Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
21#include <linux/seccomp.h>
22#include <linux/nodemask.h>
23#include <linux/rcupdate.h>
24#include <linux/refcount.h>
25#include <linux/resource.h>
26#include <linux/latencytop.h>
27#include <linux/sched/prio.h>
28#include <linux/sched/types.h>
29#include <linux/signal_types.h>
30#include <linux/mm_types_task.h>
31#include <linux/task_io_accounting.h>
32#include <linux/posix-timers.h>
33#include <linux/rseq.h>
34#include <linux/kcsan.h>
35
36/* task_struct member predeclarations (sorted alphabetically): */
37struct audit_context;
38struct backing_dev_info;
39struct bio_list;
40struct blk_plug;
41struct capture_control;
42struct cfs_rq;
43struct fs_struct;
44struct futex_pi_state;
45struct io_context;
46struct mempolicy;
47struct nameidata;
48struct nsproxy;
49struct perf_event_context;
50struct pid_namespace;
51struct pipe_inode_info;
52struct rcu_node;
53struct reclaim_state;
54struct robust_list_head;
55struct root_domain;
56struct rq;
57struct sched_attr;
58struct sched_param;
59struct seq_file;
60struct sighand_struct;
61struct signal_struct;
62struct task_delay_info;
63struct task_group;
64
65/*
66 * Task state bitmask. NOTE! These bits are also
67 * encoded in fs/proc/array.c: get_task_state().
68 *
69 * We have two separate sets of flags: task->state
70 * is about runnability, while task->exit_state are
71 * about the task exiting. Confusing, but this way
72 * modifying one set can't modify the other one by
73 * mistake.
74 */
75
76/* Used in tsk->state: */
77#define TASK_RUNNING 0x0000
78#define TASK_INTERRUPTIBLE 0x0001
79#define TASK_UNINTERRUPTIBLE 0x0002
80#define __TASK_STOPPED 0x0004
81#define __TASK_TRACED 0x0008
82/* Used in tsk->exit_state: */
83#define EXIT_DEAD 0x0010
84#define EXIT_ZOMBIE 0x0020
85#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
86/* Used in tsk->state again: */
87#define TASK_PARKED 0x0040
88#define TASK_DEAD 0x0080
89#define TASK_WAKEKILL 0x0100
90#define TASK_WAKING 0x0200
91#define TASK_NOLOAD 0x0400
92#define TASK_NEW 0x0800
93#define TASK_STATE_MAX 0x1000
94
95/* Convenience macros for the sake of set_current_state: */
96#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
97#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
98#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
99
100#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
101
102/* Convenience macros for the sake of wake_up(): */
103#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
104
105/* get_task_state(): */
106#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
107 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
108 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
109 TASK_PARKED)
110
111#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
112
113#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
114
115#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
116
117#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
118
119/*
120 * Special states are those that do not use the normal wait-loop pattern. See
121 * the comment with set_special_state().
122 */
123#define is_special_task_state(state) \
124 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
125
126#define __set_current_state(state_value) \
127 do { \
128 WARN_ON_ONCE(is_special_task_state(state_value));\
129 current->task_state_change = _THIS_IP_; \
130 current->state = (state_value); \
131 } while (0)
132
133#define set_current_state(state_value) \
134 do { \
135 WARN_ON_ONCE(is_special_task_state(state_value));\
136 current->task_state_change = _THIS_IP_; \
137 smp_store_mb(current->state, (state_value)); \
138 } while (0)
139
140#define set_special_state(state_value) \
141 do { \
142 unsigned long flags; /* may shadow */ \
143 WARN_ON_ONCE(!is_special_task_state(state_value)); \
144 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
145 current->task_state_change = _THIS_IP_; \
146 current->state = (state_value); \
147 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
148 } while (0)
149#else
150/*
151 * set_current_state() includes a barrier so that the write of current->state
152 * is correctly serialised wrt the caller's subsequent test of whether to
153 * actually sleep:
154 *
155 * for (;;) {
156 * set_current_state(TASK_UNINTERRUPTIBLE);
157 * if (!need_sleep)
158 * break;
159 *
160 * schedule();
161 * }
162 * __set_current_state(TASK_RUNNING);
163 *
164 * If the caller does not need such serialisation (because, for instance, the
165 * condition test and condition change and wakeup are under the same lock) then
166 * use __set_current_state().
167 *
168 * The above is typically ordered against the wakeup, which does:
169 *
170 * need_sleep = false;
171 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
172 *
173 * where wake_up_state() executes a full memory barrier before accessing the
174 * task state.
175 *
176 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
177 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
178 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
179 *
180 * However, with slightly different timing the wakeup TASK_RUNNING store can
181 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
182 * a problem either because that will result in one extra go around the loop
183 * and our @cond test will save the day.
184 *
185 * Also see the comments of try_to_wake_up().
186 */
187#define __set_current_state(state_value) \
188 current->state = (state_value)
189
190#define set_current_state(state_value) \
191 smp_store_mb(current->state, (state_value))
192
193/*
194 * set_special_state() should be used for those states when the blocking task
195 * can not use the regular condition based wait-loop. In that case we must
196 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
197 * will not collide with our state change.
198 */
199#define set_special_state(state_value) \
200 do { \
201 unsigned long flags; /* may shadow */ \
202 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
203 current->state = (state_value); \
204 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
205 } while (0)
206
207#endif
208
209/* Task command name length: */
210#define TASK_COMM_LEN 16
211
212extern void scheduler_tick(void);
213
214#define MAX_SCHEDULE_TIMEOUT LONG_MAX
215
216extern long schedule_timeout(long timeout);
217extern long schedule_timeout_interruptible(long timeout);
218extern long schedule_timeout_killable(long timeout);
219extern long schedule_timeout_uninterruptible(long timeout);
220extern long schedule_timeout_idle(long timeout);
221asmlinkage void schedule(void);
222extern void schedule_preempt_disabled(void);
223asmlinkage void preempt_schedule_irq(void);
224
225extern int __must_check io_schedule_prepare(void);
226extern void io_schedule_finish(int token);
227extern long io_schedule_timeout(long timeout);
228extern void io_schedule(void);
229
230/**
231 * struct prev_cputime - snapshot of system and user cputime
232 * @utime: time spent in user mode
233 * @stime: time spent in system mode
234 * @lock: protects the above two fields
235 *
236 * Stores previous user/system time values such that we can guarantee
237 * monotonicity.
238 */
239struct prev_cputime {
240#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
241 u64 utime;
242 u64 stime;
243 raw_spinlock_t lock;
244#endif
245};
246
247enum vtime_state {
248 /* Task is sleeping or running in a CPU with VTIME inactive: */
249 VTIME_INACTIVE = 0,
250 /* Task is idle */
251 VTIME_IDLE,
252 /* Task runs in kernelspace in a CPU with VTIME active: */
253 VTIME_SYS,
254 /* Task runs in userspace in a CPU with VTIME active: */
255 VTIME_USER,
256 /* Task runs as guests in a CPU with VTIME active: */
257 VTIME_GUEST,
258};
259
260struct vtime {
261 seqcount_t seqcount;
262 unsigned long long starttime;
263 enum vtime_state state;
264 unsigned int cpu;
265 u64 utime;
266 u64 stime;
267 u64 gtime;
268};
269
270/*
271 * Utilization clamp constraints.
