Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Performance events:
3 *
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7 *
8 * Data type definitions, declarations, prototypes.
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14#ifndef _LINUX_PERF_EVENT_H
15#define _LINUX_PERF_EVENT_H
16
17#include <uapi/linux/perf_event.h>
18#include <uapi/linux/bpf_perf_event.h>
19
20/*
21 * Kernel-internal data types and definitions:
22 */
23
24#ifdef CONFIG_PERF_EVENTS
25# include <asm/perf_event.h>
26# include <asm/local64.h>
27#endif
28
29struct perf_guest_info_callbacks {
30 int (*is_in_guest)(void);
31 int (*is_user_mode)(void);
32 unsigned long (*get_guest_ip)(void);
33 void (*handle_intel_pt_intr)(void);
34};
35
36#ifdef CONFIG_HAVE_HW_BREAKPOINT
37#include <asm/hw_breakpoint.h>
38#endif
39
40#include <linux/list.h>
41#include <linux/mutex.h>
42#include <linux/rculist.h>
43#include <linux/rcupdate.h>
44#include <linux/spinlock.h>
45#include <linux/hrtimer.h>
46#include <linux/fs.h>
47#include <linux/pid_namespace.h>
48#include <linux/workqueue.h>
49#include <linux/ftrace.h>
50#include <linux/cpu.h>
51#include <linux/irq_work.h>
52#include <linux/static_key.h>
53#include <linux/jump_label_ratelimit.h>
54#include <linux/atomic.h>
55#include <linux/sysfs.h>
56#include <linux/perf_regs.h>
57#include <linux/cgroup.h>
58#include <linux/refcount.h>
59#include <linux/security.h>
60#include <asm/local.h>
61
62struct perf_callchain_entry {
63 __u64 nr;
64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */
65};
66
67struct perf_callchain_entry_ctx {
68 struct perf_callchain_entry *entry;
69 u32 max_stack;
70 u32 nr;
71 short contexts;
72 bool contexts_maxed;
73};
74
75typedef unsigned long (*perf_copy_f)(void *dst, const void *src,
76 unsigned long off, unsigned long len);
77
78struct perf_raw_frag {
79 union {
80 struct perf_raw_frag *next;
81 unsigned long pad;
82 };
83 perf_copy_f copy;
84 void *data;
85 u32 size;
86} __packed;
87
88struct perf_raw_record {
89 struct perf_raw_frag frag;
90 u32 size;
91};
92
93/*
94 * branch stack layout:
95 * nr: number of taken branches stored in entries[]
96 * hw_idx: The low level index of raw branch records
97 * for the most recent branch.
98 * -1ULL means invalid/unknown.
99 *
100 * Note that nr can vary from sample to sample
101 * branches (to, from) are stored from most recent
102 * to least recent, i.e., entries[0] contains the most
103 * recent branch.
104 * The entries[] is an abstraction of raw branch records,
105 * which may not be stored in age order in HW, e.g. Intel LBR.
106 * The hw_idx is to expose the low level index of raw
107 * branch record for the most recent branch aka entries[0].
108 * The hw_idx index is between -1 (unknown) and max depth,
109 * which can be retrieved in /sys/devices/cpu/caps/branches.
110 * For the architectures whose raw branch records are
111 * already stored in age order, the hw_idx should be 0.
112 */
113struct perf_branch_stack {
114 __u64 nr;
115 __u64 hw_idx;
116 struct perf_branch_entry entries[];
117};
118
119struct task_struct;
120
121/*
122 * extra PMU register associated with an event
123 */
124struct hw_perf_event_extra {
125 u64 config; /* register value */
126 unsigned int reg; /* register address or index */
127 int alloc; /* extra register already allocated */
128 int idx; /* index in shared_regs->regs[] */
129};
130
131/**
132 * struct hw_perf_event - performance event hardware details:
133 */
134struct hw_perf_event {
135#ifdef CONFIG_PERF_EVENTS
136 union {
137 struct { /* hardware */
138 u64 config;
139 u64 last_tag;
140 unsigned long config_base;
141 unsigned long event_base;
142 int event_base_rdpmc;
143 int idx;
144 int last_cpu;
145 int flags;
146
147 struct hw_perf_event_extra extra_reg;
148 struct hw_perf_event_extra branch_reg;
149 };
150 struct { /* software */
151 struct hrtimer hrtimer;
152 };
153 struct { /* tracepoint */
154 /* for tp_event->class */
155 struct list_head tp_list;
156 };
157 struct { /* amd_power */
158 u64 pwr_acc;
159 u64 ptsc;
160 };
161#ifdef CONFIG_HAVE_HW_BREAKPOINT
162 struct { /* breakpoint */
163 /*
164 * Crufty hack to avoid the chicken and egg
165 * problem hw_breakpoint has with context
166 * creation and event initalization.
167 */
168 struct arch_hw_breakpoint info;
169 struct list_head bp_list;
170 };
171#endif
172 struct { /* amd_iommu */
173 u8 iommu_bank;
174 u8 iommu_cntr;
175 u16 padding;
176 u64 conf;
177 u64 conf1;
178 };
179 };
180 /*
181 * If the event is a per task event, this will point to the task in
182 * question. See the comment in perf_event_alloc().
183 */
184 struct task_struct *target;
185
186 /*
187 * PMU would store hardware filter configuration
188 * here.
189 */
190 void *addr_filters;
191
192 /* Last sync'ed generation of filters */
193 unsigned long addr_filters_gen;
194
195/*
196 * hw_perf_event::state flags; used to track the PERF_EF_* state.
197 */
198#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
199#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
200#define PERF_HES_ARCH 0x04
201
202 int state;
203
204 /*
205 * The last observed hardware counter value, updated with a
206 * local64_cmpxchg() such that pmu::read() can be called nested.
207 */
208 local64_t prev_count;
209
210 /*
211 * The period to start the next sample with.
212 */
213 u64 sample_period;
214
215 /*
216 * The period we started this sample with.
217 */
218 u64 last_period;
219
220 /*
221 * However much is left of the current period; note that this is
222 * a full 64bit value and allows for generation of periods longer
223 * than hardware might allow.
224 */
225 local64_t period_left;
226
227 /*
228 * State for throttling the event, see __perf_event_overflow() and
229 * perf_adjust_freq_unthr_context().
