at v5.8 34 kB view raw
1/* SPDX-License-Identifier: GPL-2.0+ */ 2/* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <dipankar@in.ibm.com> 8 * 9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20#ifndef __LINUX_RCUPDATE_H 21#define __LINUX_RCUPDATE_H 22 23#include <linux/types.h> 24#include <linux/compiler.h> 25#include <linux/atomic.h> 26#include <linux/irqflags.h> 27#include <linux/preempt.h> 28#include <linux/bottom_half.h> 29#include <linux/lockdep.h> 30#include <asm/processor.h> 31#include <linux/cpumask.h> 32 33#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 34#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 35#define ulong2long(a) (*(long *)(&(a))) 36 37/* Exported common interfaces */ 38void call_rcu(struct rcu_head *head, rcu_callback_t func); 39void rcu_barrier_tasks(void); 40void rcu_barrier_tasks_rude(void); 41void synchronize_rcu(void); 42 43#ifdef CONFIG_PREEMPT_RCU 44 45void __rcu_read_lock(void); 46void __rcu_read_unlock(void); 47 48/* 49 * Defined as a macro as it is a very low level header included from 50 * areas that don't even know about current. This gives the rcu_read_lock() 51 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 52 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 53 */ 54#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 55 56#else /* #ifdef CONFIG_PREEMPT_RCU */ 57 58static inline void __rcu_read_lock(void) 59{ 60 preempt_disable(); 61} 62 63static inline void __rcu_read_unlock(void) 64{ 65 preempt_enable(); 66} 67 68static inline int rcu_preempt_depth(void) 69{ 70 return 0; 71} 72 73#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 74 75/* Internal to kernel */ 76void rcu_init(void); 77extern int rcu_scheduler_active __read_mostly; 78void rcu_sched_clock_irq(int user); 79void rcu_report_dead(unsigned int cpu); 80void rcutree_migrate_callbacks(int cpu); 81 82#ifdef CONFIG_RCU_STALL_COMMON 83void rcu_sysrq_start(void); 84void rcu_sysrq_end(void); 85#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 86static inline void rcu_sysrq_start(void) { } 87static inline void rcu_sysrq_end(void) { } 88#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 89 90#ifdef CONFIG_NO_HZ_FULL 91void rcu_user_enter(void); 92void rcu_user_exit(void); 93#else 94static inline void rcu_user_enter(void) { } 95static inline void rcu_user_exit(void) { } 96#endif /* CONFIG_NO_HZ_FULL */ 97 98#ifdef CONFIG_RCU_NOCB_CPU 99void rcu_init_nohz(void); 100#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 101static inline void rcu_init_nohz(void) { } 102#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 103 104/** 105 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 106 * @a: Code that RCU needs to pay attention to. 107 * 108 * RCU read-side critical sections are forbidden in the inner idle loop, 109 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU 110 * will happily ignore any such read-side critical sections. However, 111 * things like powertop need tracepoints in the inner idle loop. 112 * 113 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 114 * will tell RCU that it needs to pay attention, invoke its argument 115 * (in this example, calling the do_something_with_RCU() function), 116 * and then tell RCU to go back to ignoring this CPU. It is permissible 117 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 118 * on the order of a million or so, even on 32-bit systems). It is 119 * not legal to block within RCU_NONIDLE(), nor is it permissible to 120 * transfer control either into or out of RCU_NONIDLE()'s statement. 121 */ 122#define RCU_NONIDLE(a) \ 123 do { \ 124 rcu_irq_enter_irqson(); \ 125 do { a; } while (0); \ 126 rcu_irq_exit_irqson(); \ 127 } while (0) 128 129/* 130 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 131 * This is a macro rather than an inline function to avoid #include hell. 132 */ 133#ifdef CONFIG_TASKS_RCU_GENERIC 134 135# ifdef CONFIG_TASKS_RCU 136# define rcu_tasks_classic_qs(t, preempt) \ 137 do { \ 138 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 139 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 140 } while (0) 141void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 142void synchronize_rcu_tasks(void); 143# else 144# define rcu_tasks_classic_qs(t, preempt) do { } while (0) 145# define call_rcu_tasks call_rcu 146# define synchronize_rcu_tasks synchronize_rcu 147# endif 148 149# ifdef