at v5.8 46 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18#include <uapi/linux/bpf_perf_event.h> 19 20/* 21 * Kernel-internal data types and definitions: 22 */ 23 24#ifdef CONFIG_PERF_EVENTS 25# include <asm/perf_event.h> 26# include <asm/local64.h> 27#endif 28 29struct perf_guest_info_callbacks { 30 int (*is_in_guest)(void); 31 int (*is_user_mode)(void); 32 unsigned long (*get_guest_ip)(void); 33 void (*handle_intel_pt_intr)(void); 34}; 35 36#ifdef CONFIG_HAVE_HW_BREAKPOINT 37#include <asm/hw_breakpoint.h> 38#endif 39 40#include <linux/list.h> 41#include <linux/mutex.h> 42#include <linux/rculist.h> 43#include <linux/rcupdate.h> 44#include <linux/spinlock.h> 45#include <linux/hrtimer.h> 46#include <linux/fs.h> 47#include <linux/pid_namespace.h> 48#include <linux/workqueue.h> 49#include <linux/ftrace.h> 50#include <linux/cpu.h> 51#include <linux/irq_work.h> 52#include <linux/static_key.h> 53#include <linux/jump_label_ratelimit.h> 54#include <linux/atomic.h> 55#include <linux/sysfs.h> 56#include <linux/perf_regs.h> 57#include <linux/cgroup.h> 58#include <linux/refcount.h> 59#include <linux/security.h> 60#include <asm/local.h> 61 62struct perf_callchain_entry { 63 __u64 nr; 64 __u64 ip[]; /* /proc/sys/kernel/perf_event_max_stack */ 65}; 66 67struct perf_callchain_entry_ctx { 68 struct perf_callchain_entry *entry; 69 u32 max_stack; 70 u32 nr; 71 short contexts; 72 bool contexts_maxed; 73}; 74 75typedef unsigned long (*perf_copy_f)(void *dst, const void *src, 76 unsigned long off, unsigned long len); 77 78struct perf_raw_frag { 79 union { 80 struct perf_raw_frag *next; 81 unsigned long pad; 82 }; 83 perf_copy_f copy; 84 void *data; 85 u32 size; 86} __packed; 87 88struct perf_raw_record { 89 struct perf_raw_frag frag; 90 u32 size; 91}; 92 93/* 94 * branch stack layout: 95 * nr: number of taken branches stored in entries[] 96 * hw_idx: The low level index of raw branch records 97 * for the most recent branch. 98 * -1ULL means invalid/unknown. 99 * 100 * Note that nr can vary from sample to sample 101 * branches (to, from) are stored from most recent 102 * to least recent, i.e., entries[0] contains the most 103 * recent branch. 104 * The entries[] is an abstraction of raw branch records, 105 * which may not be stored in age order in HW, e.g. Intel LBR. 106 * The hw_idx is to expose the low level index of raw 107 * branch record for the most recent branch aka entries[0]. 108 * The hw_idx index is between -1 (unknown) and max depth, 109 * which can be retrieved in /sys/devices/cpu/caps/branches. 110 * For the architectures whose raw branch records are 111 * already stored in age order, the hw_idx should be 0. 112 */ 113struct perf_branch_stack { 114 __u64 nr; 115 __u64 hw_idx; 116 struct perf_branch_entry entries[]; 117}; 118 119struct task_struct; 120 121/* 122 * extra PMU register associated with an event 123 */ 124struct hw_perf_event_extra { 125 u64 config; /* register value */ 126 unsigned int reg; /* register address or index */ 127 int alloc; /* extra register already allocated */ 128 int idx; /* index in shared_regs->regs[] */ 129}; 130 131/** 132 * struct hw_perf_event - performance event hardware details: 133 */ 134struct hw_perf_event { 135#ifdef CONFIG_PERF_EVENTS 136 union { 137 struct { /* hardware */ 138 u64 config; 139 u64 last_tag; 140 unsigned long config_base; 141 unsigned long event_base; 142 int event_base_rdpmc; 143 int idx; 144 int last_cpu; 145 int flags; 146 147 struct hw_perf_event_extra extra_reg; 148 struct hw_perf_event_extra branch_reg; 149 }; 150 struct { /* software */ 151 struct hrtimer hrtimer; 152 }; 153 struct { /* tracepoint */ 154 /* for tp_event->class */ 155 struct list_head tp_list; 156 }; 157 struct { /* amd_power */ 158 u64 pwr_acc; 159 u64 ptsc; 160 }; 161#ifdef CONFIG_HAVE_HW_BREAKPOINT 162 struct { /* breakpoint */ 163 /* 164 * Crufty hack to avoid the chicken and egg 165 * problem hw_breakpoint has with context 166 * creation and event initalization. 167 */ 168 struct arch_hw_breakpoint info; 169 struct list_head bp_list; 170 }; 171#endif 172 struct { /* amd_iommu */ 173 u8 iommu_bank; 174 u8 iommu_cntr; 175 u16 padding; 176 u64 conf; 177 u64 conf1; 178 }; 179 }; 180 /* 181 * If the event is a per task event, this will point to the task in 182 * question. See the comment in perf_event_alloc(). 183 */ 184 struct task_struct *target; 185 186 /* 187 * PMU would store hardware filter configuration 188 * here. 189 */ 190 void *addr_filters; 191 192 /* Last sync'ed generation of filters */ 193 unsigned long addr_filters_gen; 194 195/* 196 * hw_perf_event::state flags; used to track the PERF_EF_* state. 197 */ 198#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 199#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 200#define PERF_HES_ARCH 0x04 201 202 int state; 203 204 /* 205 * The last observed hardware counter value, updated with a 206 * local64_cmpxchg() such that pmu::read() can be called nested. 207 */ 208 local64_t prev_count; 209 210 /* 211 * The period to start the next sample with. 212 */ 213 u64 sample_period; 214 215 /* 216 * The period we started this sample with. 217 */ 218 u64 last_period; 219 220 /* 221 * However much is left of the current period; note that this is 222 * a full 64bit value and allows for generation of periods longer 223 * than hardware might allow. 224 */ 225 local64_t period_left; 226 227 /* 228 * State for throttling the event, see __perf_event_overflow() and 229 * perf_adjust_freq_unthr_context(). 230 */ 231 u64 interrupts_seq; 232 u64 interrupts; 233 234 /* 235 * State for freq target events, see __perf_event_overflow() and 236 * perf_adjust_freq_unthr_context(). 