272 * @UCLAMP_MIN: Minimum utilization
273 * @UCLAMP_MAX: Maximum utilization
274 * @UCLAMP_CNT: Utilization clamp constraints count
275 */
276enum uclamp_id {
277 UCLAMP_MIN = 0,
278 UCLAMP_MAX,
279 UCLAMP_CNT
280};
281
282#ifdef CONFIG_SMP
283extern struct root_domain def_root_domain;
284extern struct mutex sched_domains_mutex;
285#endif
286
287struct sched_info {
288#ifdef CONFIG_SCHED_INFO
289 /* Cumulative counters: */
290
291 /* # of times we have run on this CPU: */
292 unsigned long pcount;
293
294 /* Time spent waiting on a runqueue: */
295 unsigned long long run_delay;
296
297 /* Timestamps: */
298
299 /* When did we last run on a CPU? */
300 unsigned long long last_arrival;
301
302 /* When were we last queued to run? */
303 unsigned long long last_queued;
304
305#endif /* CONFIG_SCHED_INFO */
306};
307
308/*
309 * Integer metrics need fixed point arithmetic, e.g., sched/fair
310 * has a few: load, load_avg, util_avg, freq, and capacity.
311 *
312 * We define a basic fixed point arithmetic range, and then formalize
313 * all these metrics based on that basic range.
314 */
315# define SCHED_FIXEDPOINT_SHIFT 10
316# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
317
318/* Increase resolution of cpu_capacity calculations */
319# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
320# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
321
322struct load_weight {
323 unsigned long weight;
324 u32 inv_weight;
325};
326
327/**
328 * struct util_est - Estimation utilization of FAIR tasks
329 * @enqueued: instantaneous estimated utilization of a task/cpu
330 * @ewma: the Exponential Weighted Moving Average (EWMA)
331 * utilization of a task
332 *
333 * Support data structure to track an Exponential Weighted Moving Average
334 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
335 * average each time a task completes an activation. Sample's weight is chosen
336 * so that the EWMA will be relatively insensitive to transient changes to the
337 * task's workload.
338 *
339 * The enqueued attribute has a slightly different meaning for tasks and cpus:
340 * - task: the task's util_avg at last task dequeue time
341 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
342 * Thus, the util_est.enqueued of a task represents the contribution on the
343 * estimated utilization of the CPU where that task is currently enqueued.
344 *
345 * Only for tasks we track a moving average of the past instantaneous
346 * estimated utilization. This allows to absorb sporadic drops in utilization
347 * of an otherwise almost periodic task.
348 */
349struct util_est {
350 unsigned int enqueued;
351 unsigned int ewma;
352#define UTIL_EST_WEIGHT_SHIFT 2
353} __attribute__((__aligned__(sizeof(u64))));
354
355/*
356 * The load/runnable/util_avg accumulates an infinite geometric series
357 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
358 *
359 * [load_avg definition]
360 *
361 * load_avg = runnable% * scale_load_down(load)
362 *
363 * [runnable_avg definition]
364 *
365 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
366 *
367 * [util_avg definition]
368 *
369 * util_avg = running% * SCHED_CAPACITY_SCALE
370 *
371 * where runnable% is the time ratio that a sched_entity is runnable and
372 * running% the time ratio that a sched_entity is running.
373 *
374 * For cfs_rq, they are the aggregated values of all runnable and blocked
375 * sched_entities.
376 *
377 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU
378 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
379 * for computing those signals (see update_rq_clock_pelt())
380 *
381 * N.B., the above ratios (runnable% and running%) themselves are in the
382 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
383 * to as large a range as necessary. This is for example reflected by
384 * util_avg's SCHED_CAPACITY_SCALE.
385 *
386 * [Overflow issue]
387 *
388 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
389 * with the highest load (=88761), always runnable on a single cfs_rq,
390 * and should not overflow as the number already hits PID_MAX_LIMIT.
391 *
392 * For all other cases (including 32-bit kernels), struct load_weight's
393 * weight will overflow first before we do, because:
394 *
395 * Max(load_avg) <= Max(load.weight)
396 *
397 * Then it is the load_weight's responsibility to consider overflow
398 * issues.
399 */
400struct sched_avg {
401 u64 last_update_time;
402 u64 load_sum;
403 u64 runnable_sum;
404 u32 util_sum;
405 u32 period_contrib;
406 unsigned long load_avg;
407 unsigned long runnable_avg;
408 unsigned long util_avg;
409 struct util_est util_est;
410} ____cacheline_aligned;
411
412struct sched_statistics {
413#ifdef CONFIG_SCHEDSTATS
414 u64 wait_start;
415 u64 wait_max;
416 u64 wait_count;
417 u64 wait_sum;
418 u64 iowait_count;
419 u64 iowait_sum;
420
421 u64 sleep_start;
422 u64 sleep_max;
423 s64 sum_sleep_runtime;
424
425 u64 block_start;
426 u64 block_max;
427 u64 exec_max;
428 u64 slice_max;
429
430 u64 nr_migrations_cold;
431 u64 nr_failed_migrations_affine;
432 u64 nr_failed_migrations_running;
433 u64 nr_failed_migrations_hot;
434 u64 nr_forced_migrations;
435
436 u64 nr_wakeups;
437 u64 nr_wakeups_sync;
438 u64 nr_wakeups_migrate;
439 u64 nr_wakeups_local;
440 u64 nr_wakeups_remote;
441 u64 nr_wakeups_affine;
442 u64 nr_wakeups_affine_attempts;
443 u64 nr_wakeups_passive;
444 u64 nr_wakeups_idle;
445#endif
446};
447
448struct sched_entity {
449 /* For load-balancing: */
450 struct load_weight load;
451 struct rb_node run_node;
452 struct list_head group_node;
453 unsigned int on_rq;
454
455 u64 exec_start;
456 u64 sum_exec_runtime;
457 u64 vruntime;
458 u64 prev_sum_exec_runtime;
459
460 u64 nr_migrations;
461
462 struct sched_statistics statistics;
463
464#ifdef CONFIG_FAIR_GROUP_SCHED
465 int depth;
466 struct sched_entity *parent;
467 /* rq on which this entity is (to be) queued: */
468 struct cfs_rq *cfs_rq;
469 /* rq "owned" by this entity/group: */
470 struct cfs_rq *my_q;
471 /* cached value of my_q->h_nr_running */
472 unsigned long runnable_weight;
473#endif
474
475#ifdef CONFIG_SMP
476 /*
477 * Per entity load average tracking.
478 *
479 * Put into separate cache line so it does not
480 * collide with read-mostly values above.
481 */
482 struct sched_avg avg;
483#endif
484};
485
486struct sched_rt_entity {
487 struct list_head run_list;
488 unsigned long timeout;
489 unsigned long watchdog_stamp;
490 unsigned int time_slice;
491 unsigned short on_rq;
492 unsigned short on_list;
493
494 struct sched_rt_entity *back;
495#ifdef CONFIG_RT_GROUP_SCHED
496 struct sched_rt_entity *parent;
497 /* rq on which this entity is (to be) queued: */
498 struct rt_rq *rt_rq;
499 /* rq "owned" by this entity/group: */
500 struct rt_rq *my_q;
501#endif
502} __randomize_layout;
503
504struct sched_dl_entity {
505 struct rb_node rb_node;
506
507 /*
508 * Original scheduling parameters. Copied here from sched_attr
509 * during sched_setattr(), they will remain the same until
510 * the next sched_setattr().
