk_set_rate()
947 */
948 if (!_get_opp_count(opp_table)) {
949 ret = _generic_set_opp_clk_only(dev, clk, freq);
950 goto put_opp_table;
951 }
952
953 temp_freq = old_freq;
954 old_opp = _find_freq_ceil(opp_table, &temp_freq);
955 if (IS_ERR(old_opp)) {
956 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
957 __func__, old_freq, PTR_ERR(old_opp));
958 }
959
960 temp_freq = freq;
961 opp = _find_freq_ceil(opp_table, &temp_freq);
962 if (IS_ERR(opp)) {
963 ret = PTR_ERR(opp);
964 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
965 __func__, freq, ret);
966 goto put_old_opp;
967 }
968
969 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
970 old_freq, freq);
971
972 /* Scaling up? Configure required OPPs before frequency */
973 if (freq >= old_freq) {
974 ret = _set_required_opps(dev, opp_table, opp);
975 if (ret)
976 goto put_opp;
977 }
978
979 if (opp_table->set_opp) {
980 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
981 IS_ERR(old_opp) ? NULL : old_opp->supplies,
982 opp->supplies);
983 } else if (opp_table->regulators) {
984 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
985 IS_ERR(old_opp) ? NULL : old_opp->supplies,
986 opp->supplies);
987 } else {
988 /* Only frequency scaling */
989 ret = _generic_set_opp_clk_only(dev, clk, freq);
990 }
991
992 /* Scaling down? Configure required OPPs after frequency */
993 if (!ret && freq < old_freq) {
994 ret = _set_required_opps(dev, opp_table, opp);
995 if (ret)
996 dev_err(dev, "Failed to set required opps: %d\n", ret);
997 }
998
999 if (!ret)
1000 ret = _set_opp_bw(opp_table, opp, dev, false);
1001
1002put_opp:
1003 dev_pm_opp_put(opp);
1004put_old_opp:
1005 if (!IS_ERR(old_opp))
1006 dev_pm_opp_put(old_opp);
1007put_opp_table:
1008 dev_pm_opp_put_opp_table(opp_table);
1009 return ret;
1010}
1011EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1012
1013/* OPP-dev Helpers */
1014static void _remove_opp_dev(struct opp_device *opp_dev,
1015 struct opp_table *opp_table)
1016{
1017 opp_debug_unregister(opp_dev, opp_table);
1018 list_del(&opp_dev->node);
1019 kfree(opp_dev);
1020}
1021
1022static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1023 struct opp_table *opp_table)
1024{
1025 struct opp_device *opp_dev;
1026
1027 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1028 if (!opp_dev)
1029 return NULL;
1030
1031 /* Initialize opp-dev */
1032 opp_dev->dev = dev;
1033
1034 list_add(&opp_dev->node, &opp_table->dev_list);
1035
1036 /* Create debugfs entries for the opp_table */
1037 opp_debug_register(opp_dev, opp_table);
1038
1039 return opp_dev;
1040}
1041
1042struct opp_device *_add_opp_dev(const struct device *dev,
1043 struct opp_table *opp_table)
1044{
1045 struct opp_device *opp_dev;
1046
1047 mutex_lock(&opp_table->lock);
1048 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1049 mutex_unlock(&opp_table->lock);
1050
1051 return opp_dev;
1052}
1053
1054static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1055{
1056 struct opp_table *opp_table;
1057 struct opp_device *opp_dev;
1058 int ret;
1059
1060 /*
1061 * Allocate a new OPP table. In the infrequent case where a new
1062 * device is needed to be added, we pay this penalty.
1063 */
1064 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1065 if (!opp_table)
1066 return NULL;
1067
1068 mutex_init(&opp_table->lock);
1069 mutex_init(&opp_table->genpd_virt_dev_lock);
1070 INIT_LIST_HEAD(&opp_table->dev_list);
1071
1072 /* Mark regulator count uninitialized */
1073 opp_table->regulator_count = -1;
1074
1075 opp_dev = _add_opp_dev(dev, opp_table);
1076 if (!opp_dev) {
1077 kfree(opp_table);
1078 return NULL;
1079 }
1080
1081 _of_init_opp_table(opp_table, dev, index);
1082
1083 /* Find clk for the device */
1084 opp_table->clk = clk_get(dev, NULL);
1085 if (IS_ERR(opp_table->clk)) {
1086 ret = PTR_ERR(opp_table->clk);
1087 if (ret != -EPROBE_DEFER)
1088 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
1089 ret);
1090 }
1091
1092 /* Find interconnect path(s) for the device */
1093 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1094 if (ret)
1095 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1096 __func__, ret);
1097
1098 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1099 INIT_LIST_HEAD(&opp_table->opp_list);
1100 kref_init(&opp_table->kref);
1101
1102 /* Secure the device table modification */
1103 list_add(&opp_table->node, &opp_tables);
1104 return opp_table;
1105}
1106
1107void _get_opp_table_kref(struct opp_table *opp_table)
1108{
1109 kref_get(&opp_table->kref);
1110}
1111
1112static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1113{
1114 struct opp_table *opp_table;
1115
1116 /* Hold our table modification lock here */
1117 mutex_lock(&opp_table_lock);
1118
1119 opp_table = _find_opp_table_unlocked(dev);
1120 if (!IS_ERR(opp_table))
1121 goto unlock;
1122
1123 opp_table = _managed_opp(dev, index);
1124 if (opp_table) {
1125 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1126 dev_pm_opp_put_opp_table(opp_table);
1127 opp_table = NULL;
1128 }
1129 goto unlock;
1130 }
1131
1132 opp_table = _allocate_opp_table(dev, index);
1133
1134unlock:
1135 mutex_unlock(&opp_table_lock);
1136
1137 return opp_table;
1138}
1139
1140struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1141{
1142 return _opp_get_opp_table(dev, 0);
1143}
1144EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1145
1146struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1147 int index)
1148{
1149 return _opp_get_opp_table(dev, index);
1150}
1151
1152static void _opp_table_kref_release(struct kref *kref)
1153{
1154 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1155 struct opp_device *opp_dev, *temp;
1156 int i;
1157
1158 _of_clear_opp_table(opp_table);
1159
1160 /* Release clk */
1161 if (!IS_ERR(opp_table->clk))
1162 clk_put(opp_table->clk);
1163
1164 if (opp_table->paths) {
1165 for (i = 0; i < opp_table->path_count; i++)
1166 icc_put(opp_table->paths[i]);
1167 kfree(opp_table->paths);
1168 }
1169
1170 WARN_ON(!list_empty(&opp_table->opp_list));
1171
1172 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1173 /*
1174 * The OPP table is getting removed, drop the performance state
1175 * constraints.
