at v5.8 133 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10#ifndef _LINUX_SKBUFF_H 11#define _LINUX_SKBUFF_H 12 13#include <linux/kernel.h> 14#include <linux/compiler.h> 15#include <linux/time.h> 16#include <linux/bug.h> 17#include <linux/bvec.h> 18#include <linux/cache.h> 19#include <linux/rbtree.h> 20#include <linux/socket.h> 21#include <linux/refcount.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/hrtimer.h> 31#include <linux/dma-mapping.h> 32#include <linux/netdev_features.h> 33#include <linux/sched.h> 34#include <linux/sched/clock.h> 35#include <net/flow_dissector.h> 36#include <linux/splice.h> 37#include <linux/in6.h> 38#include <linux/if_packet.h> 39#include <net/flow.h> 40#if IS_ENABLED(CONFIG_NF_CONNTRACK) 41#include <linux/netfilter/nf_conntrack_common.h> 42#endif 43 44/* The interface for checksum offload between the stack and networking drivers 45 * is as follows... 46 * 47 * A. IP checksum related features 48 * 49 * Drivers advertise checksum offload capabilities in the features of a device. 50 * From the stack's point of view these are capabilities offered by the driver. 51 * A driver typically only advertises features that it is capable of offloading 52 * to its device. 53 * 54 * The checksum related features are: 55 * 56 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 57 * IP (one's complement) checksum for any combination 58 * of protocols or protocol layering. The checksum is 59 * computed and set in a packet per the CHECKSUM_PARTIAL 60 * interface (see below). 61 * 62 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 63 * TCP or UDP packets over IPv4. These are specifically 64 * unencapsulated packets of the form IPv4|TCP or 65 * IPv4|UDP where the Protocol field in the IPv4 header 66 * is TCP or UDP. The IPv4 header may contain IP options. 67 * This feature cannot be set in features for a device 68 * with NETIF_F_HW_CSUM also set. This feature is being 69 * DEPRECATED (see below). 70 * 71 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 72 * TCP or UDP packets over IPv6. These are specifically 73 * unencapsulated packets of the form IPv6|TCP or 74 * IPv4|UDP where the Next Header field in the IPv6 75 * header is either TCP or UDP. IPv6 extension headers 76 * are not supported with this feature. This feature 77 * cannot be set in features for a device with 78 * NETIF_F_HW_CSUM also set. This feature is being 79 * DEPRECATED (see below). 80 * 81 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 82 * This flag is only used to disable the RX checksum 83 * feature for a device. The stack will accept receive 84 * checksum indication in packets received on a device 85 * regardless of whether NETIF_F_RXCSUM is set. 86 * 87 * B. Checksumming of received packets by device. Indication of checksum 88 * verification is set in skb->ip_summed. Possible values are: 89 * 90 * CHECKSUM_NONE: 91 * 92 * Device did not checksum this packet e.g. due to lack of capabilities. 93 * The packet contains full (though not verified) checksum in packet but 94 * not in skb->csum. Thus, skb->csum is undefined in this case. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * The hardware you're dealing with doesn't calculate the full checksum 99 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 100 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 101 * if their checksums are okay. skb->csum is still undefined in this case 102 * though. A driver or device must never modify the checksum field in the 103 * packet even if checksum is verified. 104 * 105 * CHECKSUM_UNNECESSARY is applicable to following protocols: 106 * TCP: IPv6 and IPv4. 107 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 108 * zero UDP checksum for either IPv4 or IPv6, the networking stack 109 * may perform further validation in this case. 110 * GRE: only if the checksum is present in the header. 111 * SCTP: indicates the CRC in SCTP header has been validated. 112 * FCOE: indicates the CRC in FC frame has been validated. 113 * 114 * skb->csum_level indicates the number of consecutive checksums found in 115 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 116 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 117 * and a device is able to verify the checksums for UDP (possibly zero), 118 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to 119 * two. If the device were only able to verify the UDP checksum and not 120 * GRE, either because it doesn't support GRE checksum or because GRE 121 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 122 * not considered in this case). 123 * 124 * CHECKSUM_COMPLETE: 125 * 126 * This is the most generic way. The device supplied checksum of the _whole_ 127 * packet as seen by netif_rx() and fills in skb->csum. This means the 128 * hardware doesn't need to parse L3/L4 headers to implement this. 129 * 130 * Notes: 131 * - Even if device supports only some protocols, but is able to produce 132 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 133 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 134 * 135 * CHECKSUM_PARTIAL: 136 * 137 * A checksum is set up to be offloaded to a device as described in the 138 * output description for CHECKSUM_PARTIAL. This may occur on a packet 139 * received directly from another Linux OS, e.g., a virtualized Linux kernel 140 * on the same host, or it may be set in the input path in GRO or remote 141 * checksum offload. For the purposes of checksum verification, the checksum 142 * referred to by skb->csum_start + skb->csum_offset and any preceding 143 * checksums in the packet are considered verified. Any checksums in the 144 * packet that are after the checksum being offloaded are not considered to 145 * be verified. 146 * 147 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 148 * in the skb->ip_summed for a packet. Values are: 149 * 150 * CHECKSUM_PARTIAL: 151 * 152 * The driver is required to checksum the packet as seen by hard_start_xmit() 153 * from skb->csum_start up to the end, and to record/write the checksum at 154 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 155 * csum_start and csum_offset values are valid values given the length and 156 * offset of the packet, but it should not attempt to validate that the 157 * checksum refers to a legitimate transport layer checksum -- it is the 158 * purview of the stack to validate that csum_start and csum_offset are set 159 * correctly. 160 * 161 * When the stack requests checksum offload for a packet, the driver MUST 162 * ensure that the checksum is set correctly. A driver can either offload the 163 * checksum calculation to the device, or call skb_checksum_help (in the case 164 * that the device does not support offload for a particular checksum). 165 * 166 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 167 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 168 * checksum offload capability. 169 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 170 * on network device checksumming capabilities: if a packet does not match 171 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 172 * csum_not_inet, see item D.) is called to resolve the checksum. 173 * 174 * CHECKSUM_NONE: 175 * 176 * The skb was already checksummed by the protocol, or a checksum is not 177 * required. 178 * 179 * CHECKSUM_UNNECESSARY: 180 * 181 * This has the same meaning as CHECKSUM_NONE for checksum offload on 182 * output. 183 * 184 * CHECKSUM_COMPLETE: 185 * Not used in checksum output. If a driver observes a packet with this value 186 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set. 187 * 188 * D. Non-IP checksum (CRC) offloads 189 * 190 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 191 * offloading the SCTP CRC in a packet. To perform this offload the stack 192 * will set csum_start and csum_offset accordingly, set ip_summed to 193 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 194 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 195 * A driver that supports both IP checksum offload and SCTP CRC32c offload 196 * must verify which offload is configured for a packet by testing the 197 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 198 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 199 * 200 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 201 * offloading the FCOE CRC in a packet. To perform this offload the stack 202 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 203 * accordingly. Note that there is no indication in the skbuff that the 204 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 205 * both IP checksum offload and FCOE CRC offload must verify which offload 206 * is configured for a packet, presumably by inspecting packet headers. 207 * 208 * E. Checksumming on output with GSO. 209 * 210 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 211 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 212 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 213 * part of the GSO operation is implied. If a checksum is being offloaded 214 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and 215 * csum_offset are set to refer to the outermost checksum being offloaded 216 * (two offloaded checksums are possible with UDP encapsulation). 217 */ 218 219/* Don't change this without changing skb_csum_unnecessary! */ 220#define CHECKSUM_NONE 0 221#define CHECKSUM_UNNECESSARY 1 222#define CHECKSUM_COMPLETE 2 223#define CHECKSUM_PARTIAL 3 224 225/* Maximum value in skb->csum_level */ 226#define SKB_MAX_CSUM_LEVEL 3 227 228#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 229#define SKB_WITH_OVERHEAD(X) \ 230 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 231#define SKB_MAX_ORDER(X, ORDER) \ 232 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 233#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 234#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 235 236/* return minimum truesize of one skb containing X bytes of data */ 237#define SKB_TRUESIZE(X) ((X) + \ 238 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 239 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 240 241struct net_device; 242struct scatterlist; 243struct pipe_inode_info; 244struct iov_iter; 245struct napi_struct; 246struct bpf_prog; 247union bpf_attr; 248struct skb_ext; 249 250#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 251struct nf_bridge_info { 252 enum { 253 BRNF_PROTO_UNCHANGED, 254 BRNF_PROTO_8021Q, 255 BRNF_PROTO_PPPOE 256 } orig_proto:8; 257 u8 pkt_otherhost:1; 258 u8 in_prerouting:1; 259 u8 bridged_dnat:1; 260 __u16 frag_max_size; 261 struct net_device *physindev; 262 263 /* always valid & non-NULL from FORWARD on, for physdev match */ 264 struct net_device *physoutdev; 265 union { 266 /* prerouting: detect dnat in orig/reply direction */ 267 __be32 ipv4_daddr; 268 struct in6_addr ipv6_daddr; 269 270 /* after prerouting + nat detected: store original source 271 * mac since neigh resolution overwrites it, only used while 272 * skb is out in neigh layer. 273 */ 274 char neigh_header[8]; 275 }; 276}; 277#endif 278 279#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 280/* Chain in tc_skb_ext will be used to share the tc chain with 281 * ovs recirc_id. It will be set to the current chain by tc 282 * and read by ovs to recirc_id. 283 */ 284struct tc_skb_ext { 285 __u32 chain; 286}; 287#endif 288 289struct sk_buff_head { 290 /* These two members must be first. */ 291 struct sk_buff *next; 292 struct sk_buff *prev; 293 294 __u32 qlen; 295 spinlock_t lock; 296}; 297 298struct sk_buff; 299 300/* To allow 64K frame to be packed as single skb without frag_list we 301 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 302 * buffers which do not start on a page boundary. 303 * 304 * Since GRO uses frags we allocate at least 16 regardless of page 305 * size. 306 */ 307#if (65536/PAGE_SIZE + 1) < 16 308#define MAX_SKB_FRAGS 16UL 309#else 310#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 311#endif 312extern int sysctl_max_skb_frags; 313 314/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 315 * segment using its current segmentation instead. 316 */ 317#define GSO_BY_FRAGS 0xFFFF 318 319typedef struct bio_vec skb_frag_t; 320 321/** 322 * skb_frag_size() - Returns the size of a skb fragment 323 * @frag: skb fragment 324 */ 325static inline unsigned int skb_frag_size(const skb_frag_t *frag) 326{ 327 return frag->bv_len; 328} 329 330/** 331 * skb_frag_size_set() - Sets the size of a skb fragment 332 * @frag: skb fragment 333 * @size: size of fragment 334 */ 335static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 336{ 337 frag->bv_len = size; 338} 339 340/** 341 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 342 * @frag: skb fragment 343 * @delta: value to add 344 */ 345static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 346{ 347 frag->bv_len += delta; 348} 349 350/** 351 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 352 * @frag: skb fragment 353 * @delta: value to subtract 354 */ 355static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 356{ 357 frag->bv_len -= delta; 358} 359 360/** 361 * skb_frag_must_loop - Test if %p is a high memory page 362 * @p: fragment's page 363 */ 364static inline bool skb_frag_must_loop(struct page *p) 365{ 366#if defined(CONFIG_HIGHMEM) 367 if (PageHighMem(p)) 368 return true; 369#endif 370 return false; 371} 372 373/** 374 * skb_frag_foreach_page - loop over pages in a fragment 375 * 376 * @f: skb frag to operate on 377 * @f_off: offset from start of f->bv_page 378 * @f_len: length from f_off to loop over 379 * @p: (temp var) current page 380 * @p_off: (temp var) offset from start of current page, 381 * non-zero only on first page. 382 * @p_len: (temp var) length in current page, 383 * < PAGE_SIZE only on first and last page. 384 * @copied: (temp var) length so far, excluding current p_len. 385 * 386 * A fragment can hold a compound page, in which case per-page 387 * operations, notably kmap_atomic, must be called for each 388 * regular page. 389 */ 390#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 391 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 392 p_off = (f_off) & (PAGE_SIZE - 1), \ 393 p_len = skb_frag_must_loop(p) ? \ 394 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 395 copied = 0; \ 396 copied < f_len; \ 397 copied += p_len, p++, p_off = 0, \ 398 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 399 400#define HAVE_HW_TIME_STAMP 401 402/** 403 * struct skb_shared_hwtstamps - hardware time stamps 404 * @hwtstamp: hardware time stamp transformed into duration 405 * since arbitrary point in time 406 * 407 * Software time stamps generated by ktime_get_real() are stored in 408 * skb->tstamp. 409 * 410 * hwtstamps can only be compared against other hwtstamps from 411 * the same device. 412 * 413 * This structure is attached to packets as part of the 414 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 415 */ 416struct skb_shared_hwtstamps { 417 ktime_t hwtstamp; 418}; 419 420/* Definitions for tx_flags in struct skb_shared_info */ 421enum { 422 /* generate hardware time stamp */ 423 SKBTX_HW_TSTAMP = 1 << 0, 424 425 /* generate software time stamp when queueing packet to NIC */ 426 SKBTX_SW_TSTAMP = 1 << 1, 427 428 /* device driver is going to provide hardware time stamp */ 429 SKBTX_IN_PROGRESS = 1 << 2, 430 431 /* device driver supports TX zero-copy buffers */ 432 SKBTX_DEV_ZEROCOPY = 1 << 3, 433 434 /* generate wifi status information (where possible) */ 435 SKBTX_WIFI_STATUS = 1 << 4, 436 437 /* This indicates at least one fragment might be overwritten 438 * (as in vmsplice(), sendfile() ...) 439 * If we need to compute a TX checksum, we'll need to copy 440 * all frags to avoid possible bad checksum 441 */ 442 SKBTX_SHARED_FRAG = 1 << 5, 443 444 /* generate software time stamp when entering packet scheduling */ 445 SKBTX_SCHED_TSTAMP = 1 << 6, 446}; 447 448#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG) 449#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 450 SKBTX_SCHED_TSTAMP) 451#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 452 453/* 454 * The callback notifies userspace to release buffers when skb DMA is done in 455 * lower device, the skb last reference should be 0 when calling this. 456 * The zerocopy_success argument is true if zero copy transmit occurred, 457 * false on data copy or out of memory error caused by data copy attempt. 458 * The ctx field is used to track device context. 459 * The desc field is used to track userspace buffer index. 