at v5.8 859 lines 25 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PAGEMAP_H 3#define _LINUX_PAGEMAP_H 4 5/* 6 * Copyright 1995 Linus Torvalds 7 */ 8#include <linux/mm.h> 9#include <linux/fs.h> 10#include <linux/list.h> 11#include <linux/highmem.h> 12#include <linux/compiler.h> 13#include <linux/uaccess.h> 14#include <linux/gfp.h> 15#include <linux/bitops.h> 16#include <linux/hardirq.h> /* for in_interrupt() */ 17#include <linux/hugetlb_inline.h> 18 19struct pagevec; 20 21/* 22 * Bits in mapping->flags. 23 */ 24enum mapping_flags { 25 AS_EIO = 0, /* IO error on async write */ 26 AS_ENOSPC = 1, /* ENOSPC on async write */ 27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 29 AS_EXITING = 4, /* final truncate in progress */ 30 /* writeback related tags are not used */ 31 AS_NO_WRITEBACK_TAGS = 5, 32}; 33 34/** 35 * mapping_set_error - record a writeback error in the address_space 36 * @mapping: the mapping in which an error should be set 37 * @error: the error to set in the mapping 38 * 39 * When writeback fails in some way, we must record that error so that 40 * userspace can be informed when fsync and the like are called. We endeavor 41 * to report errors on any file that was open at the time of the error. Some 42 * internal callers also need to know when writeback errors have occurred. 43 * 44 * When a writeback error occurs, most filesystems will want to call 45 * mapping_set_error to record the error in the mapping so that it can be 46 * reported when the application calls fsync(2). 47 */ 48static inline void mapping_set_error(struct address_space *mapping, int error) 49{ 50 if (likely(!error)) 51 return; 52 53 /* Record in wb_err for checkers using errseq_t based tracking */ 54 __filemap_set_wb_err(mapping, error); 55 56 /* Record it in superblock */ 57 errseq_set(&mapping->host->i_sb->s_wb_err, error); 58 59 /* Record it in flags for now, for legacy callers */ 60 if (error == -ENOSPC) 61 set_bit(AS_ENOSPC, &mapping->flags); 62 else 63 set_bit(AS_EIO, &mapping->flags); 64} 65 66static inline void mapping_set_unevictable(struct address_space *mapping) 67{ 68 set_bit(AS_UNEVICTABLE, &mapping->flags); 69} 70 71static inline void mapping_clear_unevictable(struct address_space *mapping) 72{ 73 clear_bit(AS_UNEVICTABLE, &mapping->flags); 74} 75 76static inline bool mapping_unevictable(struct address_space *mapping) 77{ 78 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 79} 80 81static inline void mapping_set_exiting(struct address_space *mapping) 82{ 83 set_bit(AS_EXITING, &mapping->flags); 84} 85 86static inline int mapping_exiting(struct address_space *mapping) 87{ 88 return test_bit(AS_EXITING, &mapping->flags); 89} 90 91static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 92{ 93 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 94} 95 96static inline int mapping_use_writeback_tags(struct address_space *mapping) 97{ 98 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 99} 100 101static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 102{ 103 return mapping->gfp_mask; 104} 105 106/* Restricts the given gfp_mask to what the mapping allows. */ 107static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 108 gfp_t gfp_mask) 109{ 110 return mapping_gfp_mask(mapping) & gfp_mask; 111} 112 113/* 114 * This is non-atomic. Only to be used before the mapping is activated. 115 * Probably needs a barrier... 116 */ 117static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 118{ 119 m->gfp_mask = mask; 120} 121 122void release_pages(struct page **pages, int nr); 123 124/* 125 * speculatively take a reference to a page. 126 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 127 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 128 * 129 * This function must be called inside the same rcu_read_lock() section as has 130 * been used to lookup the page in the pagecache radix-tree (or page table): 131 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 132 * 133 * Unless an RCU grace period has passed, the count of all pages coming out 134 * of the allocator must be considered unstable. page_count may return higher 135 * than expected, and put_page must be able to do the right thing when the 136 * page has been finished with, no matter what it is subsequently allocated 137 * for (because put_page is what is used here to drop an invalid speculative 138 * reference). 