CONFIG_TASKS_RCU_TRACE 150# define rcu_tasks_trace_qs(t) \ 151 do { \ 152 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ 153 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ 154 smp_store_release(&(t)->trc_reader_checked, true); \ 155 smp_mb(); /* Readers partitioned by store. */ \ 156 } \ 157 } while (0) 158# else 159# define rcu_tasks_trace_qs(t) do { } while (0) 160# endif 161 162#define rcu_tasks_qs(t, preempt) \ 163do { \ 164 rcu_tasks_classic_qs((t), (preempt)); \ 165 rcu_tasks_trace_qs((t)); \ 166} while (0) 167 168# ifdef CONFIG_TASKS_RUDE_RCU 169void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 170void synchronize_rcu_tasks_rude(void); 171# endif 172 173#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 174void exit_tasks_rcu_start(void); 175void exit_tasks_rcu_finish(void); 176#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 177#define rcu_tasks_qs(t, preempt) do { } while (0) 178#define rcu_note_voluntary_context_switch(t) do { } while (0) 179#define call_rcu_tasks call_rcu 180#define synchronize_rcu_tasks synchronize_rcu 181static inline void exit_tasks_rcu_start(void) { } 182static inline void exit_tasks_rcu_finish(void) { } 183#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 184 185/** 186 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 187 * 188 * This macro resembles cond_resched(), except that it is defined to 189 * report potential quiescent states to RCU-tasks even if the cond_resched() 190 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 191 */ 192#define cond_resched_tasks_rcu_qs() \ 193do { \ 194 rcu_tasks_qs(current, false); \ 195 cond_resched(); \ 196} while (0) 197 198/* 199 * Infrastructure to implement the synchronize_() primitives in 200 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 201 */ 202 203#if defined(CONFIG_TREE_RCU) 204#include <linux/rcutree.h> 205#elif defined(CONFIG_TINY_RCU) 206#include <linux/rcutiny.h> 207#else 208#error "Unknown RCU implementation specified to kernel configuration" 209#endif 210 211/* 212 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 213 * are needed for dynamic initialization and destruction of rcu_head 214 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 215 * dynamic initialization and destruction of statically allocated rcu_head 216 * structures. However, rcu_head structures allocated dynamically in the 217 * heap don't need any initialization. 218 */ 219#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 220void init_rcu_head(struct rcu_head *head); 221void destroy_rcu_head(struct rcu_head *head); 222void init_rcu_head_on_stack(struct rcu_head *head); 223void destroy_rcu_head_on_stack(struct rcu_head *head); 224#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 225static inline void init_rcu_head(struct rcu_head *head) { } 226static inline void destroy_rcu_head(struct rcu_head *head) { } 227static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 228static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 229#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 230 231#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 232bool rcu_lockdep_current_cpu_online(void); 233#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 234static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 235#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 236 237#ifdef CONFIG_DEBUG_LOCK_ALLOC 238 239static inline void rcu_lock_acquire(struct lockdep_map *map) 240{ 241 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 242} 243 244static inline void rcu_lock_release(struct lockdep_map *map) 245{ 246 lock_release(map, _THIS_IP_); 247} 248 249extern struct lockdep_map rcu_lock_map; 250extern struct lockdep_map rcu_bh_lock_map; 251extern struct lockdep_map rcu_sched_lock_map; 252extern struct lockdep_map rcu_callback_map; 253int debug_lockdep_rcu_enabled(void); 254int rcu_read_lock_held(void); 255int rcu_read_lock_bh_held(void); 256int rcu_read_lock_sched_held(void); 257int rcu_read_lock_any_held(void); 258 259#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 260 261# define rcu_lock_acquire(a) do { } while (0) 262# define rcu_lock_release(a) do { } while (0) 263 264static inline int rcu_read_lock_held(void) 265{ 266 return 1; 267} 268 269static inline int rcu_read_lock_bh_held(void) 270{ 271 return 1; 272} 273 274static inline int rcu_read_lock_sched_held(void) 275{ 276 return !preemptible(); 