1176 */
1177 if (opp_table->genpd_performance_state)
1178 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1179
1180 _remove_opp_dev(opp_dev, opp_table);
1181 }
1182
1183 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1184 mutex_destroy(&opp_table->lock);
1185 list_del(&opp_table->node);
1186 kfree(opp_table);
1187
1188 mutex_unlock(&opp_table_lock);
1189}
1190
1191void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1192{
1193 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1194 &opp_table_lock);
1195}
1196EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1197
1198void _opp_free(struct dev_pm_opp *opp)
1199{
1200 kfree(opp);
1201}
1202
1203static void _opp_kref_release(struct dev_pm_opp *opp,
1204 struct opp_table *opp_table)
1205{
1206 /*
1207 * Notify the changes in the availability of the operable
1208 * frequency/voltage list.
1209 */
1210 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1211 _of_opp_free_required_opps(opp_table, opp);
1212 opp_debug_remove_one(opp);
1213 list_del(&opp->node);
1214 kfree(opp);
1215}
1216
1217static void _opp_kref_release_unlocked(struct kref *kref)
1218{
1219 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1220 struct opp_table *opp_table = opp->opp_table;
1221
1222 _opp_kref_release(opp, opp_table);
1223}
1224
1225static void _opp_kref_release_locked(struct kref *kref)
1226{
1227 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1228 struct opp_table *opp_table = opp->opp_table;
1229
1230 _opp_kref_release(opp, opp_table);
1231 mutex_unlock(&opp_table->lock);
1232}
1233
1234void dev_pm_opp_get(struct dev_pm_opp *opp)
1235{
1236 kref_get(&opp->kref);
1237}
1238
1239void dev_pm_opp_put(struct dev_pm_opp *opp)
1240{
1241 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1242 &opp->opp_table->lock);
1243}
1244EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1245
1246static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1247{
1248 kref_put(&opp->kref, _opp_kref_release_unlocked);
1249}
1250
1251/**
1252 * dev_pm_opp_remove() - Remove an OPP from OPP table
1253 * @dev: device for which we do this operation
1254 * @freq: OPP to remove with matching 'freq'
1255 *
1256 * This function removes an opp from the opp table.
1257 */
1258void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1259{
1260 struct dev_pm_opp *opp;
1261 struct opp_table *opp_table;
1262 bool found = false;
1263
1264 opp_table = _find_opp_table(dev);
1265 if (IS_ERR(opp_table))
1266 return;
1267
1268 mutex_lock(&opp_table->lock);
1269
1270 list_for_each_entry(opp, &opp_table->opp_list, node) {
1271 if (opp->rate == freq) {
1272 found = true;
1273 break;
1274 }
1275 }
1276
1277 mutex_unlock(&opp_table->lock);
1278
1279 if (found) {
1280 dev_pm_opp_put(opp);
1281
1282 /* Drop the reference taken by dev_pm_opp_add() */
1283 dev_pm_opp_put_opp_table(opp_table);
1284 } else {
1285 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1286 __func__, freq);
1287 }
1288
1289 /* Drop the reference taken by _find_opp_table() */
1290 dev_pm_opp_put_opp_table(opp_table);
1291}
1292EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1293
1294void _opp_remove_all_static(struct opp_table *opp_table)
1295{
1296 struct dev_pm_opp *opp, *tmp;
1297
1298 mutex_lock(&opp_table->lock);
1299
1300 if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps)
1301 goto unlock;
1302
1303 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1304 if (!opp->dynamic)
1305 dev_pm_opp_put_unlocked(opp);
1306 }
1307
1308unlock:
1309 mutex_unlock(&opp_table->lock);
1310}
1311
1312/**
1313 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1314 * @dev: device for which we do this operation
1315 *
1316 * This function removes all dynamically created OPPs from the opp table.