460 */ 461struct ubuf_info { 462 void (*callback)(struct ubuf_info *, bool zerocopy_success); 463 union { 464 struct { 465 unsigned long desc; 466 void *ctx; 467 }; 468 struct { 469 u32 id; 470 u16 len; 471 u16 zerocopy:1; 472 u32 bytelen; 473 }; 474 }; 475 refcount_t refcnt; 476 477 struct mmpin { 478 struct user_struct *user; 479 unsigned int num_pg; 480 } mmp; 481}; 482 483#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 484 485int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 486void mm_unaccount_pinned_pages(struct mmpin *mmp); 487 488struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size); 489struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size, 490 struct ubuf_info *uarg); 491 492static inline void sock_zerocopy_get(struct ubuf_info *uarg) 493{ 494 refcount_inc(&uarg->refcnt); 495} 496 497void sock_zerocopy_put(struct ubuf_info *uarg); 498void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 499 500void sock_zerocopy_callback(struct ubuf_info *uarg, bool success); 501 502int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 503int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 504 struct msghdr *msg, int len, 505 struct ubuf_info *uarg); 506 507/* This data is invariant across clones and lives at 508 * the end of the header data, ie. at skb->end. 509 */ 510struct skb_shared_info { 511 __u8 __unused; 512 __u8 meta_len; 513 __u8 nr_frags; 514 __u8 tx_flags; 515 unsigned short gso_size; 516 /* Warning: this field is not always filled in (UFO)! */ 517 unsigned short gso_segs; 518 struct sk_buff *frag_list; 519 struct skb_shared_hwtstamps hwtstamps; 520 unsigned int gso_type; 521 u32 tskey; 522 523 /* 524 * Warning : all fields before dataref are cleared in __alloc_skb() 525 */ 526 atomic_t dataref; 527 528 /* Intermediate layers must ensure that destructor_arg 529 * remains valid until skb destructor */ 530 void * destructor_arg; 531 532 /* must be last field, see pskb_expand_head() */ 533 skb_frag_t frags[MAX_SKB_FRAGS]; 534}; 535 536/* We divide dataref into two halves. The higher 16 bits hold references 537 * to the payload part of skb->data. The lower 16 bits hold references to 538 * the entire skb->data. A clone of a headerless skb holds the length of 539 * the header in skb->hdr_len. 540 * 541 * All users must obey the rule that the skb->data reference count must be 542 * greater than or equal to the payload reference count. 543 * 544 * Holding a reference to the payload part means that the user does not 545 * care about modifications to the header part of skb->data. 546 */ 547#define SKB_DATAREF_SHIFT 16 548#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 549 550 551enum { 552 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 553 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 554 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 555}; 556 557enum { 558 SKB_GSO_TCPV4 = 1 << 0, 559 560 /* This indicates the skb is from an untrusted source. */ 561 SKB_GSO_DODGY = 1 << 1, 562 563 /* This indicates the tcp segment has CWR set. */ 564 SKB_GSO_TCP_ECN = 1 << 2, 565 566 SKB_GSO_TCP_FIXEDID = 1 << 3, 567 568 SKB_GSO_TCPV6 = 1 << 4, 569 570 SKB_GSO_FCOE = 1 << 5, 571 572 SKB_GSO_GRE = 1 << 6, 573 574 SKB_GSO_GRE_CSUM = 1 << 7, 575 576 SKB_GSO_IPXIP4 = 1 << 8, 577 578 SKB_GSO_IPXIP6 = 1 << 9, 579 580 SKB_GSO_UDP_TUNNEL = 1 << 10, 581 582 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 583 584 SKB_GSO_PARTIAL = 1 << 12, 585 586 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 587 588 SKB_GSO_SCTP = 1 << 14, 589 590 SKB_GSO_ESP = 1 << 15, 591 592 SKB_GSO_UDP = 1 << 16, 593 594 SKB_GSO_UDP_L4 = 1 << 17, 595 596 SKB_GSO_FRAGLIST = 1 << 18, 597}; 598 599#if BITS_PER_LONG > 32 600#define NET_SKBUFF_DATA_USES_OFFSET 1 601#endif 602 603#ifdef NET_SKBUFF_DATA_USES_OFFSET 604typedef unsigned int sk_buff_data_t; 605#else 606typedef unsigned char *sk_buff_data_t; 607#endif 608 609/** 610 * struct sk_buff - socket buffer 611 * @next: Next buffer in list 612 * @prev: Previous buffer in list 613 * @tstamp: Time we arrived/left 614 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 615 * for retransmit timer 616 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 617 * @list: queue head 618 * @sk: Socket we are owned by 619 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 620 * fragmentation management 621 * @dev: Device we arrived on/are leaving by 622 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 623 * @cb: Control buffer. Free for use by every layer. Put private vars here 624 * @_skb_refdst: destination entry (with norefcount bit) 625 * @sp: the security path, used for xfrm 626 * @len: Length of actual data 627 * @data_len: Data length 628 * @mac_len: Length of link layer header 629 * @hdr_len: writable header length of cloned skb 630 * @csum: Checksum (must include start/offset pair) 631 * @csum_start: Offset from skb->head where checksumming should start 632 * @csum_offset: Offset from csum_start where checksum should be stored 633 * @priority: Packet queueing priority 634 * @ignore_df: allow local fragmentation 635 * @cloned: Head may be cloned (check refcnt to be sure) 636 * @ip_summed: Driver fed us an IP checksum 637 * @nohdr: Payload reference only, must not modify header 638 * @pkt_type: Packet class 639 * @fclone: skbuff clone status 640 * @ipvs_property: skbuff is owned by ipvs 641 * @inner_protocol_type: whether the inner protocol is 642 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 643 * @remcsum_offload: remote checksum offload is enabled 644 * @offload_fwd_mark: Packet was L2-forwarded in hardware 645 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 646 * @tc_skip_classify: do not classify packet. set by IFB device 647 * @tc_at_ingress: used within tc_classify to distinguish in/egress 648 * @redirected: packet was redirected by packet classifier 649 * @from_ingress: packet was redirected from the ingress path 650 * @peeked: this packet has been seen already, so stats have been 651 * done for it, don't do them again 652 * @nf_trace: netfilter packet trace flag 653 * @protocol: Packet protocol from driver 654 * @destructor: Destruct function 655 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 656 * @_nfct: Associated connection, if any (with nfctinfo bits) 657 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 658 * @skb_iif: ifindex of device we arrived on 659 * @tc_index: Traffic control index 660 * @hash: the packet hash 661 * @queue_mapping: Queue mapping for multiqueue devices 662 * @head_frag: skb was allocated from page fragments, 663 * not allocated by kmalloc() or vmalloc(). 664 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 665 * @active_extensions: active extensions (skb_ext_id types) 666 * @ndisc_nodetype: router type (from link layer) 667 * @ooo_okay: allow the mapping of a socket to a queue to be changed 668 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 669 * ports. 670 * @sw_hash: indicates hash was computed in software stack 671 * @wifi_acked_valid: wifi_acked was set 672 * @wifi_acked: whether frame was acked on wifi or not 673 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 674 * @encapsulation: indicates the inner headers in the skbuff are valid 675 * @encap_hdr_csum: software checksum is needed 676 * @csum_valid: checksum is already valid 677 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 678 * @csum_complete_sw: checksum was completed by software 679 * @csum_level: indicates the number of consecutive checksums found in 680 * the packet minus one that have been verified as 681 * CHECKSUM_UNNECESSARY (max 3) 682 * @dst_pending_confirm: need to confirm neighbour 683 * @decrypted: Decrypted SKB 684 * @napi_id: id of the NAPI struct this skb came from 685 * @sender_cpu: (aka @napi_id) source CPU in XPS 686 * @secmark: security marking 687 * @mark: Generic packet mark 688 * @reserved_tailroom: (aka @mark) number of bytes of free space available 689 * at the tail of an sk_buff 690 * @vlan_present: VLAN tag is present 691 * @vlan_proto: vlan encapsulation protocol 692 * @vlan_tci: vlan tag control information 693 * @inner_protocol: Protocol (encapsulation) 694 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 695 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 696 * @inner_transport_header: Inner transport layer header (encapsulation) 697 * @inner_network_header: Network layer header (encapsulation) 698 * @inner_mac_header: Link layer header (encapsulation) 699 * @transport_header: Transport layer header 700 * @network_header: Network layer header 701 * @mac_header: Link layer header 702 * @tail: Tail pointer 703 * @end: End pointer 704 * @head: Head of buffer 705 * @data: Data head pointer 706 * @truesize: Buffer size 707 * @users: User count - see {datagram,tcp}.c 708 * @extensions: allocated extensions, valid if active_extensions is nonzero 709 */ 710 711struct sk_buff { 712 union { 713 struct { 714 /* These two members must be first. */ 715 struct sk_buff *next; 716 struct sk_buff *prev; 717 718 union { 719 struct net_device *dev; 720 /* Some protocols might use this space to store information, 721 * while device pointer would be NULL. 722 * UDP receive path is one user. 723 */ 724 unsigned long dev_scratch; 725 }; 726 }; 727 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 728 struct list_head list; 729 }; 730 731 union { 732 struct sock *sk; 733 int ip_defrag_offset; 734 }; 735 736 union { 737 ktime_t tstamp; 738 u64 skb_mstamp_ns; /* earliest departure time */ 739 }; 740 /* 741 * This is the control buffer. It is free to use for every 742 * layer. Please put your private variables there. If you 743 * want to keep them across layers you have to do a skb_clone() 744 * first. This is owned by whoever has the skb queued ATM. 745 */ 746 char cb[48] __aligned(8); 747 748 union { 749 struct { 750 unsigned long _skb_refdst; 751 void (*destructor)(struct sk_buff *skb); 752 }; 753 struct list_head tcp_tsorted_anchor; 754 }; 755 756#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 757 unsigned long _nfct; 758#endif 759 unsigned int len, 760 data_len; 761 __u16 mac_len, 762 hdr_len; 763 764 /* Following fields are _not_ copied in __copy_skb_header() 765 * Note that queue_mapping is here mostly to fill a hole. 766 */ 767 __u16 queue_mapping; 768 769/* if you move cloned around you also must adapt those constants */ 770#ifdef __BIG_ENDIAN_BITFIELD 771#define CLONED_MASK (1 << 7) 772#else 773#define CLONED_MASK 1 774#endif 775#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 776 777 /* private: */ 778 __u8 __cloned_offset[0]; 779 /* public: */ 780 __u8 cloned:1, 781 nohdr:1, 782 fclone:2, 783 peeked:1, 784 head_frag:1, 785 pfmemalloc:1; 786#ifdef CONFIG_SKB_EXTENSIONS 787 __u8 active_extensions; 788#endif 789 /* fields enclosed in headers_start/headers_end are copied 790 * using a single memcpy() in __copy_skb_header() 791 */ 792 /* private: */ 793 __u32 headers_start[0]; 794 /* public: */ 795 796/* if you move pkt_type around you also must adapt those constants */ 797#ifdef __BIG_ENDIAN_BITFIELD 798#define PKT_TYPE_MAX (7 << 5) 799#else 800#define PKT_TYPE_MAX 7 801#endif 802#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 803 804 /* private: */ 805 __u8 __pkt_type_offset[0]; 806 /* public: */ 807 __u8 pkt_type:3; 808 __u8 ignore_df:1; 809 __u8 nf_trace:1; 810 __u8 ip_summed:2; 811 __u8 ooo_okay:1; 812 813 __u8 l4_hash:1; 814 __u8 sw_hash:1; 815 __u8 wifi_acked_valid:1; 816 __u8 wifi_acked:1; 817 __u8 no_fcs:1; 818 /* Indicates the inner headers are valid in the skbuff. */ 819 __u8 encapsulation:1; 820 __u8 encap_hdr_csum:1; 821 __u8 csum_valid:1; 822 823#ifdef __BIG_ENDIAN_BITFIELD 824#define PKT_VLAN_PRESENT_BIT 7 825#else 826#define PKT_VLAN_PRESENT_BIT 0 827#endif 828#define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) 829 /* private: */ 830 __u8 __pkt_vlan_present_offset[0]; 831 /* public: */ 832 __u8 vlan_present:1; 833 __u8 csum_complete_sw:1; 834 __u8 csum_level:2; 835 __u8 csum_not_inet:1; 836 __u8 dst_pending_confirm:1; 837#ifdef CONFIG_IPV6_NDISC_NODETYPE 838 __u8 ndisc_nodetype:2; 839#endif 840 841 __u8 ipvs_property:1; 842 __u8 inner_protocol_type:1; 843 __u8 remcsum_offload:1; 844#ifdef CONFIG_NET_SWITCHDEV 845 __u8 offload_fwd_mark:1; 846 __u8 offload_l3_fwd_mark:1; 847#endif 848#ifdef CONFIG_NET_CLS_ACT 849 __u8 tc_skip_classify:1; 850 __u8 tc_at_ingress:1; 851#endif 852#ifdef CONFIG_NET_REDIRECT 853 __u8 redirected:1; 854 __u8 from_ingress:1; 855#endif 856#ifdef CONFIG_TLS_DEVICE 857 __u8 decrypted:1; 858#endif 859 860#ifdef CONFIG_NET_SCHED 861 __u16 tc_index; /* traffic control index */ 862#endif 863 864 union { 865 __wsum csum; 866 struct { 867 __u16 csum_start; 868 __u16 csum_offset; 869 }; 870 }; 871 __u32 priority; 872 int skb_iif; 873 __u32 hash; 874 __be16 vlan_proto; 875 __u16 vlan_tci; 876#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 877 union { 878 unsigned int napi_id; 879 unsigned int sender_cpu; 880 }; 881#endif 882#ifdef CONFIG_NETWORK_SECMARK 883 __u32 secmark; 884#endif 885 886 union { 887 __u32 mark; 888 __u32 reserved_tailroom; 889 }; 890 891 union { 892 __be16 inner_protocol; 893 __u8 inner_ipproto; 894 }; 895 896 __u16 inner_transport_header; 897 __u16 inner_network_header; 898 __u16 inner_mac_header; 899 900 __be16 protocol; 901 __u16 transport_header; 902 __u16 network_header; 903 __u16 mac_header; 904 905 /* private: */ 906 __u32 headers_end[0]; 907 /* public: */ 908 909 /* These elements must be at the end, see alloc_skb() for details. */ 910 sk_buff_data_t tail; 911 sk_buff_data_t end; 912 unsigned char *head, 913 *data; 914 unsigned int truesize; 915 refcount_t users; 916 917#ifdef CONFIG_SKB_EXTENSIONS 918 /* only useable after checking ->active_extensions != 0 */ 919 struct skb_ext *extensions; 920#endif 921}; 922 923#ifdef __KERNEL__ 924/* 925 * Handling routines are only of interest to the kernel 926 */ 927 928#define SKB_ALLOC_FCLONE 0x01 929#define SKB_ALLOC_RX 0x02 930#define SKB_ALLOC_NAPI 0x04 931 932/** 933 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 934 * @skb: buffer 935 */ 936static inline bool skb_pfmemalloc(const struct sk_buff *skb) 937{ 938 return unlikely(skb->pfmemalloc); 939} 940 941/* 942 * skb might have a dst pointer attached, refcounted or not. 943 * _skb_refdst low order bit is set if refcount was _not_ taken 944 */ 945#define SKB_DST_NOREF 1UL 946#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 947 948/** 949 * skb_dst - returns skb dst_entry 950 * @skb: buffer 951 * 952 * Returns skb dst_entry, regardless of reference taken or not. 953 */ 954static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 955{ 956 /* If refdst was not refcounted, check we still are in a 957 * rcu_read_lock section 958 */ 959 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 960 !rcu_read_lock_held() && 961 !rcu_read_lock_bh_held()); 962 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 963} 964 965/** 966 * skb_dst_set - sets skb dst 967 * @skb: buffer 968 * @dst: dst entry 969 * 970 * Sets skb dst, assuming a reference was taken on dst and should 971 * be released by skb_dst_drop() 972 */ 973static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 974{ 975 skb->_skb_refdst = (unsigned long)dst; 976} 977 978/** 979 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 980 * @skb: buffer 981 * @dst: dst entry 982 * 983 * Sets skb dst, assuming a reference was not taken on dst. 984 * If dst entry is cached, we do not take reference and dst_release 985 * will be avoided by refdst_drop. If dst entry is not cached, we take 986 * reference, so that last dst_release can destroy the dst immediately. 987 */ 988static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 989{ 990 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 991 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 992} 993 994/** 995 * skb_dst_is_noref - Test if skb dst isn't refcounted 996 * @skb: buffer 997 */ 998static inline bool skb_dst_is_noref(const struct sk_buff *skb) 999{ 1000 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1001} 1002 1003/** 1004 * skb_rtable - Returns the skb &rtable 1005 * @skb: buffer 1006 */ 1007static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1008{ 1009 return (struct rtable *)skb_dst(skb); 1010} 1011 1012/* For mangling skb->pkt_type from user space side from applications 1013 * such as nft, tc, etc, we only allow a conservative subset of 1014 * possible pkt_types to be set. 1015*/ 1016static inline bool skb_pkt_type_ok(u32 ptype) 1017{ 1018 return ptype <= PACKET_OTHERHOST; 1019} 1020 1021/** 1022 * skb_napi_id - Returns the skb's NAPI id 1023 * @skb: buffer 1024 */ 1025static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1026{ 1027#ifdef CONFIG_NET_RX_BUSY_POLL 1028 return skb->napi_id; 1029#else 1030 return 0; 1031#endif 1032} 1033 1034/** 1035 * skb_unref - decrement the skb's reference count 1036 * @skb: buffer 1037 * 1038 * Returns true if we can free the skb. 1039 */ 1040static inline bool skb_unref(struct sk_buff *skb) 1041{ 1042 if (unlikely(!skb)) 1043 return false; 1044 if (likely(refcount_read(&skb->users) == 1)) 1045 smp_rmb(); 1046 else if (likely(!refcount_dec_and_test(&skb->users))) 1047 return false; 1048 1049 return true; 1050} 1051 1052void skb_release_head_state(struct sk_buff *skb); 1053void kfree_skb(struct sk_buff *skb); 1054void kfree_skb_list(struct sk_buff *segs); 1055void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1056void skb_tx_error(struct sk_buff *skb); 1057void consume_skb(struct sk_buff *skb); 1058void __consume_stateless_skb(struct sk_buff *skb); 1059void __kfree_skb(struct sk_buff *skb); 1060extern struct kmem_cache *skbuff_head_cache; 1061 1062void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1063bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1064 bool *fragstolen, int *delta_truesize); 1065 1066struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1067 int node); 1068struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1069struct sk_buff *build_skb(void *data, unsigned int frag_size); 1070struct sk_buff *build_skb_around(struct sk_buff *skb, 1071 void *data, unsigned int frag_size); 1072 1073/** 1074 * alloc_skb - allocate a network buffer 1075 * @size: size to allocate 1076 * @priority: allocation mask 1077 * 1078 * This function is a convenient wrapper around __alloc_skb(). 