230 */
231 u64 interrupts_seq;
232 u64 interrupts;
233
234 /*
235 * State for freq target events, see __perf_event_overflow() and
236 * perf_adjust_freq_unthr_context().
237 */
238 u64 freq_time_stamp;
239 u64 freq_count_stamp;
240#endif
241};
242
243struct perf_event;
244
245/*
246 * Common implementation detail of pmu::{start,commit,cancel}_txn
247 */
248#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */
249#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */
250
251/**
252 * pmu::capabilities flags
253 */
254#define PERF_PMU_CAP_NO_INTERRUPT 0x01
255#define PERF_PMU_CAP_NO_NMI 0x02
256#define PERF_PMU_CAP_AUX_NO_SG 0x04
257#define PERF_PMU_CAP_EXTENDED_REGS 0x08
258#define PERF_PMU_CAP_EXCLUSIVE 0x10
259#define PERF_PMU_CAP_ITRACE 0x20
260#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40
261#define PERF_PMU_CAP_NO_EXCLUDE 0x80
262#define PERF_PMU_CAP_AUX_OUTPUT 0x100
263
264struct perf_output_handle;
265
266/**
267 * struct pmu - generic performance monitoring unit
268 */
269struct pmu {
270 struct list_head entry;
271
272 struct module *module;
273 struct device *dev;
274 const struct attribute_group **attr_groups;
275 const struct attribute_group **attr_update;
276 const char *name;
277 int type;
278
279 /*
280 * various common per-pmu feature flags
281 */
282 int capabilities;
283
284 int __percpu *pmu_disable_count;
285 struct perf_cpu_context __percpu *pmu_cpu_context;
286 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */
287 int task_ctx_nr;
288 int hrtimer_interval_ms;
289
290 /* number of address filters this PMU can do */
291 unsigned int nr_addr_filters;
292
293 /*
294 * Fully disable/enable this PMU, can be used to protect from the PMI
295 * as well as for lazy/batch writing of the MSRs.
296 */
297 void (*pmu_enable) (struct pmu *pmu); /* optional */
298 void (*pmu_disable) (struct pmu *pmu); /* optional */
299
300 /*
301 * Try and initialize the event for this PMU.
302 *
303 * Returns:
304 * -ENOENT -- @event is not for this PMU
305 *
306 * -ENODEV -- @event is for this PMU but PMU not present
307 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable
308 * -EINVAL -- @event is for this PMU but @event is not valid
309 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported
310 * -EACCES -- @event is for this PMU, @event is valid, but no privileges
311 *
312 * 0 -- @event is for this PMU and valid
313 *
314 * Other error return values are allowed.
315 */
316 int (*event_init) (struct perf_event *event);
317
318 /*
319 * Notification that the event was mapped or unmapped. Called
320 * in the context of the mapping task.
321 */
322 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
323 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */
324
325 /*
326 * Flags for ->add()/->del()/ ->start()/->stop(). There are
327 * matching hw_perf_event::state flags.
328 */
329#define PERF_EF_START 0x01 /* start the counter when adding */
330#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
331#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
332
333 /*
334 * Adds/Removes a counter to/from the PMU, can be done inside a
335 * transaction, see the ->*_txn() methods.
336 *
337 * The add/del callbacks will reserve all hardware resources required
338 * to service the event, this includes any counter constraint
339 * scheduling etc.
340 *
341 * Called with IRQs disabled and the PMU disabled on the CPU the event
342 * is on.
343 *
344 * ->add() called without PERF_EF_START should result in the same state
345 * as ->add() followed by ->stop().
346 *
347 * ->del() must always PERF_EF_UPDATE stop an event. If it calls
348 * ->stop() that must deal with already being stopped without
349 * PERF_EF_UPDATE.
350 */
351 int (*add) (struct perf_event *event, int flags);
352 void (*del) (struct perf_event *event, int flags);
353
354 /*
355 * Starts/Stops a counter present on the PMU.
356 *
357 * The PMI handler should stop the counter when perf_event_overflow()
358 * returns !0. ->start() will be used to continue.
359 *
360 * Also used to change the sample period.
361 *
362 * Called with IRQs disabled and the PMU disabled on the CPU the event
363 * is on -- will be called from NMI context with the PMU generates
364 * NMIs.
365 *
366 * ->stop() with PERF_EF_UPDATE will read the counter and update
367 * period/count values like ->read() would.
368 *
369 * ->start() with PERF_EF_RELOAD will reprogram the the counter
370 * value, must be preceded by a ->stop() with PERF_EF_UPDATE.
371 */
372 void (*start) (struct perf_event *event, int flags);
373 void (*stop) (struct perf_event *event, int flags);
374
375 /*
376 * Updates the counter value of the event.
377 *
378 * For sampling capable PMUs this will also update the software period
379 * hw_perf_event::period_left field.
380 */
381 void (*read) (struct perf_event *event);
382
383 /*
384 * Group events scheduling is treated as a transaction, add
385 * group events as a whole and perform one schedulability test.
386 * If the test fails, roll back the whole group
387 *
388 * Start the transaction, after this ->add() doesn't need to
389 * do schedulability tests.
390 *
391 * Optional.
392 */
393 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags);
394 /*
395 * If ->start_txn() disabled the ->add() schedulability test
396 * then ->commit_txn() is required to perform one. On success
397 * the transaction is closed. On error the transaction is kept
398 * open until ->cancel_txn() is called.
399 *
400 * Optional.
401 */
402 int (*commit_txn) (struct pmu *pmu);
403 /*
404 * Will cancel the transaction, assumes ->del() is called
405 * for each successful ->add() during the transaction.
406 *
407 * Optional.
408 */
409 void (*cancel_txn) (struct pmu *pmu);
410
411 /*
412 * Will return the value for perf_event_mmap_page::index for this event,
413 * if no implementation is provided it will default to: event->hw.idx + 1.
414 */
415 int (*event_idx) (struct perf_event *event); /*optional */
416
417 /*
418 * context-switches callback
419 */
420 void (*sched_task) (struct perf_event_context *ctx,
421 bool sched_in);
422 /*
423 * PMU specific data size
424 */
425 size_t task_ctx_size;
426
427 /*
428 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data)
429 * can be synchronized using this function. See Intel LBR callstack support
430 * implementation and Perf core context switch handling callbacks for usage
431 * examples.