1317 */
1318void dev_pm_opp_remove_all_dynamic(struct device *dev)
1319{
1320 struct opp_table *opp_table;
1321 struct dev_pm_opp *opp, *temp;
1322 int count = 0;
1323
1324 opp_table = _find_opp_table(dev);
1325 if (IS_ERR(opp_table))
1326 return;
1327
1328 mutex_lock(&opp_table->lock);
1329 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1330 if (opp->dynamic) {
1331 dev_pm_opp_put_unlocked(opp);
1332 count++;
1333 }
1334 }
1335 mutex_unlock(&opp_table->lock);
1336
1337 /* Drop the references taken by dev_pm_opp_add() */
1338 while (count--)
1339 dev_pm_opp_put_opp_table(opp_table);
1340
1341 /* Drop the reference taken by _find_opp_table() */
1342 dev_pm_opp_put_opp_table(opp_table);
1343}
1344EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1345
1346struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1347{
1348 struct dev_pm_opp *opp;
1349 int supply_count, supply_size, icc_size;
1350
1351 /* Allocate space for at least one supply */
1352 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1353 supply_size = sizeof(*opp->supplies) * supply_count;
1354 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1355
1356 /* allocate new OPP node and supplies structures */
1357 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1358
1359 if (!opp)
1360 return NULL;
1361
1362 /* Put the supplies at the end of the OPP structure as an empty array */
1363 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1364 if (icc_size)
1365 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1366 INIT_LIST_HEAD(&opp->node);
1367
1368 return opp;
1369}
1370
1371static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1372 struct opp_table *opp_table)
1373{
1374 struct regulator *reg;
1375 int i;
1376
1377 if (!opp_table->regulators)
1378 return true;
1379
1380 for (i = 0; i < opp_table->regulator_count; i++) {
1381 reg = opp_table->regulators[i];
1382
1383 if (!regulator_is_supported_voltage(reg,
1384 opp->supplies[i].u_volt_min,
1385 opp->supplies[i].u_volt_max)) {
1386 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1387 __func__, opp->supplies[i].u_volt_min,
1388 opp->supplies[i].u_volt_max);
1389 return false;
1390 }
1391 }
1392
1393 return true;
1394}
1395
1396int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1397{
1398 if (opp1->rate != opp2->rate)
1399 return opp1->rate < opp2->rate ? -1 : 1;
1400 if (opp1->bandwidth && opp2->bandwidth &&
1401 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1402 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1403 if (opp1->level != opp2->level)
1404 return opp1->level < opp2->level ? -1 : 1;
1405 return 0;
1406}
1407
1408static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1409 struct opp_table *opp_table,
1410 struct list_head **head)
1411{
1412 struct dev_pm_opp *opp;
1413 int opp_cmp;
1414
1415 /*
1416 * Insert new OPP in order of increasing frequency and discard if
1417 * already present.
1418 *
1419 * Need to use &opp_table->opp_list in the condition part of the 'for'
1420 * loop, don't replace it with head otherwise it will become an infinite
1421 * loop.
1422 */
1423 list_for_each_entry(opp, &opp_table->opp_list, node) {
1424 opp_cmp = _opp_compare_key(new_opp, opp);
1425 if (opp_cmp > 0) {
1426 *head = &opp->node;
1427 continue;
1428 }
1429
1430 if (opp_cmp < 0)
1431 return 0;
1432
1433 /* Duplicate OPPs */
1434 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1435 __func__, opp->rate, opp->supplies[0].u_volt,
1436 opp->available, new_opp->rate,
1437 new_opp->supplies[0].u_volt, new_opp->available);
1438
1439 /* Should we compare voltages for all regulators here ? */
1440 return opp->available &&
1441 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1442 }
1443
1444 return 0;
1445}
1446
1447/*
1448 * Returns:
1449 * 0: On success. And appropriate error message for duplicate OPPs.
1450 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1451 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1452 * sure we don't print error messages unnecessarily if different parts of
1453 * kernel try to initialize the OPP table.
1454 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1455 * should be considered an error by the callers of _opp_add().
1456 */
1457int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1458 struct opp_table *opp_table, bool rate_not_available)
1459{
1460 struct list_head *head;
1461 int ret;
1462
1463 mutex_lock(&opp_table->lock);
1464 head = &opp_table->opp_list;
1465
1466 if (likely(!rate_not_available)) {
1467 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1468 if (ret) {
1469 mutex_unlock(&opp_table->lock);
1470 return ret;
1471 }
1472 }
1473
1474 list_add(&new_opp->node, head);
1475 mutex_unlock(&opp_table->lock);
1476
1477 new_opp->opp_table = opp_table;
1478 kref_init(&new_opp->kref);
1479
1480 opp_debug_create_one(new_opp, opp_table);
1481
1482 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1483 new_opp->available = false;
1484 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1485 __func__, new_opp->rate);
1486 }
1487
1488 return 0;
1489}
1490
1491/**
1492 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1493 * @opp_table: OPP table
1494 * @dev: device for which we do this operation
1495 * @freq: Frequency in Hz for this OPP
1496 * @u_volt: Voltage in uVolts for this OPP
1497 * @dynamic: Dynamically added OPPs.
1498 *
1499 * This function adds an opp definition to the opp table and returns status.
1500 * The opp is made available by default and it can be controlled using
1501 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1502 *
1503 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1504 * and freed by dev_pm_opp_of_remove_table.