277} 278 279static inline int rcu_read_lock_any_held(void) 280{ 281 return !preemptible(); 282} 283 284#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 285 286#ifdef CONFIG_PROVE_RCU 287 288/** 289 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 290 * @c: condition to check 291 * @s: informative message 292 */ 293#define RCU_LOCKDEP_WARN(c, s) \ 294 do { \ 295 static bool __section(.data.unlikely) __warned; \ 296 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 297 __warned = true; \ 298 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 299 } \ 300 } while (0) 301 302#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 303static inline void rcu_preempt_sleep_check(void) 304{ 305 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 306 "Illegal context switch in RCU read-side critical section"); 307} 308#else /* #ifdef CONFIG_PROVE_RCU */ 309static inline void rcu_preempt_sleep_check(void) { } 310#endif /* #else #ifdef CONFIG_PROVE_RCU */ 311 312#define rcu_sleep_check() \ 313 do { \ 314 rcu_preempt_sleep_check(); \ 315 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 316 "Illegal context switch in RCU-bh read-side critical section"); \ 317 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 318 "Illegal context switch in RCU-sched read-side critical section"); \ 319 } while (0) 320 321#else /* #ifdef CONFIG_PROVE_RCU */ 322 323#define RCU_LOCKDEP_WARN(c, s) do { } while (0) 324#define rcu_sleep_check() do { } while (0) 325 326#endif /* #else #ifdef CONFIG_PROVE_RCU */ 327 328/* 329 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 330 * and rcu_assign_pointer(). Some of these could be folded into their 331 * callers, but they are left separate in order to ease introduction of 332 * multiple pointers markings to match different RCU implementations 333 * (e.g., __srcu), should this make sense in the future. 334 */ 335 336#ifdef __CHECKER__ 337#define rcu_check_sparse(p, space) \ 338 ((void)(((typeof(*p) space *)p) == p)) 339#else /* #ifdef __CHECKER__ */ 340#define rcu_check_sparse(p, space) 341#endif /* #else #ifdef __CHECKER__ */ 342 343#define __rcu_access_pointer(p, space) \ 344({ \ 345 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 346 rcu_check_sparse(p, space); \ 347 ((typeof(*p) __force __kernel *)(_________p1)); \ 348}) 349#define __rcu_dereference_check(p, c, space) \ 350({ \ 351 /* Dependency order vs. p above. */ \ 352 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 353 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 354 rcu_check_sparse(p, space); \ 355 ((typeof(*p) __force __kernel *)(________p1)); \ 356}) 357#define __rcu_dereference_protected(p, c, space) \ 358({ \ 359 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 360 rcu_check_sparse(p, space); \ 361 ((typeof(*p) __force __kernel *)(p)); \ 362}) 363#define rcu_dereference_raw(p) \ 364({ \ 365 /* Dependency order vs. p above. */ \ 366 typeof(p) ________p1 = READ_ONCE(p); \ 367 ((typeof(*p) __force __kernel *)(________p1)); \ 368}) 369 370/** 371 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 372 * @v: The value to statically initialize with. 373 */ 374#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 375 376/** 377 * rcu_assign_pointer() - assign to RCU-protected pointer 378 * @p: pointer to assign to 379 * @v: value to assign (publish) 380 * 381 * Assigns the specified value to the specified RCU-protected 382 * pointer, ensuring that any concurrent RCU readers will see 383 * any prior initialization. 384 * 385 * Inserts memory barriers on architectures that require them 386 * (which is most of them), and also prevents the compiler from 387 * reordering the code that initializes the structure after the pointer 388 * assignment. More importantly, this call documents which pointers 389 * will be dereferenced by RCU read-side code. 390 * 391 * In some special cases, you may use RCU_INIT_POINTER() instead 392 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 393 * to the fact that it does not constrain either the CPU or the compiler. 394 * That said, using RCU_INIT_POINTER() when you should have used 395 * rcu_assign_pointer() is a very bad thing that results in 396 * impossible-to-diagnose memory corruption. So please be careful. 397 * See the RCU_INIT_POINTER() comment header for details. 