1079 */ 1080static inline struct sk_buff *alloc_skb(unsigned int size, 1081 gfp_t priority) 1082{ 1083 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1084} 1085 1086struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1087 unsigned long data_len, 1088 int max_page_order, 1089 int *errcode, 1090 gfp_t gfp_mask); 1091struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1092 1093/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1094struct sk_buff_fclones { 1095 struct sk_buff skb1; 1096 1097 struct sk_buff skb2; 1098 1099 refcount_t fclone_ref; 1100}; 1101 1102/** 1103 * skb_fclone_busy - check if fclone is busy 1104 * @sk: socket 1105 * @skb: buffer 1106 * 1107 * Returns true if skb is a fast clone, and its clone is not freed. 1108 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1109 * so we also check that this didnt happen. 1110 */ 1111static inline bool skb_fclone_busy(const struct sock *sk, 1112 const struct sk_buff *skb) 1113{ 1114 const struct sk_buff_fclones *fclones; 1115 1116 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1117 1118 return skb->fclone == SKB_FCLONE_ORIG && 1119 refcount_read(&fclones->fclone_ref) > 1 && 1120 fclones->skb2.sk == sk; 1121} 1122 1123/** 1124 * alloc_skb_fclone - allocate a network buffer from fclone cache 1125 * @size: size to allocate 1126 * @priority: allocation mask 1127 * 1128 * This function is a convenient wrapper around __alloc_skb(). 1129 */ 1130static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1131 gfp_t priority) 1132{ 1133 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1134} 1135 1136struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1137void skb_headers_offset_update(struct sk_buff *skb, int off); 1138int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1139struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1140void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1141struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1142struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1143 gfp_t gfp_mask, bool fclone); 1144static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1145 gfp_t gfp_mask) 1146{ 1147 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1148} 1149 1150int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1151struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1152 unsigned int headroom); 1153struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1154 int newtailroom, gfp_t priority); 1155int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1156 int offset, int len); 1157int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1158 int offset, int len); 1159int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1160int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1161 1162/** 1163 * skb_pad - zero pad the tail of an skb 1164 * @skb: buffer to pad 1165 * @pad: space to pad 1166 * 1167 * Ensure that a buffer is followed by a padding area that is zero 1168 * filled. Used by network drivers which may DMA or transfer data 1169 * beyond the buffer end onto the wire. 1170 * 1171 * May return error in out of memory cases. The skb is freed on error. 1172 */ 1173static inline int skb_pad(struct sk_buff *skb, int pad) 1174{ 1175 return __skb_pad(skb, pad, true); 1176} 1177#define dev_kfree_skb(a) consume_skb(a) 1178 1179int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1180 int offset, size_t size); 1181 1182struct skb_seq_state { 1183 __u32 lower_offset; 1184 __u32 upper_offset; 1185 __u32 frag_idx; 1186 __u32 stepped_offset; 1187 struct sk_buff *root_skb; 1188 struct sk_buff *cur_skb; 1189 __u8 *frag_data; 1190}; 1191 1192void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1193 unsigned int to, struct skb_seq_state *st); 1194unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1195 struct skb_seq_state *st); 1196void skb_abort_seq_read(struct skb_seq_state *st); 1197 1198unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1199 unsigned int to, struct ts_config *config); 1200 1201/* 1202 * Packet hash types specify the type of hash in skb_set_hash. 1203 * 1204 * Hash types refer to the protocol layer addresses which are used to 1205 * construct a packet's hash. The hashes are used to differentiate or identify 1206 * flows of the protocol layer for the hash type. Hash types are either 1207 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1208 * 1209 * Properties of hashes: 1210 * 1211 * 1) Two packets in different flows have different hash values 1212 * 2) Two packets in the same flow should have the same hash value 1213 * 1214 * A hash at a higher layer is considered to be more specific. A driver should 1215 * set the most specific hash possible. 1216 * 1217 * A driver cannot indicate a more specific hash than the layer at which a hash 1218 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1219 * 1220 * A driver may indicate a hash level which is less specific than the 1221 * actual layer the hash was computed on. For instance, a hash computed 1222 * at L4 may be considered an L3 hash. This should only be done if the 1223 * driver can't unambiguously determine that the HW computed the hash at 1224 * the higher layer. Note that the "should" in the second property above 1225 * permits this. 1226 */ 1227enum pkt_hash_types { 1228 PKT_HASH_TYPE_NONE, /* Undefined type */ 1229 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1230 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1231 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1232}; 1233 1234static inline void skb_clear_hash(struct sk_buff *skb) 1235{ 1236 skb->hash = 0; 1237 skb->sw_hash = 0; 1238 skb->l4_hash = 0; 1239} 1240 1241static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1242{ 1243 if (!skb->l4_hash) 1244 skb_clear_hash(skb); 1245} 1246 1247static inline void 1248__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1249{ 1250 skb->l4_hash = is_l4; 1251 skb->sw_hash = is_sw; 1252 skb->hash = hash; 1253} 1254 1255static inline void 1256skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1257{ 1258 /* Used by drivers to set hash from HW */ 1259 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1260} 1261 1262static inline void 1263__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1264{ 1265 __skb_set_hash(skb, hash, true, is_l4); 1266} 1267 1268void __skb_get_hash(struct sk_buff *skb); 1269u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1270u32 skb_get_poff(const struct sk_buff *skb); 1271u32 __skb_get_poff(const struct sk_buff *skb, void *data, 1272 const struct flow_keys_basic *keys, int hlen); 1273__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1274 void *data, int hlen_proto); 1275 1276static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1277 int thoff, u8 ip_proto) 1278{ 1279 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1280} 1281 1282void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1283 const struct flow_dissector_key *key, 1284 unsigned int key_count); 1285 1286struct bpf_flow_dissector; 1287bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1288 __be16 proto, int nhoff, int hlen, unsigned int flags); 1289 1290bool __skb_flow_dissect(const struct net *net, 1291 const struct sk_buff *skb, 1292 struct flow_dissector *flow_dissector, 1293 void *target_container, 1294 void *data, __be16 proto, int nhoff, int hlen, 1295 unsigned int flags); 1296 1297static inline bool skb_flow_dissect(const struct sk_buff *skb, 1298 struct flow_dissector *flow_dissector, 1299 void *target_container, unsigned int flags) 1300{ 1301 return __skb_flow_dissect(NULL, skb, flow_dissector, 1302 target_container, NULL, 0, 0, 0, flags); 1303} 1304 1305static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1306 struct flow_keys *flow, 1307 unsigned int flags) 1308{ 1309 memset(flow, 0, sizeof(*flow)); 1310 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1311 flow, NULL, 0, 0, 0, flags); 1312} 1313 1314static inline bool 1315skb_flow_dissect_flow_keys_basic(const struct net *net, 1316 const struct sk_buff *skb, 1317 struct flow_keys_basic *flow, void *data, 1318 __be16 proto, int nhoff, int hlen, 1319 unsigned int flags) 1320{ 1321 memset(flow, 0, sizeof(*flow)); 1322 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1323 data, proto, nhoff, hlen, flags); 1324} 1325 1326void skb_flow_dissect_meta(const struct sk_buff *skb, 1327 struct flow_dissector *flow_dissector, 1328 void *target_container); 1329 1330/* Gets a skb connection tracking info, ctinfo map should be a 1331 * a map of mapsize to translate enum ip_conntrack_info states 1332 * to user states. 1333 */ 1334void 1335skb_flow_dissect_ct(const struct sk_buff *skb, 1336 struct flow_dissector *flow_dissector, 1337 void *target_container, 1338 u16 *ctinfo_map, 1339 size_t mapsize); 1340void 1341skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1342 struct flow_dissector *flow_dissector, 1343 void *target_container); 1344 1345static inline __u32 skb_get_hash(struct sk_buff *skb) 1346{ 1347 if (!skb->l4_hash && !skb->sw_hash) 1348 __skb_get_hash(skb); 1349 1350 return skb->hash; 1351} 1352 1353static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1354{ 1355 if (!skb->l4_hash && !skb->sw_hash) { 1356 struct flow_keys keys; 1357 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1358 1359 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1360 } 1361 1362 return skb->hash; 1363} 1364 1365__u32 skb_get_hash_perturb(const struct sk_buff *skb, 1366 const siphash_key_t *perturb); 1367 1368static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1369{ 1370 return skb->hash; 1371} 1372 1373static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1374{ 1375 to->hash = from->hash; 1376 to->sw_hash = from->sw_hash; 1377 to->l4_hash = from->l4_hash; 1378}; 1379 1380static inline void skb_copy_decrypted(struct sk_buff *to, 1381 const struct sk_buff *from) 1382{ 1383#ifdef CONFIG_TLS_DEVICE 1384 to->decrypted = from->decrypted; 1385#endif 1386} 1387 1388#ifdef NET_SKBUFF_DATA_USES_OFFSET 1389static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1390{ 1391 return skb->head + skb->end; 1392} 1393 1394static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1395{ 1396 return skb->end; 1397} 1398#else 1399static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1400{ 1401 return skb->end; 1402} 1403 1404static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1405{ 1406 return skb->end - skb->head; 1407} 1408#endif 1409 1410/* Internal */ 1411#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1412 1413static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1414{ 1415 return &skb_shinfo(skb)->hwtstamps; 1416} 1417 1418static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1419{ 1420 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY; 1421 1422 return is_zcopy ? skb_uarg(skb) : NULL; 1423} 1424 1425static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1426 bool *have_ref) 1427{ 1428 if (skb && uarg && !skb_zcopy(skb)) { 1429 if (unlikely(have_ref && *have_ref)) 1430 *have_ref = false; 1431 else 1432 sock_zerocopy_get(uarg); 1433 skb_shinfo(skb)->destructor_arg = uarg; 1434 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1435 } 1436} 1437 1438static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1439{ 1440 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1441 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG; 1442} 1443 1444static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1445{ 1446 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1447} 1448 1449static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1450{ 1451 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1452} 1453 1454/* Release a reference on a zerocopy structure */ 1455static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy) 1456{ 1457 struct ubuf_info *uarg = skb_zcopy(skb); 1458 1459 if (uarg) { 1460 if (skb_zcopy_is_nouarg(skb)) { 1461 /* no notification callback */ 1462 } else if (uarg->callback == sock_zerocopy_callback) { 1463 uarg->zerocopy = uarg->zerocopy && zerocopy; 1464 sock_zerocopy_put(uarg); 1465 } else { 1466 uarg->callback(uarg, zerocopy); 1467 } 1468 1469 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1470 } 1471} 1472 1473/* Abort a zerocopy operation and revert zckey on error in send syscall */ 1474static inline void skb_zcopy_abort(struct sk_buff *skb) 1475{ 1476 struct ubuf_info *uarg = skb_zcopy(skb); 1477 1478 if (uarg) { 1479 sock_zerocopy_put_abort(uarg, false); 1480 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG; 1481 } 1482} 1483 1484static inline void skb_mark_not_on_list(struct sk_buff *skb) 1485{ 1486 skb->next = NULL; 1487} 1488 1489/* Iterate through singly-linked GSO fragments of an skb. */ 1490#define skb_list_walk_safe(first, skb, next_skb) \ 1491 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1492 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1493 1494static inline void skb_list_del_init(struct sk_buff *skb) 1495{ 1496 __list_del_entry(&skb->list); 1497 skb_mark_not_on_list(skb); 1498} 1499 1500/** 1501 * skb_queue_empty - check if a queue is empty 1502 * @list: queue head 1503 * 1504 * Returns true if the queue is empty, false otherwise. 1505 */ 1506static inline int skb_queue_empty(const struct sk_buff_head *list) 1507{ 1508 return list->next == (const struct sk_buff *) list; 1509} 1510 1511/** 1512 * skb_queue_empty_lockless - check if a queue is empty 1513 * @list: queue head 1514 * 1515 * Returns true if the queue is empty, false otherwise. 1516 * This variant can be used in lockless contexts. 1517 */ 1518static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1519{ 1520 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1521} 1522 1523 1524/** 1525 * skb_queue_is_last - check if skb is the last entry in the queue 1526 * @list: queue head 1527 * @skb: buffer 1528 * 1529 * Returns true if @skb is the last buffer on the list. 1530 */ 1531static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1532 const struct sk_buff *skb) 1533{ 1534 return skb->next == (const struct sk_buff *) list; 1535} 1536 1537/** 1538 * skb_queue_is_first - check if skb is the first entry in the queue 1539 * @list: queue head 1540 * @skb: buffer 1541 * 1542 * Returns true if @skb is the first buffer on the list. 1543 */ 1544static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1545 const struct sk_buff *skb) 1546{ 1547 return skb->prev == (const struct sk_buff *) list; 1548} 1549 1550/** 1551 * skb_queue_next - return the next packet in the queue 1552 * @list: queue head 1553 * @skb: current buffer 1554 * 1555 * Return the next packet in @list after @skb. It is only valid to 1556 * call this if skb_queue_is_last() evaluates to false. 1557 */ 1558static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1559 const struct sk_buff *skb) 1560{ 1561 /* This BUG_ON may seem severe, but if we just return then we 1562 * are going to dereference garbage. 1563 */ 1564 BUG_ON(skb_queue_is_last(list, skb)); 1565 return skb->next; 1566} 1567 1568/** 1569 * skb_queue_prev - return the prev packet in the queue 1570 * @list: queue head 1571 * @skb: current buffer 1572 * 1573 * Return the prev packet in @list before @skb. It is only valid to 1574 * call this if skb_queue_is_first() evaluates to false. 1575 */ 1576static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1577 const struct sk_buff *skb) 1578{ 1579 /* This BUG_ON may seem severe, but if we just return then we 1580 * are going to dereference garbage. 1581 */ 1582 BUG_ON(skb_queue_is_first(list, skb)); 1583 return skb->prev; 1584} 1585 1586/** 1587 * skb_get - reference buffer 1588 * @skb: buffer to reference 1589 * 1590 * Makes another reference to a socket buffer and returns a pointer 1591 * to the buffer. 1592 */ 1593static inline struct sk_buff *skb_get(struct sk_buff *skb) 1594{ 1595 refcount_inc(&skb->users); 1596 return skb; 1597} 1598 1599/* 1600 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1601 */ 1602 1603/** 1604 * skb_cloned - is the buffer a clone 1605 * @skb: buffer to check 1606 * 1607 * Returns true if the buffer was generated with skb_clone() and is 1608 * one of multiple shared copies of the buffer. Cloned buffers are 1609 * shared data so must not be written to under normal circumstances. 1610 */ 1611static inline int skb_cloned(const struct sk_buff *skb) 1612{ 1613 return skb->cloned && 1614 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1615} 1616 1617static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1618{ 1619 might_sleep_if(gfpflags_allow_blocking(pri)); 1620 1621 if (skb_cloned(skb)) 1622 return pskb_expand_head(skb, 0, 0, pri); 1623 1624 return 0; 1625} 1626 1627/** 1628 * skb_header_cloned - is the header a clone 1629 * @skb: buffer to check 1630 * 1631 * Returns true if modifying the header part of the buffer requires 1632 * the data to be copied. 1633 */ 1634static inline int skb_header_cloned(const struct sk_buff *skb) 1635{ 1636 int dataref; 1637 1638 if (!skb->cloned) 1639 return 0; 1640 1641 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1642 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1643 return dataref != 1; 1644} 1645 1646static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1647{ 1648 might_sleep_if(gfpflags_allow_blocking(pri)); 1649 1650 if (skb_header_cloned(skb)) 1651 return pskb_expand_head(skb, 0, 0, pri); 1652 1653 return 0; 1654} 1655 1656/** 1657 * __skb_header_release - release reference to header 1658 * @skb: buffer to operate on 1659 */ 1660static inline void __skb_header_release(struct sk_buff *skb) 1661{ 1662 skb->nohdr = 1; 1663 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1664} 1665 1666 1667/** 1668 * skb_shared - is the buffer shared 1669 * @skb: buffer to check 1670 * 1671 * Returns true if more than one person has a reference to this 1672 * buffer. 