432 */
433 void (*swap_task_ctx) (struct perf_event_context *prev,
434 struct perf_event_context *next);
435 /* optional */
436
437 /*
438 * Set up pmu-private data structures for an AUX area
439 */
440 void *(*setup_aux) (struct perf_event *event, void **pages,
441 int nr_pages, bool overwrite);
442 /* optional */
443
444 /*
445 * Free pmu-private AUX data structures
446 */
447 void (*free_aux) (void *aux); /* optional */
448
449 /*
450 * Take a snapshot of the AUX buffer without touching the event
451 * state, so that preempting ->start()/->stop() callbacks does
452 * not interfere with their logic. Called in PMI context.
453 *
454 * Returns the size of AUX data copied to the output handle.
455 *
456 * Optional.
457 */
458 long (*snapshot_aux) (struct perf_event *event,
459 struct perf_output_handle *handle,
460 unsigned long size);
461
462 /*
463 * Validate address range filters: make sure the HW supports the
464 * requested configuration and number of filters; return 0 if the
465 * supplied filters are valid, -errno otherwise.
466 *
467 * Runs in the context of the ioctl()ing process and is not serialized
468 * with the rest of the PMU callbacks.
469 */
470 int (*addr_filters_validate) (struct list_head *filters);
471 /* optional */
472
473 /*
474 * Synchronize address range filter configuration:
475 * translate hw-agnostic filters into hardware configuration in
476 * event::hw::addr_filters.
477 *
478 * Runs as a part of filter sync sequence that is done in ->start()
479 * callback by calling perf_event_addr_filters_sync().
480 *
481 * May (and should) traverse event::addr_filters::list, for which its
482 * caller provides necessary serialization.
483 */
484 void (*addr_filters_sync) (struct perf_event *event);
485 /* optional */
486
487 /*
488 * Check if event can be used for aux_output purposes for
489 * events of this PMU.
490 *
491 * Runs from perf_event_open(). Should return 0 for "no match"
492 * or non-zero for "match".
493 */
494 int (*aux_output_match) (struct perf_event *event);
495 /* optional */
496
497 /*
498 * Filter events for PMU-specific reasons.
499 */
500 int (*filter_match) (struct perf_event *event); /* optional */
501
502 /*
503 * Check period value for PERF_EVENT_IOC_PERIOD ioctl.
504 */
505 int (*check_period) (struct perf_event *event, u64 value); /* optional */
506};
507
508enum perf_addr_filter_action_t {
509 PERF_ADDR_FILTER_ACTION_STOP = 0,
510 PERF_ADDR_FILTER_ACTION_START,
511 PERF_ADDR_FILTER_ACTION_FILTER,
512};
513
514/**
515 * struct perf_addr_filter - address range filter definition
516 * @entry: event's filter list linkage
517 * @path: object file's path for file-based filters
518 * @offset: filter range offset
519 * @size: filter range size (size==0 means single address trigger)
520 * @action: filter/start/stop
521 *
522 * This is a hardware-agnostic filter configuration as specified by the user.
523 */
524struct perf_addr_filter {
525 struct list_head entry;
526 struct path path;
527 unsigned long offset;
528 unsigned long size;
529 enum perf_addr_filter_action_t action;
530};
531
532/**
533 * struct perf_addr_filters_head - container for address range filters
534 * @list: list of filters for this event
535 * @lock: spinlock that serializes accesses to the @list and event's
536 * (and its children's) filter generations.
537 * @nr_file_filters: number of file-based filters
538 *
539 * A child event will use parent's @list (and therefore @lock), so they are
540 * bundled together; see perf_event_addr_filters().
541 */
542struct perf_addr_filters_head {
543 struct list_head list;
544 raw_spinlock_t lock;
545 unsigned int nr_file_filters;
546};
547
548struct perf_addr_filter_range {
549 unsigned long start;
550 unsigned long size;
551};
552
553/**
554 * enum perf_event_state - the states of an event:
555 */
556enum perf_event_state {
557 PERF_EVENT_STATE_DEAD = -4,
558 PERF_EVENT_STATE_EXIT = -3,
559 PERF_EVENT_STATE_ERROR = -2,
560 PERF_EVENT_STATE_OFF = -1,
561 PERF_EVENT_STATE_INACTIVE = 0,
562 PERF_EVENT_STATE_ACTIVE = 1,
563};
564
565struct file;
566struct perf_sample_data;
567
568typedef void (*perf_overflow_handler_t)(struct perf_event *,
569 struct perf_sample_data *,
570 struct pt_regs *regs);
571
572/*
573 * Event capabilities. For event_caps and groups caps.
574 *
575 * PERF_EV_CAP_SOFTWARE: Is a software event.
576 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read
577 * from any CPU in the package where it is active.
578 */
579#define PERF_EV_CAP_SOFTWARE BIT(0)
580#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1)
581
582#define SWEVENT_HLIST_BITS 8
583#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
584
585struct swevent_hlist {
586 struct hlist_head heads[SWEVENT_HLIST_SIZE];
587 struct rcu_head rcu_head;
588};
589
590#define PERF_ATTACH_CONTEXT 0x01
591#define PERF_ATTACH_GROUP 0x02
592#define PERF_ATTACH_TASK 0x04
593#define PERF_ATTACH_TASK_DATA 0x08
594#define PERF_ATTACH_ITRACE 0x10
595
596struct perf_cgroup;
597struct perf_buffer;
598
599struct pmu_event_list {
600 raw_spinlock_t lock;
601 struct list_head list;
602};
603
604#define for_each_sibling_event(sibling, event) \
605 if ((event)->group_leader == (event)) \
606 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list)
607
608/**
609 * struct perf_event - performance event kernel representation:
610 */
611struct perf_event {
612#ifdef CONFIG_PERF_EVENTS
613 /*
614 * entry onto perf_event_context::event_list;
615 * modifications require ctx->lock
616 * RCU safe iterations.
617 */
618 struct list_head event_entry;
619
620 /*
621 * Locked for modification by both ctx->mutex and ctx->lock; holding
622 * either sufficies for read.