511 */
512 u64 dl_runtime; /* Maximum runtime for each instance */
513 u64 dl_deadline; /* Relative deadline of each instance */
514 u64 dl_period; /* Separation of two instances (period) */
515 u64 dl_bw; /* dl_runtime / dl_period */
516 u64 dl_density; /* dl_runtime / dl_deadline */
517
518 /*
519 * Actual scheduling parameters. Initialized with the values above,
520 * they are continuously updated during task execution. Note that
521 * the remaining runtime could be < 0 in case we are in overrun.
522 */
523 s64 runtime; /* Remaining runtime for this instance */
524 u64 deadline; /* Absolute deadline for this instance */
525 unsigned int flags; /* Specifying the scheduler behaviour */
526
527 /*
528 * Some bool flags:
529 *
530 * @dl_throttled tells if we exhausted the runtime. If so, the
531 * task has to wait for a replenishment to be performed at the
532 * next firing of dl_timer.
533 *
534 * @dl_boosted tells if we are boosted due to DI. If so we are
535 * outside bandwidth enforcement mechanism (but only until we
536 * exit the critical section);
537 *
538 * @dl_yielded tells if task gave up the CPU before consuming
539 * all its available runtime during the last job.
540 *
541 * @dl_non_contending tells if the task is inactive while still
542 * contributing to the active utilization. In other words, it
543 * indicates if the inactive timer has been armed and its handler
544 * has not been executed yet. This flag is useful to avoid race
545 * conditions between the inactive timer handler and the wakeup
546 * code.
547 *
548 * @dl_overrun tells if the task asked to be informed about runtime
549 * overruns.
550 */
551 unsigned int dl_throttled : 1;
552 unsigned int dl_boosted : 1;
553 unsigned int dl_yielded : 1;
554 unsigned int dl_non_contending : 1;
555 unsigned int dl_overrun : 1;
556
557 /*
558 * Bandwidth enforcement timer. Each -deadline task has its
559 * own bandwidth to be enforced, thus we need one timer per task.
560 */
561 struct hrtimer dl_timer;
562
563 /*
564 * Inactive timer, responsible for decreasing the active utilization
565 * at the "0-lag time". When a -deadline task blocks, it contributes
566 * to GRUB's active utilization until the "0-lag time", hence a
567 * timer is needed to decrease the active utilization at the correct
568 * time.
569 */
570 struct hrtimer inactive_timer;
571};
572
573#ifdef CONFIG_UCLAMP_TASK
574/* Number of utilization clamp buckets (shorter alias) */
575#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
576
577/*
578 * Utilization clamp for a scheduling entity
579 * @value: clamp value "assigned" to a se
580 * @bucket_id: bucket index corresponding to the "assigned" value
581 * @active: the se is currently refcounted in a rq's bucket
582 * @user_defined: the requested clamp value comes from user-space
583 *
584 * The bucket_id is the index of the clamp bucket matching the clamp value
585 * which is pre-computed and stored to avoid expensive integer divisions from
586 * the fast path.
587 *
588 * The active bit is set whenever a task has got an "effective" value assigned,
589 * which can be different from the clamp value "requested" from user-space.
590 * This allows to know a task is refcounted in the rq's bucket corresponding
591 * to the "effective" bucket_id.
592 *
593 * The user_defined bit is set whenever a task has got a task-specific clamp
594 * value requested from userspace, i.e. the system defaults apply to this task
595 * just as a restriction. This allows to relax default clamps when a less
596 * restrictive task-specific value has been requested, thus allowing to
597 * implement a "nice" semantic. For example, a task running with a 20%
598 * default boost can still drop its own boosting to 0%.
599 */
600struct uclamp_se {
601 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
602 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
603 unsigned int active : 1;
604 unsigned int user_defined : 1;
605};
606#endif /* CONFIG_UCLAMP_TASK */
607
608union rcu_special {
609 struct {
610 u8 blocked;
611 u8 need_qs;
612 u8 exp_hint; /* Hint for performance. */
613 u8 need_mb; /* Readers need smp_mb(). */
614 } b; /* Bits. */
615 u32 s; /* Set of bits. */
616};
617
618enum perf_event_task_context {
619 perf_invalid_context = -1,
620 perf_hw_context = 0,
621 perf_sw_context,
622 perf_nr_task_contexts,
623};
624
625struct wake_q_node {
626 struct wake_q_node *next;
627};
628
629struct task_struct {
630#ifdef CONFIG_THREAD_INFO_IN_TASK
631 /*
632 * For reasons of header soup (see current_thread_info()), this
633 * must be the first element of task_struct.
634 */
635 struct thread_info thread_info;
636#endif
637 /* -1 unrunnable, 0 runnable, >0 stopped: */
638 volatile long state;
639
640 /*
641 * This begins the randomizable portion of task_struct. Only
642 * scheduling-critical items should be added above here.
643 */
644 randomized_struct_fields_start
645
646 void *stack;
647 refcount_t usage;
648 /* Per task flags (PF_*), defined further below: */
649 unsigned int flags;
650 unsigned int ptrace;
651
652#ifdef CONFIG_SMP
653 int on_cpu;
654 struct __call_single_node wake_entry;
655#ifdef CONFIG_THREAD_INFO_IN_TASK
656 /* Current CPU: */
657 unsigned int cpu;
658#endif
659 unsigned int wakee_flips;
660 unsigned long wakee_flip_decay_ts;
661 struct task_struct *last_wakee;
662
663 /*
664 * recent_used_cpu is initially set as the last CPU used by a task
665 * that wakes affine another task. Waker/wakee relationships can
666 * push tasks around a CPU where each wakeup moves to the next one.
667 * Tracking a recently used CPU allows a quick search for a recently
668 * used CPU that may be idle.