1673 */ 1674static inline int skb_shared(const struct sk_buff *skb) 1675{ 1676 return refcount_read(&skb->users) != 1; 1677} 1678 1679/** 1680 * skb_share_check - check if buffer is shared and if so clone it 1681 * @skb: buffer to check 1682 * @pri: priority for memory allocation 1683 * 1684 * If the buffer is shared the buffer is cloned and the old copy 1685 * drops a reference. A new clone with a single reference is returned. 1686 * If the buffer is not shared the original buffer is returned. When 1687 * being called from interrupt status or with spinlocks held pri must 1688 * be GFP_ATOMIC. 1689 * 1690 * NULL is returned on a memory allocation failure. 1691 */ 1692static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1693{ 1694 might_sleep_if(gfpflags_allow_blocking(pri)); 1695 if (skb_shared(skb)) { 1696 struct sk_buff *nskb = skb_clone(skb, pri); 1697 1698 if (likely(nskb)) 1699 consume_skb(skb); 1700 else 1701 kfree_skb(skb); 1702 skb = nskb; 1703 } 1704 return skb; 1705} 1706 1707/* 1708 * Copy shared buffers into a new sk_buff. We effectively do COW on 1709 * packets to handle cases where we have a local reader and forward 1710 * and a couple of other messy ones. The normal one is tcpdumping 1711 * a packet thats being forwarded. 1712 */ 1713 1714/** 1715 * skb_unshare - make a copy of a shared buffer 1716 * @skb: buffer to check 1717 * @pri: priority for memory allocation 1718 * 1719 * If the socket buffer is a clone then this function creates a new 1720 * copy of the data, drops a reference count on the old copy and returns 1721 * the new copy with the reference count at 1. If the buffer is not a clone 1722 * the original buffer is returned. When called with a spinlock held or 1723 * from interrupt state @pri must be %GFP_ATOMIC 1724 * 1725 * %NULL is returned on a memory allocation failure. 1726 */ 1727static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1728 gfp_t pri) 1729{ 1730 might_sleep_if(gfpflags_allow_blocking(pri)); 1731 if (skb_cloned(skb)) { 1732 struct sk_buff *nskb = skb_copy(skb, pri); 1733 1734 /* Free our shared copy */ 1735 if (likely(nskb)) 1736 consume_skb(skb); 1737 else 1738 kfree_skb(skb); 1739 skb = nskb; 1740 } 1741 return skb; 1742} 1743 1744/** 1745 * skb_peek - peek at the head of an &sk_buff_head 1746 * @list_: list to peek at 1747 * 1748 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1749 * be careful with this one. A peek leaves the buffer on the 1750 * list and someone else may run off with it. You must hold 1751 * the appropriate locks or have a private queue to do this. 1752 * 1753 * Returns %NULL for an empty list or a pointer to the head element. 1754 * The reference count is not incremented and the reference is therefore 1755 * volatile. Use with caution. 1756 */ 1757static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1758{ 1759 struct sk_buff *skb = list_->next; 1760 1761 if (skb == (struct sk_buff *)list_) 1762 skb = NULL; 1763 return skb; 1764} 1765 1766/** 1767 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1768 * @list_: list to peek at 1769 * 1770 * Like skb_peek(), but the caller knows that the list is not empty. 1771 */ 1772static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1773{ 1774 return list_->next; 1775} 1776 1777/** 1778 * skb_peek_next - peek skb following the given one from a queue 1779 * @skb: skb to start from 1780 * @list_: list to peek at 1781 * 1782 * Returns %NULL when the end of the list is met or a pointer to the 1783 * next element. The reference count is not incremented and the 1784 * reference is therefore volatile. Use with caution. 1785 */ 1786static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1787 const struct sk_buff_head *list_) 1788{ 1789 struct sk_buff *next = skb->next; 1790 1791 if (next == (struct sk_buff *)list_) 1792 next = NULL; 1793 return next; 1794} 1795 1796/** 1797 * skb_peek_tail - peek at the tail of an &sk_buff_head 1798 * @list_: list to peek at 1799 * 1800 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1801 * be careful with this one. A peek leaves the buffer on the 1802 * list and someone else may run off with it. You must hold 1803 * the appropriate locks or have a private queue to do this. 1804 * 1805 * Returns %NULL for an empty list or a pointer to the tail element. 1806 * The reference count is not incremented and the reference is therefore 1807 * volatile. Use with caution. 1808 */ 1809static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1810{ 1811 struct sk_buff *skb = READ_ONCE(list_->prev); 1812 1813 if (skb == (struct sk_buff *)list_) 1814 skb = NULL; 1815 return skb; 1816 1817} 1818 1819/** 1820 * skb_queue_len - get queue length 1821 * @list_: list to measure 1822 * 1823 * Return the length of an &sk_buff queue. 1824 */ 1825static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1826{ 1827 return list_->qlen; 1828} 1829 1830/** 1831 * skb_queue_len_lockless - get queue length 1832 * @list_: list to measure 1833 * 1834 * Return the length of an &sk_buff queue. 1835 * This variant can be used in lockless contexts. 1836 */ 1837static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 1838{ 1839 return READ_ONCE(list_->qlen); 1840} 1841 1842/** 1843 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1844 * @list: queue to initialize 1845 * 1846 * This initializes only the list and queue length aspects of 1847 * an sk_buff_head object. This allows to initialize the list 1848 * aspects of an sk_buff_head without reinitializing things like 1849 * the spinlock. It can also be used for on-stack sk_buff_head 1850 * objects where the spinlock is known to not be used. 1851 */ 1852static inline void __skb_queue_head_init(struct sk_buff_head *list) 1853{ 1854 list->prev = list->next = (struct sk_buff *)list; 1855 list->qlen = 0; 1856} 1857 1858/* 1859 * This function creates a split out lock class for each invocation; 1860 * this is needed for now since a whole lot of users of the skb-queue 1861 * infrastructure in drivers have different locking usage (in hardirq) 1862 * than the networking core (in softirq only). In the long run either the 1863 * network layer or drivers should need annotation to consolidate the 1864 * main types of usage into 3 classes. 1865 */ 1866static inline void skb_queue_head_init(struct sk_buff_head *list) 1867{ 1868 spin_lock_init(&list->lock); 1869 __skb_queue_head_init(list); 1870} 1871 1872static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1873 struct lock_class_key *class) 1874{ 1875 skb_queue_head_init(list); 1876 lockdep_set_class(&list->lock, class); 1877} 1878 1879/* 1880 * Insert an sk_buff on a list. 1881 * 1882 * The "__skb_xxxx()" functions are the non-atomic ones that 1883 * can only be called with interrupts disabled. 1884 */ 1885static inline void __skb_insert(struct sk_buff *newsk, 1886 struct sk_buff *prev, struct sk_buff *next, 1887 struct sk_buff_head *list) 1888{ 1889 /* See skb_queue_empty_lockless() and skb_peek_tail() 1890 * for the opposite READ_ONCE() 1891 */ 1892 WRITE_ONCE(newsk->next, next); 1893 WRITE_ONCE(newsk->prev, prev); 1894 WRITE_ONCE(next->prev, newsk); 1895 WRITE_ONCE(prev->next, newsk); 1896 list->qlen++; 1897} 1898 1899static inline void __skb_queue_splice(const struct sk_buff_head *list, 1900 struct sk_buff *prev, 1901 struct sk_buff *next) 1902{ 1903 struct sk_buff *first = list->next; 1904 struct sk_buff *last = list->prev; 1905 1906 WRITE_ONCE(first->prev, prev); 1907 WRITE_ONCE(prev->next, first); 1908 1909 WRITE_ONCE(last->next, next); 1910 WRITE_ONCE(next->prev, last); 1911} 1912 1913/** 1914 * skb_queue_splice - join two skb lists, this is designed for stacks 1915 * @list: the new list to add 1916 * @head: the place to add it in the first list 1917 */ 1918static inline void skb_queue_splice(const struct sk_buff_head *list, 1919 struct sk_buff_head *head) 1920{ 1921 if (!skb_queue_empty(list)) { 1922 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1923 head->qlen += list->qlen; 1924 } 1925} 1926 1927/** 1928 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1929 * @list: the new list to add 1930 * @head: the place to add it in the first list 1931 * 1932 * The list at @list is reinitialised 1933 */ 1934static inline void skb_queue_splice_init(struct sk_buff_head *list, 1935 struct sk_buff_head *head) 1936{ 1937 if (!skb_queue_empty(list)) { 1938 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1939 head->qlen += list->qlen; 1940 __skb_queue_head_init(list); 1941 } 1942} 1943 1944/** 1945 * skb_queue_splice_tail - join two skb lists, each list being a queue 1946 * @list: the new list to add 1947 * @head: the place to add it in the first list 1948 */ 1949static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1950 struct sk_buff_head *head) 1951{ 1952 if (!skb_queue_empty(list)) { 1953 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1954 head->qlen += list->qlen; 1955 } 1956} 1957 1958/** 1959 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1960 * @list: the new list to add 1961 * @head: the place to add it in the first list 1962 * 1963 * Each of the lists is a queue. 1964 * The list at @list is reinitialised 1965 */ 1966static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1967 struct sk_buff_head *head) 1968{ 1969 if (!skb_queue_empty(list)) { 1970 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1971 head->qlen += list->qlen; 1972 __skb_queue_head_init(list); 1973 } 1974} 1975 1976/** 1977 * __skb_queue_after - queue a buffer at the list head 1978 * @list: list to use 1979 * @prev: place after this buffer 1980 * @newsk: buffer to queue 1981 * 1982 * Queue a buffer int the middle of a list. This function takes no locks 1983 * and you must therefore hold required locks before calling it. 1984 * 1985 * A buffer cannot be placed on two lists at the same time. 1986 */ 1987static inline void __skb_queue_after(struct sk_buff_head *list, 1988 struct sk_buff *prev, 1989 struct sk_buff *newsk) 1990{ 1991 __skb_insert(newsk, prev, prev->next, list); 1992} 1993 1994void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1995 struct sk_buff_head *list); 1996 1997static inline void __skb_queue_before(struct sk_buff_head *list, 1998 struct sk_buff *next, 1999 struct sk_buff *newsk) 2000{ 2001 __skb_insert(newsk, next->prev, next, list); 2002} 2003 2004/** 2005 * __skb_queue_head - queue a buffer at the list head 2006 * @list: list to use 2007 * @newsk: buffer to queue 2008 * 2009 * Queue a buffer at the start of a list. This function takes no locks 2010 * and you must therefore hold required locks before calling it. 2011 * 2012 * A buffer cannot be placed on two lists at the same time. 2013 */ 2014static inline void __skb_queue_head(struct sk_buff_head *list, 2015 struct sk_buff *newsk) 2016{ 2017 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2018} 2019void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2020 2021/** 2022 * __skb_queue_tail - queue a buffer at the list tail 2023 * @list: list to use 2024 * @newsk: buffer to queue 2025 * 2026 * Queue a buffer at the end of a list. This function takes no locks 2027 * and you must therefore hold required locks before calling it. 2028 * 2029 * A buffer cannot be placed on two lists at the same time. 2030 */ 2031static inline void __skb_queue_tail(struct sk_buff_head *list, 2032 struct sk_buff *newsk) 2033{ 2034 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2035} 2036void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2037 2038/* 2039 * remove sk_buff from list. _Must_ be called atomically, and with 2040 * the list known.. 2041 */ 2042void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2043static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2044{ 2045 struct sk_buff *next, *prev; 2046 2047 WRITE_ONCE(list->qlen, list->qlen - 1); 2048 next = skb->next; 2049 prev = skb->prev; 2050 skb->next = skb->prev = NULL; 2051 WRITE_ONCE(next->prev, prev); 2052 WRITE_ONCE(prev->next, next); 2053} 2054 2055/** 2056 * __skb_dequeue - remove from the head of the queue 2057 * @list: list to dequeue from 2058 * 2059 * Remove the head of the list. This function does not take any locks 2060 * so must be used with appropriate locks held only. The head item is 2061 * returned or %NULL if the list is empty. 2062 */ 2063static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2064{ 2065 struct sk_buff *skb = skb_peek(list); 2066 if (skb) 2067 __skb_unlink(skb, list); 2068 return skb; 2069} 2070struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2071 2072/** 2073 * __skb_dequeue_tail - remove from the tail of the queue 2074 * @list: list to dequeue from 2075 * 2076 * Remove the tail of the list. This function does not take any locks 2077 * so must be used with appropriate locks held only. The tail item is 2078 * returned or %NULL if the list is empty. 2079 */ 2080static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2081{ 2082 struct sk_buff *skb = skb_peek_tail(list); 2083 if (skb) 2084 __skb_unlink(skb, list); 2085 return skb; 2086} 2087struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2088 2089 2090static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2091{ 2092 return skb->data_len; 2093} 2094 2095static inline unsigned int skb_headlen(const struct sk_buff *skb) 2096{ 2097 return skb->len - skb->data_len; 2098} 2099 2100static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2101{ 2102 unsigned int i, len = 0; 2103 2104 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2105 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2106 return len; 2107} 2108 2109static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2110{ 2111 return skb_headlen(skb) + __skb_pagelen(skb); 2112} 2113 2114/** 2115 * __skb_fill_page_desc - initialise a paged fragment in an skb 2116 * @skb: buffer containing fragment to be initialised 2117 * @i: paged fragment index to initialise 2118 * @page: the page to use for this fragment 2119 * @off: the offset to the data with @page 2120 * @size: the length of the data 2121 * 2122 * Initialises the @i'th fragment of @skb to point to &size bytes at 2123 * offset @off within @page. 2124 * 2125 * Does not take any additional reference on the fragment. 2126 */ 2127static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2128 struct page *page, int off, int size) 2129{ 2130 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2131 2132 /* 2133 * Propagate page pfmemalloc to the skb if we can. The problem is 2134 * that not all callers have unique ownership of the page but rely 2135 * on page_is_pfmemalloc doing the right thing(tm). 2136 */ 2137 frag->bv_page = page; 2138 frag->bv_offset = off; 2139 skb_frag_size_set(frag, size); 2140 2141 page = compound_head(page); 2142 if (page_is_pfmemalloc(page)) 2143 skb->pfmemalloc = true; 2144} 2145 2146/** 2147 * skb_fill_page_desc - initialise a paged fragment in an skb 2148 * @skb: buffer containing fragment to be initialised 2149 * @i: paged fragment index to initialise 2150 * @page: the page to use for this fragment 2151 * @off: the offset to the data with @page 2152 * @size: the length of the data 2153 * 2154 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2155 * @skb to point to @size bytes at offset @off within @page. In 2156 * addition updates @skb such that @i is the last fragment. 2157 * 2158 * Does not take any additional reference on the fragment. 