1505 *
1506 * Return:
1507 * 0 On success OR
1508 * Duplicate OPPs (both freq and volt are same) and opp->available
1509 * -EEXIST Freq are same and volt are different OR
1510 * Duplicate OPPs (both freq and volt are same) and !opp->available
1511 * -ENOMEM Memory allocation failure
1512 */
1513int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1514 unsigned long freq, long u_volt, bool dynamic)
1515{
1516 struct dev_pm_opp *new_opp;
1517 unsigned long tol;
1518 int ret;
1519
1520 new_opp = _opp_allocate(opp_table);
1521 if (!new_opp)
1522 return -ENOMEM;
1523
1524 /* populate the opp table */
1525 new_opp->rate = freq;
1526 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1527 new_opp->supplies[0].u_volt = u_volt;
1528 new_opp->supplies[0].u_volt_min = u_volt - tol;
1529 new_opp->supplies[0].u_volt_max = u_volt + tol;
1530 new_opp->available = true;
1531 new_opp->dynamic = dynamic;
1532
1533 ret = _opp_add(dev, new_opp, opp_table, false);
1534 if (ret) {
1535 /* Don't return error for duplicate OPPs */
1536 if (ret == -EBUSY)
1537 ret = 0;
1538 goto free_opp;
1539 }
1540
1541 /*
1542 * Notify the changes in the availability of the operable
1543 * frequency/voltage list.
1544 */
1545 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1546 return 0;
1547
1548free_opp:
1549 _opp_free(new_opp);
1550
1551 return ret;
1552}
1553
1554/**
1555 * dev_pm_opp_set_supported_hw() - Set supported platforms
1556 * @dev: Device for which supported-hw has to be set.
1557 * @versions: Array of hierarchy of versions to match.
1558 * @count: Number of elements in the array.
1559 *
1560 * This is required only for the V2 bindings, and it enables a platform to
1561 * specify the hierarchy of versions it supports. OPP layer will then enable
1562 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1563 * property.
1564 */
1565struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1566 const u32 *versions, unsigned int count)
1567{
1568 struct opp_table *opp_table;
1569
1570 opp_table = dev_pm_opp_get_opp_table(dev);
1571 if (!opp_table)
1572 return ERR_PTR(-ENOMEM);
1573
1574 /* Make sure there are no concurrent readers while updating opp_table */
1575 WARN_ON(!list_empty(&opp_table->opp_list));
1576
1577 /* Another CPU that shares the OPP table has set the property ? */
1578 if (opp_table->supported_hw)
1579 return opp_table;
1580
1581 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1582 GFP_KERNEL);
1583 if (!opp_table->supported_hw) {
1584 dev_pm_opp_put_opp_table(opp_table);
1585 return ERR_PTR(-ENOMEM);
1586 }
1587
1588 opp_table->supported_hw_count = count;
1589
1590 return opp_table;
1591}
1592EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1593
1594/**
1595 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1596 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1597 *
1598 * This is required only for the V2 bindings, and is called for a matching
1599 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1600 * will not be freed.
1601 */
1602void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1603{
1604 /* Make sure there are no concurrent readers while updating opp_table */
1605 WARN_ON(!list_empty(&opp_table->opp_list));
1606
1607 kfree(opp_table->supported_hw);
1608 opp_table->supported_hw = NULL;
1609 opp_table->supported_hw_count = 0;
1610
1611 dev_pm_opp_put_opp_table(opp_table);
1612}
1613EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1614
1615/**
1616 * dev_pm_opp_set_prop_name() - Set prop-extn name
1617 * @dev: Device for which the prop-name has to be set.
1618 * @name: name to postfix to properties.
1619 *
1620 * This is required only for the V2 bindings, and it enables a platform to
1621 * specify the extn to be used for certain property names. The properties to
1622 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1623 * should postfix the property name with -<name> while looking for them.
1624 */
1625struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1626{
1627 struct opp_table *opp_table;
1628
1629 opp_table = dev_pm_opp_get_opp_table(dev);
1630 if (!opp_table)
1631 return ERR_PTR(-ENOMEM);
1632
1633 /* Make sure there are no concurrent readers while updating opp_table */
1634 WARN_ON(!list_empty(&opp_table->opp_list));
1635
1636 /* Another CPU that shares the OPP table has set the property ? */
1637 if (opp_table->prop_name)
1638 return opp_table;
1639
1640 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1641 if (!opp_table->prop_name) {
1642 dev_pm_opp_put_opp_table(opp_table);
1643 return ERR_PTR(-ENOMEM);
1644 }
1645
1646 return opp_table;
1647}
1648EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1649
1650/**
1651 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1652 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1653 *
1654 * This is required only for the V2 bindings, and is called for a matching
1655 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1656 * will not be freed.
1657 */
1658void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1659{
1660 /* Make sure there are no concurrent readers while updating opp_table */
1661 WARN_ON(!list_empty(&opp_table->opp_list));
1662
1663 kfree(opp_table->prop_name);
1664 opp_table->prop_name = NULL;
1665
1666 dev_pm_opp_put_opp_table(opp_table);
1667}
1668EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1669
1670static int _allocate_set_opp_data(struct opp_table *opp_table)
1671{
1672 struct dev_pm_set_opp_data *data;
1673 int len, count = opp_table->regulator_count;
1674
1675 if (WARN_ON(!opp_table->regulators))
1676 return -EINVAL;
1677
1678 /* space for set_opp_data */
1679 len = sizeof(*data);
1680
1681 /* space for old_opp.supplies and new_opp.supplies */
1682 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1683
1684 data = kzalloc(len, GFP_KERNEL);
1685 if (!data)
1686 return -ENOMEM;
1687
1688 data->old_opp.supplies = (void *)(data + 1);
1689 data->new_opp.supplies = data->old_opp.supplies + count;
1690
1691 opp_table->set_opp_data = data;
1692
1693 return 0;
1694}
1695
1696static void _free_set_opp_data(struct opp_table *opp_table)
1697{
1698 kfree(opp_table->set_opp_data);
1699 opp_table->set_opp_data = NULL;
1700}
1701
1702/**
1703 * dev_pm_opp_set_regulators() - Set regulator names for the device
1704 * @dev: Device for which regulator name is being set.
