Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21#ifndef _LINUX_NETDEVICE_H
22#define _LINUX_NETDEVICE_H
23
24#include <linux/timer.h>
25#include <linux/bug.h>
26#include <linux/delay.h>
27#include <linux/atomic.h>
28#include <linux/prefetch.h>
29#include <asm/cache.h>
30#include <asm/byteorder.h>
31
32#include <linux/percpu.h>
33#include <linux/rculist.h>
34#include <linux/workqueue.h>
35#include <linux/dynamic_queue_limits.h>
36
37#include <linux/ethtool.h>
38#include <net/net_namespace.h>
39#ifdef CONFIG_DCB
40#include <net/dcbnl.h>
41#endif
42#include <net/netprio_cgroup.h>
43#include <net/xdp.h>
44
45#include <linux/netdev_features.h>
46#include <linux/neighbour.h>
47#include <uapi/linux/netdevice.h>
48#include <uapi/linux/if_bonding.h>
49#include <uapi/linux/pkt_cls.h>
50#include <linux/hashtable.h>
51
52struct netpoll_info;
53struct device;
54struct phy_device;
55struct dsa_port;
56struct ip_tunnel_parm;
57struct macsec_context;
58struct macsec_ops;
59
60struct sfp_bus;
61/* 802.11 specific */
62struct wireless_dev;
63/* 802.15.4 specific */
64struct wpan_dev;
65struct mpls_dev;
66/* UDP Tunnel offloads */
67struct udp_tunnel_info;
68struct bpf_prog;
69struct xdp_buff;
70
71void netdev_set_default_ethtool_ops(struct net_device *dev,
72 const struct ethtool_ops *ops);
73
74/* Backlog congestion levels */
75#define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
76#define NET_RX_DROP 1 /* packet dropped */
77
78#define MAX_NEST_DEV 8
79
80/*
81 * Transmit return codes: transmit return codes originate from three different
82 * namespaces:
83 *
84 * - qdisc return codes
85 * - driver transmit return codes
86 * - errno values
87 *
88 * Drivers are allowed to return any one of those in their hard_start_xmit()
89 * function. Real network devices commonly used with qdiscs should only return
90 * the driver transmit return codes though - when qdiscs are used, the actual
91 * transmission happens asynchronously, so the value is not propagated to
92 * higher layers. Virtual network devices transmit synchronously; in this case
93 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
94 * others are propagated to higher layers.
95 */
96
97/* qdisc ->enqueue() return codes. */
98#define NET_XMIT_SUCCESS 0x00
99#define NET_XMIT_DROP 0x01 /* skb dropped */
100#define NET_XMIT_CN 0x02 /* congestion notification */
101#define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
102
103/* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
104 * indicates that the device will soon be dropping packets, or already drops
105 * some packets of the same priority; prompting us to send less aggressively. */
106#define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
107#define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
108
109/* Driver transmit return codes */
110#define NETDEV_TX_MASK 0xf0
111
112enum netdev_tx {
113 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
114 NETDEV_TX_OK = 0x00, /* driver took care of packet */
115 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
116};
117typedef enum netdev_tx netdev_tx_t;
118
119/*
120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
122 */
123static inline bool dev_xmit_complete(int rc)
124{
125 /*
126 * Positive cases with an skb consumed by a driver:
127 * - successful transmission (rc == NETDEV_TX_OK)
128 * - error while transmitting (rc < 0)
129 * - error while queueing to a different device (rc & NET_XMIT_MASK)
130 */
131 if (likely(rc < NET_XMIT_MASK))
132 return true;
133
134 return false;
135}
136
137/*
138 * Compute the worst-case header length according to the protocols
139 * used.