669 */
670 int recent_used_cpu;
671 int wake_cpu;
672#endif
673 int on_rq;
674
675 int prio;
676 int static_prio;
677 int normal_prio;
678 unsigned int rt_priority;
679
680 const struct sched_class *sched_class;
681 struct sched_entity se;
682 struct sched_rt_entity rt;
683#ifdef CONFIG_CGROUP_SCHED
684 struct task_group *sched_task_group;
685#endif
686 struct sched_dl_entity dl;
687
688#ifdef CONFIG_UCLAMP_TASK
689 /* Clamp values requested for a scheduling entity */
690 struct uclamp_se uclamp_req[UCLAMP_CNT];
691 /* Effective clamp values used for a scheduling entity */
692 struct uclamp_se uclamp[UCLAMP_CNT];
693#endif
694
695#ifdef CONFIG_PREEMPT_NOTIFIERS
696 /* List of struct preempt_notifier: */
697 struct hlist_head preempt_notifiers;
698#endif
699
700#ifdef CONFIG_BLK_DEV_IO_TRACE
701 unsigned int btrace_seq;
702#endif
703
704 unsigned int policy;
705 int nr_cpus_allowed;
706 const cpumask_t *cpus_ptr;
707 cpumask_t cpus_mask;
708
709#ifdef CONFIG_PREEMPT_RCU
710 int rcu_read_lock_nesting;
711 union rcu_special rcu_read_unlock_special;
712 struct list_head rcu_node_entry;
713 struct rcu_node *rcu_blocked_node;
714#endif /* #ifdef CONFIG_PREEMPT_RCU */
715
716#ifdef CONFIG_TASKS_RCU
717 unsigned long rcu_tasks_nvcsw;
718 u8 rcu_tasks_holdout;
719 u8 rcu_tasks_idx;
720 int rcu_tasks_idle_cpu;
721 struct list_head rcu_tasks_holdout_list;
722#endif /* #ifdef CONFIG_TASKS_RCU */
723
724#ifdef CONFIG_TASKS_TRACE_RCU
725 int trc_reader_nesting;
726 int trc_ipi_to_cpu;
727 union rcu_special trc_reader_special;
728 bool trc_reader_checked;
729 struct list_head trc_holdout_list;
730#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
731
732 struct sched_info sched_info;
733
734 struct list_head tasks;
735#ifdef CONFIG_SMP
736 struct plist_node pushable_tasks;
737 struct rb_node pushable_dl_tasks;
738#endif
739
740 struct mm_struct *mm;
741 struct mm_struct *active_mm;
742
743 /* Per-thread vma caching: */
744 struct vmacache vmacache;
745
746#ifdef SPLIT_RSS_COUNTING
747 struct task_rss_stat rss_stat;
748#endif
749 int exit_state;
750 int exit_code;
751 int exit_signal;
752 /* The signal sent when the parent dies: */
753 int pdeath_signal;
754 /* JOBCTL_*, siglock protected: */
755 unsigned long jobctl;
756
757 /* Used for emulating ABI behavior of previous Linux versions: */
758 unsigned int personality;
759
760 /* Scheduler bits, serialized by scheduler locks: */
761 unsigned sched_reset_on_fork:1;
762 unsigned sched_contributes_to_load:1;
763 unsigned sched_migrated:1;
764 unsigned sched_remote_wakeup:1;
765#ifdef CONFIG_PSI
766 unsigned sched_psi_wake_requeue:1;
767#endif
768
769 /* Force alignment to the next boundary: */
770 unsigned :0;
771
772 /* Unserialized, strictly 'current' */
773
774 /* Bit to tell LSMs we're in execve(): */
775 unsigned in_execve:1;
776 unsigned in_iowait:1;
777#ifndef TIF_RESTORE_SIGMASK
778 unsigned restore_sigmask:1;
779#endif
780#ifdef CONFIG_MEMCG
781 unsigned in_user_fault:1;
782#endif
783#ifdef CONFIG_COMPAT_BRK
784 unsigned brk_randomized:1;
785#endif
786#ifdef CONFIG_CGROUPS
787 /* disallow userland-initiated cgroup migration */
788 unsigned no_cgroup_migration:1;
789 /* task is frozen/stopped (used by the cgroup freezer) */
790 unsigned frozen:1;
791#endif
792#ifdef CONFIG_BLK_CGROUP
793 unsigned use_memdelay:1;
794#endif
795#ifdef CONFIG_PSI
796 /* Stalled due to lack of memory */
797 unsigned in_memstall:1;
798#endif
799
800 unsigned long atomic_flags; /* Flags requiring atomic access. */
801
802 struct restart_block restart_block;
803
804 pid_t pid;
805 pid_t tgid;
806
807#ifdef CONFIG_STACKPROTECTOR
808 /* Canary value for the -fstack-protector GCC feature: */
809 unsigned long stack_canary;
810#endif
811 /*
812 * Pointers to the (original) parent process, youngest child, younger sibling,
813 * older sibling, respectively. (p->father can be replaced with
814 * p->real_parent->pid)
815 */
816
817 /* Real parent process: */
818 struct task_struct __rcu *real_parent;
819
820 /* Recipient of SIGCHLD, wait4() reports: */
821 struct task_struct __rcu *parent;
822
823 /*
824 * Children/sibling form the list of natural children:
825 */
826 struct list_head children;
827 struct list_head sibling;
828 struct task_struct *group_leader;
829
830 /*
831 * 'ptraced' is the list of tasks this task is using ptrace() on.
832 *
833 * This includes both natural children and PTRACE_ATTACH targets.
834 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
835 */
836 struct list_head ptraced;
837 struct list_head ptrace_entry;
838
839 /* PID/PID hash table linkage. */
840 struct pid *thread_pid;
841 struct hlist_node pid_links[PIDTYPE_MAX];
842 struct list_head thread_group;
843 struct list_head thread_node;
844
845 struct completion *vfork_done;
846
847 /* CLONE_CHILD_SETTID: */
848 int __user *set_child_tid;
849
850 /* CLONE_CHILD_CLEARTID: */
851 int __user *clear_child_tid;
852
853 u64 utime;
854 u64 stime;
855#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
856 u64 utimescaled;
857 u64 stimescaled;
858#endif
859 u64 gtime;
860 struct prev_cputime prev_cputime;
861#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
862 struct vtime vtime;
863#endif
864
865#ifdef CONFIG_NO_HZ_FULL
866 atomic_t tick_dep_mask;
867#endif
868 /* Context switch counts: */
869 unsigned long nvcsw;
870 unsigned long nivcsw;
871
872 /* Monotonic time in nsecs: */
873 u64 start_time;
874
875 /* Boot based time in nsecs: */
876 u64 start_boottime;
877
878 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
879 unsigned long min_flt;
880 unsigned long maj_flt;
881
882 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
883 struct posix_cputimers posix_cputimers;
884
885 /* Process credentials: */
886
887 /* Tracer's credentials at attach: */
888 const struct cred __rcu *ptracer_cred;
889
890 /* Objective and real subjective task credentials (COW): */
891 const struct cred __rcu *real_cred;
892
893 /* Effective (overridable) subjective task credentials (COW): */
894 const struct cred __rcu *cred;
895
896#ifdef CONFIG_KEYS
897 /* Cached requested key. */
898 struct key *cached_requested_key;
899#endif
900
901 /*
902 * executable name, excluding path.