1705 * @names: Array of pointers to the names of the regulator.
1706 * @count: Number of regulators.
1707 *
1708 * In order to support OPP switching, OPP layer needs to know the name of the
1709 * device's regulators, as the core would be required to switch voltages as
1710 * well.
1711 *
1712 * This must be called before any OPPs are initialized for the device.
1713 */
1714struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1715 const char * const names[],
1716 unsigned int count)
1717{
1718 struct opp_table *opp_table;
1719 struct regulator *reg;
1720 int ret, i;
1721
1722 opp_table = dev_pm_opp_get_opp_table(dev);
1723 if (!opp_table)
1724 return ERR_PTR(-ENOMEM);
1725
1726 /* This should be called before OPPs are initialized */
1727 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1728 ret = -EBUSY;
1729 goto err;
1730 }
1731
1732 /* Another CPU that shares the OPP table has set the regulators ? */
1733 if (opp_table->regulators)
1734 return opp_table;
1735
1736 opp_table->regulators = kmalloc_array(count,
1737 sizeof(*opp_table->regulators),
1738 GFP_KERNEL);
1739 if (!opp_table->regulators) {
1740 ret = -ENOMEM;
1741 goto err;
1742 }
1743
1744 for (i = 0; i < count; i++) {
1745 reg = regulator_get_optional(dev, names[i]);
1746 if (IS_ERR(reg)) {
1747 ret = PTR_ERR(reg);
1748 if (ret != -EPROBE_DEFER)
1749 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1750 __func__, names[i], ret);
1751 goto free_regulators;
1752 }
1753
1754 opp_table->regulators[i] = reg;
1755 }
1756
1757 opp_table->regulator_count = count;
1758
1759 /* Allocate block only once to pass to set_opp() routines */
1760 ret = _allocate_set_opp_data(opp_table);
1761 if (ret)
1762 goto free_regulators;
1763
1764 return opp_table;
1765
1766free_regulators:
1767 while (i != 0)
1768 regulator_put(opp_table->regulators[--i]);
1769
1770 kfree(opp_table->regulators);
1771 opp_table->regulators = NULL;
1772 opp_table->regulator_count = -1;
1773err:
1774 dev_pm_opp_put_opp_table(opp_table);
1775
1776 return ERR_PTR(ret);
1777}
1778EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1779
1780/**
1781 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1782 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1783 */
1784void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1785{
1786 int i;
1787
1788 if (!opp_table->regulators)
1789 goto put_opp_table;
1790
1791 /* Make sure there are no concurrent readers while updating opp_table */
1792 WARN_ON(!list_empty(&opp_table->opp_list));
1793
1794 if (opp_table->regulator_enabled) {
1795 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1796 regulator_disable(opp_table->regulators[i]);
1797
1798 opp_table->regulator_enabled = false;
1799 }
1800
1801 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1802 regulator_put(opp_table->regulators[i]);
1803
1804 _free_set_opp_data(opp_table);
1805
1806 kfree(opp_table->regulators);
1807 opp_table->regulators = NULL;
1808 opp_table->regulator_count = -1;
1809
1810put_opp_table:
1811 dev_pm_opp_put_opp_table(opp_table);
1812}
1813EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1814
1815/**
1816 * dev_pm_opp_set_clkname() - Set clk name for the device
1817 * @dev: Device for which clk name is being set.
1818 * @name: Clk name.
1819 *
1820 * In order to support OPP switching, OPP layer needs to get pointer to the
1821 * clock for the device. Simple cases work fine without using this routine (i.e.
1822 * by passing connection-id as NULL), but for a device with multiple clocks
1823 * available, the OPP core needs to know the exact name of the clk to use.
1824 *
1825 * This must be called before any OPPs are initialized for the device.
1826 */
1827struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1828{
1829 struct opp_table *opp_table;
1830 int ret;
1831
1832 opp_table = dev_pm_opp_get_opp_table(dev);
1833 if (!opp_table)
1834 return ERR_PTR(-ENOMEM);
1835
1836 /* This should be called before OPPs are initialized */
1837 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1838 ret = -EBUSY;
1839 goto err;
1840 }
1841
1842 /* Already have default clk set, free it */
1843 if (!IS_ERR(opp_table->clk))
1844 clk_put(opp_table->clk);
1845
1846 /* Find clk for the device */
1847 opp_table->clk = clk_get(dev, name);
1848 if (IS_ERR(opp_table->clk)) {
1849 ret = PTR_ERR(opp_table->clk);
1850 if (ret != -EPROBE_DEFER) {
1851 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1852 ret);
1853 }
1854 goto err;
1855 }
1856
1857 return opp_table;
1858
1859err:
1860 dev_pm_opp_put_opp_table(opp_table);
1861
1862 return ERR_PTR(ret);
1863}
1864EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1865
1866/**
1867 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1868 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1869 */
1870void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1871{
1872 /* Make sure there are no concurrent readers while updating opp_table */
1873 WARN_ON(!list_empty(&opp_table->opp_list));
1874
1875 clk_put(opp_table->clk);
1876 opp_table->clk = ERR_PTR(-EINVAL);
1877
1878 dev_pm_opp_put_opp_table(opp_table);
1879}
1880EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1881
1882/**
1883 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1884 * @dev: Device for which the helper is getting registered.