139 * 140 * This is the interesting part of the lockless pagecache (and lockless 141 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 142 * has the following pattern: 143 * 1. find page in radix tree 144 * 2. conditionally increment refcount 145 * 3. check the page is still in pagecache (if no, goto 1) 146 * 147 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 148 * following (with the i_pages lock held): 149 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 150 * B. remove page from pagecache 151 * C. free the page 152 * 153 * There are 2 critical interleavings that matter: 154 * - 2 runs before A: in this case, A sees elevated refcount and bails out 155 * - A runs before 2: in this case, 2 sees zero refcount and retries; 156 * subsequently, B will complete and 1 will find no page, causing the 157 * lookup to return NULL. 158 * 159 * It is possible that between 1 and 2, the page is removed then the exact same 160 * page is inserted into the same position in pagecache. That's OK: the 161 * old find_get_page using a lock could equally have run before or after 162 * such a re-insertion, depending on order that locks are granted. 163 * 164 * Lookups racing against pagecache insertion isn't a big problem: either 1 165 * will find the page or it will not. Likewise, the old find_get_page could run 166 * either before the insertion or afterwards, depending on timing. 167 */ 168static inline int __page_cache_add_speculative(struct page *page, int count) 169{ 170#ifdef CONFIG_TINY_RCU 171# ifdef CONFIG_PREEMPT_COUNT 172 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 173# endif 174 /* 175 * Preempt must be disabled here - we rely on rcu_read_lock doing 176 * this for us. 177 * 178 * Pagecache won't be truncated from interrupt context, so if we have 179 * found a page in the radix tree here, we have pinned its refcount by 180 * disabling preempt, and hence no need for the "speculative get" that 181 * SMP requires. 182 */ 183 VM_BUG_ON_PAGE(page_count(page) == 0, page); 184 page_ref_add(page, count); 185 186#else 187 if (unlikely(!page_ref_add_unless(page, count, 0))) { 188 /* 189 * Either the page has been freed, or will be freed. 190 * In either case, retry here and the caller should 191 * do the right thing (see comments above). 192 */ 193 return 0; 194 } 195#endif 196 VM_BUG_ON_PAGE(PageTail(page), page); 197 198 return 1; 199} 200 201static inline int page_cache_get_speculative(struct page *page) 202{ 203 return __page_cache_add_speculative(page, 1); 204} 205 206static inline int page_cache_add_speculative(struct page *page, int count) 207{ 208 return __page_cache_add_speculative(page, count); 209} 210 211/** 212 * attach_page_private - Attach private data to a page. 213 * @page: Page to attach data to. 214 * @data: Data to attach to page. 215 * 216 * Attaching private data to a page increments the page's reference count. 217 * The data must be detached before the page will be freed. 218 */ 219static inline void attach_page_private(struct page *page, void *data) 220{ 221 get_page(page); 222 set_page_private(page, (unsigned long)data); 223 SetPagePrivate(page); 224} 225 226/** 227 * detach_page_private - Detach private data from a page. 228 * @page: Page to detach data from. 229 * 230 * Removes the data that was previously attached to the page and decrements 231 * the refcount on the page. 232 * 233 * Return: Data that was attached to the page. 234 */ 235static inline void *detach_page_private(struct page *page) 236{ 237 void *data = (void *)page_private(page); 238 239 if (!PagePrivate(page)) 240 return NULL; 241 ClearPagePrivate(page); 242 set_page_private(page, 0); 243 put_page(page); 244 245 return data; 246} 247 248#ifdef CONFIG_NUMA 249extern struct page *__page_cache_alloc(gfp_t gfp); 250#else 251static inline struct page *__page_cache_alloc(gfp_t gfp) 252{ 253 return alloc_pages(gfp, 0); 254} 255#endif 256 257static inline struct page *page_cache_alloc(struct address_space *x) 258{ 259 return __page_cache_alloc(mapping_gfp_mask(x)); 260} 261 262static inline gfp_t readahead_gfp_mask(struct address_space *x) 263{ 264 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 265} 266 267typedef int filler_t(void *, struct page *); 268 269pgoff_t page_cache_next_miss(struct address_space *mapping, 270 pgoff_t index, unsigned long max_scan); 271pgoff_t page_cache_prev_miss(struct address_space *mapping, 272 pgoff_t index, unsigned long max_scan); 273 274#define FGP_ACCESSED 0x00000001 275#define FGP_LOCK 0x00000002 276#define FGP_CREAT 0x00000004 277#define FGP_WRITE 0x00000008 278#define FGP_NOFS 0x00000010 279#define FGP_NOWAIT 0x00000020 280#define FGP_FOR_MMAP 0x00000040 281 282struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 283 int fgp_flags, gfp_t cache_gfp_mask); 284 285/** 286 * find_get_page - find and get a page reference 287 * @mapping: the address_space to search 288 * @offset: the page index 289 * 290 * Looks up the page cache slot at @mapping & @offset. If there is a 291 * page cache page, it is returned with an increased refcount. 