903 *
904 * - normally initialized setup_new_exec()
905 * - access it with [gs]et_task_comm()
906 * - lock it with task_lock()
907 */
908 char comm[TASK_COMM_LEN];
909
910 struct nameidata *nameidata;
911
912#ifdef CONFIG_SYSVIPC
913 struct sysv_sem sysvsem;
914 struct sysv_shm sysvshm;
915#endif
916#ifdef CONFIG_DETECT_HUNG_TASK
917 unsigned long last_switch_count;
918 unsigned long last_switch_time;
919#endif
920 /* Filesystem information: */
921 struct fs_struct *fs;
922
923 /* Open file information: */
924 struct files_struct *files;
925
926 /* Namespaces: */
927 struct nsproxy *nsproxy;
928
929 /* Signal handlers: */
930 struct signal_struct *signal;
931 struct sighand_struct __rcu *sighand;
932 sigset_t blocked;
933 sigset_t real_blocked;
934 /* Restored if set_restore_sigmask() was used: */
935 sigset_t saved_sigmask;
936 struct sigpending pending;
937 unsigned long sas_ss_sp;
938 size_t sas_ss_size;
939 unsigned int sas_ss_flags;
940
941 struct callback_head *task_works;
942
943#ifdef CONFIG_AUDIT
944#ifdef CONFIG_AUDITSYSCALL
945 struct audit_context *audit_context;
946#endif
947 kuid_t loginuid;
948 unsigned int sessionid;
949#endif
950 struct seccomp seccomp;
951
952 /* Thread group tracking: */
953 u64 parent_exec_id;
954 u64 self_exec_id;
955
956 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
957 spinlock_t alloc_lock;
958
959 /* Protection of the PI data structures: */
960 raw_spinlock_t pi_lock;
961
962 struct wake_q_node wake_q;
963
964#ifdef CONFIG_RT_MUTEXES
965 /* PI waiters blocked on a rt_mutex held by this task: */
966 struct rb_root_cached pi_waiters;
967 /* Updated under owner's pi_lock and rq lock */
968 struct task_struct *pi_top_task;
969 /* Deadlock detection and priority inheritance handling: */
970 struct rt_mutex_waiter *pi_blocked_on;
971#endif
972
973#ifdef CONFIG_DEBUG_MUTEXES
974 /* Mutex deadlock detection: */
975 struct mutex_waiter *blocked_on;
976#endif
977
978#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
979 int non_block_count;
980#endif
981
982#ifdef CONFIG_TRACE_IRQFLAGS
983 unsigned int irq_events;
984 unsigned int hardirq_threaded;
985 unsigned long hardirq_enable_ip;
986 unsigned long hardirq_disable_ip;
987 unsigned int hardirq_enable_event;
988 unsigned int hardirq_disable_event;
989 int hardirqs_enabled;
990 int hardirq_context;
991 u64 hardirq_chain_key;
992 unsigned long softirq_disable_ip;
993 unsigned long softirq_enable_ip;
994 unsigned int softirq_disable_event;
995 unsigned int softirq_enable_event;
996 int softirqs_enabled;
997 int softirq_context;
998 int irq_config;
999#endif
1000
1001#ifdef CONFIG_LOCKDEP
1002# define MAX_LOCK_DEPTH 48UL
1003 u64 curr_chain_key;
1004 int lockdep_depth;
1005 unsigned int lockdep_recursion;
1006 struct held_lock held_locks[MAX_LOCK_DEPTH];
1007#endif
1008
1009#ifdef CONFIG_UBSAN
1010 unsigned int in_ubsan;
1011#endif
1012
1013 /* Journalling filesystem info: */
1014 void *journal_info;
1015
1016 /* Stacked block device info: */
1017 struct bio_list *bio_list;
1018
1019#ifdef CONFIG_BLOCK
1020 /* Stack plugging: */
1021 struct blk_plug *plug;
1022#endif
1023
1024 /* VM state: */
1025 struct reclaim_state *reclaim_state;
1026
1027 struct backing_dev_info *backing_dev_info;
1028
1029 struct io_context *io_context;
1030
1031#ifdef CONFIG_COMPACTION
1032 struct capture_control *capture_control;
1033#endif
1034 /* Ptrace state: */
1035 unsigned long ptrace_message;
1036 kernel_siginfo_t *last_siginfo;
1037
1038 struct task_io_accounting ioac;
1039#ifdef CONFIG_PSI
1040 /* Pressure stall state */
1041 unsigned int psi_flags;
1042#endif
1043#ifdef CONFIG_TASK_XACCT
1044 /* Accumulated RSS usage: */
1045 u64 acct_rss_mem1;
1046 /* Accumulated virtual memory usage: */
1047 u64 acct_vm_mem1;
1048 /* stime + utime since last update: */
1049 u64 acct_timexpd;
1050#endif
1051#ifdef CONFIG_CPUSETS
1052 /* Protected by ->alloc_lock: */
1053 nodemask_t mems_allowed;
1054 /* Seqence number to catch updates: */
1055 seqcount_t mems_allowed_seq;
1056 int cpuset_mem_spread_rotor;
1057 int cpuset_slab_spread_rotor;
1058#endif
1059#ifdef CONFIG_CGROUPS
1060 /* Control Group info protected by css_set_lock: */
1061 struct css_set __rcu *cgroups;
1062 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1063 struct list_head cg_list;
1064#endif
1065#ifdef CONFIG_X86_CPU_RESCTRL
1066 u32 closid;
1067 u32 rmid;
1068#endif
1069#ifdef CONFIG_FUTEX
1070 struct robust_list_head __user *robust_list;
1071#ifdef CONFIG_COMPAT
1072 struct compat_robust_list_head __user *compat_robust_list;
1073#endif
1074 struct list_head pi_state_list;
1075 struct futex_pi_state *pi_state_cache;
1076 struct mutex futex_exit_mutex;
1077 unsigned int futex_state;
1078#endif
1079#ifdef CONFIG_PERF_EVENTS
1080 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1081 struct mutex perf_event_mutex;
1082 struct list_head perf_event_list;
1083#endif
1084#ifdef CONFIG_DEBUG_PREEMPT
1085 unsigned long preempt_disable_ip;
1086#endif
1087#ifdef CONFIG_NUMA
1088 /* Protected by alloc_lock: */
1089 struct mempolicy *mempolicy;
1090 short il_prev;
1091 short pref_node_fork;
1092#endif
1093#ifdef CONFIG_NUMA_BALANCING
1094 int numa_scan_seq;
1095 unsigned int numa_scan_period;
1096 unsigned int numa_scan_period_max;
1097 int numa_preferred_nid;
1098 unsigned long numa_migrate_retry;
1099 /* Migration stamp: */
1100 u64 node_stamp;
1101 u64 last_task_numa_placement;
1102 u64 last_sum_exec_runtime;
1103 struct callback_head numa_work;
1104
1105 /*
1106 * This pointer is only modified for current in syscall and
1107 * pagefault context (and for tasks being destroyed), so it can be read
1108 * from any of the following contexts:
1109 * - RCU read-side critical section
1110 * - current->numa_group from everywhere
1111 * - task's runqueue locked, task not running
1112 */
1113 struct numa_group __rcu *numa_group;
1114
1115 /*
1116 * numa_faults is an array split into four regions:
1117 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1118 * in this precise order.
1119 *
1120 * faults_memory: Exponential decaying average of faults on a per-node
1121 * basis. Scheduling placement decisions are made based on these
1122 * counts. The values remain static for the duration of a PTE scan.
1123 * faults_cpu: Track the nodes the process was running on when a NUMA
1124 * hinting fault was incurred.
1125 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1126 * during the current scan window. When the scan completes, the counts
1127 * in faults_memory and faults_cpu decay and these values are copied.
1128 */
1129 unsigned long *numa_faults;
1130 unsigned long total_numa_faults;
1131
1132 /*
1133 * numa_faults_locality tracks if faults recorded during the last
1134 * scan window were remote/local or failed to migrate. The task scan
1135 * period is adapted based on the locality of the faults with different
1136 * weights depending on whether they were shared or private faults
1137 */
1138 unsigned long numa_faults_locality[3];
1139
1140 unsigned long numa_pages_migrated;
1141#endif /* CONFIG_NUMA_BALANCING */
1142
1143#ifdef CONFIG_RSEQ
1144 struct rseq __user *rseq;
1145 u32 rseq_sig;
1146 /*
1147 * RmW on rseq_event_mask must be performed atomically
1148 * with respect to preemption.
1149 */
1150 unsigned long rseq_event_mask;
1151#endif
1152
1153 struct tlbflush_unmap_batch tlb_ubc;
1154
1155 union {
1156 refcount_t rcu_users;
1157 struct rcu_head rcu;
1158 };
1159
1160 /* Cache last used pipe for splice(): */
1161 struct pipe_inode_info *splice_pipe;
1162
1163 struct page_frag task_frag;
1164
1165#ifdef CONFIG_TASK_DELAY_ACCT
1166 struct task_delay_info *delays;
1167#endif
1168
1169#ifdef CONFIG_FAULT_INJECTION
1170 int make_it_fail;
1171 unsigned int fail_nth;
1172#endif
1173 /*
1174 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1175 * balance_dirty_pages() for a dirty throttling pause:
1176 */
1177 int nr_dirtied;
1178 int nr_dirtied_pause;
1179 /* Start of a write-and-pause period: */
1180 unsigned long dirty_paused_when;
1181
1182#ifdef CONFIG_LATENCYTOP
1183 int latency_record_count;
1184 struct latency_record latency_record[LT_SAVECOUNT];
1185#endif
1186 /*
1187 * Time slack values; these are used to round up poll() and
1188 * select() etc timeout values. These are in nanoseconds.