2159 */ 2160static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2161 struct page *page, int off, int size) 2162{ 2163 __skb_fill_page_desc(skb, i, page, off, size); 2164 skb_shinfo(skb)->nr_frags = i + 1; 2165} 2166 2167void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2168 int size, unsigned int truesize); 2169 2170void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2171 unsigned int truesize); 2172 2173#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2174 2175#ifdef NET_SKBUFF_DATA_USES_OFFSET 2176static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2177{ 2178 return skb->head + skb->tail; 2179} 2180 2181static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2182{ 2183 skb->tail = skb->data - skb->head; 2184} 2185 2186static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2187{ 2188 skb_reset_tail_pointer(skb); 2189 skb->tail += offset; 2190} 2191 2192#else /* NET_SKBUFF_DATA_USES_OFFSET */ 2193static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2194{ 2195 return skb->tail; 2196} 2197 2198static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2199{ 2200 skb->tail = skb->data; 2201} 2202 2203static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2204{ 2205 skb->tail = skb->data + offset; 2206} 2207 2208#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2209 2210/* 2211 * Add data to an sk_buff 2212 */ 2213void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2214void *skb_put(struct sk_buff *skb, unsigned int len); 2215static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2216{ 2217 void *tmp = skb_tail_pointer(skb); 2218 SKB_LINEAR_ASSERT(skb); 2219 skb->tail += len; 2220 skb->len += len; 2221 return tmp; 2222} 2223 2224static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2225{ 2226 void *tmp = __skb_put(skb, len); 2227 2228 memset(tmp, 0, len); 2229 return tmp; 2230} 2231 2232static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2233 unsigned int len) 2234{ 2235 void *tmp = __skb_put(skb, len); 2236 2237 memcpy(tmp, data, len); 2238 return tmp; 2239} 2240 2241static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2242{ 2243 *(u8 *)__skb_put(skb, 1) = val; 2244} 2245 2246static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2247{ 2248 void *tmp = skb_put(skb, len); 2249 2250 memset(tmp, 0, len); 2251 2252 return tmp; 2253} 2254 2255static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2256 unsigned int len) 2257{ 2258 void *tmp = skb_put(skb, len); 2259 2260 memcpy(tmp, data, len); 2261 2262 return tmp; 2263} 2264 2265static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2266{ 2267 *(u8 *)skb_put(skb, 1) = val; 2268} 2269 2270void *skb_push(struct sk_buff *skb, unsigned int len); 2271static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2272{ 2273 skb->data -= len; 2274 skb->len += len; 2275 return skb->data; 2276} 2277 2278void *skb_pull(struct sk_buff *skb, unsigned int len); 2279static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2280{ 2281 skb->len -= len; 2282 BUG_ON(skb->len < skb->data_len); 2283 return skb->data += len; 2284} 2285 2286static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2287{ 2288 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2289} 2290 2291void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2292 2293static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2294{ 2295 if (len > skb_headlen(skb) && 2296 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2297 return NULL; 2298 skb->len -= len; 2299 return skb->data += len; 2300} 2301 2302static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2303{ 2304 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2305} 2306 2307static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2308{ 2309 if (likely(len <= skb_headlen(skb))) 2310 return true; 2311 if (unlikely(len > skb->len)) 2312 return false; 2313 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2314} 2315 2316void skb_condense(struct sk_buff *skb); 2317 2318/** 2319 * skb_headroom - bytes at buffer head 2320 * @skb: buffer to check 2321 * 2322 * Return the number of bytes of free space at the head of an &sk_buff. 2323 */ 2324static inline unsigned int skb_headroom(const struct sk_buff *skb) 2325{ 2326 return skb->data - skb->head; 2327} 2328 2329/** 2330 * skb_tailroom - bytes at buffer end 2331 * @skb: buffer to check 2332 * 2333 * Return the number of bytes of free space at the tail of an sk_buff 2334 */ 2335static inline int skb_tailroom(const struct sk_buff *skb) 2336{ 2337 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2338} 2339 2340/** 2341 * skb_availroom - bytes at buffer end 2342 * @skb: buffer to check 2343 * 2344 * Return the number of bytes of free space at the tail of an sk_buff 2345 * allocated by sk_stream_alloc() 2346 */ 2347static inline int skb_availroom(const struct sk_buff *skb) 2348{ 2349 if (skb_is_nonlinear(skb)) 2350 return 0; 2351 2352 return skb->end - skb->tail - skb->reserved_tailroom; 2353} 2354 2355/** 2356 * skb_reserve - adjust headroom 2357 * @skb: buffer to alter 2358 * @len: bytes to move 2359 * 2360 * Increase the headroom of an empty &sk_buff by reducing the tail 2361 * room. This is only allowed for an empty buffer. 2362 */ 2363static inline void skb_reserve(struct sk_buff *skb, int len) 2364{ 2365 skb->data += len; 2366 skb->tail += len; 2367} 2368 2369/** 2370 * skb_tailroom_reserve - adjust reserved_tailroom 2371 * @skb: buffer to alter 2372 * @mtu: maximum amount of headlen permitted 2373 * @needed_tailroom: minimum amount of reserved_tailroom 2374 * 2375 * Set reserved_tailroom so that headlen can be as large as possible but 2376 * not larger than mtu and tailroom cannot be smaller than 2377 * needed_tailroom. 2378 * The required headroom should already have been reserved before using 2379 * this function. 2380 */ 2381static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2382 unsigned int needed_tailroom) 2383{ 2384 SKB_LINEAR_ASSERT(skb); 2385 if (mtu < skb_tailroom(skb) - needed_tailroom) 2386 /* use at most mtu */ 2387 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2388 else 2389 /* use up to all available space */ 2390 skb->reserved_tailroom = needed_tailroom; 2391} 2392 2393#define ENCAP_TYPE_ETHER 0 2394#define ENCAP_TYPE_IPPROTO 1 2395 2396static inline void skb_set_inner_protocol(struct sk_buff *skb, 2397 __be16 protocol) 2398{ 2399 skb->inner_protocol = protocol; 2400 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2401} 2402 2403static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2404 __u8 ipproto) 2405{ 2406 skb->inner_ipproto = ipproto; 2407 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2408} 2409 2410static inline void skb_reset_inner_headers(struct sk_buff *skb) 2411{ 2412 skb->inner_mac_header = skb->mac_header; 2413 skb->inner_network_header = skb->network_header; 2414 skb->inner_transport_header = skb->transport_header; 2415} 2416 2417static inline void skb_reset_mac_len(struct sk_buff *skb) 2418{ 2419 skb->mac_len = skb->network_header - skb->mac_header; 2420} 2421 2422static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2423 *skb) 2424{ 2425 return skb->head + skb->inner_transport_header; 2426} 2427 2428static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2429{ 2430 return skb_inner_transport_header(skb) - skb->data; 2431} 2432 2433static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2434{ 2435 skb->inner_transport_header = skb->data - skb->head; 2436} 2437 2438static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2439 const int offset) 2440{ 2441 skb_reset_inner_transport_header(skb); 2442 skb->inner_transport_header += offset; 2443} 2444 2445static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2446{ 2447 return skb->head + skb->inner_network_header; 2448} 2449 2450static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2451{ 2452 skb->inner_network_header = skb->data - skb->head; 2453} 2454 2455static inline void skb_set_inner_network_header(struct sk_buff *skb, 2456 const int offset) 2457{ 2458 skb_reset_inner_network_header(skb); 2459 skb->inner_network_header += offset; 2460} 2461 2462static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2463{ 2464 return skb->head + skb->inner_mac_header; 2465} 2466 2467static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2468{ 2469 skb->inner_mac_header = skb->data - skb->head; 2470} 2471 2472static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2473 const int offset) 2474{ 2475 skb_reset_inner_mac_header(skb); 2476 skb->inner_mac_header += offset; 2477} 2478static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2479{ 2480 return skb->transport_header != (typeof(skb->transport_header))~0U; 2481} 2482 2483static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2484{ 2485 return skb->head + skb->transport_header; 2486} 2487 2488static inline void skb_reset_transport_header(struct sk_buff *skb) 2489{ 2490 skb->transport_header = skb->data - skb->head; 2491} 2492 2493static inline void skb_set_transport_header(struct sk_buff *skb, 2494 const int offset) 2495{ 2496 skb_reset_transport_header(skb); 2497 skb->transport_header += offset; 2498} 2499 2500static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2501{ 2502 return skb->head + skb->network_header; 2503} 2504 2505static inline void skb_reset_network_header(struct sk_buff *skb) 2506{ 2507 skb->network_header = skb->data - skb->head; 2508} 2509 2510static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2511{ 2512 skb_reset_network_header(skb); 2513 skb->network_header += offset; 2514} 2515 2516static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2517{ 2518 return skb->head + skb->mac_header; 2519} 2520 2521static inline int skb_mac_offset(const struct sk_buff *skb) 2522{ 2523 return skb_mac_header(skb) - skb->data; 2524} 2525 2526static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2527{ 2528 return skb->network_header - skb->mac_header; 2529} 2530 2531static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2532{ 2533 return skb->mac_header != (typeof(skb->mac_header))~0U; 2534} 2535 2536static inline void skb_reset_mac_header(struct sk_buff *skb) 2537{ 2538 skb->mac_header = skb->data - skb->head; 2539} 2540 2541static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2542{ 2543 skb_reset_mac_header(skb); 2544 skb->mac_header += offset; 2545} 2546 2547static inline void skb_pop_mac_header(struct sk_buff *skb) 2548{ 2549 skb->mac_header = skb->network_header; 2550} 2551 2552static inline void skb_probe_transport_header(struct sk_buff *skb) 2553{ 2554 struct flow_keys_basic keys; 2555 2556 if (skb_transport_header_was_set(skb)) 2557 return; 2558 2559 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2560 NULL, 0, 0, 0, 0)) 2561 skb_set_transport_header(skb, keys.control.thoff); 2562} 2563 2564static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2565{ 2566 if (skb_mac_header_was_set(skb)) { 2567 const unsigned char *old_mac = skb_mac_header(skb); 2568 2569 skb_set_mac_header(skb, -skb->mac_len); 2570 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2571 } 2572} 2573 2574static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2575{ 2576 return skb->csum_start - skb_headroom(skb); 2577} 2578 2579static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2580{ 2581 return skb->head + skb->csum_start; 2582} 2583 2584static inline int skb_transport_offset(const struct sk_buff *skb) 2585{ 2586 return skb_transport_header(skb) - skb->data; 2587} 2588 2589static inline u32 skb_network_header_len(const struct sk_buff *skb) 2590{ 2591 return skb->transport_header - skb->network_header; 2592} 2593 2594static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2595{ 2596 return skb->inner_transport_header - skb->inner_network_header; 2597} 2598 2599static inline int skb_network_offset(const struct sk_buff *skb) 2600{ 2601 return skb_network_header(skb) - skb->data; 2602} 2603 2604static inline int skb_inner_network_offset(const struct sk_buff *skb) 2605{ 2606 return skb_inner_network_header(skb) - skb->data; 2607} 2608 2609static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2610{ 2611 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2612} 2613 2614/* 2615 * CPUs often take a performance hit when accessing unaligned memory 2616 * locations. The actual performance hit varies, it can be small if the 2617 * hardware handles it or large if we have to take an exception and fix it 2618 * in software. 2619 * 2620 * Since an ethernet header is 14 bytes network drivers often end up with 2621 * the IP header at an unaligned offset. The IP header can be aligned by 2622 * shifting the start of the packet by 2 bytes. Drivers should do this 2623 * with: 2624 * 2625 * skb_reserve(skb, NET_IP_ALIGN); 2626 * 2627 * The downside to this alignment of the IP header is that the DMA is now 2628 * unaligned. On some architectures the cost of an unaligned DMA is high 2629 * and this cost outweighs the gains made by aligning the IP header. 2630 * 2631 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2632 * to be overridden. 2633 */ 2634#ifndef NET_IP_ALIGN 2635#define NET_IP_ALIGN 2 2636#endif 2637 2638/* 2639 * The networking layer reserves some headroom in skb data (via 2640 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2641 * the header has to grow. In the default case, if the header has to grow 2642 * 32 bytes or less we avoid the reallocation. 2643 * 2644 * Unfortunately this headroom changes the DMA alignment of the resulting 2645 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2646 * on some architectures. An architecture can override this value, 2647 * perhaps setting it to a cacheline in size (since that will maintain 2648 * cacheline alignment of the DMA). It must be a power of 2. 2649 * 2650 * Various parts of the networking layer expect at least 32 bytes of 2651 * headroom, you should not reduce this. 2652 * 2653 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2654 * to reduce average number of cache lines per packet. 2655 * get_rps_cpus() for example only access one 64 bytes aligned block : 2656 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2657 */ 2658#ifndef NET_SKB_PAD 2659#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2660#endif 2661 2662int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2663 2664static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2665{ 2666 if (WARN_ON(skb_is_nonlinear(skb))) 2667 return; 2668 skb->len = len; 2669 skb_set_tail_pointer(skb, len); 2670} 2671 2672static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2673{ 2674 __skb_set_length(skb, len); 2675} 2676 2677void skb_trim(struct sk_buff *skb, unsigned int len); 2678 2679static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2680{ 2681 if (skb->data_len) 2682 return ___pskb_trim(skb, len); 2683 __skb_trim(skb, len); 2684 return 0; 2685} 2686 2687static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2688{ 2689 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2690} 2691 2692/** 2693 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2694 * @skb: buffer to alter 2695 * @len: new length 2696 * 2697 * This is identical to pskb_trim except that the caller knows that 2698 * the skb is not cloned so we should never get an error due to out- 2699 * of-memory. 2700 */ 2701static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2702{ 2703 int err = pskb_trim(skb, len); 2704 BUG_ON(err); 2705} 2706 2707static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2708{ 2709 unsigned int diff = len - skb->len; 2710 2711 if (skb_tailroom(skb) < diff) { 2712 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2713 GFP_ATOMIC); 2714 if (ret) 2715 return ret; 2716 } 2717 __skb_set_length(skb, len); 2718 return 0; 2719} 2720 2721/** 2722 * skb_orphan - orphan a buffer 2723 * @skb: buffer to orphan 2724 * 2725 * If a buffer currently has an owner then we call the owner's 2726 * destructor function and make the @skb unowned. The buffer continues 2727 * to exist but is no longer charged to its former owner. 2728 */ 2729static inline void skb_orphan(struct sk_buff *skb) 2730{ 2731 if (skb->destructor) { 2732 skb->destructor(skb); 2733 skb->destructor = NULL; 2734 skb->sk = NULL; 2735 } else { 2736 BUG_ON(skb->sk); 2737 } 2738} 2739 2740/** 2741 * skb_orphan_frags - orphan the frags contained in a buffer 2742 * @skb: buffer to orphan frags from 2743 * @gfp_mask: allocation mask for replacement pages 2744 * 2745 * For each frag in the SKB which needs a destructor (i.e. has an 2746 * owner) create a copy of that frag and release the original 2747 * page by calling the destructor. 2748 */ 2749static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2750{ 2751 if (likely(!skb_zcopy(skb))) 2752 return 0; 2753 if (!skb_zcopy_is_nouarg(skb) && 2754 skb_uarg(skb)->callback == sock_zerocopy_callback) 2755 return 0; 2756 return skb_copy_ubufs(skb, gfp_mask); 2757} 2758 2759/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2760static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2761{ 2762 if (likely(!skb_zcopy(skb))) 2763 return 0; 2764 return skb_copy_ubufs(skb, gfp_mask); 2765} 2766 2767/** 2768 * __skb_queue_purge - empty a list 2769 * @list: list to empty 2770 * 2771 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2772 * the list and one reference dropped. This function does not take the 2773 * list lock and the caller must hold the relevant locks to use it. 2774 */ 2775static inline void __skb_queue_purge(struct sk_buff_head *list) 2776{ 2777 struct sk_buff *skb; 2778 while ((skb = __skb_dequeue(list)) != NULL) 2779 kfree_skb(skb); 2780} 2781void skb_queue_purge(struct sk_buff_head *list); 2782 2783unsigned int skb_rbtree_purge(struct rb_root *root); 2784 2785void *netdev_alloc_frag(unsigned int fragsz); 2786 2787struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2788 gfp_t gfp_mask); 2789 2790/** 2791 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2792 * @dev: network device to receive on 2793 * @length: length to allocate 2794 * 2795 * Allocate a new &sk_buff and assign it a usage count of one. The 2796 * buffer has unspecified headroom built in. Users should allocate 2797 * the headroom they think they need without accounting for the 2798 * built in space. The built in space is used for optimisations. 2799 * 2800 * %NULL is returned if there is no free memory. Although this function 2801 * allocates memory it can be called from an interrupt. 2802 */ 2803static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2804 unsigned int length) 2805{ 2806 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2807} 2808 2809/* legacy helper around __netdev_alloc_skb() */ 2810static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2811 gfp_t gfp_mask) 2812{ 2813 return __netdev_alloc_skb(NULL, length, gfp_mask); 2814} 2815 2816/* legacy helper around netdev_alloc_skb() */ 2817static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2818{ 2819 return netdev_alloc_skb(NULL, length); 2820} 2821 2822 2823static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2824 unsigned int length, gfp_t gfp) 2825{ 2826 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2827 2828 if (NET_IP_ALIGN && skb) 2829 skb_reserve(skb, NET_IP_ALIGN); 2830 return skb; 2831} 2832 2833static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2834 unsigned int length) 2835{ 2836 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2837} 2838 2839static inline void skb_free_frag(void *addr) 2840{ 2841 page_frag_free(addr); 2842} 2843 2844void *napi_alloc_frag(unsigned int fragsz); 2845struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2846 unsigned int length, gfp_t gfp_mask); 2847static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2848 unsigned int length) 2849{ 2850 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2851} 2852void napi_consume_skb(struct sk_buff *skb, int budget); 2853 2854void __kfree_skb_flush(void); 2855void __kfree_skb_defer(struct sk_buff *skb); 2856 2857/** 2858 * __dev_alloc_pages - allocate page for network Rx 2859 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2860 * @order: size of the allocation 2861 * 2862 * Allocate a new page. 2863 * 2864 * %NULL is returned if there is no free memory. 