623 */
624 struct list_head sibling_list;
625 struct list_head active_list;
626 /*
627 * Node on the pinned or flexible tree located at the event context;
628 */
629 struct rb_node group_node;
630 u64 group_index;
631 /*
632 * We need storage to track the entries in perf_pmu_migrate_context; we
633 * cannot use the event_entry because of RCU and we want to keep the
634 * group in tact which avoids us using the other two entries.
635 */
636 struct list_head migrate_entry;
637
638 struct hlist_node hlist_entry;
639 struct list_head active_entry;
640 int nr_siblings;
641
642 /* Not serialized. Only written during event initialization. */
643 int event_caps;
644 /* The cumulative AND of all event_caps for events in this group. */
645 int group_caps;
646
647 struct perf_event *group_leader;
648 struct pmu *pmu;
649 void *pmu_private;
650
651 enum perf_event_state state;
652 unsigned int attach_state;
653 local64_t count;
654 atomic64_t child_count;
655
656 /*
657 * These are the total time in nanoseconds that the event
658 * has been enabled (i.e. eligible to run, and the task has
659 * been scheduled in, if this is a per-task event)
660 * and running (scheduled onto the CPU), respectively.
661 */
662 u64 total_time_enabled;
663 u64 total_time_running;
664 u64 tstamp;
665
666 /*
667 * timestamp shadows the actual context timing but it can
668 * be safely used in NMI interrupt context. It reflects the
669 * context time as it was when the event was last scheduled in.
670 *
671 * ctx_time already accounts for ctx->timestamp. Therefore to
672 * compute ctx_time for a sample, simply add perf_clock().
673 */
674 u64 shadow_ctx_time;
675
676 struct perf_event_attr attr;
677 u16 header_size;
678 u16 id_header_size;
679 u16 read_size;
680 struct hw_perf_event hw;
681
682 struct perf_event_context *ctx;
683 atomic_long_t refcount;
684
685 /*
686 * These accumulate total time (in nanoseconds) that children
687 * events have been enabled and running, respectively.
688 */
689 atomic64_t child_total_time_enabled;
690 atomic64_t child_total_time_running;
691
692 /*
693 * Protect attach/detach and child_list:
694 */
695 struct mutex child_mutex;
696 struct list_head child_list;
697 struct perf_event *parent;
698
699 int oncpu;
700 int cpu;
701
702 struct list_head owner_entry;
703 struct task_struct *owner;
704
705 /* mmap bits */
706 struct mutex mmap_mutex;
707 atomic_t mmap_count;
708
709 struct perf_buffer *rb;
710 struct list_head rb_entry;
711 unsigned long rcu_batches;
712 int rcu_pending;
713
714 /* poll related */
715 wait_queue_head_t waitq;
716 struct fasync_struct *fasync;
717
718 /* delayed work for NMIs and such */
719 int pending_wakeup;
720 int pending_kill;
721 int pending_disable;
722 struct irq_work pending;
723
724 atomic_t event_limit;
725
726 /* address range filters */
727 struct perf_addr_filters_head addr_filters;
728 /* vma address array for file-based filders */
729 struct perf_addr_filter_range *addr_filter_ranges;
730 unsigned long addr_filters_gen;
731
732 /* for aux_output events */
733 struct perf_event *aux_event;
734
735 void (*destroy)(struct perf_event *);
736 struct rcu_head rcu_head;
737
738 struct pid_namespace *ns;
739 u64 id;
740
741 u64 (*clock)(void);
742 perf_overflow_handler_t overflow_handler;
743 void *overflow_handler_context;
744#ifdef CONFIG_BPF_SYSCALL
745 perf_overflow_handler_t orig_overflow_handler;
746 struct bpf_prog *prog;
747#endif
748
749#ifdef CONFIG_EVENT_TRACING
750 struct trace_event_call *tp_event;
751 struct event_filter *filter;
752#ifdef CONFIG_FUNCTION_TRACER
753 struct ftrace_ops ftrace_ops;
754#endif
755#endif
756
757#ifdef CONFIG_CGROUP_PERF
758 struct perf_cgroup *cgrp; /* cgroup event is attach to */
759#endif
760
761#ifdef CONFIG_SECURITY
762 void *security;
763#endif
764 struct list_head sb_list;
765#endif /* CONFIG_PERF_EVENTS */
766};
767
768
769struct perf_event_groups {
770 struct rb_root tree;
771 u64 index;
772};
773
774/**
775 * struct perf_event_context - event context structure
776 *
777 * Used as a container for task events and CPU events as well:
778 */
779struct perf_event_context {
780 struct pmu *pmu;
781 /*
782 * Protect the states of the events in the list,
783 * nr_active, and the list:
784 */
785 raw_spinlock_t lock;
786 /*
787 * Protect the list of events. Locking either mutex or lock
788 * is sufficient to ensure the list doesn't change; to change
789 * the list you need to lock both the mutex and the spinlock.
790 */
791 struct mutex mutex;
792
793 struct list_head active_ctx_list;
794 struct perf_event_groups pinned_groups;
795 struct perf_event_groups flexible_groups;
796 struct list_head event_list;
797
798 struct list_head pinned_active;
799 struct list_head flexible_active;
800
801 int nr_events;
802 int nr_active;
803 int is_active;
804 int nr_stat;
805 int nr_freq;
806 int rotate_disable;
807 /*
808 * Set when nr_events != nr_active, except tolerant to events not
809 * necessary to be active due to scheduling constraints, such as cgroups.
810 */
811 int rotate_necessary;
812 refcount_t refcount;
813 struct task_struct *task;
814
815 /*
816 * Context clock, runs when context enabled.
817 */
818 u64 time;
819 u64 timestamp;
820
821 /*
822 * These fields let us detect when two contexts have both
823 * been cloned (inherited) from a common ancestor.
824 */
825 struct perf_event_context *parent_ctx;
826 u64 parent_gen;
827 u64 generation;
828 int pin_count;
829#ifdef CONFIG_CGROUP_PERF
830 int nr_cgroups; /* cgroup evts */
831#endif
832 void *task_ctx_data; /* pmu specific data */
833 struct rcu_head rcu_head;
834};
835
836/*
837 * Number of contexts where an event can trigger:
838 * task, softirq, hardirq, nmi.