1189 */
1190 u64 timer_slack_ns;
1191 u64 default_timer_slack_ns;
1192
1193#ifdef CONFIG_KASAN
1194 unsigned int kasan_depth;
1195#endif
1196#ifdef CONFIG_KCSAN
1197 struct kcsan_ctx kcsan_ctx;
1198#endif
1199
1200#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1201 /* Index of current stored address in ret_stack: */
1202 int curr_ret_stack;
1203 int curr_ret_depth;
1204
1205 /* Stack of return addresses for return function tracing: */
1206 struct ftrace_ret_stack *ret_stack;
1207
1208 /* Timestamp for last schedule: */
1209 unsigned long long ftrace_timestamp;
1210
1211 /*
1212 * Number of functions that haven't been traced
1213 * because of depth overrun:
1214 */
1215 atomic_t trace_overrun;
1216
1217 /* Pause tracing: */
1218 atomic_t tracing_graph_pause;
1219#endif
1220
1221#ifdef CONFIG_TRACING
1222 /* State flags for use by tracers: */
1223 unsigned long trace;
1224
1225 /* Bitmask and counter of trace recursion: */
1226 unsigned long trace_recursion;
1227#endif /* CONFIG_TRACING */
1228
1229#ifdef CONFIG_KCOV
1230 /* See kernel/kcov.c for more details. */
1231
1232 /* Coverage collection mode enabled for this task (0 if disabled): */
1233 unsigned int kcov_mode;
1234
1235 /* Size of the kcov_area: */
1236 unsigned int kcov_size;
1237
1238 /* Buffer for coverage collection: */
1239 void *kcov_area;
1240
1241 /* KCOV descriptor wired with this task or NULL: */
1242 struct kcov *kcov;
1243
1244 /* KCOV common handle for remote coverage collection: */
1245 u64 kcov_handle;
1246
1247 /* KCOV sequence number: */
1248 int kcov_sequence;
1249
1250 /* Collect coverage from softirq context: */
1251 unsigned int kcov_softirq;
1252#endif
1253
1254#ifdef CONFIG_MEMCG
1255 struct mem_cgroup *memcg_in_oom;
1256 gfp_t memcg_oom_gfp_mask;
1257 int memcg_oom_order;
1258
1259 /* Number of pages to reclaim on returning to userland: */
1260 unsigned int memcg_nr_pages_over_high;
1261
1262 /* Used by memcontrol for targeted memcg charge: */
1263 struct mem_cgroup *active_memcg;
1264#endif
1265
1266#ifdef CONFIG_BLK_CGROUP
1267 struct request_queue *throttle_queue;
1268#endif
1269
1270#ifdef CONFIG_UPROBES
1271 struct uprobe_task *utask;
1272#endif
1273#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1274 unsigned int sequential_io;
1275 unsigned int sequential_io_avg;
1276#endif
1277#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1278 unsigned long task_state_change;
1279#endif
1280 int pagefault_disabled;
1281#ifdef CONFIG_MMU
1282 struct task_struct *oom_reaper_list;
1283#endif
1284#ifdef CONFIG_VMAP_STACK
1285 struct vm_struct *stack_vm_area;
1286#endif
1287#ifdef CONFIG_THREAD_INFO_IN_TASK
1288 /* A live task holds one reference: */
1289 refcount_t stack_refcount;
1290#endif
1291#ifdef CONFIG_LIVEPATCH
1292 int patch_state;
1293#endif
1294#ifdef CONFIG_SECURITY
1295 /* Used by LSM modules for access restriction: */
1296 void *security;
1297#endif
1298
1299#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1300 unsigned long lowest_stack;
1301 unsigned long prev_lowest_stack;
1302#endif
1303
1304#ifdef CONFIG_X86_MCE
1305 u64 mce_addr;
1306 __u64 mce_ripv : 1,
1307 mce_whole_page : 1,
1308 __mce_reserved : 62;
1309 struct callback_head mce_kill_me;
1310#endif
1311
1312 /*
1313 * New fields for task_struct should be added above here, so that
1314 * they are included in the randomized portion of task_struct.
1315 */
1316 randomized_struct_fields_end
1317
1318 /* CPU-specific state of this task: */
1319 struct thread_struct thread;
1320
1321 /*
1322 * WARNING: on x86, 'thread_struct' contains a variable-sized
1323 * structure. It *MUST* be at the end of 'task_struct'.
1324 *
1325 * Do not put anything below here!
1326 */
1327};
1328
1329static inline struct pid *task_pid(struct task_struct *task)
1330{
1331 return task->thread_pid;
1332}
1333
1334/*
1335 * the helpers to get the task's different pids as they are seen
1336 * from various namespaces
1337 *
1338 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1339 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1340 * current.
1341 * task_xid_nr_ns() : id seen from the ns specified;
1342 *
1343 * see also pid_nr() etc in include/linux/pid.h
1344 */
1345pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1346
1347static inline pid_t task_pid_nr(struct task_struct *tsk)
1348{
1349 return tsk->pid;
1350}
1351
1352static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1353{
1354 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1355}
1356
1357static inline pid_t task_pid_vnr(struct task_struct *tsk)
1358{
1359 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1360}
1361
1362
1363static inline pid_t task_tgid_nr(struct task_struct *tsk)
1364{
1365 return tsk->tgid;
1366}
1367
1368/**
1369 * pid_alive - check that a task structure is not stale
1370 * @p: Task structure to be checked.
1371 *
1372 * Test if a process is not yet dead (at most zombie state)
1373 * If pid_alive fails, then pointers within the task structure
1374 * can be stale and must not be dereferenced.
1375 *
1376 * Return: 1 if the process is alive. 0 otherwise.
1377 */
1378static inline int pid_alive(const struct task_struct *p)
1379{
1380 return p->thread_pid != NULL;
1381}
1382
1383static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1384{
1385 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1386}
1387
1388static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1389{
1390 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1391}
1392
1393
1394static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1395{
1396 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1397}
1398
1399static inline pid_t task_session_vnr(struct task_struct *tsk)
1400{
1401 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1402}
1403
1404static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1405{
1406 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1407}
1408
1409static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1410{
1411 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1412}
1413
1414static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1415{
1416 pid_t pid = 0;
1417
1418 rcu_read_lock();
1419 if (pid_alive(tsk))
1420 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1421 rcu_read_unlock();
1422
1423 return pid;
1424}
1425
1426static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1427{
1428 return task_ppid_nr_ns(tsk, &init_pid_ns);
1429}
1430
1431/* Obsolete, do not use: */
1432static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1433{
1434 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1435}
1436
1437#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1438#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1439
1440static inline unsigned int task_state_index(struct task_struct *tsk)
1441{
1442 unsigned int tsk_state = READ_ONCE(tsk->state);
1443 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1444
1445 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1446
1447 if (tsk_state == TASK_IDLE)
1448 state = TASK_REPORT_IDLE;
1449
1450 return fls(state);
1451}
1452
1453static inline char task_index_to_char(unsigned int state)
1454{
1455 static const char state_char[] = "RSDTtXZPI";
1456
1457 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1458
1459 return state_char[state];
1460}
1461
1462static inline char task_state_to_char(struct task_struct *tsk)
1463{
1464 return task_index_to_char(task_state_index(tsk));
1465}
1466
1467/**
1468 * is_global_init - check if a task structure is init. Since init
1469 * is free to have sub-threads we need to check tgid.