398 * 399 * Note that rcu_assign_pointer() evaluates each of its arguments only 400 * once, appearances notwithstanding. One of the "extra" evaluations 401 * is in typeof() and the other visible only to sparse (__CHECKER__), 402 * neither of which actually execute the argument. As with most cpp 403 * macros, this execute-arguments-only-once property is important, so 404 * please be careful when making changes to rcu_assign_pointer() and the 405 * other macros that it invokes. 406 */ 407#define rcu_assign_pointer(p, v) \ 408do { \ 409 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 410 rcu_check_sparse(p, __rcu); \ 411 \ 412 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 413 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 414 else \ 415 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 416} while (0) 417 418/** 419 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 420 * @rcu_ptr: RCU pointer, whose old value is returned 421 * @ptr: regular pointer 422 * @c: the lockdep conditions under which the dereference will take place 423 * 424 * Perform a replacement, where @rcu_ptr is an RCU-annotated 425 * pointer and @c is the lockdep argument that is passed to the 426 * rcu_dereference_protected() call used to read that pointer. The old 427 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 428 */ 429#define rcu_replace_pointer(rcu_ptr, ptr, c) \ 430({ \ 431 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 432 rcu_assign_pointer((rcu_ptr), (ptr)); \ 433 __tmp; \ 434}) 435 436/** 437 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 438 * @p: The pointer to read 439 * 440 * Return the value of the specified RCU-protected pointer, but omit the 441 * lockdep checks for being in an RCU read-side critical section. This is 442 * useful when the value of this pointer is accessed, but the pointer is 443 * not dereferenced, for example, when testing an RCU-protected pointer 444 * against NULL. Although rcu_access_pointer() may also be used in cases 445 * where update-side locks prevent the value of the pointer from changing, 446 * you should instead use rcu_dereference_protected() for this use case. 447 * 448 * It is also permissible to use rcu_access_pointer() when read-side 449 * access to the pointer was removed at least one grace period ago, as 450 * is the case in the context of the RCU callback that is freeing up 451 * the data, or after a synchronize_rcu() returns. This can be useful 452 * when tearing down multi-linked structures after a grace period 453 * has elapsed. 454 */ 455#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 456 457/** 458 * rcu_dereference_check() - rcu_dereference with debug checking 459 * @p: The pointer to read, prior to dereferencing 460 * @c: The conditions under which the dereference will take place 461 * 462 * Do an rcu_dereference(), but check that the conditions under which the 463 * dereference will take place are correct. Typically the conditions 464 * indicate the various locking conditions that should be held at that 465 * point. The check should return true if the conditions are satisfied. 466 * An implicit check for being in an RCU read-side critical section 467 * (rcu_read_lock()) is included. 468 * 469 * For example: 470 * 471 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 472 * 473 * could be used to indicate to lockdep that foo->bar may only be dereferenced 474 * if either rcu_read_lock() is held, or that the lock required to replace 475 * the bar struct at foo->bar is held. 476 * 477 * Note that the list of conditions may also include indications of when a lock 478 * need not be held, for example during initialisation or destruction of the 479 * target struct: 480 * 481 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 482 * atomic_read(&foo->usage) == 0); 483 * 484 * Inserts memory barriers on architectures that require them 485 * (currently only the Alpha), prevents the compiler from refetching 486 * (and from merging fetches), and, more importantly, documents exactly 487 * which pointers are protected by RCU and checks that the pointer is 488 * annotated as __rcu. 489 */ 490#define rcu_dereference_check(p, c) \ 491 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 492 493/** 494 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 495 * @p: The pointer to read, prior to dereferencing 496 * @c: The conditions under which the dereference will take place 497 * 498 * This is the RCU-bh counterpart to rcu_dereference_check(). 