292 * 293 * Otherwise, %NULL is returned. 294 */ 295static inline struct page *find_get_page(struct address_space *mapping, 296 pgoff_t offset) 297{ 298 return pagecache_get_page(mapping, offset, 0, 0); 299} 300 301static inline struct page *find_get_page_flags(struct address_space *mapping, 302 pgoff_t offset, int fgp_flags) 303{ 304 return pagecache_get_page(mapping, offset, fgp_flags, 0); 305} 306 307/** 308 * find_lock_page - locate, pin and lock a pagecache page 309 * @mapping: the address_space to search 310 * @offset: the page index 311 * 312 * Looks up the page cache slot at @mapping & @offset. If there is a 313 * page cache page, it is returned locked and with an increased 314 * refcount. 315 * 316 * Otherwise, %NULL is returned. 317 * 318 * find_lock_page() may sleep. 319 */ 320static inline struct page *find_lock_page(struct address_space *mapping, 321 pgoff_t offset) 322{ 323 return pagecache_get_page(mapping, offset, FGP_LOCK, 0); 324} 325 326/** 327 * find_or_create_page - locate or add a pagecache page 328 * @mapping: the page's address_space 329 * @index: the page's index into the mapping 330 * @gfp_mask: page allocation mode 331 * 332 * Looks up the page cache slot at @mapping & @offset. If there is a 333 * page cache page, it is returned locked and with an increased 334 * refcount. 335 * 336 * If the page is not present, a new page is allocated using @gfp_mask 337 * and added to the page cache and the VM's LRU list. The page is 338 * returned locked and with an increased refcount. 339 * 340 * On memory exhaustion, %NULL is returned. 341 * 342 * find_or_create_page() may sleep, even if @gfp_flags specifies an 343 * atomic allocation! 344 */ 345static inline struct page *find_or_create_page(struct address_space *mapping, 346 pgoff_t index, gfp_t gfp_mask) 347{ 348 return pagecache_get_page(mapping, index, 349 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 350 gfp_mask); 351} 352 353/** 354 * grab_cache_page_nowait - returns locked page at given index in given cache 355 * @mapping: target address_space 356 * @index: the page index 357 * 358 * Same as grab_cache_page(), but do not wait if the page is unavailable. 359 * This is intended for speculative data generators, where the data can 360 * be regenerated if the page couldn't be grabbed. This routine should 361 * be safe to call while holding the lock for another page. 362 * 363 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 364 * and deadlock against the caller's locked page. 365 */ 366static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 367 pgoff_t index) 368{ 369 return pagecache_get_page(mapping, index, 370 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 371 mapping_gfp_mask(mapping)); 372} 373 374/* 375 * Given the page we found in the page cache, return the page corresponding 376 * to this index in the file 377 */ 378static inline struct page *find_subpage(struct page *head, pgoff_t index) 379{ 380 /* HugeTLBfs wants the head page regardless */ 381 if (PageHuge(head)) 382 return head; 383 384 return head + (index & (hpage_nr_pages(head) - 1)); 385} 386 387struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 388struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 389unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 390 unsigned int nr_entries, struct page **entries, 391 pgoff_t *indices); 392unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 393 pgoff_t end, unsigned int nr_pages, 394 struct page **pages); 395static inline unsigned find_get_pages(struct address_space *mapping, 396 pgoff_t *start, unsigned int nr_pages, 397 struct page **pages) 398{ 399 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, 400 pages); 401} 402unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 403 unsigned int nr_pages, struct page **pages); 404unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 405 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 406 struct page **pages); 407static inline unsigned find_get_pages_tag(struct address_space *mapping, 408 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, 409 struct page **pages) 410{ 411 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, 412 nr_pages, pages); 413} 414 415struct page *grab_cache_page_write_begin(struct address_space *mapping, 416 pgoff_t index, unsigned flags); 417 418/* 419 * Returns locked page at given index in given cache, creating it if needed. 