237 */ 238 u64 freq_time_stamp; 239 u64 freq_count_stamp; 240#endif 241}; 242 243struct perf_event; 244 245/* 246 * Common implementation detail of pmu::{start,commit,cancel}_txn 247 */ 248#define PERF_PMU_TXN_ADD 0x1 /* txn to add/schedule event on PMU */ 249#define PERF_PMU_TXN_READ 0x2 /* txn to read event group from PMU */ 250 251/** 252 * pmu::capabilities flags 253 */ 254#define PERF_PMU_CAP_NO_INTERRUPT 0x01 255#define PERF_PMU_CAP_NO_NMI 0x02 256#define PERF_PMU_CAP_AUX_NO_SG 0x04 257#define PERF_PMU_CAP_EXTENDED_REGS 0x08 258#define PERF_PMU_CAP_EXCLUSIVE 0x10 259#define PERF_PMU_CAP_ITRACE 0x20 260#define PERF_PMU_CAP_HETEROGENEOUS_CPUS 0x40 261#define PERF_PMU_CAP_NO_EXCLUDE 0x80 262#define PERF_PMU_CAP_AUX_OUTPUT 0x100 263 264struct perf_output_handle; 265 266/** 267 * struct pmu - generic performance monitoring unit 268 */ 269struct pmu { 270 struct list_head entry; 271 272 struct module *module; 273 struct device *dev; 274 const struct attribute_group **attr_groups; 275 const struct attribute_group **attr_update; 276 const char *name; 277 int type; 278 279 /* 280 * various common per-pmu feature flags 281 */ 282 int capabilities; 283 284 int __percpu *pmu_disable_count; 285 struct perf_cpu_context __percpu *pmu_cpu_context; 286 atomic_t exclusive_cnt; /* < 0: cpu; > 0: tsk */ 287 int task_ctx_nr; 288 int hrtimer_interval_ms; 289 290 /* number of address filters this PMU can do */ 291 unsigned int nr_addr_filters; 292 293 /* 294 * Fully disable/enable this PMU, can be used to protect from the PMI 295 * as well as for lazy/batch writing of the MSRs. 296 */ 297 void (*pmu_enable) (struct pmu *pmu); /* optional */ 298 void (*pmu_disable) (struct pmu *pmu); /* optional */ 299 300 /* 301 * Try and initialize the event for this PMU. 302 * 303 * Returns: 304 * -ENOENT -- @event is not for this PMU 305 * 306 * -ENODEV -- @event is for this PMU but PMU not present 307 * -EBUSY -- @event is for this PMU but PMU temporarily unavailable 308 * -EINVAL -- @event is for this PMU but @event is not valid 309 * -EOPNOTSUPP -- @event is for this PMU, @event is valid, but not supported 310 * -EACCES -- @event is for this PMU, @event is valid, but no privileges 311 * 312 * 0 -- @event is for this PMU and valid 313 * 314 * Other error return values are allowed. 315 */ 316 int (*event_init) (struct perf_event *event); 317 318 /* 319 * Notification that the event was mapped or unmapped. Called 320 * in the context of the mapping task. 321 */ 322 void (*event_mapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 323 void (*event_unmapped) (struct perf_event *event, struct mm_struct *mm); /* optional */ 324 325 /* 326 * Flags for ->add()/->del()/ ->start()/->stop(). There are 327 * matching hw_perf_event::state flags. 328 */ 329#define PERF_EF_START 0x01 /* start the counter when adding */ 330#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 331#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 332 333 /* 334 * Adds/Removes a counter to/from the PMU, can be done inside a 335 * transaction, see the ->*_txn() methods. 336 * 337 * The add/del callbacks will reserve all hardware resources required 338 * to service the event, this includes any counter constraint 339 * scheduling etc. 340 * 341 * Called with IRQs disabled and the PMU disabled on the CPU the event 342 * is on. 343 * 344 * ->add() called without PERF_EF_START should result in the same state 345 * as ->add() followed by ->stop(). 346 * 347 * ->del() must always PERF_EF_UPDATE stop an event. If it calls 348 * ->stop() that must deal with already being stopped without 349 * PERF_EF_UPDATE. 350 */ 351 int (*add) (struct perf_event *event, int flags); 352 void (*del) (struct perf_event *event, int flags); 353 354 /* 355 * Starts/Stops a counter present on the PMU. 356 * 357 * The PMI handler should stop the counter when perf_event_overflow() 358 * returns !0. ->start() will be used to continue. 359 * 360 * Also used to change the sample period. 361 * 362 * Called with IRQs disabled and the PMU disabled on the CPU the event 363 * is on -- will be called from NMI context with the PMU generates 364 * NMIs. 365 * 366 * ->stop() with PERF_EF_UPDATE will read the counter and update 367 * period/count values like ->read() would. 368 * 369 * ->start() with PERF_EF_RELOAD will reprogram the the counter 370 * value, must be preceded by a ->stop() with PERF_EF_UPDATE. 371 */ 372 void (*start) (struct perf_event *event, int flags); 373 void (*stop) (struct perf_event *event, int flags); 374 375 /* 376 * Updates the counter value of the event. 377 * 378 * For sampling capable PMUs this will also update the software period 379 * hw_perf_event::period_left field. 380 */ 381 void (*read) (struct perf_event *event); 382 383 /* 384 * Group events scheduling is treated as a transaction, add 385 * group events as a whole and perform one schedulability test. 386 * If the test fails, roll back the whole group 387 * 388 * Start the transaction, after this ->add() doesn't need to 389 * do schedulability tests. 390 * 391 * Optional. 392 */ 393 void (*start_txn) (struct pmu *pmu, unsigned int txn_flags); 394 /* 395 * If ->start_txn() disabled the ->add() schedulability test 396 * then ->commit_txn() is required to perform one. On success 397 * the transaction is closed. On error the transaction is kept 398 * open until ->cancel_txn() is called. 399 * 400 * Optional. 401 */ 402 int (*commit_txn) (struct pmu *pmu); 403 /* 404 * Will cancel the transaction, assumes ->del() is called 405 * for each successful ->add() during the transaction. 406 * 407 * Optional. 408 */ 409 void (*cancel_txn) (struct pmu *pmu); 410 411 /* 412 * Will return the value for perf_event_mmap_page::index for this event, 413 * if no implementation is provided it will default to: event->hw.idx + 1. 414 */ 415 int (*event_idx) (struct perf_event *event); /*optional */ 416 417 /* 418 * context-switches callback 419 */ 420 void (*sched_task) (struct perf_event_context *ctx, 421 bool sched_in); 422 /* 423 * PMU specific data size 424 */ 425 size_t task_ctx_size; 426 427 /* 428 * PMU specific parts of task perf event context (i.e. ctx->task_ctx_data) 429 * can be synchronized using this function. See Intel LBR callstack support 430 * implementation and Perf core context switch handling callbacks for usage 431 * examples. 