499 */ 500#define rcu_dereference_bh_check(p, c) \ 501 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 502 503/** 504 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 505 * @p: The pointer to read, prior to dereferencing 506 * @c: The conditions under which the dereference will take place 507 * 508 * This is the RCU-sched counterpart to rcu_dereference_check(). 509 */ 510#define rcu_dereference_sched_check(p, c) \ 511 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 512 __rcu) 513 514/* 515 * The tracing infrastructure traces RCU (we want that), but unfortunately 516 * some of the RCU checks causes tracing to lock up the system. 517 * 518 * The no-tracing version of rcu_dereference_raw() must not call 519 * rcu_read_lock_held(). 520 */ 521#define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) 522 523/** 524 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 525 * @p: The pointer to read, prior to dereferencing 526 * @c: The conditions under which the dereference will take place 527 * 528 * Return the value of the specified RCU-protected pointer, but omit 529 * the READ_ONCE(). This is useful in cases where update-side locks 530 * prevent the value of the pointer from changing. Please note that this 531 * primitive does *not* prevent the compiler from repeating this reference 532 * or combining it with other references, so it should not be used without 533 * protection of appropriate locks. 534 * 535 * This function is only for update-side use. Using this function 536 * when protected only by rcu_read_lock() will result in infrequent 537 * but very ugly failures. 538 */ 539#define rcu_dereference_protected(p, c) \ 540 __rcu_dereference_protected((p), (c), __rcu) 541 542 543/** 544 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 545 * @p: The pointer to read, prior to dereferencing 546 * 547 * This is a simple wrapper around rcu_dereference_check(). 548 */ 549#define rcu_dereference(p) rcu_dereference_check(p, 0) 550 551/** 552 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 553 * @p: The pointer to read, prior to dereferencing 554 * 555 * Makes rcu_dereference_check() do the dirty work. 556 */ 557#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 558 559/** 560 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 561 * @p: The pointer to read, prior to dereferencing 562 * 563 * Makes rcu_dereference_check() do the dirty work. 564 */ 565#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 566 567/** 568 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 569 * @p: The pointer to hand off 570 * 571 * This is simply an identity function, but it documents where a pointer 572 * is handed off from RCU to some other synchronization mechanism, for 573 * example, reference counting or locking. In C11, it would map to 574 * kill_dependency(). It could be used as follows:: 575 * 576 * rcu_read_lock(); 577 * p = rcu_dereference(gp); 578 * long_lived = is_long_lived(p); 579 * if (long_lived) { 580 * if (!atomic_inc_not_zero(p->refcnt)) 581 * long_lived = false; 582 * else 583 * p = rcu_pointer_handoff(p); 584 * } 585 * rcu_read_unlock(); 586 */ 587#define rcu_pointer_handoff(p) (p) 588 589/** 590 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 591 * 592 * When synchronize_rcu() is invoked on one CPU while other CPUs 593 * are within RCU read-side critical sections, then the 594 * synchronize_rcu() is guaranteed to block until after all the other 595 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 596 * on one CPU while other CPUs are within RCU read-side critical 597 * sections, invocation of the corresponding RCU callback is deferred 598 * until after the all the other CPUs exit their critical sections. 599 * 600 * Note, however, that RCU callbacks are permitted to run concurrently 601 * with new RCU read-side critical sections. One way that this can happen 602 * is via the following sequence of events: (1) CPU 0 enters an RCU 603 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 604 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 605 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 606 * callback is invoked. This is legal, because the RCU read-side critical 607 * section that was running concurrently with the call_rcu() (and which 608 * therefore might be referencing something that the corresponding RCU 609 * callback would free up) has completed before the corresponding 610 * RCU callback is invoked. 