1885 * @set_opp: Custom set OPP helper.
1886 *
1887 * This is useful to support complex platforms (like platforms with multiple
1888 * regulators per device), instead of the generic OPP set rate helper.
1889 *
1890 * This must be called before any OPPs are initialized for the device.
1891 */
1892struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1893 int (*set_opp)(struct dev_pm_set_opp_data *data))
1894{
1895 struct opp_table *opp_table;
1896
1897 if (!set_opp)
1898 return ERR_PTR(-EINVAL);
1899
1900 opp_table = dev_pm_opp_get_opp_table(dev);
1901 if (!opp_table)
1902 return ERR_PTR(-ENOMEM);
1903
1904 /* This should be called before OPPs are initialized */
1905 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1906 dev_pm_opp_put_opp_table(opp_table);
1907 return ERR_PTR(-EBUSY);
1908 }
1909
1910 /* Another CPU that shares the OPP table has set the helper ? */
1911 if (!opp_table->set_opp)
1912 opp_table->set_opp = set_opp;
1913
1914 return opp_table;
1915}
1916EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1917
1918/**
1919 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1920 * set_opp helper
1921 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1922 *
1923 * Release resources blocked for platform specific set_opp helper.
1924 */
1925void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1926{
1927 /* Make sure there are no concurrent readers while updating opp_table */
1928 WARN_ON(!list_empty(&opp_table->opp_list));
1929
1930 opp_table->set_opp = NULL;
1931 dev_pm_opp_put_opp_table(opp_table);
1932}
1933EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1934
1935static void _opp_detach_genpd(struct opp_table *opp_table)
1936{
1937 int index;
1938
1939 for (index = 0; index < opp_table->required_opp_count; index++) {
1940 if (!opp_table->genpd_virt_devs[index])
1941 continue;
1942
1943 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1944 opp_table->genpd_virt_devs[index] = NULL;
1945 }
1946
1947 kfree(opp_table->genpd_virt_devs);
1948 opp_table->genpd_virt_devs = NULL;
1949}
1950
1951/**
1952 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1953 * @dev: Consumer device for which the genpd is getting attached.
1954 * @names: Null terminated array of pointers containing names of genpd to attach.
1955 * @virt_devs: Pointer to return the array of virtual devices.
1956 *
1957 * Multiple generic power domains for a device are supported with the help of
1958 * virtual genpd devices, which are created for each consumer device - genpd
1959 * pair. These are the device structures which are attached to the power domain
1960 * and are required by the OPP core to set the performance state of the genpd.
1961 * The same API also works for the case where single genpd is available and so
1962 * we don't need to support that separately.
1963 *
1964 * This helper will normally be called by the consumer driver of the device
1965 * "dev", as only that has details of the genpd names.
1966 *
1967 * This helper needs to be called once with a list of all genpd to attach.
1968 * Otherwise the original device structure will be used instead by the OPP core.
1969 *
1970 * The order of entries in the names array must match the order in which
1971 * "required-opps" are added in DT.
1972 */
1973struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1974 const char **names, struct device ***virt_devs)
1975{
1976 struct opp_table *opp_table;
1977 struct device *virt_dev;
1978 int index = 0, ret = -EINVAL;
1979 const char **name = names;
1980
1981 opp_table = dev_pm_opp_get_opp_table(dev);
1982 if (!opp_table)
1983 return ERR_PTR(-ENOMEM);
1984
1985 /*
1986 * If the genpd's OPP table isn't already initialized, parsing of the
1987 * required-opps fail for dev. We should retry this after genpd's OPP
1988 * table is added.
1989 */
1990 if (!opp_table->required_opp_count) {
1991 ret = -EPROBE_DEFER;
1992 goto put_table;
1993 }
1994
1995 mutex_lock(&opp_table->genpd_virt_dev_lock);
1996
1997 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1998 sizeof(*opp_table->genpd_virt_devs),
1999 GFP_KERNEL);
2000 if (!opp_table->genpd_virt_devs)
2001 goto unlock;
2002
2003 while (*name) {
2004 if (index >= opp_table->required_opp_count) {
2005 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2006 *name, opp_table->required_opp_count, index);
2007 goto err;
2008 }
2009
2010 if (opp_table->genpd_virt_devs[index]) {
2011 dev_err(dev, "Genpd virtual device already set %s\n",
2012 *name);
2013 goto err;
2014 }
2015
2016 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2017 if (IS_ERR(virt_dev)) {
2018 ret = PTR_ERR(virt_dev);
2019 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2020 goto err;
2021 }
2022
2023 opp_table->genpd_virt_devs[index] = virt_dev;
2024 index++;
2025 name++;
2026 }
2027
2028 if (virt_devs)
2029 *virt_devs = opp_table->genpd_virt_devs;
2030 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2031
2032 return opp_table;
2033
2034err:
2035 _opp_detach_genpd(opp_table);
2036unlock:
2037 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2038
2039put_table:
2040 dev_pm_opp_put_opp_table(opp_table);
2041
2042 return ERR_PTR(ret);
2043}
2044EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2045
2046/**
2047 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2048 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2049 *
2050 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2051 * OPP table.
2052 */
2053void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2054{
2055 /*
2056 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2057 * used in parallel.
2058 */
2059 mutex_lock(&opp_table->genpd_virt_dev_lock);
2060 _opp_detach_genpd(opp_table);
2061 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2062
2063 dev_pm_opp_put_opp_table(opp_table);
2064}
2065EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2066
2067/**
2068 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2069 * @src_table: OPP table which has dst_table as one of its required OPP table.