420 */ 421static inline struct page *grab_cache_page(struct address_space *mapping, 422 pgoff_t index) 423{ 424 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 425} 426 427extern struct page * read_cache_page(struct address_space *mapping, 428 pgoff_t index, filler_t *filler, void *data); 429extern struct page * read_cache_page_gfp(struct address_space *mapping, 430 pgoff_t index, gfp_t gfp_mask); 431extern int read_cache_pages(struct address_space *mapping, 432 struct list_head *pages, filler_t *filler, void *data); 433 434static inline struct page *read_mapping_page(struct address_space *mapping, 435 pgoff_t index, void *data) 436{ 437 return read_cache_page(mapping, index, NULL, data); 438} 439 440/* 441 * Get index of the page with in radix-tree 442 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 443 */ 444static inline pgoff_t page_to_index(struct page *page) 445{ 446 pgoff_t pgoff; 447 448 if (likely(!PageTransTail(page))) 449 return page->index; 450 451 /* 452 * We don't initialize ->index for tail pages: calculate based on 453 * head page 454 */ 455 pgoff = compound_head(page)->index; 456 pgoff += page - compound_head(page); 457 return pgoff; 458} 459 460/* 461 * Get the offset in PAGE_SIZE. 462 * (TODO: hugepage should have ->index in PAGE_SIZE) 463 */ 464static inline pgoff_t page_to_pgoff(struct page *page) 465{ 466 if (unlikely(PageHeadHuge(page))) 467 return page->index << compound_order(page); 468 469 return page_to_index(page); 470} 471 472/* 473 * Return byte-offset into filesystem object for page. 474 */ 475static inline loff_t page_offset(struct page *page) 476{ 477 return ((loff_t)page->index) << PAGE_SHIFT; 478} 479 480static inline loff_t page_file_offset(struct page *page) 481{ 482 return ((loff_t)page_index(page)) << PAGE_SHIFT; 483} 484 485extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 486 unsigned long address); 487 488static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 489 unsigned long address) 490{ 491 pgoff_t pgoff; 492 if (unlikely(is_vm_hugetlb_page(vma))) 493 return linear_hugepage_index(vma, address); 494 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 495 pgoff += vma->vm_pgoff; 496 return pgoff; 497} 498 499extern void __lock_page(struct page *page); 500extern int __lock_page_killable(struct page *page); 501extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 502 unsigned int flags); 503extern void unlock_page(struct page *page); 504 505/* 506 * Return true if the page was successfully locked 507 */ 508static inline int trylock_page(struct page *page) 509{ 510 page = compound_head(page); 511 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 512} 513 514/* 515 * lock_page may only be called if we have the page's inode pinned. 516 */ 517static inline void lock_page(struct page *page) 518{ 519 might_sleep(); 520 if (!trylock_page(page)) 521 __lock_page(page); 522} 523 524/* 525 * lock_page_killable is like lock_page but can be interrupted by fatal 526 * signals. It returns 0 if it locked the page and -EINTR if it was 527 * killed while waiting. 528 */ 529static inline int lock_page_killable(struct page *page) 530{ 531 might_sleep(); 532 if (!trylock_page(page)) 533 return __lock_page_killable(page); 534 return 0; 535} 536 537/* 538 * lock_page_or_retry - Lock the page, unless this would block and the 539 * caller indicated that it can handle a retry. 540 * 541 * Return value and mmap_lock implications depend on flags; see 542 * __lock_page_or_retry(). 543 */ 544static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 545 unsigned int flags) 546{ 547 might_sleep(); 548 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 549} 550 551/* 552 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 553 * and should not be used directly. 554 */ 555extern void wait_on_page_bit(struct page *page, int bit_nr); 556extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 557 558/* 559 * Wait for a page to be unlocked. 