611 * 612 * RCU read-side critical sections may be nested. Any deferred actions 613 * will be deferred until the outermost RCU read-side critical section 614 * completes. 615 * 616 * You can avoid reading and understanding the next paragraph by 617 * following this rule: don't put anything in an rcu_read_lock() RCU 618 * read-side critical section that would block in a !PREEMPTION kernel. 619 * But if you want the full story, read on! 620 * 621 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 622 * it is illegal to block while in an RCU read-side critical section. 623 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 624 * kernel builds, RCU read-side critical sections may be preempted, 625 * but explicit blocking is illegal. Finally, in preemptible RCU 626 * implementations in real-time (with -rt patchset) kernel builds, RCU 627 * read-side critical sections may be preempted and they may also block, but 628 * only when acquiring spinlocks that are subject to priority inheritance. 629 */ 630static __always_inline void rcu_read_lock(void) 631{ 632 __rcu_read_lock(); 633 __acquire(RCU); 634 rcu_lock_acquire(&rcu_lock_map); 635 RCU_LOCKDEP_WARN(!rcu_is_watching(), 636 "rcu_read_lock() used illegally while idle"); 637} 638 639/* 640 * So where is rcu_write_lock()? It does not exist, as there is no 641 * way for writers to lock out RCU readers. This is a feature, not 642 * a bug -- this property is what provides RCU's performance benefits. 643 * Of course, writers must coordinate with each other. The normal 644 * spinlock primitives work well for this, but any other technique may be 645 * used as well. RCU does not care how the writers keep out of each 646 * others' way, as long as they do so. 647 */ 648 649/** 650 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 651 * 652 * In most situations, rcu_read_unlock() is immune from deadlock. 653 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 654 * is responsible for deboosting, which it does via rt_mutex_unlock(). 655 * Unfortunately, this function acquires the scheduler's runqueue and 656 * priority-inheritance spinlocks. This means that deadlock could result 657 * if the caller of rcu_read_unlock() already holds one of these locks or 658 * any lock that is ever acquired while holding them. 659 * 660 * That said, RCU readers are never priority boosted unless they were 661 * preempted. Therefore, one way to avoid deadlock is to make sure 662 * that preemption never happens within any RCU read-side critical 663 * section whose outermost rcu_read_unlock() is called with one of 664 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 665 * a number of ways, for example, by invoking preempt_disable() before 666 * critical section's outermost rcu_read_lock(). 667 * 668 * Given that the set of locks acquired by rt_mutex_unlock() might change 669 * at any time, a somewhat more future-proofed approach is to make sure 670 * that that preemption never happens within any RCU read-side critical 671 * section whose outermost rcu_read_unlock() is called with irqs disabled. 672 * This approach relies on the fact that rt_mutex_unlock() currently only 673 * acquires irq-disabled locks. 674 * 675 * The second of these two approaches is best in most situations, 676 * however, the first approach can also be useful, at least to those 677 * developers willing to keep abreast of the set of locks acquired by 678 * rt_mutex_unlock(). 679 * 680 * See rcu_read_lock() for more information. 681 */ 682static inline void rcu_read_unlock(void) 683{ 684 RCU_LOCKDEP_WARN(!rcu_is_watching(), 685 "rcu_read_unlock() used illegally while idle"); 686 __release(RCU); 687 __rcu_read_unlock(); 688 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 689} 690 691/** 692 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 693 * 694 * This is equivalent of rcu_read_lock(), but also disables softirqs. 695 * Note that anything else that disables softirqs can also serve as 696 * an RCU read-side critical section. 697 * 698 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 699 * must occur in the same context, for example, it is illegal to invoke 700 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 701 * was invoked from some other task. 702 */ 703static inline void rcu_read_lock_bh(void) 704{ 705 local_bh_disable(); 706 __acquire(RCU_BH); 707 rcu_lock_acquire(&rcu_bh_lock_map); 708 RCU_LOCKDEP_WARN(!rcu_is_watching(), 709 "rcu_read_lock_bh() used illegally while idle"); 710} 711 712/* 713 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 714 * 715 * See rcu_read_lock_bh() for more information. 