2865*/ 2866static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2867 unsigned int order) 2868{ 2869 /* This piece of code contains several assumptions. 2870 * 1. This is for device Rx, therefor a cold page is preferred. 2871 * 2. The expectation is the user wants a compound page. 2872 * 3. If requesting a order 0 page it will not be compound 2873 * due to the check to see if order has a value in prep_new_page 2874 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2875 * code in gfp_to_alloc_flags that should be enforcing this. 2876 */ 2877 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2878 2879 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2880} 2881 2882static inline struct page *dev_alloc_pages(unsigned int order) 2883{ 2884 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2885} 2886 2887/** 2888 * __dev_alloc_page - allocate a page for network Rx 2889 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2890 * 2891 * Allocate a new page. 2892 * 2893 * %NULL is returned if there is no free memory. 2894 */ 2895static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2896{ 2897 return __dev_alloc_pages(gfp_mask, 0); 2898} 2899 2900static inline struct page *dev_alloc_page(void) 2901{ 2902 return dev_alloc_pages(0); 2903} 2904 2905/** 2906 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2907 * @page: The page that was allocated from skb_alloc_page 2908 * @skb: The skb that may need pfmemalloc set 2909 */ 2910static inline void skb_propagate_pfmemalloc(struct page *page, 2911 struct sk_buff *skb) 2912{ 2913 if (page_is_pfmemalloc(page)) 2914 skb->pfmemalloc = true; 2915} 2916 2917/** 2918 * skb_frag_off() - Returns the offset of a skb fragment 2919 * @frag: the paged fragment 2920 */ 2921static inline unsigned int skb_frag_off(const skb_frag_t *frag) 2922{ 2923 return frag->bv_offset; 2924} 2925 2926/** 2927 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 2928 * @frag: skb fragment 2929 * @delta: value to add 2930 */ 2931static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 2932{ 2933 frag->bv_offset += delta; 2934} 2935 2936/** 2937 * skb_frag_off_set() - Sets the offset of a skb fragment 2938 * @frag: skb fragment 2939 * @offset: offset of fragment 2940 */ 2941static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 2942{ 2943 frag->bv_offset = offset; 2944} 2945 2946/** 2947 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 2948 * @fragto: skb fragment where offset is set 2949 * @fragfrom: skb fragment offset is copied from 2950 */ 2951static inline void skb_frag_off_copy(skb_frag_t *fragto, 2952 const skb_frag_t *fragfrom) 2953{ 2954 fragto->bv_offset = fragfrom->bv_offset; 2955} 2956 2957/** 2958 * skb_frag_page - retrieve the page referred to by a paged fragment 2959 * @frag: the paged fragment 2960 * 2961 * Returns the &struct page associated with @frag. 2962 */ 2963static inline struct page *skb_frag_page(const skb_frag_t *frag) 2964{ 2965 return frag->bv_page; 2966} 2967 2968/** 2969 * __skb_frag_ref - take an addition reference on a paged fragment. 2970 * @frag: the paged fragment 2971 * 2972 * Takes an additional reference on the paged fragment @frag. 2973 */ 2974static inline void __skb_frag_ref(skb_frag_t *frag) 2975{ 2976 get_page(skb_frag_page(frag)); 2977} 2978 2979/** 2980 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2981 * @skb: the buffer 2982 * @f: the fragment offset. 2983 * 2984 * Takes an additional reference on the @f'th paged fragment of @skb. 2985 */ 2986static inline void skb_frag_ref(struct sk_buff *skb, int f) 2987{ 2988 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2989} 2990 2991/** 2992 * __skb_frag_unref - release a reference on a paged fragment. 2993 * @frag: the paged fragment 2994 * 2995 * Releases a reference on the paged fragment @frag. 2996 */ 2997static inline void __skb_frag_unref(skb_frag_t *frag) 2998{ 2999 put_page(skb_frag_page(frag)); 3000} 3001 3002/** 3003 * skb_frag_unref - release a reference on a paged fragment of an skb. 3004 * @skb: the buffer 3005 * @f: the fragment offset 3006 * 3007 * Releases a reference on the @f'th paged fragment of @skb. 3008 */ 3009static inline void skb_frag_unref(struct sk_buff *skb, int f) 3010{ 3011 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 3012} 3013 3014/** 3015 * skb_frag_address - gets the address of the data contained in a paged fragment 3016 * @frag: the paged fragment buffer 3017 * 3018 * Returns the address of the data within @frag. The page must already 3019 * be mapped. 3020 */ 3021static inline void *skb_frag_address(const skb_frag_t *frag) 3022{ 3023 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3024} 3025 3026/** 3027 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3028 * @frag: the paged fragment buffer 3029 * 3030 * Returns the address of the data within @frag. Checks that the page 3031 * is mapped and returns %NULL otherwise. 3032 */ 3033static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3034{ 3035 void *ptr = page_address(skb_frag_page(frag)); 3036 if (unlikely(!ptr)) 3037 return NULL; 3038 3039 return ptr + skb_frag_off(frag); 3040} 3041 3042/** 3043 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3044 * @fragto: skb fragment where page is set 3045 * @fragfrom: skb fragment page is copied from 3046 */ 3047static inline void skb_frag_page_copy(skb_frag_t *fragto, 3048 const skb_frag_t *fragfrom) 3049{ 3050 fragto->bv_page = fragfrom->bv_page; 3051} 3052 3053/** 3054 * __skb_frag_set_page - sets the page contained in a paged fragment 3055 * @frag: the paged fragment 3056 * @page: the page to set 3057 * 3058 * Sets the fragment @frag to contain @page. 3059 */ 3060static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3061{ 3062 frag->bv_page = page; 3063} 3064 3065/** 3066 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3067 * @skb: the buffer 3068 * @f: the fragment offset 3069 * @page: the page to set 3070 * 3071 * Sets the @f'th fragment of @skb to contain @page. 3072 */ 3073static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3074 struct page *page) 3075{ 3076 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3077} 3078 3079bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3080 3081/** 3082 * skb_frag_dma_map - maps a paged fragment via the DMA API 3083 * @dev: the device to map the fragment to 3084 * @frag: the paged fragment to map 3085 * @offset: the offset within the fragment (starting at the 3086 * fragment's own offset) 3087 * @size: the number of bytes to map 3088 * @dir: the direction of the mapping (``PCI_DMA_*``) 3089 * 3090 * Maps the page associated with @frag to @device. 3091 */ 3092static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3093 const skb_frag_t *frag, 3094 size_t offset, size_t size, 3095 enum dma_data_direction dir) 3096{ 3097 return dma_map_page(dev, skb_frag_page(frag), 3098 skb_frag_off(frag) + offset, size, dir); 3099} 3100 3101static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3102 gfp_t gfp_mask) 3103{ 3104 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3105} 3106 3107 3108static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3109 gfp_t gfp_mask) 3110{ 3111 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3112} 3113 3114 3115/** 3116 * skb_clone_writable - is the header of a clone writable 3117 * @skb: buffer to check 3118 * @len: length up to which to write 3119 * 3120 * Returns true if modifying the header part of the cloned buffer 3121 * does not requires the data to be copied. 3122 */ 3123static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3124{ 3125 return !skb_header_cloned(skb) && 3126 skb_headroom(skb) + len <= skb->hdr_len; 3127} 3128 3129static inline int skb_try_make_writable(struct sk_buff *skb, 3130 unsigned int write_len) 3131{ 3132 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3133 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3134} 3135 3136static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3137 int cloned) 3138{ 3139 int delta = 0; 3140 3141 if (headroom > skb_headroom(skb)) 3142 delta = headroom - skb_headroom(skb); 3143 3144 if (delta || cloned) 3145 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3146 GFP_ATOMIC); 3147 return 0; 3148} 3149 3150/** 3151 * skb_cow - copy header of skb when it is required 3152 * @skb: buffer to cow 3153 * @headroom: needed headroom 3154 * 3155 * If the skb passed lacks sufficient headroom or its data part 3156 * is shared, data is reallocated. If reallocation fails, an error 3157 * is returned and original skb is not changed. 3158 * 3159 * The result is skb with writable area skb->head...skb->tail 3160 * and at least @headroom of space at head. 3161 */ 3162static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3163{ 3164 return __skb_cow(skb, headroom, skb_cloned(skb)); 3165} 3166 3167/** 3168 * skb_cow_head - skb_cow but only making the head writable 3169 * @skb: buffer to cow 3170 * @headroom: needed headroom 3171 * 3172 * This function is identical to skb_cow except that we replace the 3173 * skb_cloned check by skb_header_cloned. It should be used when 3174 * you only need to push on some header and do not need to modify 3175 * the data. 3176 */ 3177static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3178{ 3179 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3180} 3181 3182/** 3183 * skb_padto - pad an skbuff up to a minimal size 3184 * @skb: buffer to pad 3185 * @len: minimal length 3186 * 3187 * Pads up a buffer to ensure the trailing bytes exist and are 3188 * blanked. If the buffer already contains sufficient data it 3189 * is untouched. Otherwise it is extended. Returns zero on 3190 * success. The skb is freed on error. 3191 */ 3192static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3193{ 3194 unsigned int size = skb->len; 3195 if (likely(size >= len)) 3196 return 0; 3197 return skb_pad(skb, len - size); 3198} 3199 3200/** 3201 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3202 * @skb: buffer to pad 3203 * @len: minimal length 3204 * @free_on_error: free buffer on error 3205 * 3206 * Pads up a buffer to ensure the trailing bytes exist and are 3207 * blanked. If the buffer already contains sufficient data it 3208 * is untouched. Otherwise it is extended. Returns zero on 3209 * success. The skb is freed on error if @free_on_error is true. 3210 */ 3211static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len, 3212 bool free_on_error) 3213{ 3214 unsigned int size = skb->len; 3215 3216 if (unlikely(size < len)) { 3217 len -= size; 3218 if (__skb_pad(skb, len, free_on_error)) 3219 return -ENOMEM; 3220 __skb_put(skb, len); 3221 } 3222 return 0; 3223} 3224 3225/** 3226 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3227 * @skb: buffer to pad 3228 * @len: minimal length 3229 * 3230 * Pads up a buffer to ensure the trailing bytes exist and are 3231 * blanked. If the buffer already contains sufficient data it 3232 * is untouched. Otherwise it is extended. Returns zero on 3233 * success. The skb is freed on error. 3234 */ 3235static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 3236{ 3237 return __skb_put_padto(skb, len, true); 3238} 3239 3240static inline int skb_add_data(struct sk_buff *skb, 3241 struct iov_iter *from, int copy) 3242{ 3243 const int off = skb->len; 3244 3245 if (skb->ip_summed == CHECKSUM_NONE) { 3246 __wsum csum = 0; 3247 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3248 &csum, from)) { 3249 skb->csum = csum_block_add(skb->csum, csum, off); 3250 return 0; 3251 } 3252 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3253 return 0; 3254 3255 __skb_trim(skb, off); 3256 return -EFAULT; 3257} 3258 3259static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3260 const struct page *page, int off) 3261{ 3262 if (skb_zcopy(skb)) 3263 return false; 3264 if (i) { 3265 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3266 3267 return page == skb_frag_page(frag) && 3268 off == skb_frag_off(frag) + skb_frag_size(frag); 3269 } 3270 return false; 3271} 3272 3273static inline int __skb_linearize(struct sk_buff *skb) 3274{ 3275 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3276} 3277 3278/** 3279 * skb_linearize - convert paged skb to linear one 3280 * @skb: buffer to linarize 3281 * 3282 * If there is no free memory -ENOMEM is returned, otherwise zero 3283 * is returned and the old skb data released. 3284 */ 3285static inline int skb_linearize(struct sk_buff *skb) 3286{ 3287 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3288} 3289 3290/** 3291 * skb_has_shared_frag - can any frag be overwritten 3292 * @skb: buffer to test 3293 * 3294 * Return true if the skb has at least one frag that might be modified 3295 * by an external entity (as in vmsplice()/sendfile()) 3296 */ 3297static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3298{ 3299 return skb_is_nonlinear(skb) && 3300 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 3301} 3302 3303/** 3304 * skb_linearize_cow - make sure skb is linear and writable 3305 * @skb: buffer to process 3306 * 3307 * If there is no free memory -ENOMEM is returned, otherwise zero 3308 * is returned and the old skb data released. 3309 */ 3310static inline int skb_linearize_cow(struct sk_buff *skb) 3311{ 3312 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3313 __skb_linearize(skb) : 0; 3314} 3315 3316static __always_inline void 3317__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3318 unsigned int off) 3319{ 3320 if (skb->ip_summed == CHECKSUM_COMPLETE) 3321 skb->csum = csum_block_sub(skb->csum, 3322 csum_partial(start, len, 0), off); 3323 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3324 skb_checksum_start_offset(skb) < 0) 3325 skb->ip_summed = CHECKSUM_NONE; 3326} 3327 3328/** 3329 * skb_postpull_rcsum - update checksum for received skb after pull 3330 * @skb: buffer to update 3331 * @start: start of data before pull 3332 * @len: length of data pulled 3333 * 3334 * After doing a pull on a received packet, you need to call this to 3335 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3336 * CHECKSUM_NONE so that it can be recomputed from scratch. 3337 */ 3338static inline void skb_postpull_rcsum(struct sk_buff *skb, 3339 const void *start, unsigned int len) 3340{ 3341 __skb_postpull_rcsum(skb, start, len, 0); 3342} 3343 3344static __always_inline void 3345__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3346 unsigned int off) 3347{ 3348 if (skb->ip_summed == CHECKSUM_COMPLETE) 3349 skb->csum = csum_block_add(skb->csum, 3350 csum_partial(start, len, 0), off); 3351} 3352 3353/** 3354 * skb_postpush_rcsum - update checksum for received skb after push 3355 * @skb: buffer to update 3356 * @start: start of data after push 3357 * @len: length of data pushed 3358 * 3359 * After doing a push on a received packet, you need to call this to 3360 * update the CHECKSUM_COMPLETE checksum. 3361 */ 3362static inline void skb_postpush_rcsum(struct sk_buff *skb, 3363 const void *start, unsigned int len) 3364{ 3365 __skb_postpush_rcsum(skb, start, len, 0); 3366} 3367 3368void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3369 3370/** 3371 * skb_push_rcsum - push skb and update receive checksum 3372 * @skb: buffer to update 3373 * @len: length of data pulled 3374 * 3375 * This function performs an skb_push on the packet and updates 3376 * the CHECKSUM_COMPLETE checksum. It should be used on 3377 * receive path processing instead of skb_push unless you know 3378 * that the checksum difference is zero (e.g., a valid IP header) 3379 * or you are setting ip_summed to CHECKSUM_NONE. 3380 */ 3381static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3382{ 3383 skb_push(skb, len); 3384 skb_postpush_rcsum(skb, skb->data, len); 3385 return skb->data; 3386} 3387 3388int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3389/** 3390 * pskb_trim_rcsum - trim received skb and update checksum 3391 * @skb: buffer to trim 3392 * @len: new length 3393 * 3394 * This is exactly the same as pskb_trim except that it ensures the 3395 * checksum of received packets are still valid after the operation. 3396 * It can change skb pointers. 