432 */ 433 void (*swap_task_ctx) (struct perf_event_context *prev, 434 struct perf_event_context *next); 435 /* optional */ 436 437 /* 438 * Set up pmu-private data structures for an AUX area 439 */ 440 void *(*setup_aux) (struct perf_event *event, void **pages, 441 int nr_pages, bool overwrite); 442 /* optional */ 443 444 /* 445 * Free pmu-private AUX data structures 446 */ 447 void (*free_aux) (void *aux); /* optional */ 448 449 /* 450 * Take a snapshot of the AUX buffer without touching the event 451 * state, so that preempting ->start()/->stop() callbacks does 452 * not interfere with their logic. Called in PMI context. 453 * 454 * Returns the size of AUX data copied to the output handle. 455 * 456 * Optional. 457 */ 458 long (*snapshot_aux) (struct perf_event *event, 459 struct perf_output_handle *handle, 460 unsigned long size); 461 462 /* 463 * Validate address range filters: make sure the HW supports the 464 * requested configuration and number of filters; return 0 if the 465 * supplied filters are valid, -errno otherwise. 466 * 467 * Runs in the context of the ioctl()ing process and is not serialized 468 * with the rest of the PMU callbacks. 469 */ 470 int (*addr_filters_validate) (struct list_head *filters); 471 /* optional */ 472 473 /* 474 * Synchronize address range filter configuration: 475 * translate hw-agnostic filters into hardware configuration in 476 * event::hw::addr_filters. 477 * 478 * Runs as a part of filter sync sequence that is done in ->start() 479 * callback by calling perf_event_addr_filters_sync(). 480 * 481 * May (and should) traverse event::addr_filters::list, for which its 482 * caller provides necessary serialization. 483 */ 484 void (*addr_filters_sync) (struct perf_event *event); 485 /* optional */ 486 487 /* 488 * Check if event can be used for aux_output purposes for 489 * events of this PMU. 490 * 491 * Runs from perf_event_open(). Should return 0 for "no match" 492 * or non-zero for "match". 493 */ 494 int (*aux_output_match) (struct perf_event *event); 495 /* optional */ 496 497 /* 498 * Filter events for PMU-specific reasons. 499 */ 500 int (*filter_match) (struct perf_event *event); /* optional */ 501 502 /* 503 * Check period value for PERF_EVENT_IOC_PERIOD ioctl. 504 */ 505 int (*check_period) (struct perf_event *event, u64 value); /* optional */ 506}; 507 508enum perf_addr_filter_action_t { 509 PERF_ADDR_FILTER_ACTION_STOP = 0, 510 PERF_ADDR_FILTER_ACTION_START, 511 PERF_ADDR_FILTER_ACTION_FILTER, 512}; 513 514/** 515 * struct perf_addr_filter - address range filter definition 516 * @entry: event's filter list linkage 517 * @path: object file's path for file-based filters 518 * @offset: filter range offset 519 * @size: filter range size (size==0 means single address trigger) 520 * @action: filter/start/stop 521 * 522 * This is a hardware-agnostic filter configuration as specified by the user. 523 */ 524struct perf_addr_filter { 525 struct list_head entry; 526 struct path path; 527 unsigned long offset; 528 unsigned long size; 529 enum perf_addr_filter_action_t action; 530}; 531 532/** 533 * struct perf_addr_filters_head - container for address range filters 534 * @list: list of filters for this event 535 * @lock: spinlock that serializes accesses to the @list and event's 536 * (and its children's) filter generations. 537 * @nr_file_filters: number of file-based filters 538 * 539 * A child event will use parent's @list (and therefore @lock), so they are 540 * bundled together; see perf_event_addr_filters(). 541 */ 542struct perf_addr_filters_head { 543 struct list_head list; 544 raw_spinlock_t lock; 545 unsigned int nr_file_filters; 546}; 547 548struct perf_addr_filter_range { 549 unsigned long start; 550 unsigned long size; 551}; 552 553/** 554 * enum perf_event_state - the states of an event: 555 */ 556enum perf_event_state { 557 PERF_EVENT_STATE_DEAD = -4, 558 PERF_EVENT_STATE_EXIT = -3, 559 PERF_EVENT_STATE_ERROR = -2, 560 PERF_EVENT_STATE_OFF = -1, 561 PERF_EVENT_STATE_INACTIVE = 0, 562 PERF_EVENT_STATE_ACTIVE = 1, 563}; 564 565struct file; 566struct perf_sample_data; 567 568typedef void (*perf_overflow_handler_t)(struct perf_event *, 569 struct perf_sample_data *, 570 struct pt_regs *regs); 571 572/* 573 * Event capabilities. For event_caps and groups caps. 574 * 575 * PERF_EV_CAP_SOFTWARE: Is a software event. 576 * PERF_EV_CAP_READ_ACTIVE_PKG: A CPU event (or cgroup event) that can be read 577 * from any CPU in the package where it is active. 578 */ 579#define PERF_EV_CAP_SOFTWARE BIT(0) 580#define PERF_EV_CAP_READ_ACTIVE_PKG BIT(1) 581 582#define SWEVENT_HLIST_BITS 8 583#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 584 585struct swevent_hlist { 586 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 587 struct rcu_head rcu_head; 588}; 589 590#define PERF_ATTACH_CONTEXT 0x01 591#define PERF_ATTACH_GROUP 0x02 592#define PERF_ATTACH_TASK 0x04 593#define PERF_ATTACH_TASK_DATA 0x08 594#define PERF_ATTACH_ITRACE 0x10 595 596struct perf_cgroup; 597struct perf_buffer; 598 599struct pmu_event_list { 600 raw_spinlock_t lock; 601 struct list_head list; 602}; 603 604#define for_each_sibling_event(sibling, event) \ 605 if ((event)->group_leader == (event)) \ 606 list_for_each_entry((sibling), &(event)->sibling_list, sibling_list) 607 608/** 609 * struct perf_event - performance event kernel representation: 610 */ 611struct perf_event { 612#ifdef CONFIG_PERF_EVENTS 613 /* 614 * entry onto perf_event_context::event_list; 615 * modifications require ctx->lock 616 * RCU safe iterations. 617 */ 618 struct list_head event_entry; 619 620 /* 621 * Locked for modification by both ctx->mutex and ctx->lock; holding 622 * either sufficies for read. 623 */ 624 struct list_head sibling_list; 625 struct list_head active_list; 626 /* 627 * Node on the pinned or flexible tree located at the event context; 628 */ 629 struct rb_node group_node; 630 u64 group_index; 631 /* 632 * We need storage to track the entries in perf_pmu_migrate_context; we 633 * cannot use the event_entry because of RCU and we want to keep the 634 * group in tact which avoids us using the other two entries. 