716 */ 717static inline void rcu_read_unlock_bh(void) 718{ 719 RCU_LOCKDEP_WARN(!rcu_is_watching(), 720 "rcu_read_unlock_bh() used illegally while idle"); 721 rcu_lock_release(&rcu_bh_lock_map); 722 __release(RCU_BH); 723 local_bh_enable(); 724} 725 726/** 727 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 728 * 729 * This is equivalent of rcu_read_lock(), but disables preemption. 730 * Read-side critical sections can also be introduced by anything else 731 * that disables preemption, including local_irq_disable() and friends. 732 * 733 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 734 * must occur in the same context, for example, it is illegal to invoke 735 * rcu_read_unlock_sched() from process context if the matching 736 * rcu_read_lock_sched() was invoked from an NMI handler. 737 */ 738static inline void rcu_read_lock_sched(void) 739{ 740 preempt_disable(); 741 __acquire(RCU_SCHED); 742 rcu_lock_acquire(&rcu_sched_lock_map); 743 RCU_LOCKDEP_WARN(!rcu_is_watching(), 744 "rcu_read_lock_sched() used illegally while idle"); 745} 746 747/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 748static inline notrace void rcu_read_lock_sched_notrace(void) 749{ 750 preempt_disable_notrace(); 751 __acquire(RCU_SCHED); 752} 753 754/* 755 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 756 * 757 * See rcu_read_lock_sched for more information. 758 */ 759static inline void rcu_read_unlock_sched(void) 760{ 761 RCU_LOCKDEP_WARN(!rcu_is_watching(), 762 "rcu_read_unlock_sched() used illegally while idle"); 763 rcu_lock_release(&rcu_sched_lock_map); 764 __release(RCU_SCHED); 765 preempt_enable(); 766} 767 768/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 769static inline notrace void rcu_read_unlock_sched_notrace(void) 770{ 771 __release(RCU_SCHED); 772 preempt_enable_notrace(); 773} 774 775/** 776 * RCU_INIT_POINTER() - initialize an RCU protected pointer 777 * @p: The pointer to be initialized. 778 * @v: The value to initialized the pointer to. 779 * 780 * Initialize an RCU-protected pointer in special cases where readers 781 * do not need ordering constraints on the CPU or the compiler. These 782 * special cases are: 783 * 784 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 785 * 2. The caller has taken whatever steps are required to prevent 786 * RCU readers from concurrently accessing this pointer *or* 787 * 3. The referenced data structure has already been exposed to 788 * readers either at compile time or via rcu_assign_pointer() *and* 789 * 790 * a. You have not made *any* reader-visible changes to 791 * this structure since then *or* 792 * b. It is OK for readers accessing this structure from its 793 * new location to see the old state of the structure. (For 794 * example, the changes were to statistical counters or to 795 * other state where exact synchronization is not required.) 796 * 797 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 798 * result in impossible-to-diagnose memory corruption. As in the structures 799 * will look OK in crash dumps, but any concurrent RCU readers might 800 * see pre-initialized values of the referenced data structure. So 801 * please be very careful how you use RCU_INIT_POINTER()!!! 802 * 803 * If you are creating an RCU-protected linked structure that is accessed 804 * by a single external-to-structure RCU-protected pointer, then you may 805 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 806 * pointers, but you must use rcu_assign_pointer() to initialize the 807 * external-to-structure pointer *after* you have completely initialized 808 * the reader-accessible portions of the linked structure. 809 * 810 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 811 * ordering guarantees for either the CPU or the compiler. 812 */ 813#define RCU_INIT_POINTER(p, v) \ 814 do { \ 815 rcu_check_sparse(p, __rcu); \ 816 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 817 } while (0) 818 819/** 820 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 821 * @p: The pointer to be initialized. 822 * @v: The value to initialized the pointer to. 823 * 824 * GCC-style initialization for an RCU-protected pointer in a structure field. 