560 * 561 * This must be called with the caller "holding" the page, 562 * ie with increased "page->count" so that the page won't 563 * go away during the wait.. 564 */ 565static inline void wait_on_page_locked(struct page *page) 566{ 567 if (PageLocked(page)) 568 wait_on_page_bit(compound_head(page), PG_locked); 569} 570 571static inline int wait_on_page_locked_killable(struct page *page) 572{ 573 if (!PageLocked(page)) 574 return 0; 575 return wait_on_page_bit_killable(compound_head(page), PG_locked); 576} 577 578extern void put_and_wait_on_page_locked(struct page *page); 579 580void wait_on_page_writeback(struct page *page); 581extern void end_page_writeback(struct page *page); 582void wait_for_stable_page(struct page *page); 583 584void page_endio(struct page *page, bool is_write, int err); 585 586/* 587 * Add an arbitrary waiter to a page's wait queue 588 */ 589extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); 590 591/* 592 * Fault everything in given userspace address range in. 593 */ 594static inline int fault_in_pages_writeable(char __user *uaddr, int size) 595{ 596 char __user *end = uaddr + size - 1; 597 598 if (unlikely(size == 0)) 599 return 0; 600 601 if (unlikely(uaddr > end)) 602 return -EFAULT; 603 /* 604 * Writing zeroes into userspace here is OK, because we know that if 605 * the zero gets there, we'll be overwriting it. 606 */ 607 do { 608 if (unlikely(__put_user(0, uaddr) != 0)) 609 return -EFAULT; 610 uaddr += PAGE_SIZE; 611 } while (uaddr <= end); 612 613 /* Check whether the range spilled into the next page. */ 614 if (((unsigned long)uaddr & PAGE_MASK) == 615 ((unsigned long)end & PAGE_MASK)) 616 return __put_user(0, end); 617 618 return 0; 619} 620 621static inline int fault_in_pages_readable(const char __user *uaddr, int size) 622{ 623 volatile char c; 624 const char __user *end = uaddr + size - 1; 625 626 if (unlikely(size == 0)) 627 return 0; 628 629 if (unlikely(uaddr > end)) 630 return -EFAULT; 631 632 do { 633 if (unlikely(__get_user(c, uaddr) != 0)) 634 return -EFAULT; 635 uaddr += PAGE_SIZE; 636 } while (uaddr <= end); 637 638 /* Check whether the range spilled into the next page. */ 639 if (((unsigned long)uaddr & PAGE_MASK) == 640 ((unsigned long)end & PAGE_MASK)) { 641 return __get_user(c, end); 642 } 643 644 (void)c; 645 return 0; 646} 647 648int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 649 pgoff_t index, gfp_t gfp_mask); 650int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 651 pgoff_t index, gfp_t gfp_mask); 652extern void delete_from_page_cache(struct page *page); 653extern void __delete_from_page_cache(struct page *page, void *shadow); 654int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 655void delete_from_page_cache_batch(struct address_space *mapping, 656 struct pagevec *pvec); 657 658#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 659 660void page_cache_sync_readahead(struct address_space *, struct file_ra_state *, 661 struct file *, pgoff_t index, unsigned long req_count); 662void page_cache_async_readahead(struct address_space *, struct file_ra_state *, 663 struct file *, struct page *, pgoff_t index, 664 unsigned long req_count); 665void page_cache_readahead_unbounded(struct address_space *, struct file *, 666 pgoff_t index, unsigned long nr_to_read, 667 unsigned long lookahead_count); 668 669/* 670 * Like add_to_page_cache_locked, but used to add newly allocated pages: 671 * the page is new, so we can just run __SetPageLocked() against it. 672 */ 673static inline int add_to_page_cache(struct page *page, 674 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 675{ 676 int error; 677 678 __SetPageLocked(page); 679 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 680 if (unlikely(error)) 681 __ClearPageLocked(page); 682 return error; 683} 684 685/** 686 * struct readahead_control - Describes a readahead request. 687 * 688 * A readahead request is for consecutive pages. Filesystems which 689 * implement the ->readahead method should call readahead_page() or 690 * readahead_page_batch() in a loop and attempt to start I/O against 691 * each page in the request. 692 * 693 * Most of the fields in this struct are private and should be accessed 694 * by the functions below. 695 * 696 * @file: The file, used primarily by network filesystems for authentication. 697 * May be NULL if invoked internally by the filesystem. 698 * @mapping: Readahead this filesystem object. 699 */ 700struct readahead_control { 701 struct file *file; 702 struct address_space *mapping; 703/* private: use the readahead_* accessors instead */ 704 pgoff_t _index; 705 unsigned int _nr_pages; 706 unsigned int _batch_count; 707}; 708 709/** 710 * readahead_page - Get the next page to read. 711 * @rac: The current readahead request. 