635 */ 636 struct list_head migrate_entry; 637 638 struct hlist_node hlist_entry; 639 struct list_head active_entry; 640 int nr_siblings; 641 642 /* Not serialized. Only written during event initialization. */ 643 int event_caps; 644 /* The cumulative AND of all event_caps for events in this group. */ 645 int group_caps; 646 647 struct perf_event *group_leader; 648 struct pmu *pmu; 649 void *pmu_private; 650 651 enum perf_event_state state; 652 unsigned int attach_state; 653 local64_t count; 654 atomic64_t child_count; 655 656 /* 657 * These are the total time in nanoseconds that the event 658 * has been enabled (i.e. eligible to run, and the task has 659 * been scheduled in, if this is a per-task event) 660 * and running (scheduled onto the CPU), respectively. 661 */ 662 u64 total_time_enabled; 663 u64 total_time_running; 664 u64 tstamp; 665 666 /* 667 * timestamp shadows the actual context timing but it can 668 * be safely used in NMI interrupt context. It reflects the 669 * context time as it was when the event was last scheduled in. 670 * 671 * ctx_time already accounts for ctx->timestamp. Therefore to 672 * compute ctx_time for a sample, simply add perf_clock(). 673 */ 674 u64 shadow_ctx_time; 675 676 struct perf_event_attr attr; 677 u16 header_size; 678 u16 id_header_size; 679 u16 read_size; 680 struct hw_perf_event hw; 681 682 struct perf_event_context *ctx; 683 atomic_long_t refcount; 684 685 /* 686 * These accumulate total time (in nanoseconds) that children 687 * events have been enabled and running, respectively. 688 */ 689 atomic64_t child_total_time_enabled; 690 atomic64_t child_total_time_running; 691 692 /* 693 * Protect attach/detach and child_list: 694 */ 695 struct mutex child_mutex; 696 struct list_head child_list; 697 struct perf_event *parent; 698 699 int oncpu; 700 int cpu; 701 702 struct list_head owner_entry; 703 struct task_struct *owner; 704 705 /* mmap bits */ 706 struct mutex mmap_mutex; 707 atomic_t mmap_count; 708 709 struct perf_buffer *rb; 710 struct list_head rb_entry; 711 unsigned long rcu_batches; 712 int rcu_pending; 713 714 /* poll related */ 715 wait_queue_head_t waitq; 716 struct fasync_struct *fasync; 717 718 /* delayed work for NMIs and such */ 719 int pending_wakeup; 720 int pending_kill; 721 int pending_disable; 722 struct irq_work pending; 723 724 atomic_t event_limit; 725 726 /* address range filters */ 727 struct perf_addr_filters_head addr_filters; 728 /* vma address array for file-based filders */ 729 struct perf_addr_filter_range *addr_filter_ranges; 730 unsigned long addr_filters_gen; 731 732 /* for aux_output events */ 733 struct perf_event *aux_event; 734 735 void (*destroy)(struct perf_event *); 736 struct rcu_head rcu_head; 737 738 struct pid_namespace *ns; 739 u64 id; 740 741 u64 (*clock)(void); 742 perf_overflow_handler_t overflow_handler; 743 void *overflow_handler_context; 744#ifdef CONFIG_BPF_SYSCALL 745 perf_overflow_handler_t orig_overflow_handler; 746 struct bpf_prog *prog; 747#endif 748 749#ifdef CONFIG_EVENT_TRACING 750 struct trace_event_call *tp_event; 751 struct event_filter *filter; 752#ifdef CONFIG_FUNCTION_TRACER 753 struct ftrace_ops ftrace_ops; 754#endif 755#endif 756 757#ifdef CONFIG_CGROUP_PERF 758 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 759#endif 760 761#ifdef CONFIG_SECURITY 762 void *security; 763#endif 764 struct list_head sb_list; 765#endif /* CONFIG_PERF_EVENTS */ 766}; 767 768 769struct perf_event_groups { 770 struct rb_root tree; 771 u64 index; 772}; 773 774/** 775 * struct perf_event_context - event context structure 776 * 777 * Used as a container for task events and CPU events as well: 778 */ 779struct perf_event_context { 780 struct pmu *pmu; 781 /* 782 * Protect the states of the events in the list, 783 * nr_active, and the list: 784 */ 785 raw_spinlock_t lock; 786 /* 787 * Protect the list of events. Locking either mutex or lock 788 * is sufficient to ensure the list doesn't change; to change 789 * the list you need to lock both the mutex and the spinlock. 790 */ 791 struct mutex mutex; 792 793 struct list_head active_ctx_list; 794 struct perf_event_groups pinned_groups; 795 struct perf_event_groups flexible_groups; 796 struct list_head event_list; 797 798 struct list_head pinned_active; 799 struct list_head flexible_active; 800 801 int nr_events; 802 int nr_active; 803 int is_active; 804 int nr_stat; 805 int nr_freq; 806 int rotate_disable; 807 /* 808 * Set when nr_events != nr_active, except tolerant to events not 809 * necessary to be active due to scheduling constraints, such as cgroups. 810 */ 811 int rotate_necessary; 812 refcount_t refcount; 813 struct task_struct *task; 814 815 /* 816 * Context clock, runs when context enabled. 817 */ 818 u64 time; 819 u64 timestamp; 820 821 /* 822 * These fields let us detect when two contexts have both 823 * been cloned (inherited) from a common ancestor. 824 */ 825 struct perf_event_context *parent_ctx; 826 u64 parent_gen; 827 u64 generation; 828 int pin_count; 829#ifdef CONFIG_CGROUP_PERF 830 int nr_cgroups; /* cgroup evts */ 831#endif 832 void *task_ctx_data; /* pmu specific data */ 833 struct rcu_head rcu_head; 834}; 835 836/* 837 * Number of contexts where an event can trigger: 838 * task, softirq, hardirq, nmi. 839 */ 840#define PERF_NR_CONTEXTS 4 841 842/** 843 * struct perf_event_cpu_context - per cpu event context structure 844 */ 845struct perf_cpu_context { 846 struct perf_event_context ctx; 847 struct perf_event_context *task_ctx; 848 int active_oncpu; 849 int exclusive; 850 851 raw_spinlock_t hrtimer_lock; 852 struct hrtimer hrtimer; 853 ktime_t hrtimer_interval; 854 unsigned int hrtimer_active; 855 856#ifdef CONFIG_CGROUP_PERF 857 struct perf_cgroup *cgrp; 858 struct list_head cgrp_cpuctx_entry; 859#endif 860 861 struct list_head sched_cb_entry; 862 int sched_cb_usage; 863 864 int online; 865 /* 866 * Per-CPU storage for iterators used in visit_groups_merge. The default 867 * storage is of size 2 to hold the CPU and any CPU event iterators. 