3397 */ 3398 3399static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3400{ 3401 if (likely(len >= skb->len)) 3402 return 0; 3403 return pskb_trim_rcsum_slow(skb, len); 3404} 3405 3406static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3407{ 3408 if (skb->ip_summed == CHECKSUM_COMPLETE) 3409 skb->ip_summed = CHECKSUM_NONE; 3410 __skb_trim(skb, len); 3411 return 0; 3412} 3413 3414static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3415{ 3416 if (skb->ip_summed == CHECKSUM_COMPLETE) 3417 skb->ip_summed = CHECKSUM_NONE; 3418 return __skb_grow(skb, len); 3419} 3420 3421#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3422#define skb_rb_first(root) rb_to_skb(rb_first(root)) 3423#define skb_rb_last(root) rb_to_skb(rb_last(root)) 3424#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3425#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3426 3427#define skb_queue_walk(queue, skb) \ 3428 for (skb = (queue)->next; \ 3429 skb != (struct sk_buff *)(queue); \ 3430 skb = skb->next) 3431 3432#define skb_queue_walk_safe(queue, skb, tmp) \ 3433 for (skb = (queue)->next, tmp = skb->next; \ 3434 skb != (struct sk_buff *)(queue); \ 3435 skb = tmp, tmp = skb->next) 3436 3437#define skb_queue_walk_from(queue, skb) \ 3438 for (; skb != (struct sk_buff *)(queue); \ 3439 skb = skb->next) 3440 3441#define skb_rbtree_walk(skb, root) \ 3442 for (skb = skb_rb_first(root); skb != NULL; \ 3443 skb = skb_rb_next(skb)) 3444 3445#define skb_rbtree_walk_from(skb) \ 3446 for (; skb != NULL; \ 3447 skb = skb_rb_next(skb)) 3448 3449#define skb_rbtree_walk_from_safe(skb, tmp) \ 3450 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3451 skb = tmp) 3452 3453#define skb_queue_walk_from_safe(queue, skb, tmp) \ 3454 for (tmp = skb->next; \ 3455 skb != (struct sk_buff *)(queue); \ 3456 skb = tmp, tmp = skb->next) 3457 3458#define skb_queue_reverse_walk(queue, skb) \ 3459 for (skb = (queue)->prev; \ 3460 skb != (struct sk_buff *)(queue); \ 3461 skb = skb->prev) 3462 3463#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3464 for (skb = (queue)->prev, tmp = skb->prev; \ 3465 skb != (struct sk_buff *)(queue); \ 3466 skb = tmp, tmp = skb->prev) 3467 3468#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3469 for (tmp = skb->prev; \ 3470 skb != (struct sk_buff *)(queue); \ 3471 skb = tmp, tmp = skb->prev) 3472 3473static inline bool skb_has_frag_list(const struct sk_buff *skb) 3474{ 3475 return skb_shinfo(skb)->frag_list != NULL; 3476} 3477 3478static inline void skb_frag_list_init(struct sk_buff *skb) 3479{ 3480 skb_shinfo(skb)->frag_list = NULL; 3481} 3482 3483#define skb_walk_frags(skb, iter) \ 3484 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3485 3486 3487int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3488 int *err, long *timeo_p, 3489 const struct sk_buff *skb); 3490struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3491 struct sk_buff_head *queue, 3492 unsigned int flags, 3493 int *off, int *err, 3494 struct sk_buff **last); 3495struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3496 struct sk_buff_head *queue, 3497 unsigned int flags, int *off, int *err, 3498 struct sk_buff **last); 3499struct sk_buff *__skb_recv_datagram(struct sock *sk, 3500 struct sk_buff_head *sk_queue, 3501 unsigned int flags, int *off, int *err); 3502struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3503 int *err); 3504__poll_t datagram_poll(struct file *file, struct socket *sock, 3505 struct poll_table_struct *wait); 3506int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3507 struct iov_iter *to, int size); 3508static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3509 struct msghdr *msg, int size) 3510{ 3511 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3512} 3513int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3514 struct msghdr *msg); 3515int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3516 struct iov_iter *to, int len, 3517 struct ahash_request *hash); 3518int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3519 struct iov_iter *from, int len); 3520int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3521void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3522void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3523static inline void skb_free_datagram_locked(struct sock *sk, 3524 struct sk_buff *skb) 3525{ 3526 __skb_free_datagram_locked(sk, skb, 0); 3527} 3528int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3529int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3530int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3531__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3532 int len, __wsum csum); 3533int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3534 struct pipe_inode_info *pipe, unsigned int len, 3535 unsigned int flags); 3536int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3537 int len); 3538void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3539unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3540int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3541 int len, int hlen); 3542void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3543int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3544void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3545bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3546bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3547struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3548struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3549 unsigned int offset); 3550struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3551int skb_ensure_writable(struct sk_buff *skb, int write_len); 3552int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3553int skb_vlan_pop(struct sk_buff *skb); 3554int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3555int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3556 int mac_len, bool ethernet); 3557int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3558 bool ethernet); 3559int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3560int skb_mpls_dec_ttl(struct sk_buff *skb); 3561struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3562 gfp_t gfp); 3563 3564static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3565{ 3566 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3567} 3568 3569static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3570{ 3571 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3572} 3573 3574struct skb_checksum_ops { 3575 __wsum (*update)(const void *mem, int len, __wsum wsum); 3576 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3577}; 3578 3579extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3580 3581__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3582 __wsum csum, const struct skb_checksum_ops *ops); 3583__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3584 __wsum csum); 3585 3586static inline void * __must_check 3587__skb_header_pointer(const struct sk_buff *skb, int offset, 3588 int len, void *data, int hlen, void *buffer) 3589{ 3590 if (hlen - offset >= len) 3591 return data + offset; 3592 3593 if (!skb || 3594 skb_copy_bits(skb, offset, buffer, len) < 0) 3595 return NULL; 3596 3597 return buffer; 3598} 3599 3600static inline void * __must_check 3601skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3602{ 3603 return __skb_header_pointer(skb, offset, len, skb->data, 3604 skb_headlen(skb), buffer); 3605} 3606 3607/** 3608 * skb_needs_linearize - check if we need to linearize a given skb 3609 * depending on the given device features. 3610 * @skb: socket buffer to check 3611 * @features: net device features 3612 * 3613 * Returns true if either: 3614 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3615 * 2. skb is fragmented and the device does not support SG. 3616 */ 3617static inline bool skb_needs_linearize(struct sk_buff *skb, 3618 netdev_features_t features) 3619{ 3620 return skb_is_nonlinear(skb) && 3621 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3622 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3623} 3624 3625static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3626 void *to, 3627 const unsigned int len) 3628{ 3629 memcpy(to, skb->data, len); 3630} 3631 3632static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3633 const int offset, void *to, 3634 const unsigned int len) 3635{ 3636 memcpy(to, skb->data + offset, len); 3637} 3638 3639static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3640 const void *from, 3641 const unsigned int len) 3642{ 3643 memcpy(skb->data, from, len); 3644} 3645 3646static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3647 const int offset, 3648 const void *from, 3649 const unsigned int len) 3650{ 3651 memcpy(skb->data + offset, from, len); 3652} 3653 3654void skb_init(void); 3655 3656static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3657{ 3658 return skb->tstamp; 3659} 3660 3661/** 3662 * skb_get_timestamp - get timestamp from a skb 3663 * @skb: skb to get stamp from 3664 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3665 * 3666 * Timestamps are stored in the skb as offsets to a base timestamp. 3667 * This function converts the offset back to a struct timeval and stores 3668 * it in stamp. 3669 */ 3670static inline void skb_get_timestamp(const struct sk_buff *skb, 3671 struct __kernel_old_timeval *stamp) 3672{ 3673 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3674} 3675 3676static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3677 struct __kernel_sock_timeval *stamp) 3678{ 3679 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3680 3681 stamp->tv_sec = ts.tv_sec; 3682 stamp->tv_usec = ts.tv_nsec / 1000; 3683} 3684 3685static inline void skb_get_timestampns(const struct sk_buff *skb, 3686 struct __kernel_old_timespec *stamp) 3687{ 3688 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3689 3690 stamp->tv_sec = ts.tv_sec; 3691 stamp->tv_nsec = ts.tv_nsec; 3692} 3693 3694static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3695 struct __kernel_timespec *stamp) 3696{ 3697 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3698 3699 stamp->tv_sec = ts.tv_sec; 3700 stamp->tv_nsec = ts.tv_nsec; 3701} 3702 3703static inline void __net_timestamp(struct sk_buff *skb) 3704{ 3705 skb->tstamp = ktime_get_real(); 3706} 3707 3708static inline ktime_t net_timedelta(ktime_t t) 3709{ 3710 return ktime_sub(ktime_get_real(), t); 3711} 3712 3713static inline ktime_t net_invalid_timestamp(void) 3714{ 3715 return 0; 3716} 3717 3718static inline u8 skb_metadata_len(const struct sk_buff *skb) 3719{ 3720 return skb_shinfo(skb)->meta_len; 3721} 3722 3723static inline void *skb_metadata_end(const struct sk_buff *skb) 3724{ 3725 return skb_mac_header(skb); 3726} 3727 3728static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3729 const struct sk_buff *skb_b, 3730 u8 meta_len) 3731{ 3732 const void *a = skb_metadata_end(skb_a); 3733 const void *b = skb_metadata_end(skb_b); 3734 /* Using more efficient varaiant than plain call to memcmp(). */ 3735#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3736 u64 diffs = 0; 3737 3738 switch (meta_len) { 3739#define __it(x, op) (x -= sizeof(u##op)) 3740#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3741 case 32: diffs |= __it_diff(a, b, 64); 3742 /* fall through */ 3743 case 24: diffs |= __it_diff(a, b, 64); 3744 /* fall through */ 3745 case 16: diffs |= __it_diff(a, b, 64); 3746 /* fall through */ 3747 case 8: diffs |= __it_diff(a, b, 64); 3748 break; 3749 case 28: diffs |= __it_diff(a, b, 64); 3750 /* fall through */ 3751 case 20: diffs |= __it_diff(a, b, 64); 3752 /* fall through */ 3753 case 12: diffs |= __it_diff(a, b, 64); 3754 /* fall through */ 3755 case 4: diffs |= __it_diff(a, b, 32); 3756 break; 3757 } 3758 return diffs; 3759#else 3760 return memcmp(a - meta_len, b - meta_len, meta_len); 3761#endif 3762} 3763 3764static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3765 const struct sk_buff *skb_b) 3766{ 3767 u8 len_a = skb_metadata_len(skb_a); 3768 u8 len_b = skb_metadata_len(skb_b); 3769 3770 if (!(len_a | len_b)) 3771 return false; 3772 3773 return len_a != len_b ? 3774 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3775} 3776 3777static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3778{ 3779 skb_shinfo(skb)->meta_len = meta_len; 3780} 3781 3782static inline void skb_metadata_clear(struct sk_buff *skb) 3783{ 3784 skb_metadata_set(skb, 0); 3785} 3786 3787struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3788 3789#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3790 3791void skb_clone_tx_timestamp(struct sk_buff *skb); 3792bool skb_defer_rx_timestamp(struct sk_buff *skb); 3793 3794#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3795 3796static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3797{ 3798} 3799 3800static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3801{ 3802 return false; 3803} 3804 3805#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3806 3807/** 3808 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3809 * 3810 * PHY drivers may accept clones of transmitted packets for 3811 * timestamping via their phy_driver.txtstamp method. These drivers 3812 * must call this function to return the skb back to the stack with a 3813 * timestamp. 3814 * 3815 * @skb: clone of the the original outgoing packet 3816 * @hwtstamps: hardware time stamps 3817 * 3818 */ 3819void skb_complete_tx_timestamp(struct sk_buff *skb, 3820 struct skb_shared_hwtstamps *hwtstamps); 3821 3822void __skb_tstamp_tx(struct sk_buff *orig_skb, 3823 struct skb_shared_hwtstamps *hwtstamps, 3824 struct sock *sk, int tstype); 3825 3826/** 3827 * skb_tstamp_tx - queue clone of skb with send time stamps 3828 * @orig_skb: the original outgoing packet 3829 * @hwtstamps: hardware time stamps, may be NULL if not available 3830 * 3831 * If the skb has a socket associated, then this function clones the 3832 * skb (thus sharing the actual data and optional structures), stores 3833 * the optional hardware time stamping information (if non NULL) or 3834 * generates a software time stamp (otherwise), then queues the clone 3835 * to the error queue of the socket. Errors are silently ignored. 3836 */ 3837void skb_tstamp_tx(struct sk_buff *orig_skb, 3838 struct skb_shared_hwtstamps *hwtstamps); 3839 3840/** 3841 * skb_tx_timestamp() - Driver hook for transmit timestamping 3842 * 3843 * Ethernet MAC Drivers should call this function in their hard_xmit() 3844 * function immediately before giving the sk_buff to the MAC hardware. 3845 * 3846 * Specifically, one should make absolutely sure that this function is 3847 * called before TX completion of this packet can trigger. Otherwise 3848 * the packet could potentially already be freed. 3849 * 3850 * @skb: A socket buffer. 3851 */ 3852static inline void skb_tx_timestamp(struct sk_buff *skb) 3853{ 3854 skb_clone_tx_timestamp(skb); 3855 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3856 skb_tstamp_tx(skb, NULL); 3857} 3858 3859/** 3860 * skb_complete_wifi_ack - deliver skb with wifi status 3861 * 3862 * @skb: the original outgoing packet 3863 * @acked: ack status 3864 * 3865 */ 3866void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3867 3868__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3869__sum16 __skb_checksum_complete(struct sk_buff *skb); 3870 3871static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3872{ 3873 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3874 skb->csum_valid || 3875 (skb->ip_summed == CHECKSUM_PARTIAL && 3876 skb_checksum_start_offset(skb) >= 0)); 3877} 3878 3879/** 3880 * skb_checksum_complete - Calculate checksum of an entire packet 3881 * @skb: packet to process 3882 * 3883 * This function calculates the checksum over the entire packet plus 3884 * the value of skb->csum. The latter can be used to supply the 3885 * checksum of a pseudo header as used by TCP/UDP. It returns the 3886 * checksum. 3887 * 3888 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3889 * this function can be used to verify that checksum on received 3890 * packets. In that case the function should return zero if the 3891 * checksum is correct. In particular, this function will return zero 3892 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 3893 * hardware has already verified the correctness of the checksum. 3894 */ 3895static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 3896{ 3897 return skb_csum_unnecessary(skb) ? 3898 0 : __skb_checksum_complete(skb); 3899} 3900 3901static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 3902{ 3903 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3904 if (skb->csum_level == 0) 3905 skb->ip_summed = CHECKSUM_NONE; 3906 else 3907 skb->csum_level--; 3908 } 3909} 3910 3911static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 3912{ 3913 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3914 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 3915 skb->csum_level++; 3916 } else if (skb->ip_summed == CHECKSUM_NONE) { 3917 skb->ip_summed = CHECKSUM_UNNECESSARY; 3918 skb->csum_level = 0; 3919 } 3920} 3921 3922static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 3923{ 3924 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 3925 skb->ip_summed = CHECKSUM_NONE; 3926 skb->csum_level = 0; 3927 } 3928} 3929 3930/* Check if we need to perform checksum complete validation. 3931 * 3932 * Returns true if checksum complete is needed, false otherwise 3933 * (either checksum is unnecessary or zero checksum is allowed). 3934 */ 3935static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 3936 bool zero_okay, 3937 __sum16 check) 3938{ 3939 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 3940 skb->csum_valid = 1; 3941 __skb_decr_checksum_unnecessary(skb); 3942 return false; 3943 } 3944 3945 return true; 3946} 3947 3948/* For small packets <= CHECKSUM_BREAK perform checksum complete directly 3949 * in checksum_init. 3950 */ 3951#define CHECKSUM_BREAK 76 3952 3953/* Unset checksum-complete 3954 * 3955 * Unset checksum complete can be done when packet is being modified 3956 * (uncompressed for instance) and checksum-complete value is 3957 * invalidated. 3958 */ 3959static inline void skb_checksum_complete_unset(struct sk_buff *skb) 3960{ 3961 if (skb->ip_summed == CHECKSUM_COMPLETE) 3962 skb->ip_summed = CHECKSUM_NONE; 3963} 3964 3965/* Validate (init) checksum based on checksum complete. 