2070 * @dst_table: Required OPP table of the src_table.
2071 * @pstate: Current performance state of the src_table.
2072 *
2073 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2074 * "required-opps" property of the OPP (present in @src_table) which has
2075 * performance state set to @pstate.
2076 *
2077 * Return: Zero or positive performance state on success, otherwise negative
2078 * value on errors.
2079 */
2080int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2081 struct opp_table *dst_table,
2082 unsigned int pstate)
2083{
2084 struct dev_pm_opp *opp;
2085 int dest_pstate = -EINVAL;
2086 int i;
2087
2088 if (!pstate)
2089 return 0;
2090
2091 /*
2092 * Normally the src_table will have the "required_opps" property set to
2093 * point to one of the OPPs in the dst_table, but in some cases the
2094 * genpd and its master have one to one mapping of performance states
2095 * and so none of them have the "required-opps" property set. Return the
2096 * pstate of the src_table as it is in such cases.
2097 */
2098 if (!src_table->required_opp_count)
2099 return pstate;
2100
2101 for (i = 0; i < src_table->required_opp_count; i++) {
2102 if (src_table->required_opp_tables[i]->np == dst_table->np)
2103 break;
2104 }
2105
2106 if (unlikely(i == src_table->required_opp_count)) {
2107 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2108 __func__, src_table, dst_table);
2109 return -EINVAL;
2110 }
2111
2112 mutex_lock(&src_table->lock);
2113
2114 list_for_each_entry(opp, &src_table->opp_list, node) {
2115 if (opp->pstate == pstate) {
2116 dest_pstate = opp->required_opps[i]->pstate;
2117 goto unlock;
2118 }
2119 }
2120
2121 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2122 dst_table);
2123
2124unlock:
2125 mutex_unlock(&src_table->lock);
2126
2127 return dest_pstate;
2128}
2129
2130/**
2131 * dev_pm_opp_add() - Add an OPP table from a table definitions
2132 * @dev: device for which we do this operation
2133 * @freq: Frequency in Hz for this OPP
2134 * @u_volt: Voltage in uVolts for this OPP
2135 *
2136 * This function adds an opp definition to the opp table and returns status.
2137 * The opp is made available by default and it can be controlled using
2138 * dev_pm_opp_enable/disable functions.
2139 *
2140 * Return:
2141 * 0 On success OR
2142 * Duplicate OPPs (both freq and volt are same) and opp->available
2143 * -EEXIST Freq are same and volt are different OR
2144 * Duplicate OPPs (both freq and volt are same) and !opp->available
2145 * -ENOMEM Memory allocation failure
2146 */
2147int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2148{
2149 struct opp_table *opp_table;
2150 int ret;
2151
2152 opp_table = dev_pm_opp_get_opp_table(dev);
2153 if (!opp_table)
2154 return -ENOMEM;
2155
2156 /* Fix regulator count for dynamic OPPs */
2157 opp_table->regulator_count = 1;
2158
2159 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2160 if (ret)
2161 dev_pm_opp_put_opp_table(opp_table);
2162
2163 return ret;
2164}
2165EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2166
2167/**
2168 * _opp_set_availability() - helper to set the availability of an opp
2169 * @dev: device for which we do this operation
2170 * @freq: OPP frequency to modify availability
2171 * @availability_req: availability status requested for this opp
2172 *
2173 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2174 * which is isolated here.
2175 *
2176 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2177 * copy operation, returns 0 if no modification was done OR modification was
2178 * successful.
2179 */
2180static int _opp_set_availability(struct device *dev, unsigned long freq,
2181 bool availability_req)
2182{
2183 struct opp_table *opp_table;
2184 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2185 int r = 0;
2186
2187 /* Find the opp_table */
2188 opp_table = _find_opp_table(dev);
2189 if (IS_ERR(opp_table)) {
2190 r = PTR_ERR(opp_table);
2191 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2192 return r;
2193 }
2194
2195 mutex_lock(&opp_table->lock);
2196
2197 /* Do we have the frequency? */
2198 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2199 if (tmp_opp->rate == freq) {
2200 opp = tmp_opp;
2201 break;
2202 }
2203 }
2204
2205 if (IS_ERR(opp)) {
2206 r = PTR_ERR(opp);
2207 goto unlock;
2208 }
2209
2210 /* Is update really needed? */
2211 if (opp->available == availability_req)
2212 goto unlock;
2213
2214 opp->available = availability_req;
2215
2216 dev_pm_opp_get(opp);
2217 mutex_unlock(&opp_table->lock);
2218
2219 /* Notify the change of the OPP availability */
2220 if (availability_req)
2221 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2222 opp);
2223 else
2224 blocking_notifier_call_chain(&opp_table->head,
2225 OPP_EVENT_DISABLE, opp);
2226
2227 dev_pm_opp_put(opp);
2228 goto put_table;
2229
2230unlock:
2231 mutex_unlock(&opp_table->lock);
2232put_table:
2233 dev_pm_opp_put_opp_table(opp_table);
2234 return r;
2235}
2236
2237/**
2238 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2239 * @dev: device for which we do this operation
2240 * @freq: OPP frequency to adjust voltage of
2241 * @u_volt: new OPP target voltage
2242 * @u_volt_min: new OPP min voltage
2243 * @u_volt_max: new OPP max voltage
2244 *
2245 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2246 * copy operation, returns 0 if no modifcation was done OR modification was
2247 * successful.