839 */
840#define PERF_NR_CONTEXTS 4
841
842/**
843 * struct perf_event_cpu_context - per cpu event context structure
844 */
845struct perf_cpu_context {
846 struct perf_event_context ctx;
847 struct perf_event_context *task_ctx;
848 int active_oncpu;
849 int exclusive;
850
851 raw_spinlock_t hrtimer_lock;
852 struct hrtimer hrtimer;
853 ktime_t hrtimer_interval;
854 unsigned int hrtimer_active;
855
856#ifdef CONFIG_CGROUP_PERF
857 struct perf_cgroup *cgrp;
858 struct list_head cgrp_cpuctx_entry;
859#endif
860
861 struct list_head sched_cb_entry;
862 int sched_cb_usage;
863
864 int online;
865 /*
866 * Per-CPU storage for iterators used in visit_groups_merge. The default
867 * storage is of size 2 to hold the CPU and any CPU event iterators.
868 */
869 int heap_size;
870 struct perf_event **heap;
871 struct perf_event *heap_default[2];
872};
873
874struct perf_output_handle {
875 struct perf_event *event;
876 struct perf_buffer *rb;
877 unsigned long wakeup;
878 unsigned long size;
879 u64 aux_flags;
880 union {
881 void *addr;
882 unsigned long head;
883 };
884 int page;
885};
886
887struct bpf_perf_event_data_kern {
888 bpf_user_pt_regs_t *regs;
889 struct perf_sample_data *data;
890 struct perf_event *event;
891};
892
893#ifdef CONFIG_CGROUP_PERF
894
895/*
896 * perf_cgroup_info keeps track of time_enabled for a cgroup.
897 * This is a per-cpu dynamically allocated data structure.
898 */
899struct perf_cgroup_info {
900 u64 time;
901 u64 timestamp;
902};
903
904struct perf_cgroup {
905 struct cgroup_subsys_state css;
906 struct perf_cgroup_info __percpu *info;
907};
908
909/*
910 * Must ensure cgroup is pinned (css_get) before calling
911 * this function. In other words, we cannot call this function
912 * if there is no cgroup event for the current CPU context.
913 */
914static inline struct perf_cgroup *
915perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx)
916{
917 return container_of(task_css_check(task, perf_event_cgrp_id,
918 ctx ? lockdep_is_held(&ctx->lock)
919 : true),
920 struct perf_cgroup, css);
921}
922#endif /* CONFIG_CGROUP_PERF */
923
924#ifdef CONFIG_PERF_EVENTS
925
926extern void *perf_aux_output_begin(struct perf_output_handle *handle,
927 struct perf_event *event);
928extern void perf_aux_output_end(struct perf_output_handle *handle,
929 unsigned long size);
930extern int perf_aux_output_skip(struct perf_output_handle *handle,
931 unsigned long size);
932extern void *perf_get_aux(struct perf_output_handle *handle);
933extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags);
934extern void perf_event_itrace_started(struct perf_event *event);
935
936extern int perf_pmu_register(struct pmu *pmu, const char *name, int type);
937extern void perf_pmu_unregister(struct pmu *pmu);
938
939extern int perf_num_counters(void);
940extern const char *perf_pmu_name(void);
941extern void __perf_event_task_sched_in(struct task_struct *prev,
942 struct task_struct *task);
943extern void __perf_event_task_sched_out(struct task_struct *prev,
944 struct task_struct *next);
945extern int perf_event_init_task(struct task_struct *child);
946extern void perf_event_exit_task(struct task_struct *child);
947extern void perf_event_free_task(struct task_struct *task);
948extern void perf_event_delayed_put(struct task_struct *task);
949extern struct file *perf_event_get(unsigned int fd);
950extern const struct perf_event *perf_get_event(struct file *file);
951extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event);
952extern void perf_event_print_debug(void);
953extern void perf_pmu_disable(struct pmu *pmu);
954extern void perf_pmu_enable(struct pmu *pmu);
955extern void perf_sched_cb_dec(struct pmu *pmu);
956extern void perf_sched_cb_inc(struct pmu *pmu);
957extern int perf_event_task_disable(void);
958extern int perf_event_task_enable(void);
959
960extern void perf_pmu_resched(struct pmu *pmu);
961
962extern int perf_event_refresh(struct perf_event *event, int refresh);
963extern void perf_event_update_userpage(struct perf_event *event);
964extern int perf_event_release_kernel(struct perf_event *event);
965extern struct perf_event *
966perf_event_create_kernel_counter(struct perf_event_attr *attr,
967 int cpu,
968 struct task_struct *task,
969 perf_overflow_handler_t callback,
970 void *context);
971extern void perf_pmu_migrate_context(struct pmu *pmu,
972 int src_cpu, int dst_cpu);
973int perf_event_read_local(struct perf_event *event, u64 *value,
974 u64 *enabled, u64 *running);
975extern u64 perf_event_read_value(struct perf_event *event,
976 u64 *enabled, u64 *running);
977
978
979struct perf_sample_data {
980 /*
981 * Fields set by perf_sample_data_init(), group so as to
982 * minimize the cachelines touched.
983 */
984 u64 addr;
985 struct perf_raw_record *raw;
986 struct perf_branch_stack *br_stack;
987 u64 period;
988 u64 weight;
989 u64 txn;
990 union perf_mem_data_src data_src;
991
992 /*
993 * The other fields, optionally {set,used} by
994 * perf_{prepare,output}_sample().
995 */
996 u64 type;
997 u64 ip;
998 struct {
999 u32 pid;
1000 u32 tid;
1001 } tid_entry;
1002 u64 time;
1003 u64 id;
1004 u64 stream_id;
1005 struct {
1006 u32 cpu;
1007 u32 reserved;
1008 } cpu_entry;
1009 struct perf_callchain_entry *callchain;
1010 u64 aux_size;
1011
1012 /*
1013 * regs_user may point to task_pt_regs or to regs_user_copy, depending
1014 * on arch details.