1470 * @tsk: Task structure to be checked.
1471 *
1472 * Check if a task structure is the first user space task the kernel created.
1473 *
1474 * Return: 1 if the task structure is init. 0 otherwise.
1475 */
1476static inline int is_global_init(struct task_struct *tsk)
1477{
1478 return task_tgid_nr(tsk) == 1;
1479}
1480
1481extern struct pid *cad_pid;
1482
1483/*
1484 * Per process flags
1485 */
1486#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1487#define PF_EXITING 0x00000004 /* Getting shut down */
1488#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1489#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1490#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1491#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1492#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1493#define PF_DUMPCORE 0x00000200 /* Dumped core */
1494#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1495#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1496#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1497#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1498#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1499#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1500#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1501#define PF_KSWAPD 0x00020000 /* I am kswapd */
1502#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1503#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1504#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1505 * I am cleaning dirty pages from some other bdi. */
1506#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1507#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1508#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1509#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
1510#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1511#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1512#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1513#define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
1514#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1515#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1516
1517/*
1518 * Only the _current_ task can read/write to tsk->flags, but other
1519 * tasks can access tsk->flags in readonly mode for example
1520 * with tsk_used_math (like during threaded core dumping).
1521 * There is however an exception to this rule during ptrace
1522 * or during fork: the ptracer task is allowed to write to the
1523 * child->flags of its traced child (same goes for fork, the parent
1524 * can write to the child->flags), because we're guaranteed the
1525 * child is not running and in turn not changing child->flags
1526 * at the same time the parent does it.
1527 */
1528#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1529#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1530#define clear_used_math() clear_stopped_child_used_math(current)
1531#define set_used_math() set_stopped_child_used_math(current)
1532
1533#define conditional_stopped_child_used_math(condition, child) \
1534 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1535
1536#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1537
1538#define copy_to_stopped_child_used_math(child) \
1539 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1540
1541/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1542#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1543#define used_math() tsk_used_math(current)
1544
1545static inline bool is_percpu_thread(void)
1546{
1547#ifdef CONFIG_SMP
1548 return (current->flags & PF_NO_SETAFFINITY) &&
1549 (current->nr_cpus_allowed == 1);
1550#else
1551 return true;
1552#endif
1553}
1554
1555/* Per-process atomic flags. */
1556#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1557#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1558#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1559#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1560#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1561#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1562#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1563#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1564
1565#define TASK_PFA_TEST(name, func) \
1566 static inline bool task_##func(struct task_struct *p) \
1567 { return test_bit(PFA_##name, &p->atomic_flags); }
1568
1569#define TASK_PFA_SET(name, func) \
1570 static inline void task_set_##func(struct task_struct *p) \
1571 { set_bit(PFA_##name, &p->atomic_flags); }
1572
1573#define TASK_PFA_CLEAR(name, func) \
1574 static inline void task_clear_##func(struct task_struct *p) \
1575 { clear_bit(PFA_##name, &p->atomic_flags); }
1576
1577TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1578TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1579
1580TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1581TASK_PFA_SET(SPREAD_PAGE, spread_page)
1582TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1583
1584TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1585TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1586TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1587
1588TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1589TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1590TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1591
1592TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1593TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1594TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1595
1596TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1597TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1598
1599TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1600TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1601TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1602
1603TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1604TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1605
1606static inline void
1607current_restore_flags(unsigned long orig_flags, unsigned long flags)
1608{
1609 current->flags &= ~flags;
1610 current->flags |= orig_flags & flags;
1611}
1612
1613extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1614extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1615#ifdef CONFIG_SMP
1616extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1617extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1618#else
1619static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1620{
1621}
1622static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1623{
1624 if (!cpumask_test_cpu(0, new_mask))
1625 return -EINVAL;
1626 return 0;
1627}
1628#endif
1629
1630extern int yield_to(struct task_struct *p, bool preempt);
1631extern void set_user_nice(struct task_struct *p, long nice);
1632extern int task_prio(const struct task_struct *p);
1633
1634/**
1635 * task_nice - return the nice value of a given task.
1636 * @p: the task in question.
1637 *
1638 * Return: The nice value [ -20 ... 0 ... 19 ].
1639 */
1640static inline int task_nice(const struct task_struct *p)
1641{
1642 return PRIO_TO_NICE((p)->static_prio);
1643}
1644
1645extern int can_nice(const struct task_struct *p, const int nice);
1646extern int task_curr(const struct task_struct *p);
1647extern int idle_cpu(int cpu);
1648extern int available_idle_cpu(int cpu);
1649extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1650extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1651extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1652extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1653extern struct task_struct *idle_task(int cpu);
1654
1655/**
1656 * is_idle_task - is the specified task an idle task?
1657 * @p: the task in question.
1658 *
1659 * Return: 1 if @p is an idle task. 0 otherwise.
1660 */
1661static inline bool is_idle_task(const struct task_struct *p)
1662{
1663 return !!(p->flags & PF_IDLE);
1664}
1665
1666extern struct task_struct *curr_task(int cpu);
1667extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1668
1669void yield(void);
1670
1671union thread_union {
1672#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1673 struct task_struct task;
1674#endif
1675#ifndef CONFIG_THREAD_INFO_IN_TASK
1676 struct thread_info thread_info;
1677#endif
1678 unsigned long stack[THREAD_SIZE/sizeof(long)];
1679};
1680
1681#ifndef CONFIG_THREAD_INFO_IN_TASK
1682extern struct thread_info init_thread_info;
1683#endif
1684
1685extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1686
1687#ifdef CONFIG_THREAD_INFO_IN_TASK
1688static inline struct thread_info *task_thread_info(struct task_struct *task)
1689{
1690 return &task->thread_info;
1691}
1692#elif !defined(__HAVE_THREAD_FUNCTIONS)
1693# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1694#endif
1695
1696/*
1697 * find a task by one of its numerical ids
1698 *
1699 * find_task_by_pid_ns():
1700 * finds a task by its pid in the specified namespace
1701 * find_task_by_vpid():
1702 * finds a task by its virtual pid
1703 *
1704 * see also find_vpid() etc in include/linux/pid.h
1705 */
1706
1707extern struct task_struct *find_task_by_vpid(pid_t nr);
1708extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1709
1710/*
1711 * find a task by its virtual pid and get the task struct
1712 */
1713extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1714
1715extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1716extern int wake_up_process(struct task_struct *tsk);
1717extern void wake_up_new_task(struct task_struct *tsk);
1718
1719#ifdef CONFIG_SMP
1720extern void kick_process(struct task_struct *tsk);
1721#else
1722static inline void kick_process(struct task_struct *tsk) { }
1723#endif
1724
1725extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1726
1727static inline void set_task_comm(struct task_struct *tsk, const char *from)
1728{
1729 __set_task_comm(tsk, from, false);
1730}
1731
1732extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1733#define get_task_comm(buf, tsk) ({ \
1734 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1735 __get_task_comm(buf, sizeof(buf), tsk); \
1736})
1737
1738#ifdef CONFIG_SMP
1739static __always_inline void scheduler_ipi(void)
1740{
1741 /*
1742 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1743 * TIF_NEED_RESCHED remotely (for the first time) will also send
1744 * this IPI.