868 */ 869 int heap_size; 870 struct perf_event **heap; 871 struct perf_event *heap_default[2]; 872}; 873 874struct perf_output_handle { 875 struct perf_event *event; 876 struct perf_buffer *rb; 877 unsigned long wakeup; 878 unsigned long size; 879 u64 aux_flags; 880 union { 881 void *addr; 882 unsigned long head; 883 }; 884 int page; 885}; 886 887struct bpf_perf_event_data_kern { 888 bpf_user_pt_regs_t *regs; 889 struct perf_sample_data *data; 890 struct perf_event *event; 891}; 892 893#ifdef CONFIG_CGROUP_PERF 894 895/* 896 * perf_cgroup_info keeps track of time_enabled for a cgroup. 897 * This is a per-cpu dynamically allocated data structure. 898 */ 899struct perf_cgroup_info { 900 u64 time; 901 u64 timestamp; 902}; 903 904struct perf_cgroup { 905 struct cgroup_subsys_state css; 906 struct perf_cgroup_info __percpu *info; 907}; 908 909/* 910 * Must ensure cgroup is pinned (css_get) before calling 911 * this function. In other words, we cannot call this function 912 * if there is no cgroup event for the current CPU context. 913 */ 914static inline struct perf_cgroup * 915perf_cgroup_from_task(struct task_struct *task, struct perf_event_context *ctx) 916{ 917 return container_of(task_css_check(task, perf_event_cgrp_id, 918 ctx ? lockdep_is_held(&ctx->lock) 919 : true), 920 struct perf_cgroup, css); 921} 922#endif /* CONFIG_CGROUP_PERF */ 923 924#ifdef CONFIG_PERF_EVENTS 925 926extern void *perf_aux_output_begin(struct perf_output_handle *handle, 927 struct perf_event *event); 928extern void perf_aux_output_end(struct perf_output_handle *handle, 929 unsigned long size); 930extern int perf_aux_output_skip(struct perf_output_handle *handle, 931 unsigned long size); 932extern void *perf_get_aux(struct perf_output_handle *handle); 933extern void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags); 934extern void perf_event_itrace_started(struct perf_event *event); 935 936extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 937extern void perf_pmu_unregister(struct pmu *pmu); 938 939extern int perf_num_counters(void); 940extern const char *perf_pmu_name(void); 941extern void __perf_event_task_sched_in(struct task_struct *prev, 942 struct task_struct *task); 943extern void __perf_event_task_sched_out(struct task_struct *prev, 944 struct task_struct *next); 945extern int perf_event_init_task(struct task_struct *child); 946extern void perf_event_exit_task(struct task_struct *child); 947extern void perf_event_free_task(struct task_struct *task); 948extern void perf_event_delayed_put(struct task_struct *task); 949extern struct file *perf_event_get(unsigned int fd); 950extern const struct perf_event *perf_get_event(struct file *file); 951extern const struct perf_event_attr *perf_event_attrs(struct perf_event *event); 952extern void perf_event_print_debug(void); 953extern void perf_pmu_disable(struct pmu *pmu); 954extern void perf_pmu_enable(struct pmu *pmu); 955extern void perf_sched_cb_dec(struct pmu *pmu); 956extern void perf_sched_cb_inc(struct pmu *pmu); 957extern int perf_event_task_disable(void); 958extern int perf_event_task_enable(void); 959 960extern void perf_pmu_resched(struct pmu *pmu); 961 962extern int perf_event_refresh(struct perf_event *event, int refresh); 963extern void perf_event_update_userpage(struct perf_event *event); 964extern int perf_event_release_kernel(struct perf_event *event); 965extern struct perf_event * 966perf_event_create_kernel_counter(struct perf_event_attr *attr, 967 int cpu, 968 struct task_struct *task, 969 perf_overflow_handler_t callback, 970 void *context); 971extern void perf_pmu_migrate_context(struct pmu *pmu, 972 int src_cpu, int dst_cpu); 973int perf_event_read_local(struct perf_event *event, u64 *value, 974 u64 *enabled, u64 *running); 975extern u64 perf_event_read_value(struct perf_event *event, 976 u64 *enabled, u64 *running); 977 978 979struct perf_sample_data { 980 /* 981 * Fields set by perf_sample_data_init(), group so as to 982 * minimize the cachelines touched. 983 */ 984 u64 addr; 985 struct perf_raw_record *raw; 986 struct perf_branch_stack *br_stack; 987 u64 period; 988 u64 weight; 989 u64 txn; 990 union perf_mem_data_src data_src; 991 992 /* 993 * The other fields, optionally {set,used} by 994 * perf_{prepare,output}_sample(). 995 */ 996 u64 type; 997 u64 ip; 998 struct { 999 u32 pid; 1000 u32 tid; 1001 } tid_entry; 1002 u64 time; 1003 u64 id; 1004 u64 stream_id; 1005 struct { 1006 u32 cpu; 1007 u32 reserved; 1008 } cpu_entry; 1009 struct perf_callchain_entry *callchain; 1010 u64 aux_size; 1011 1012 /* 1013 * regs_user may point to task_pt_regs or to regs_user_copy, depending 1014 * on arch details. 1015 */ 1016 struct perf_regs regs_user; 1017 struct pt_regs regs_user_copy; 1018 1019 struct perf_regs regs_intr; 1020 u64 stack_user_size; 1021 1022 u64 phys_addr; 1023 u64 cgroup; 1024} ____cacheline_aligned; 1025 1026/* default value for data source */ 1027#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 1028 PERF_MEM_S(LVL, NA) |\ 1029 PERF_MEM_S(SNOOP, NA) |\ 1030 PERF_MEM_S(LOCK, NA) |\ 1031 PERF_MEM_S(TLB, NA)) 1032 1033static inline void perf_sample_data_init(struct perf_sample_data *data, 1034 u64 addr, u64 period) 1035{ 1036 /* remaining struct members initialized in perf_prepare_sample() */ 1037 data->addr = addr; 1038 data->raw = NULL; 1039 data->br_stack = NULL; 1040 data->period = period; 1041 data->weight = 0; 1042 data->data_src.val = PERF_MEM_NA; 1043 data->txn = 0; 1044} 1045 1046extern void perf_output_sample(struct perf_output_handle *handle, 1047 struct perf_event_header *header, 1048 struct perf_sample_data *data, 1049 struct perf_event *event); 1050extern void perf_prepare_sample(struct perf_event_header *header, 1051 struct perf_sample_data *data, 1052 struct perf_event *event, 1053 struct pt_regs *regs); 1054 1055extern int perf_event_overflow(struct perf_event *event, 1056 struct perf_sample_data *data, 1057 struct pt_regs *regs); 1058 1059extern void perf_event_output_forward(struct perf_event *event, 1060 struct perf_sample_data *data, 1061 struct pt_regs *regs); 1062extern void perf_event_output_backward(struct perf_event *event, 1063 struct perf_sample_data *data, 1064 struct pt_regs *regs); 1065extern int perf_event_output(struct perf_event *event, 1066 struct perf_sample_data *data, 1067 struct pt_regs *regs); 1068 1069static inline bool 1070is_default_overflow_handler(struct perf_event *event) 1071{ 1072 if (likely(event->overflow_handler == perf_event_output_forward)) 1073 return true; 1074 if (unlikely(event->overflow_handler == perf_event_output_backward)) 1075 return true; 1076 return false; 1077} 1078 1079extern void 1080perf_event_header__init_id(struct perf_event_header *header, 1081 struct perf_sample_data *data, 1082 struct perf_event *event); 1083extern void 1084perf_event__output_id_sample(struct perf_event *event, 1085 struct perf_output_handle *handle, 1086 struct perf_sample_data *sample); 1087 1088extern void 1089perf_log_lost_samples(struct perf_event *event, u64 lost); 1090 1091static inline bool event_has_any_exclude_flag(struct perf_event *event) 1092{ 1093 struct perf_event_attr *attr = &event->attr; 1094 1095 return attr->exclude_idle || attr->exclude_user || 1096 attr->exclude_kernel || attr->exclude_hv || 1097 attr->exclude_guest || attr->exclude_host; 1098} 1099 1100static inline bool is_sampling_event(struct perf_event *event) 1101{ 1102 return event->attr.sample_period != 0; 1103} 1104 1105/* 1106 * Return 1 for a software event, 0 for a hardware event 1107 */ 1108static inline int is_software_event(struct perf_event *event) 1109{ 1110 return event->event_caps & PERF_EV_CAP_SOFTWARE; 1111} 1112 1113/* 1114 * Return 1 for event in sw context, 0 for event in hw context 1115 */ 1116static inline int in_software_context(struct perf_event *event) 1117{ 1118 return event->ctx->pmu->task_ctx_nr == perf_sw_context; 1119} 1120 1121static inline int is_exclusive_pmu(struct pmu *pmu) 1122{ 1123 return pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE; 1124} 1125 1126extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 1127 1128extern void ___perf_sw_event(u32, u64, struct pt_regs *, u64); 1129extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 1130 1131#ifndef perf_arch_fetch_caller_regs 1132static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 1133#endif 1134 1135/* 1136 * When generating a perf sample in-line, instead of from an interrupt / 1137 * exception, we lack a pt_regs. This is typically used from software events 1138 * like: SW_CONTEXT_SWITCHES, SW_MIGRATIONS and the tie-in with tracepoints. 1139 * 1140 * We typically don't need a full set, but (for x86) do require: 1141 * - ip for PERF_SAMPLE_IP 1142 * - cs for user_mode() tests 1143 * - sp for PERF_SAMPLE_CALLCHAIN 1144 * - eflags for MISC bits and CALLCHAIN (see: perf_hw_regs()) 1145 * 1146 * NOTE: assumes @regs is otherwise already 0 filled; this is important for 1147 * things like PERF_SAMPLE_REGS_INTR. 1148 */ 1149static inline void perf_fetch_caller_regs(struct pt_regs *regs) 1150{ 1151 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 1152} 1153 1154static __always_inline void 1155perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 1156{ 1157 if (static_key_false(&perf_swevent_enabled[event_id])) 1158 __perf_sw_event(event_id, nr, regs, addr); 1159} 1160 1161DECLARE_PER_CPU(struct pt_regs, __perf_regs[4]); 1162 1163/* 1164 * 'Special' version for the scheduler, it hard assumes no recursion, 1165 * which is guaranteed by us not actually scheduling inside other swevents 1166 * because those disable preemption. 1167 */ 1168static __always_inline void 1169perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) 1170{ 1171 if (static_key_false(&perf_swevent_enabled[event_id])) { 1172 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1173 1174 perf_fetch_caller_regs(regs); 1175 ___perf_sw_event(event_id, nr, regs, addr); 1176 } 1177} 1178 1179extern struct static_key_false perf_sched_events; 1180 1181static __always_inline bool 1182perf_sw_migrate_enabled(void) 1183{ 1184 if (static_key_false(&perf_swevent_enabled[PERF_COUNT_SW_CPU_MIGRATIONS])) 1185 return true; 1186 return false; 1187} 1188 1189static inline void perf_event_task_migrate(struct task_struct *task) 1190{ 1191 if (perf_sw_migrate_enabled()) 1192 task->sched_migrated = 1; 1193} 1194 1195static inline void perf_event_task_sched_in(struct task_struct *prev, 1196 struct task_struct *task) 1197{ 1198 if (static_branch_unlikely(&perf_sched_events)) 1199 __perf_event_task_sched_in(prev, task); 1200 1201 if (perf_sw_migrate_enabled() && task->sched_migrated) { 1202 struct pt_regs *regs = this_cpu_ptr(&__perf_regs[0]); 1203 1204 perf_fetch_caller_regs(regs); 1205 ___perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, regs, 0); 1206 task->sched_migrated = 0; 1207 } 1208} 1209 1210static inline void perf_event_task_sched_out(struct task_struct *prev, 1211 struct task_struct *next) 1212{ 1213 perf_sw_event_sched(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 0); 1214 1215 if (static_branch_unlikely(&perf_sched_events)) 1216 __perf_event_task_sched_out(prev, next); 1217} 1218 1219extern void perf_event_mmap(struct vm_area_struct *vma); 1220 1221extern void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1222 bool unregister, const char *sym); 1223extern void perf_event_bpf_event(struct bpf_prog *prog, 1224 enum perf_bpf_event_type type, 1225 u16 flags); 1226 1227extern struct perf_guest_info_callbacks *perf_guest_cbs; 1228extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1229extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 1230 1231extern void perf_event_exec(void); 1232extern void perf_event_comm(struct task_struct *tsk, bool exec); 1233extern void perf_event_namespaces(struct task_struct *tsk); 1234extern void perf_event_fork(struct task_struct *tsk); 1235 1236/* Callchains */ 1237DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 1238 1239extern void perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1240extern void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs); 