1015 */
1016 struct perf_regs regs_user;
1017 struct pt_regs regs_user_copy;
1018
1019 struct perf_regs regs_intr;
1020 u64 stack_user_size;
1021
1022 u64 phys_addr;
1023 u64 cgroup;
1024} ____cacheline_aligned;
1025
1026/* default value for data source */
1027#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\
1028 PERF_MEM_S(LVL, NA) |\
1029 PERF_MEM_S(SNOOP, NA) |\
1030 PERF_MEM_S(LOCK, NA) |\
1031 PERF_MEM_S(TLB, NA))
1032
1033static inline void perf_sample_data_init(struct perf_sample_data *data,
1034 u64 addr, u64 period)
1035{
1036 /* remaining struct members initialized in perf_prepare_sample() */
1037 data->addr = addr;
1038 data->raw = NULL;
1039 data->br_stack = NULL;
1040 data->period = period;
1041 data->weight = 0;
1042 data->data_src.val = PERF_MEM_NA;
1043 data->txn = 0;
1044}
1045
1046extern void perf_output_sample(struct perf_output_handle *handle,
1047 struct perf_event_header *header,
1048 struct perf_sample_data *data,
1049 struct perf_event *event);
1050extern void perf_prepare_sample(struct perf_event_header *header,
1051 struct perf_sample_data *data,
1052 struct perf_event *event,
1053 struct pt_regs *regs);
1054
1055extern int perf_event_overflow(struct perf_event *event,
1056 struct perf_sample_data *data,
1057 struct pt_regs *regs);
1058
1059extern void perf_event_output_forward(struct perf_event *event,
1060 struct perf_sample_data *data,
1061 struct pt_regs *regs);
1062extern void perf_event_output_backward(struct perf_event *event,
1063 struct perf_sample_data *data,
1064 struct pt_regs *regs);
1065extern int perf_event_output(struct perf_event *event,
1066 struct perf_sample_data *data,
1067 struct pt_regs *regs);
1068
1069static inline bool
1070is_default_overflow_handler(struct perf_event *event)
1071{
1072 if (likely(event->overflow_handler == perf_event_output_forward))
1073 return true;
1074 if (unlikely(event->overflow_handler == perf_event_output_backward))
1075 return true;
1076 return false;
1077}
1078
1079extern void
1080perf_event_header__init_id(struct perf_event_header *header,
1081 struct perf_sample_data *data,
1082 struct perf_event *event);
1083extern void
1084perf_event__output_id_sample(struct perf_event *event,
1085 struct perf_output_handle *handle,
1086 struct perf_sample_data *sample);
1087
1088extern void
1089perf_log_lost_samples(struct perf_event *event, u64 lost);
1090
1091static inline bool event_has_any_exclude_flag(struct perf_event *event)
1092{
1093 struct perf_event_attr *attr = &event->attr;
1094
1095 return attr->exclude_idle || attr->exclude_user ||
1096 attr->exclude_kernel || attr->exclude_hv ||
1097 attr->exclude_guest || attr->exclude_host;
1098}
1099
1100static inline bool is_sampling_event(struct perf_event *event)
1101{
1102 return event->attr.sample_period != 0;
1103}
1104
1105/*
1106 * Return 1 for a software event, 0 for a hardware event
1107 */
1108static inline int is_software_event(struct perf_event *event)
1109{
1110 return event->event_caps & PERF_EV_CAP_SOFTWARE;
1111}
1112
1113/*
1114 * Return 1 for event in sw context, 0 for event in hw context
1115 */
1116static inline int in_software_context(struct perf_event *event)
1117{
1118 return event->ctx->pmu->task_ctx_nr == perf_sw_context;
1119}
1120
1121static inline int is_exclusive_pmu(struct pmu *pmu)
1122{
1123 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE;
1124}
1125
1126extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1127
1128extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64);
1129extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1130
1131#ifndef perf_arch_fetch_caller_regs
1132static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1133#endif
1134
1135/*
1136 * When generating a perf sample in-line, instead of from an interrupt /
1137 * exception, we lack a pt_regs. This is typically used from software events
1138 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints.
1139 *
1140 * We typically don't need a full set, but (for x86) do require:
1141 * - ip for PERF_SAMPLE_IP
1142 * - cs for user_mode() tests
1143 * - sp for PERF_SAMPLE_CALLCHAIN
1144 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs())
1145 *
1146 * NOTE: assumes @regs is otherwise already 0 filled; this is important for
1147 * things like PERF_SAMPLE_REGS_INTR.
1148 */
1149static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1150{
1151 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1152}
1153
1154static __always_inline void
1155perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1156{
1157 if (static_key_false(&perf_swevent_enabled[event_id]))
1158 __perf_sw_event(event_id, nr, regs, addr);
1159}
1160
1161DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]);
1162
1163/*
1164 * 'Special' version for the scheduler, it hard assumes no recursion,
1165 * which is guaranteed by us not actually scheduling inside other swevents
1166 * because those disable preemption.