2248 */
2249int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2250 unsigned long u_volt, unsigned long u_volt_min,
2251 unsigned long u_volt_max)
2252
2253{
2254 struct opp_table *opp_table;
2255 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2256 int r = 0;
2257
2258 /* Find the opp_table */
2259 opp_table = _find_opp_table(dev);
2260 if (IS_ERR(opp_table)) {
2261 r = PTR_ERR(opp_table);
2262 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2263 return r;
2264 }
2265
2266 mutex_lock(&opp_table->lock);
2267
2268 /* Do we have the frequency? */
2269 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2270 if (tmp_opp->rate == freq) {
2271 opp = tmp_opp;
2272 break;
2273 }
2274 }
2275
2276 if (IS_ERR(opp)) {
2277 r = PTR_ERR(opp);
2278 goto adjust_unlock;
2279 }
2280
2281 /* Is update really needed? */
2282 if (opp->supplies->u_volt == u_volt)
2283 goto adjust_unlock;
2284
2285 opp->supplies->u_volt = u_volt;
2286 opp->supplies->u_volt_min = u_volt_min;
2287 opp->supplies->u_volt_max = u_volt_max;
2288
2289 dev_pm_opp_get(opp);
2290 mutex_unlock(&opp_table->lock);
2291
2292 /* Notify the voltage change of the OPP */
2293 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2294 opp);
2295
2296 dev_pm_opp_put(opp);
2297 goto adjust_put_table;
2298
2299adjust_unlock:
2300 mutex_unlock(&opp_table->lock);
2301adjust_put_table:
2302 dev_pm_opp_put_opp_table(opp_table);
2303 return r;
2304}
2305EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2306
2307/**
2308 * dev_pm_opp_enable() - Enable a specific OPP
2309 * @dev: device for which we do this operation
2310 * @freq: OPP frequency to enable
2311 *
2312 * Enables a provided opp. If the operation is valid, this returns 0, else the
2313 * corresponding error value. It is meant to be used for users an OPP available
2314 * after being temporarily made unavailable with dev_pm_opp_disable.
2315 *
2316 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2317 * copy operation, returns 0 if no modification was done OR modification was
2318 * successful.
2319 */
2320int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2321{
2322 return _opp_set_availability(dev, freq, true);
2323}
2324EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2325
2326/**
2327 * dev_pm_opp_disable() - Disable a specific OPP
2328 * @dev: device for which we do this operation
2329 * @freq: OPP frequency to disable
2330 *
2331 * Disables a provided opp. If the operation is valid, this returns
2332 * 0, else the corresponding error value. It is meant to be a temporary
2333 * control by users to make this OPP not available until the circumstances are
2334 * right to make it available again (with a call to dev_pm_opp_enable).
2335 *
2336 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2337 * copy operation, returns 0 if no modification was done OR modification was
2338 * successful.
2339 */
2340int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2341{
2342 return _opp_set_availability(dev, freq, false);
2343}
2344EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2345
2346/**
2347 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2348 * @dev: Device for which notifier needs to be registered
2349 * @nb: Notifier block to be registered
2350 *
2351 * Return: 0 on success or a negative error value.
2352 */
2353int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2354{
2355 struct opp_table *opp_table;
2356 int ret;
2357
2358 opp_table = _find_opp_table(dev);
2359 if (IS_ERR(opp_table))
2360 return PTR_ERR(opp_table);
2361
2362 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2363
2364 dev_pm_opp_put_opp_table(opp_table);
2365
2366 return ret;
2367}
2368EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2369
2370/**
2371 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2372 * @dev: Device for which notifier needs to be unregistered
2373 * @nb: Notifier block to be unregistered
2374 *
2375 * Return: 0 on success or a negative error value.
2376 */
2377int dev_pm_opp_unregister_notifier(struct device *dev,
2378 struct notifier_block *nb)
2379{
2380 struct opp_table *opp_table;
2381 int ret;
2382
2383 opp_table = _find_opp_table(dev);
2384 if (IS_ERR(opp_table))
2385 return PTR_ERR(opp_table);
2386
2387 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2388
2389 dev_pm_opp_put_opp_table(opp_table);
2390
2391 return ret;
2392}
2393EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2394
2395void _dev_pm_opp_find_and_remove_table(struct device *dev)
2396{
2397 struct opp_table *opp_table;
2398
2399 /* Check for existing table for 'dev' */
2400 opp_table = _find_opp_table(dev);
2401 if (IS_ERR(opp_table)) {
2402 int error = PTR_ERR(opp_table);
2403
2404 if (error != -ENODEV)
2405 WARN(1, "%s: opp_table: %d\n",
2406 IS_ERR_OR_NULL(dev) ?
2407 "Invalid device" : dev_name(dev),
2408 error);
2409 return;
2410 }
2411
2412 _opp_remove_all_static(opp_table);
2413
2414 /* Drop reference taken by _find_opp_table() */
2415 dev_pm_opp_put_opp_table(opp_table);
2416
2417 /* Drop reference taken while the OPP table was added */
2418 dev_pm_opp_put_opp_table(opp_table);
2419}
2420
2421/**
2422 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2423 * @dev: device pointer used to lookup OPP table.
2424 *
2425 * Free both OPPs created using static entries present in DT and the
2426 * dynamically added entries.
2427 */
2428void dev_pm_opp_remove_table(struct device *dev)
2429{
2430 _dev_pm_opp_find_and_remove_table(dev);
2431}
2432EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);