1241extern struct perf_callchain_entry * 1242get_perf_callchain(struct pt_regs *regs, u32 init_nr, bool kernel, bool user, 1243 u32 max_stack, bool crosstask, bool add_mark); 1244extern struct perf_callchain_entry *perf_callchain(struct perf_event *event, struct pt_regs *regs); 1245extern int get_callchain_buffers(int max_stack); 1246extern void put_callchain_buffers(void); 1247 1248extern int sysctl_perf_event_max_stack; 1249extern int sysctl_perf_event_max_contexts_per_stack; 1250 1251static inline int perf_callchain_store_context(struct perf_callchain_entry_ctx *ctx, u64 ip) 1252{ 1253 if (ctx->contexts < sysctl_perf_event_max_contexts_per_stack) { 1254 struct perf_callchain_entry *entry = ctx->entry; 1255 entry->ip[entry->nr++] = ip; 1256 ++ctx->contexts; 1257 return 0; 1258 } else { 1259 ctx->contexts_maxed = true; 1260 return -1; /* no more room, stop walking the stack */ 1261 } 1262} 1263 1264static inline int perf_callchain_store(struct perf_callchain_entry_ctx *ctx, u64 ip) 1265{ 1266 if (ctx->nr < ctx->max_stack && !ctx->contexts_maxed) { 1267 struct perf_callchain_entry *entry = ctx->entry; 1268 entry->ip[entry->nr++] = ip; 1269 ++ctx->nr; 1270 return 0; 1271 } else { 1272 return -1; /* no more room, stop walking the stack */ 1273 } 1274} 1275 1276extern int sysctl_perf_event_paranoid; 1277extern int sysctl_perf_event_mlock; 1278extern int sysctl_perf_event_sample_rate; 1279extern int sysctl_perf_cpu_time_max_percent; 1280 1281extern void perf_sample_event_took(u64 sample_len_ns); 1282 1283int perf_proc_update_handler(struct ctl_table *table, int write, 1284 void *buffer, size_t *lenp, loff_t *ppos); 1285int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 1286 void *buffer, size_t *lenp, loff_t *ppos); 1287int perf_event_max_stack_handler(struct ctl_table *table, int write, 1288 void *buffer, size_t *lenp, loff_t *ppos); 1289 1290/* Access to perf_event_open(2) syscall. */ 1291#define PERF_SECURITY_OPEN 0 1292 1293/* Finer grained perf_event_open(2) access control. */ 1294#define PERF_SECURITY_CPU 1 1295#define PERF_SECURITY_KERNEL 2 1296#define PERF_SECURITY_TRACEPOINT 3 1297 1298static inline int perf_is_paranoid(void) 1299{ 1300 return sysctl_perf_event_paranoid > -1; 1301} 1302 1303static inline int perf_allow_kernel(struct perf_event_attr *attr) 1304{ 1305 if (sysctl_perf_event_paranoid > 1 && !perfmon_capable()) 1306 return -EACCES; 1307 1308 return security_perf_event_open(attr, PERF_SECURITY_KERNEL); 1309} 1310 1311static inline int perf_allow_cpu(struct perf_event_attr *attr) 1312{ 1313 if (sysctl_perf_event_paranoid > 0 && !perfmon_capable()) 1314 return -EACCES; 1315 1316 return security_perf_event_open(attr, PERF_SECURITY_CPU); 1317} 1318 1319static inline int perf_allow_tracepoint(struct perf_event_attr *attr) 1320{ 1321 if (sysctl_perf_event_paranoid > -1 && !perfmon_capable()) 1322 return -EPERM; 1323 1324 return security_perf_event_open(attr, PERF_SECURITY_TRACEPOINT); 1325} 1326 1327extern void perf_event_init(void); 1328extern void perf_tp_event(u16 event_type, u64 count, void *record, 1329 int entry_size, struct pt_regs *regs, 1330 struct hlist_head *head, int rctx, 1331 struct task_struct *task); 1332extern void perf_bp_event(struct perf_event *event, void *data); 1333 1334#ifndef perf_misc_flags 1335# define perf_misc_flags(regs) \ 1336 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 1337# define perf_instruction_pointer(regs) instruction_pointer(regs) 1338#endif 1339#ifndef perf_arch_bpf_user_pt_regs 1340# define perf_arch_bpf_user_pt_regs(regs) regs 1341#endif 1342 1343static inline bool has_branch_stack(struct perf_event *event) 1344{ 1345 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 1346} 1347 1348static inline bool needs_branch_stack(struct perf_event *event) 1349{ 1350 return event->attr.branch_sample_type != 0; 1351} 1352 1353static inline bool has_aux(struct perf_event *event) 1354{ 1355 return event->pmu->setup_aux; 1356} 1357 1358static inline bool is_write_backward(struct perf_event *event) 1359{ 1360 return !!event->attr.write_backward; 1361} 1362 1363static inline bool has_addr_filter(struct perf_event *event) 1364{ 1365 return event->pmu->nr_addr_filters; 1366} 1367 1368/* 1369 * An inherited event uses parent's filters 1370 */ 1371static inline struct perf_addr_filters_head * 1372perf_event_addr_filters(struct perf_event *event) 1373{ 1374 struct perf_addr_filters_head *ifh = &event->addr_filters; 1375 1376 if (event->parent) 1377 ifh = &event->parent->addr_filters; 1378 1379 return ifh; 1380} 1381 1382extern void perf_event_addr_filters_sync(struct perf_event *event); 1383 1384extern int perf_output_begin(struct perf_output_handle *handle, 1385 struct perf_event *event, unsigned int size); 1386extern int perf_output_begin_forward(struct perf_output_handle *handle, 1387 struct perf_event *event, 1388 unsigned int size); 1389extern int perf_output_begin_backward(struct perf_output_handle *handle, 1390 struct perf_event *event, 1391 unsigned int size); 1392 1393extern void perf_output_end(struct perf_output_handle *handle); 1394extern unsigned int perf_output_copy(struct perf_output_handle *handle, 1395 const void *buf, unsigned int len); 1396extern unsigned int perf_output_skip(struct perf_output_handle *handle, 1397 unsigned int len); 1398extern long perf_output_copy_aux(struct perf_output_handle *aux_handle, 1399 struct perf_output_handle *handle, 1400 unsigned long from, unsigned long to); 1401extern int perf_swevent_get_recursion_context(void); 1402extern void perf_swevent_put_recursion_context(int rctx); 1403extern u64 perf_swevent_set_period(struct perf_event *event); 1404extern void perf_event_enable(struct perf_event *event); 1405extern void perf_event_disable(struct perf_event *event); 1406extern void perf_event_disable_local(struct perf_event *event); 1407extern void perf_event_disable_inatomic(struct perf_event *event); 1408extern void perf_event_task_tick(void); 1409extern int perf_event_account_interrupt(struct perf_event *event); 1410extern int