1167 */
1168static __always_inline void
1169perf_sw_event_sched(u32 event_id, u64 nr, u64 addr)
1170{
1171 if (static_key_false(&perf_swevent_enabled[event_id])) {
1172 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1173
1174 perf_fetch_caller_regs(regs);
1175 ___perf_sw_event(event_id, nr, regs, addr);
1176 }
1177}
1178
1179extern struct static_key_false perf_sched_events;
1180
1181static __always_inline bool
1182perf_sw_migrate_enabled(void)
1183{
1184 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS]))
1185 return true;
1186 return false;
1187}
1188
1189static inline void perf_event_task_migrate(struct task_struct *task)
1190{
1191 if (perf_sw_migrate_enabled())
1192 task->sched_migrated = 1;
1193}
1194
1195static inline void perf_event_task_sched_in(struct task_struct *prev,
1196 struct task_struct *task)
1197{
1198 if (static_branch_unlikely(&perf_sched_events))
1199 __perf_event_task_sched_in(prev, task);
1200
1201 if (perf_sw_migrate_enabled() && task->sched_migrated) {
1202 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]);
1203
1204 perf_fetch_caller_regs(regs);
1205 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0);
1206 task->sched_migrated = 0;
1207 }
1208}
1209
1210static inline void perf_event_task_sched_out(struct task_struct *prev,
1211 struct task_struct *next)
1212{
1213 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0);
1214
1215 if (static_branch_unlikely(&perf_sched_events))
1216 __perf_event_task_sched_out(prev, next);
1217}
1218
1219extern void perf_event_mmap(struct vm_area_struct *vma);
1220
1221extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1222 bool unregister, const char *sym);
1223extern void perf_event_bpf_event(struct bpf_prog *prog,
1224 enum perf_bpf_event_type type,
1225 u16 flags);
1226
1227extern struct perf_guest_info_callbacks *perf_guest_cbs;
1228extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1229extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1230
1231extern void perf_event_exec(void);
1232extern void perf_event_comm(struct task_struct *tsk, bool exec);
1233extern void perf_event_namespaces(struct task_struct *tsk);
1234extern void perf_event_fork(struct task_struct *tsk);
1235
1236/* Callchains */
1237DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1238
1239extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1240extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs);
1241extern struct perf_callchain_entry *
1242get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user,
1243 u32 max_stack, bool crosstask, bool add_mark);
1244extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs);
1245extern int get_callchain_buffers(int max_stack);
1246extern void put_callchain_buffers(void);
1247
1248extern int sysctl_perf_event_max_stack;
1249extern int sysctl_perf_event_max_contexts_per_stack;
1250
1251static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip)
1252{
1253 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) {
1254 struct perf_callchain_entry *entry = ctx->entry;
1255 entry->ip[entry->nr++] = ip;
1256 ++ctx->contexts;
1257 return 0;
1258 } else {
1259 ctx->contexts_maxed = true;
1260 return -1; /* no more room, stop walking the stack */
1261 }
1262}
1263
1264static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip)
1265{
1266 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) {
1267 struct perf_callchain_entry *entry = ctx->entry;
1268 entry->ip[entry->nr++] = ip;
1269 ++ctx->nr;
1270 return 0;
1271 } else {
1272 return -1; /* no more room, stop walking the stack */
1273 }
1274}
1275
1276extern int sysctl_perf_event_paranoid;
1277extern int sysctl_perf_event_mlock;
1278extern int sysctl_perf_event_sample_rate;
1279extern int sysctl_perf_cpu_time_max_percent;
1280
1281extern void perf_sample_event_took(u64 sample_len_ns);
1282
1283int perf_proc_update_handler(struct ctl_table *table, int write,
1284 void *buffer, size_t *lenp, loff_t *ppos);
1285int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
1286 void *buffer, size_t *lenp, loff_t *ppos);
1287int perf_event_max_stack_handler(struct ctl_table *table, int write,
1288 void *buffer, size_t *lenp, loff_t *ppos);
1289
1290/* Access to perf_event_open(2) syscall. */
1291#define PERF_SECURITY_OPEN 0
1292
1293/* Finer grained perf_event_open(2) access control. */
1294#define PERF_SECURITY_CPU 1
1295#define PERF_SECURITY_KERNEL 2
1296#define PERF_SECURITY_TRACEPOINT 3
1297
1298static inline int perf_is_paranoid(void)
1299{
1300 return sysctl_perf_event_paranoid > -1;
1301}
1302
1303static inline int perf_allow_kernel(struct perf_event_attr *attr)
1304{
1305 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable())
1306 return -EACCES;
1307
1308 return security_perf_event_open(attr, PERF_SECURITY_KERNEL);
1309}
1310
1311static inline int perf_allow_cpu(struct perf_event_attr *attr)
1312{
1313 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable())
1314 return -EACCES;
1315
1316 return security_perf_event_open(attr, PERF_SECURITY_CPU);
1317}
1318
1319static inline int perf_allow_tracepoint(struct perf_event_attr *attr)
1320{
1321 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable())
1322 return -EPERM;
1323
1324 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT);
1325}
1326
1327extern void perf_event_init(void);
1328extern void perf_tp_event(u16 event_type, u64 count, void *record,
1329 int entry_size, struct pt_regs *regs,
1330 struct hlist_head *head, int rctx,
1331 struct task_struct *task);
1332extern void perf_bp_event(struct perf_event *event, void *data);
1333
1334#ifndef perf_misc_flags
1335# define perf_misc_flags(regs) \
1336 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1337# define perf_instruction_pointer(regs) instruction_pointer(regs)
1338#endif
1339#ifndef perf_arch_bpf_user_pt_regs
1340# define perf_arch_bpf_user_pt_regs(regs) regs
1341#endif
1342
1343static inline bool has_branch_stack(struct perf_event *event)
1344{
1345 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
1346}
1347
1348static inline bool needs_branch_stack(struct perf_event *event)
1349{
1350 return event->attr.branch_sample_type != 0;
1351}
1352
1353static inline bool has_aux(struct perf_event *event)
1354{
1355 return event->pmu->setup_aux;
1356}
1357
1358static inline bool is_write_backward(struct perf_event *event)
1359{
1360 return !!event->attr.write_backward;
1361}
1362
1363static inline bool has_addr_filter(struct perf_event *event)
1364{
1365 return event->pmu->nr_addr_filters;
1366}
1367
1368/*
1369 * An inherited event uses parent's filters
1370 */
1371static inline struct perf_addr_filters_head *
1372perf_event_addr_filters(struct perf_event *event)
1373{
1374 struct perf_addr_filters_head *ifh = &event->addr_filters;
1375
1376 if (event->parent)
1377 ifh = &event->parent->addr_filters;
1378
1379 return ifh;
1380}
1381
1382extern void perf_event_addr_filters_sync(struct perf_event *event);
1383
1384extern int perf_output_begin(struct perf_output_handle *handle,
1385 struct perf_event *event, unsigned int size);
1386extern int perf_output_begin_forward(struct perf_output_handle *handle,