1745 */
1746 preempt_fold_need_resched();
1747}
1748extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1749#else
1750static inline void scheduler_ipi(void) { }
1751static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1752{
1753 return 1;
1754}
1755#endif
1756
1757/*
1758 * Set thread flags in other task's structures.
1759 * See asm/thread_info.h for TIF_xxxx flags available:
1760 */
1761static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1762{
1763 set_ti_thread_flag(task_thread_info(tsk), flag);
1764}
1765
1766static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1767{
1768 clear_ti_thread_flag(task_thread_info(tsk), flag);
1769}
1770
1771static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1772 bool value)
1773{
1774 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1775}
1776
1777static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1778{
1779 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1780}
1781
1782static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1783{
1784 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1785}
1786
1787static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1788{
1789 return test_ti_thread_flag(task_thread_info(tsk), flag);
1790}
1791
1792static inline void set_tsk_need_resched(struct task_struct *tsk)
1793{
1794 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1795}
1796
1797static inline void clear_tsk_need_resched(struct task_struct *tsk)
1798{
1799 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1800}
1801
1802static inline int test_tsk_need_resched(struct task_struct *tsk)
1803{
1804 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1805}
1806
1807/*
1808 * cond_resched() and cond_resched_lock(): latency reduction via
1809 * explicit rescheduling in places that are safe. The return
1810 * value indicates whether a reschedule was done in fact.
1811 * cond_resched_lock() will drop the spinlock before scheduling,
1812 */
1813#ifndef CONFIG_PREEMPTION
1814extern int _cond_resched(void);
1815#else
1816static inline int _cond_resched(void) { return 0; }
1817#endif
1818
1819#define cond_resched() ({ \
1820 ___might_sleep(__FILE__, __LINE__, 0); \
1821 _cond_resched(); \
1822})
1823
1824extern int __cond_resched_lock(spinlock_t *lock);
1825
1826#define cond_resched_lock(lock) ({ \
1827 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1828 __cond_resched_lock(lock); \
1829})
1830
1831static inline void cond_resched_rcu(void)
1832{
1833#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1834 rcu_read_unlock();
1835 cond_resched();
1836 rcu_read_lock();
1837#endif
1838}
1839
1840/*
1841 * Does a critical section need to be broken due to another
1842 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1843 * but a general need for low latency)
1844 */
1845static inline int spin_needbreak(spinlock_t *lock)
1846{
1847#ifdef CONFIG_PREEMPTION
1848 return spin_is_contended(lock);
1849#else
1850 return 0;
1851#endif
1852}
1853
1854static __always_inline bool need_resched(void)
1855{
1856 return unlikely(tif_need_resched());
1857}
1858
1859/*
1860 * Wrappers for p->thread_info->cpu access. No-op on UP.
1861 */
1862#ifdef CONFIG_SMP
1863
1864static inline unsigned int task_cpu(const struct task_struct *p)
1865{
1866#ifdef CONFIG_THREAD_INFO_IN_TASK
1867 return READ_ONCE(p->cpu);
1868#else
1869 return READ_ONCE(task_thread_info(p)->cpu);
1870#endif
1871}
1872
1873extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1874
1875#else
1876
1877static inline unsigned int task_cpu(const struct task_struct *p)
1878{
1879 return 0;
1880}
1881
1882static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1883{
1884}
1885
1886#endif /* CONFIG_SMP */
1887
1888/*
1889 * In order to reduce various lock holder preemption latencies provide an
1890 * interface to see if a vCPU is currently running or not.
1891 *
1892 * This allows us to terminate optimistic spin loops and block, analogous to
1893 * the native optimistic spin heuristic of testing if the lock owner task is
1894 * running or not.
1895 */
1896#ifndef vcpu_is_preempted
1897static inline bool vcpu_is_preempted(int cpu)
1898{
1899 return false;
1900}
1901#endif
1902
1903extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1904extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1905
1906#ifndef TASK_SIZE_OF
1907#define TASK_SIZE_OF(tsk) TASK_SIZE
1908#endif
1909
1910#ifdef CONFIG_RSEQ
1911
1912/*
1913 * Map the event mask on the user-space ABI enum rseq_cs_flags
1914 * for direct mask checks.
1915 */
1916enum rseq_event_mask_bits {
1917 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1918 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1919 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1920};
1921
1922enum rseq_event_mask {
1923 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1924 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1925 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1926};
1927
1928static inline void rseq_set_notify_resume(struct task_struct *t)
1929{
1930 if (t->rseq)
1931 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1932}
1933
1934void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1935
1936static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1937 struct pt_regs *regs)
1938{
1939 if (current->rseq)
1940 __rseq_handle_notify_resume(ksig, regs);
1941}
1942
1943static inline void rseq_signal_deliver(struct ksignal *ksig,
1944 struct pt_regs *regs)
1945{
1946 preempt_disable();
1947 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
1948 preempt_enable();
1949 rseq_handle_notify_resume(ksig, regs);
1950}
1951
1952/* rseq_preempt() requires preemption to be disabled. */
1953static inline void rseq_preempt(struct task_struct *t)
1954{
1955 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1956 rseq_set_notify_resume(t);
1957}
1958
1959/* rseq_migrate() requires preemption to be disabled. */
1960static inline void rseq_migrate(struct task_struct *t)
1961{
1962 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1963 rseq_set_notify_resume(t);
1964}
1965
1966/*
1967 * If parent process has a registered restartable sequences area, the
1968 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1969 */
1970static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1971{
1972 if (clone_flags & CLONE_VM) {
1973 t->rseq = NULL;
1974 t->rseq_sig = 0;
1975 t->rseq_event_mask = 0;
1976 } else {
1977 t->rseq = current->rseq;
1978 t->rseq_sig = current->rseq_sig;
1979 t->rseq_event_mask = current->rseq_event_mask;
1980 }
1981}
1982
1983static inline void rseq_execve(struct task_struct *t)
1984{
1985 t->rseq = NULL;
1986 t->rseq_sig = 0;
1987 t->rseq_event_mask = 0;
1988}
1989
1990#else
1991
1992static inline void rseq_set_notify_resume(struct task_struct *t)
1993{
1994}
1995static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1996 struct pt_regs *regs)
1997{
1998}
1999static inline void rseq_signal_deliver(struct ksignal *ksig,
2000 struct pt_regs *regs)
2001{
2002}
2003static inline void rseq_preempt(struct task_struct *t)
2004{
2005}
2006static inline void rseq_migrate(struct task_struct *t)
2007{
2008}
2009static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2010{
2011}
2012static inline void rseq_execve(struct task_struct *t)
2013{
2014}
2015
2016#endif
2017
2018void __exit_umh(struct task_struct *tsk);
2019
2020static inline void exit_umh(struct task_struct *tsk)
2021{
2022 if (unlikely(tsk->flags & PF_UMH))
2023 __exit_umh(tsk);
2024}
2025
2026#ifdef CONFIG_DEBUG_RSEQ
2027
2028void rseq_syscall(struct pt_regs *regs);
2029
2030#else
2031
2032static inline void rseq_syscall(struct pt_regs *regs)
2033{
2034}
2035
2036#endif
2037
2038const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2039char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2040int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2041
2042const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2043const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2044const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2045
2046int sched_trace_rq_cpu(struct rq *rq);
2047
2048const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2049
2050#endif