712 * 713 * Context: The page is locked and has an elevated refcount. The caller 714 * should decreases the refcount once the page has been submitted for I/O 715 * and unlock the page once all I/O to that page has completed. 716 * Return: A pointer to the next page, or %NULL if we are done. 717 */ 718static inline struct page *readahead_page(struct readahead_control *rac) 719{ 720 struct page *page; 721 722 BUG_ON(rac->_batch_count > rac->_nr_pages); 723 rac->_nr_pages -= rac->_batch_count; 724 rac->_index += rac->_batch_count; 725 726 if (!rac->_nr_pages) { 727 rac->_batch_count = 0; 728 return NULL; 729 } 730 731 page = xa_load(&rac->mapping->i_pages, rac->_index); 732 VM_BUG_ON_PAGE(!PageLocked(page), page); 733 rac->_batch_count = hpage_nr_pages(page); 734 735 return page; 736} 737 738static inline unsigned int __readahead_batch(struct readahead_control *rac, 739 struct page **array, unsigned int array_sz) 740{ 741 unsigned int i = 0; 742 XA_STATE(xas, &rac->mapping->i_pages, 0); 743 struct page *page; 744 745 BUG_ON(rac->_batch_count > rac->_nr_pages); 746 rac->_nr_pages -= rac->_batch_count; 747 rac->_index += rac->_batch_count; 748 rac->_batch_count = 0; 749 750 xas_set(&xas, rac->_index); 751 rcu_read_lock(); 752 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 753 VM_BUG_ON_PAGE(!PageLocked(page), page); 754 VM_BUG_ON_PAGE(PageTail(page), page); 755 array[i++] = page; 756 rac->_batch_count += hpage_nr_pages(page); 757 758 /* 759 * The page cache isn't using multi-index entries yet, 760 * so the xas cursor needs to be manually moved to the 761 * next index. This can be removed once the page cache 762 * is converted. 763 */ 764 if (PageHead(page)) 765 xas_set(&xas, rac->_index + rac->_batch_count); 766 767 if (i == array_sz) 768 break; 769 } 770 rcu_read_unlock(); 771 772 return i; 773} 774 775/** 776 * readahead_page_batch - Get a batch of pages to read. 777 * @rac: The current readahead request. 778 * @array: An array of pointers to struct page. 779 * 780 * Context: The pages are locked and have an elevated refcount. The caller 781 * should decreases the refcount once the page has been submitted for I/O 782 * and unlock the page once all I/O to that page has completed. 783 * Return: The number of pages placed in the array. 0 indicates the request 784 * is complete. 785 */ 786#define readahead_page_batch(rac, array) \ 787 __readahead_batch(rac, array, ARRAY_SIZE(array)) 788 789/** 790 * readahead_pos - The byte offset into the file of this readahead request. 791 * @rac: The readahead request. 792 */ 793static inline loff_t readahead_pos(struct readahead_control *rac) 794{ 795 return (loff_t)rac->_index * PAGE_SIZE; 796} 797 798/** 799 * readahead_length - The number of bytes in this readahead request. 800 * @rac: The readahead request. 801 */ 802static inline loff_t readahead_length(struct readahead_control *rac) 803{ 804 return (loff_t)rac->_nr_pages * PAGE_SIZE; 805} 806 807/** 808 * readahead_index - The index of the first page in this readahead request. 809 * @rac: The readahead request. 810 */ 811static inline pgoff_t readahead_index(struct readahead_control *rac) 812{ 813 return rac->_index; 814} 815 816/** 817 * readahead_count - The number of pages in this readahead request. 818 * @rac: The readahead request. 819 */ 820static inline unsigned int readahead_count(struct readahead_control *rac) 821{ 822 return rac->_nr_pages; 823} 824 825static inline unsigned long dir_pages(struct inode *inode) 826{ 827 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 828 PAGE_SHIFT; 829} 830 831/** 832 * page_mkwrite_check_truncate - check if page was truncated 833 * @page: the page to check 834 * @inode: the inode to check the page against 835 * 836 * Returns the number of bytes in the page up to EOF, 837 * or -EFAULT if the page was truncated. 838 */ 839static inline int page_mkwrite_check_truncate(struct page *page, 840 struct inode *inode) 841{ 842 loff_t size = i_size_read(inode); 843 pgoff_t index = size >> PAGE_SHIFT; 844 int offset = offset_in_page(size); 845 846 if (page->mapping != inode->i_mapping) 847 return -EFAULT; 848 849 /* page is wholly inside EOF */ 850 if (page->index < index) 851 return PAGE_SIZE; 852 /* page is wholly past EOF */ 853 if (page->index > index || !offset) 854 return -EFAULT; 855 /* page is partially inside EOF */ 856 return offset; 857} 858 859#endif /* _LINUX_PAGEMAP_H */