825 */ 826#define RCU_POINTER_INITIALIZER(p, v) \ 827 .p = RCU_INITIALIZER(v) 828 829/* 830 * Does the specified offset indicate that the corresponding rcu_head 831 * structure can be handled by kfree_rcu()? 832 */ 833#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 834 835/* 836 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 837 */ 838#define __kfree_rcu(head, offset) \ 839 do { \ 840 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 841 kfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \ 842 } while (0) 843 844/** 845 * kfree_rcu() - kfree an object after a grace period. 846 * @ptr: pointer to kfree 847 * @rhf: the name of the struct rcu_head within the type of @ptr. 848 * 849 * Many rcu callbacks functions just call kfree() on the base structure. 850 * These functions are trivial, but their size adds up, and furthermore 851 * when they are used in a kernel module, that module must invoke the 852 * high-latency rcu_barrier() function at module-unload time. 853 * 854 * The kfree_rcu() function handles this issue. Rather than encoding a 855 * function address in the embedded rcu_head structure, kfree_rcu() instead 856 * encodes the offset of the rcu_head structure within the base structure. 857 * Because the functions are not allowed in the low-order 4096 bytes of 858 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 859 * If the offset is larger than 4095 bytes, a compile-time error will 860 * be generated in __kfree_rcu(). If this error is triggered, you can 861 * either fall back to use of call_rcu() or rearrange the structure to 862 * position the rcu_head structure into the first 4096 bytes. 863 * 864 * Note that the allowable offset might decrease in the future, for example, 865 * to allow something like kmem_cache_free_rcu(). 866 * 867 * The BUILD_BUG_ON check must not involve any function calls, hence the 868 * checks are done in macros here. 869 */ 870#define kfree_rcu(ptr, rhf) \ 871do { \ 872 typeof (ptr) ___p = (ptr); \ 873 \ 874 if (___p) \ 875 __kfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \ 876} while (0) 877 878/* 879 * Place this after a lock-acquisition primitive to guarantee that 880 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 881 * if the UNLOCK and LOCK are executed by the same CPU or if the 882 * UNLOCK and LOCK operate on the same lock variable. 883 */ 884#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 885#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 886#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 887#define smp_mb__after_unlock_lock() do { } while (0) 888#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 889 890 891/* Has the specified rcu_head structure been handed to call_rcu()? */ 892 893/** 894 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 895 * @rhp: The rcu_head structure to initialize. 896 * 897 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 898 * given rcu_head structure has already been passed to call_rcu(), then 899 * you must also invoke this rcu_head_init() function on it just after 900 * allocating that structure. Calls to this function must not race with 901 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 902 */ 903static inline void rcu_head_init(struct rcu_head *rhp) 904{ 905 rhp->func = (rcu_callback_t)~0L; 906} 907 908/** 909 * rcu_head_after_call_rcu - Has this rcu_head been passed to call_rcu()? 910 * @rhp: The rcu_head structure to test. 911 * @f: The function passed to call_rcu() along with @rhp. 912 * 913 * Returns @true if the @rhp has been passed to call_rcu() with @func, 914 * and @false otherwise. Emits a warning in any other case, including 915 * the case where @rhp has already been invoked after a grace period. 916 * Calls to this function must not race with callback invocation. One way 917 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 918 * in an RCU read-side critical section that includes a read-side fetch 919 * of the pointer to the structure containing @rhp. 920 */ 921static inline bool 922rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 923{ 924 rcu_callback_t func = READ_ONCE(rhp->func); 925 926 if (func == f) 927 return true; 928 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 929 return false; 930} 931 932/* kernel/ksysfs.c definitions */ 933extern int rcu_expedited; 934extern int rcu_normal; 935 936#endif /* __LINUX_RCUPDATE_H */