3966 * 3967 * Return values: 3968 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3969 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3970 * checksum is stored in skb->csum for use in __skb_checksum_complete 3971 * non-zero: value of invalid checksum 3972 * 3973 */ 3974static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3975 bool complete, 3976 __wsum psum) 3977{ 3978 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3979 if (!csum_fold(csum_add(psum, skb->csum))) { 3980 skb->csum_valid = 1; 3981 return 0; 3982 } 3983 } 3984 3985 skb->csum = psum; 3986 3987 if (complete || skb->len <= CHECKSUM_BREAK) { 3988 __sum16 csum; 3989 3990 csum = __skb_checksum_complete(skb); 3991 skb->csum_valid = !csum; 3992 return csum; 3993 } 3994 3995 return 0; 3996} 3997 3998static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3999{ 4000 return 0; 4001} 4002 4003/* Perform checksum validate (init). Note that this is a macro since we only 4004 * want to calculate the pseudo header which is an input function if necessary. 4005 * First we try to validate without any computation (checksum unnecessary) and 4006 * then calculate based on checksum complete calling the function to compute 4007 * pseudo header. 4008 * 4009 * Return values: 4010 * 0: checksum is validated or try to in skb_checksum_complete 4011 * non-zero: value of invalid checksum 4012 */ 4013#define __skb_checksum_validate(skb, proto, complete, \ 4014 zero_okay, check, compute_pseudo) \ 4015({ \ 4016 __sum16 __ret = 0; \ 4017 skb->csum_valid = 0; \ 4018 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4019 __ret = __skb_checksum_validate_complete(skb, \ 4020 complete, compute_pseudo(skb, proto)); \ 4021 __ret; \ 4022}) 4023 4024#define skb_checksum_init(skb, proto, compute_pseudo) \ 4025 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4026 4027#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4028 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4029 4030#define skb_checksum_validate(skb, proto, compute_pseudo) \ 4031 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4032 4033#define skb_checksum_validate_zero_check(skb, proto, check, \ 4034 compute_pseudo) \ 4035 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4036 4037#define skb_checksum_simple_validate(skb) \ 4038 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4039 4040static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4041{ 4042 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4043} 4044 4045static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4046{ 4047 skb->csum = ~pseudo; 4048 skb->ip_summed = CHECKSUM_COMPLETE; 4049} 4050 4051#define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4052do { \ 4053 if (__skb_checksum_convert_check(skb)) \ 4054 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4055} while (0) 4056 4057static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4058 u16 start, u16 offset) 4059{ 4060 skb->ip_summed = CHECKSUM_PARTIAL; 4061 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4062 skb->csum_offset = offset - start; 4063} 4064 4065/* Update skbuf and packet to reflect the remote checksum offload operation. 4066 * When called, ptr indicates the starting point for skb->csum when 4067 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4068 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4069 */ 4070static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4071 int start, int offset, bool nopartial) 4072{ 4073 __wsum delta; 4074 4075 if (!nopartial) { 4076 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4077 return; 4078 } 4079 4080 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4081 __skb_checksum_complete(skb); 4082 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4083 } 4084 4085 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4086 4087 /* Adjust skb->csum since we changed the packet */ 4088 skb->csum = csum_add(skb->csum, delta); 4089} 4090 4091static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4092{ 4093#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4094 return (void *)(skb->_nfct & NFCT_PTRMASK); 4095#else 4096 return NULL; 4097#endif 4098} 4099 4100static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4101{ 4102#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4103 return skb->_nfct; 4104#else 4105 return 0UL; 4106#endif 4107} 4108 4109static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4110{ 4111#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4112 skb->_nfct = nfct; 4113#endif 4114} 4115 4116#ifdef CONFIG_SKB_EXTENSIONS 4117enum skb_ext_id { 4118#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4119 SKB_EXT_BRIDGE_NF, 4120#endif 4121#ifdef CONFIG_XFRM 4122 SKB_EXT_SEC_PATH, 4123#endif 4124#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4125 TC_SKB_EXT, 4126#endif 4127#if IS_ENABLED(CONFIG_MPTCP) 4128 SKB_EXT_MPTCP, 4129#endif 4130 SKB_EXT_NUM, /* must be last */ 4131}; 4132 4133/** 4134 * struct skb_ext - sk_buff extensions 4135 * @refcnt: 1 on allocation, deallocated on 0 4136 * @offset: offset to add to @data to obtain extension address 4137 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4138 * @data: start of extension data, variable sized 4139 * 4140 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4141 * to use 'u8' types while allowing up to 2kb worth of extension data. 4142 */ 4143struct skb_ext { 4144 refcount_t refcnt; 4145 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4146 u8 chunks; /* same */ 4147 char data[] __aligned(8); 4148}; 4149 4150struct skb_ext *__skb_ext_alloc(gfp_t flags); 4151void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4152 struct skb_ext *ext); 4153void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4154void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4155void __skb_ext_put(struct skb_ext *ext); 4156 4157static inline void skb_ext_put(struct sk_buff *skb) 4158{ 4159 if (skb->active_extensions) 4160 __skb_ext_put(skb->extensions); 4161} 4162 4163static inline void __skb_ext_copy(struct sk_buff *dst, 4164 const struct sk_buff *src) 4165{ 4166 dst->active_extensions = src->active_extensions; 4167 4168 if (src->active_extensions) { 4169 struct skb_ext *ext = src->extensions; 4170 4171 refcount_inc(&ext->refcnt); 4172 dst->extensions = ext; 4173 } 4174} 4175 4176static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4177{ 4178 skb_ext_put(dst); 4179 __skb_ext_copy(dst, src); 4180} 4181 4182static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4183{ 4184 return !!ext->offset[i]; 4185} 4186 4187static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4188{ 4189 return skb->active_extensions & (1 << id); 4190} 4191 4192static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4193{ 4194 if (skb_ext_exist(skb, id)) 4195 __skb_ext_del(skb, id); 4196} 4197 4198static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4199{ 4200 if (skb_ext_exist(skb, id)) { 4201 struct skb_ext *ext = skb->extensions; 4202 4203 return (void *)ext + (ext->offset[id] << 3); 4204 } 4205 4206 return NULL; 4207} 4208 4209static inline void skb_ext_reset(struct sk_buff *skb) 4210{ 4211 if (unlikely(skb->active_extensions)) { 4212 __skb_ext_put(skb->extensions); 4213 skb->active_extensions = 0; 4214 } 4215} 4216 4217static inline bool skb_has_extensions(struct sk_buff *skb) 4218{ 4219 return unlikely(skb->active_extensions); 4220} 4221#else 4222static inline void skb_ext_put(struct sk_buff *skb) {} 4223static inline void skb_ext_reset(struct sk_buff *skb) {} 4224static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4225static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4226static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4227static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4228#endif /* CONFIG_SKB_EXTENSIONS */ 4229 4230static inline void nf_reset_ct(struct sk_buff *skb) 4231{ 4232#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4233 nf_conntrack_put(skb_nfct(skb)); 4234 skb->_nfct = 0; 4235#endif 4236} 4237 4238static inline void nf_reset_trace(struct sk_buff *skb) 4239{ 4240#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4241 skb->nf_trace = 0; 4242#endif 4243} 4244 4245static inline void ipvs_reset(struct sk_buff *skb) 4246{ 4247#if IS_ENABLED(CONFIG_IP_VS) 4248 skb->ipvs_property = 0; 4249#endif 4250} 4251 4252/* Note: This doesn't put any conntrack info in dst. */ 4253static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4254 bool copy) 4255{ 4256#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4257 dst->_nfct = src->_nfct; 4258 nf_conntrack_get(skb_nfct(src)); 4259#endif 4260#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4261 if (copy) 4262 dst->nf_trace = src->nf_trace; 4263#endif 4264} 4265 4266static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4267{ 4268#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4269 nf_conntrack_put(skb_nfct(dst)); 4270#endif 4271 __nf_copy(dst, src, true); 4272} 4273 4274#ifdef CONFIG_NETWORK_SECMARK 4275static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4276{ 4277 to->secmark = from->secmark; 4278} 4279 4280static inline void skb_init_secmark(struct sk_buff *skb) 4281{ 4282 skb->secmark = 0; 4283} 4284#else 4285static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4286{ } 4287 4288static inline void skb_init_secmark(struct sk_buff *skb) 4289{ } 4290#endif 4291 4292static inline int secpath_exists(const struct sk_buff *skb) 4293{ 4294#ifdef CONFIG_XFRM 4295 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4296#else 4297 return 0; 4298#endif 4299} 4300 4301static inline bool skb_irq_freeable(const struct sk_buff *skb) 4302{ 4303 return !skb->destructor && 4304 !secpath_exists(skb) && 4305 !skb_nfct(skb) && 4306 !skb->_skb_refdst && 4307 !skb_has_frag_list(skb); 4308} 4309 4310static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4311{ 4312 skb->queue_mapping = queue_mapping; 4313} 4314 4315static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4316{ 4317 return skb->queue_mapping; 4318} 4319 4320static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4321{ 4322 to->queue_mapping = from->queue_mapping; 4323} 4324 4325static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4326{ 4327 skb->queue_mapping = rx_queue + 1; 4328} 4329 4330static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4331{ 4332 return skb->queue_mapping - 1; 4333} 4334 4335static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4336{ 4337 return skb->queue_mapping != 0; 4338} 4339 4340static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4341{ 4342 skb->dst_pending_confirm = val; 4343} 4344 4345static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4346{ 4347 return skb->dst_pending_confirm != 0; 4348} 4349 4350static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4351{ 4352#ifdef CONFIG_XFRM 4353 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4354#else 4355 return NULL; 4356#endif 4357} 4358 4359/* Keeps track of mac header offset relative to skb->head. 4360 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4361 * For non-tunnel skb it points to skb_mac_header() and for 4362 * tunnel skb it points to outer mac header. 4363 * Keeps track of level of encapsulation of network headers. 4364 */ 4365struct skb_gso_cb { 4366 union { 4367 int mac_offset; 4368 int data_offset; 4369 }; 4370 int encap_level; 4371 __wsum csum; 4372 __u16 csum_start; 4373}; 4374#define SKB_GSO_CB_OFFSET 32 4375#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4376 4377static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4378{ 4379 return (skb_mac_header(inner_skb) - inner_skb->head) - 4380 SKB_GSO_CB(inner_skb)->mac_offset; 4381} 4382 4383static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4384{ 4385 int new_headroom, headroom; 4386 int ret; 4387 4388 headroom = skb_headroom(skb); 4389 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4390 if (ret) 4391 return ret; 4392 4393 new_headroom = skb_headroom(skb); 4394 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4395 return 0; 4396} 4397 4398static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4399{ 4400 /* Do not update partial checksums if remote checksum is enabled. */ 4401 if (skb->remcsum_offload) 4402 return; 4403 4404 SKB_GSO_CB(skb)->csum = res; 4405 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4406} 4407 4408/* Compute the checksum for a gso segment. First compute the checksum value 4409 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4410 * then add in skb->csum (checksum from csum_start to end of packet). 4411 * skb->csum and csum_start are then updated to reflect the checksum of the 4412 * resultant packet starting from the transport header-- the resultant checksum 4413 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4414 * header. 4415 */ 4416static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4417{ 4418 unsigned char *csum_start = skb_transport_header(skb); 4419 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4420 __wsum partial = SKB_GSO_CB(skb)->csum; 4421 4422 SKB_GSO_CB(skb)->csum = res; 4423 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4424 4425 return csum_fold(csum_partial(csum_start, plen, partial)); 4426} 4427 4428static inline bool skb_is_gso(const struct sk_buff *skb) 4429{ 4430 return skb_shinfo(skb)->gso_size; 4431} 4432 4433/* Note: Should be called only if skb_is_gso(skb) is true */ 4434static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4435{ 4436 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4437} 4438 4439/* Note: Should be called only if skb_is_gso(skb) is true */ 4440static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4441{ 4442 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4443} 4444 4445/* Note: Should be called only if skb_is_gso(skb) is true */ 4446static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4447{ 4448 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4449} 4450 4451static inline void skb_gso_reset(struct sk_buff *skb) 4452{ 4453 skb_shinfo(skb)->gso_size = 0; 4454 skb_shinfo(skb)->gso_segs = 0; 4455 skb_shinfo(skb)->gso_type = 0; 4456} 4457 4458static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4459 u16 increment) 4460{ 4461 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4462 return; 4463 shinfo->gso_size += increment; 4464} 4465 4466static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4467 u16 decrement) 4468{ 4469 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4470 return; 4471 shinfo->gso_size -= decrement; 4472} 4473 4474void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4475 4476static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4477{ 4478 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4479 * wanted then gso_type will be set. */ 4480 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4481 4482 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4483 unlikely(shinfo->gso_type == 0)) { 4484 __skb_warn_lro_forwarding(skb); 4485 return true; 4486 } 4487 return false; 4488} 4489 4490static inline void skb_forward_csum(struct sk_buff *skb) 4491{ 4492 /* Unfortunately we don't support this one. Any brave souls? */ 4493 if (skb->ip_summed == CHECKSUM_COMPLETE) 4494 skb->ip_summed = CHECKSUM_NONE; 4495} 4496 4497/** 4498 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4499 * @skb: skb to check 4500 * 4501 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4502 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4503 * use this helper, to document places where we make this assertion. 4504 */ 4505static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4506{ 4507#ifdef DEBUG 4508 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4509#endif 4510} 4511 4512bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4513 4514int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4515struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4516 unsigned int transport_len, 4517 __sum16(*skb_chkf)(struct sk_buff *skb)); 4518 4519/** 4520 * skb_head_is_locked - Determine if the skb->head is locked down 4521 * @skb: skb to check 4522 * 4523 * The head on skbs build around a head frag can be removed if they are 4524 * not cloned. This function returns true if the skb head is locked down 4525 * due to either being allocated via kmalloc, or by being a clone with 4526 * multiple references to the head. 4527 */ 4528static inline bool skb_head_is_locked(const struct sk_buff *skb) 4529{ 4530 return !skb->head_frag || skb_cloned(skb); 4531} 4532 4533/* Local Checksum Offload. 4534 * Compute outer checksum based on the assumption that the 4535 * inner checksum will be offloaded later. 4536 * See Documentation/networking/checksum-offloads.rst for 4537 * explanation of how this works. 4538 * Fill in outer checksum adjustment (e.g. with sum of outer 4539 * pseudo-header) before calling. 4540 * Also ensure that inner checksum is in linear data area. 4541 */ 4542static inline __wsum lco_csum(struct sk_buff *skb) 4543{ 4544 unsigned char *csum_start = skb_checksum_start(skb); 4545 unsigned char *l4_hdr = skb_transport_header(skb); 4546 __wsum partial; 4547 4548 /* Start with complement of inner checksum adjustment */ 4549 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4550 skb->csum_offset)); 4551 4552 /* Add in checksum of our headers (incl. outer checksum 4553 * adjustment filled in by caller) and return result. 4554 */ 4555 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4556} 4557 4558static inline bool skb_is_redirected(const struct sk_buff *skb) 4559{ 4560#ifdef CONFIG_NET_REDIRECT 4561 return skb->redirected; 4562#else 4563 return false; 4564#endif 4565} 4566 4567static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 4568{ 4569#ifdef CONFIG_NET_REDIRECT 4570 skb->redirected = 1; 4571 skb->from_ingress = from_ingress; 4572 if (skb->from_ingress) 4573 skb->tstamp = 0; 4574#endif 4575} 4576 4577static inline void skb_reset_redirect(struct sk_buff *skb) 4578{ 4579#ifdef CONFIG_NET_REDIRECT 4580 skb->redirected = 0; 4581#endif 4582} 4583 4584#endif /* __KERNEL__ */ 4585#endif /* _LINUX_SKBUFF_H */