perf_event_period(struct perf_event *event, u64 value); 1411extern u64 perf_event_pause(struct perf_event *event, bool reset); 1412#else /* !CONFIG_PERF_EVENTS: */ 1413static inline void * 1414perf_aux_output_begin(struct perf_output_handle *handle, 1415 struct perf_event *event) { return NULL; } 1416static inline void 1417perf_aux_output_end(struct perf_output_handle *handle, unsigned long size) 1418 { } 1419static inline int 1420perf_aux_output_skip(struct perf_output_handle *handle, 1421 unsigned long size) { return -EINVAL; } 1422static inline void * 1423perf_get_aux(struct perf_output_handle *handle) { return NULL; } 1424static inline void 1425perf_event_task_migrate(struct task_struct *task) { } 1426static inline void 1427perf_event_task_sched_in(struct task_struct *prev, 1428 struct task_struct *task) { } 1429static inline void 1430perf_event_task_sched_out(struct task_struct *prev, 1431 struct task_struct *next) { } 1432static inline int perf_event_init_task(struct task_struct *child) { return 0; } 1433static inline void perf_event_exit_task(struct task_struct *child) { } 1434static inline void perf_event_free_task(struct task_struct *task) { } 1435static inline void perf_event_delayed_put(struct task_struct *task) { } 1436static inline struct file *perf_event_get(unsigned int fd) { return ERR_PTR(-EINVAL); } 1437static inline const struct perf_event *perf_get_event(struct file *file) 1438{ 1439 return ERR_PTR(-EINVAL); 1440} 1441static inline const struct perf_event_attr *perf_event_attrs(struct perf_event *event) 1442{ 1443 return ERR_PTR(-EINVAL); 1444} 1445static inline int perf_event_read_local(struct perf_event *event, u64 *value, 1446 u64 *enabled, u64 *running) 1447{ 1448 return -EINVAL; 1449} 1450static inline void perf_event_print_debug(void) { } 1451static inline int perf_event_task_disable(void) { return -EINVAL; } 1452static inline int perf_event_task_enable(void) { return -EINVAL; } 1453static inline int perf_event_refresh(struct perf_event *event, int refresh) 1454{ 1455 return -EINVAL; 1456} 1457 1458static inline void 1459perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 1460static inline void 1461perf_sw_event_sched(u32 event_id, u64 nr, u64 addr) { } 1462static inline void 1463perf_bp_event(struct perf_event *event, void *data) { } 1464 1465static inline int perf_register_guest_info_callbacks 1466(struct perf_guest_info_callbacks *callbacks) { return 0; } 1467static inline int perf_unregister_guest_info_callbacks 1468(struct perf_guest_info_callbacks *callbacks) { return 0; } 1469 1470static inline void perf_event_mmap(struct vm_area_struct *vma) { } 1471 1472typedef int (perf_ksymbol_get_name_f)(char *name, int name_len, void *data); 1473static inline void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, 1474 bool unregister, const char *sym) { } 1475static inline void perf_event_bpf_event(struct bpf_prog *prog, 1476 enum perf_bpf_event_type type, 1477 u16 flags) { } 1478static inline void perf_event_exec(void) { } 1479static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 1480static inline void perf_event_namespaces(struct task_struct *tsk) { } 1481static inline void perf_event_fork(struct task_struct *tsk) { } 1482static inline void perf_event_init(void) { } 1483static inline int perf_swevent_get_recursion_context(void) { return -1; } 1484static inline void perf_swevent_put_recursion_context(int rctx) { } 1485static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 1486static inline void perf_event_enable(struct perf_event *event) { } 1487static inline void perf_event_disable(struct perf_event *event) { } 1488static inline int __perf_event_disable(void *info) { return -1; } 1489static inline void perf_event_task_tick(void) { } 1490static inline int perf_event_release_kernel(struct perf_event *event) { return 0; } 1491static inline int perf_event_period(struct perf_event *event, u64 value) 1492{ 1493 return -EINVAL; 1494} 1495static inline u64 perf_event_pause(struct perf_event *event, bool reset) 1496{ 1497 return 0; 1498} 1499#endif 1500 1501#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 1502extern void perf_restore_debug_store(void); 1503#else 1504static inline void perf_restore_debug_store(void) { } 1505#endif 1506 1507static __always_inline bool perf_raw_frag_last(const struct perf_raw_frag *frag) 1508{ 1509 return frag->pad < sizeof(u64); 1510} 1511 1512#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 1513 1514struct perf_pmu_events_attr { 1515 struct device_attribute attr; 1516 u64 id; 1517 const char *event_str; 1518}; 1519 1520struct perf_pmu_events_ht_attr { 1521 struct device_attribute attr; 1522 u64 id; 1523 const char *event_str_ht; 1524 const char *event_str_noht; 1525}; 1526 1527ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr, 1528 char *page); 1529 1530#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 1531static struct perf_pmu_events_attr _var = { \ 1532 .attr = __ATTR(_name, 0444, _show, NULL), \ 1533 .id = _id, \ 1534}; 1535 1536#define PMU_EVENT_ATTR_STRING(_name, _var, _str) \ 1537static struct perf_pmu_events_attr _var = { \ 1538 .attr = __ATTR(_name, 0444, perf_event_sysfs_show, NULL), \ 1539 .id = 0, \ 1540 .event_str = _str, \ 1541}; 1542 1543#define PMU_FORMAT_ATTR(_name, _format) \ 1544static ssize_t \ 1545_name##_show(struct device *dev, \ 1546 struct device_attribute *attr, \ 1547 char *page) \ 1548{ \ 1549 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 1550 return sprintf(page, _format "\n"); \ 1551} \ 1552 \ 1553static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 1554 1555/* Performance counter hotplug functions */ 1556#ifdef CONFIG_PERF_EVENTS 1557int perf_event_init_cpu(unsigned int cpu); 1558int perf_event_exit_cpu(unsigned int cpu); 1559#else 1560#define perf_event_init_cpu NULL 1561#define perf_event_exit_cpu NULL 1562#endif 1563 1564extern void __weak arch_perf_update_userpage(struct perf_event *event, 1565 struct perf_event_mmap_page *userpg, 1566 u64 now); 1567 1568#endif /* _LINUX_PERF_EVENT_H */