1387 struct perf_event *event,
1388 unsigned int size);
1389extern int perf_output_begin_backward(struct perf_output_handle *handle,
1390 struct perf_event *event,
1391 unsigned int size);
1392
1393extern void perf_output_end(struct perf_output_handle *handle);
1394extern unsigned int perf_output_copy(struct perf_output_handle *handle,
1395 const void *buf, unsigned int len);
1396extern unsigned int perf_output_skip(struct perf_output_handle *handle,
1397 unsigned int len);
1398extern long perf_output_copy_aux(struct perf_output_handle *aux_handle,
1399 struct perf_output_handle *handle,
1400 unsigned long from, unsigned long to);
1401extern int perf_swevent_get_recursion_context(void);
1402extern void perf_swevent_put_recursion_context(int rctx);
1403extern u64 perf_swevent_set_period(struct perf_event *event);
1404extern void perf_event_enable(struct perf_event *event);
1405extern void perf_event_disable(struct perf_event *event);
1406extern void perf_event_disable_local(struct perf_event *event);
1407extern void perf_event_disable_inatomic(struct perf_event *event);
1408extern void perf_event_task_tick(void);
1409extern int perf_event_account_interrupt(struct perf_event *event);
1410extern int perf_event_period(struct perf_event *event, u64 value);
1411extern u64 perf_event_pause(struct perf_event *event, bool reset);
1412#else /* !CONFIG_PERF_EVENTS: */
1413static inline void *
1414perf_aux_output_begin(struct perf_output_handle *handle,
1415 struct perf_event *event) { return NULL; }
1416static inline void
1417perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
1418 { }
1419static inline int
1420perf_aux_output_skip(struct perf_output_handle *handle,
1421 unsigned long size) { return -EINVAL; }
1422static inline void *
1423perf_get_aux(struct perf_output_handle *handle) { return NULL; }
1424static inline void
1425perf_event_task_migrate(struct task_struct *task) { }
1426static inline void
1427perf_event_task_sched_in(struct task_struct *prev,
1428 struct task_struct *task) { }
1429static inline void
1430perf_event_task_sched_out(struct task_struct *prev,
1431 struct task_struct *next) { }
1432static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1433static inline void perf_event_exit_task(struct task_struct *child) { }
1434static inline void perf_event_free_task(struct task_struct *task) { }
1435static inline void perf_event_delayed_put(struct task_struct *task) { }
1436static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); }
1437static inline const struct perf_event *perf_get_event(struct file *file)
1438{
1439 return ERR_PTR(-EINVAL);
1440}
1441static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
1442{
1443 return ERR_PTR(-EINVAL);
1444}
1445static inline int perf_event_read_local(struct perf_event *event, u64 *value,
1446 u64 *enabled, u64 *running)
1447{
1448 return -EINVAL;
1449}
1450static inline void perf_event_print_debug(void) { }
1451static inline int perf_event_task_disable(void) { return -EINVAL; }
1452static inline int perf_event_task_enable(void) { return -EINVAL; }
1453static inline int perf_event_refresh(struct perf_event *event, int refresh)
1454{
1455 return -EINVAL;
1456}
1457
1458static inline void
1459perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1460static inline void
1461perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { }
1462static inline void
1463perf_bp_event(struct perf_event *event, void *data) { }
1464
1465static inline int perf_register_guest_info_callbacks
1466(struct perf_guest_info_callbacks *callbacks) { return 0; }
1467static inline int perf_unregister_guest_info_callbacks
1468(struct perf_guest_info_callbacks *callbacks) { return 0; }
1469
1470static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1471
1472typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data);
1473static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len,
1474 bool unregister, const char *sym) { }
1475static inline void perf_event_bpf_event(struct bpf_prog *prog,
1476 enum perf_bpf_event_type type,
1477 u16 flags) { }
1478static inline void perf_event_exec(void) { }
1479static inline void perf_event_comm(struct task_struct *tsk, bool exec) { }
1480static inline void perf_event_namespaces(struct task_struct *tsk) { }
1481static inline void perf_event_fork(struct task_struct *tsk) { }
1482static inline void perf_event_init(void) { }
1483static inline int perf_swevent_get_recursion_context(void) { return -1; }
1484static inline void perf_swevent_put_recursion_context(int rctx) { }
1485static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; }
1486static inline void perf_event_enable(struct perf_event *event) { }
1487static inline void perf_event_disable(struct perf_event *event) { }
1488static inline int __perf_event_disable(void *info) { return -1; }
1489static inline void perf_event_task_tick(void) { }
1490static inline int perf_event_release_kernel(struct perf_event *event) { return 0; }
1491static inline int perf_event_period(struct perf_event *event, u64 value)
1492{
1493 return -EINVAL;
1494}
1495static inline u64 perf_event_pause(struct perf_event *event, bool reset)
1496{
1497 return 0;
1498}
1499#endif
1500
1501#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
1502extern void perf_restore_debug_store(void);
1503#else
1504static inline void perf_restore_debug_store(void) { }
1505#endif
1506
1507static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag)
1508{
1509 return frag->pad < sizeof(u64);
1510}
1511
1512#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1513
1514struct perf_pmu_events_attr {
1515 struct device_attribute attr;
1516 u64 id;
1517 const char *event_str;
1518};
1519
1520struct perf_pmu_events_ht_attr {
1521 struct device_attribute attr;
1522 u64 id;
1523 const char *event_str_ht;
1524 const char *event_str_noht;
1525};
1526
1527ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
1528 char *page);
1529
1530#define PMU_EVENT_ATTR(_name, _var, _id, _show) \
1531static struct perf_pmu_events_attr _var = { \
1532 .attr = __ATTR(_name, 0444, _show, NULL), \
1533 .id = _id, \
1534};
1535
1536#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \
1537static struct perf_pmu_events_attr _var = { \
1538 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \
1539 .id = 0, \
1540 .event_str = _str, \
1541};
1542
1543#define PMU_FORMAT_ATTR(_name, _format) \
1544static ssize_t \
1545_name##_show(struct device *dev, \
1546 struct device_attribute *attr, \
1547 char *page) \
1548{ \
1549 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
1550 return sprintf(page, _format "\n"); \
1551} \
1552 \
1553static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
1554
1555/* Performance counter hotplug functions */
1556#ifdef CONFIG_PERF_EVENTS
1557int perf_event_init_cpu(unsigned int cpu);
1558int perf_event_exit_cpu(unsigned int cpu);
1559#else
1560#define perf_event_init_cpu NULL
1561#define perf_event_exit_cpu NULL
1562#endif
1563
1564extern void __weak arch_perf_update_userpage(struct perf_event *event,
1565 struct perf_event_mmap_page *userpg,
1566 u64 now);
1567
1568#endif /* _LINUX_PERF_EVENT_H */