140 */
141
142#if defined(CONFIG_HYPERV_NET)
143# define LL_MAX_HEADER 128
144#elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
145# if defined(CONFIG_MAC80211_MESH)
146# define LL_MAX_HEADER 128
147# else
148# define LL_MAX_HEADER 96
149# endif
150#else
151# define LL_MAX_HEADER 32
152#endif
153
154#if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
155 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
156#define MAX_HEADER LL_MAX_HEADER
157#else
158#define MAX_HEADER (LL_MAX_HEADER + 48)
159#endif
160
161/*
162 * Old network device statistics. Fields are native words
163 * (unsigned long) so they can be read and written atomically.
164 */
165
166struct net_device_stats {
167 unsigned long rx_packets;
168 unsigned long tx_packets;
169 unsigned long rx_bytes;
170 unsigned long tx_bytes;
171 unsigned long rx_errors;
172 unsigned long tx_errors;
173 unsigned long rx_dropped;
174 unsigned long tx_dropped;
175 unsigned long multicast;
176 unsigned long collisions;
177 unsigned long rx_length_errors;
178 unsigned long rx_over_errors;
179 unsigned long rx_crc_errors;
180 unsigned long rx_frame_errors;
181 unsigned long rx_fifo_errors;
182 unsigned long rx_missed_errors;
183 unsigned long tx_aborted_errors;
184 unsigned long tx_carrier_errors;
185 unsigned long tx_fifo_errors;
186 unsigned long tx_heartbeat_errors;
187 unsigned long tx_window_errors;
188 unsigned long rx_compressed;
189 unsigned long tx_compressed;
190};
191
192
193#include <linux/cache.h>
194#include <linux/skbuff.h>
195
196#ifdef CONFIG_RPS
197#include <linux/static_key.h>
198extern struct static_key_false rps_needed;
199extern struct static_key_false rfs_needed;
200#endif
201
202struct neighbour;
203struct neigh_parms;
204struct sk_buff;
205
206struct netdev_hw_addr {
207 struct list_head list;
208 unsigned char addr[MAX_ADDR_LEN];
209 unsigned char type;
210#define NETDEV_HW_ADDR_T_LAN 1
211#define NETDEV_HW_ADDR_T_SAN 2
212#define NETDEV_HW_ADDR_T_SLAVE 3
213#define NETDEV_HW_ADDR_T_UNICAST 4
214#define NETDEV_HW_ADDR_T_MULTICAST 5
215 bool global_use;
216 int sync_cnt;
217 int refcount;
218 int synced;
219 struct rcu_head rcu_head;
220};
221
222struct netdev_hw_addr_list {
223 struct list_head list;
224 int count;
225};
226
227#define netdev_hw_addr_list_count(l) ((l)->count)
228#define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
229#define netdev_hw_addr_list_for_each(ha, l) \
230 list_for_each_entry(ha, &(l)->list, list)
231
232#define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
233#define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
234#define netdev_for_each_uc_addr(ha, dev) \
235 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
236
237#define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
238#define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
239#define netdev_for_each_mc_addr(ha, dev) \
240 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
241
242struct hh_cache {
243 unsigned int hh_len;
244 seqlock_t hh_lock;
245
246 /* cached hardware header; allow for machine alignment needs. */
247#define HH_DATA_MOD 16
248#define HH_DATA_OFF(__len) \
249 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
250#define HH_DATA_ALIGN(__len) \
251 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
252 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
253};
254
255/* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
256 * Alternative is:
257 * dev->hard_header_len ? (dev->hard_header_len +
258 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
259 *
260 * We could use other alignment values, but we must maintain the
261 * relationship HH alignment <= LL alignment.
262 */
263#define LL_RESERVED_SPACE(dev) \
264 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
265#define LL_RESERVED_SPACE_EXTRA(dev,extra) \
266 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
267
268struct header_ops {
269 int (*create) (struct sk_buff *skb, struct net_device *dev,
270 unsigned short type, const void *daddr,
271 const void *saddr, unsigned int len);
272 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
273 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
274 void (*cache_update)(struct hh_cache *hh,
275 const struct net_device *dev,
276 const unsigned char *haddr);
277 bool (*validate)(const char *ll_header, unsigned int len);
278 __be16 (*parse_protocol)(const struct sk_buff *skb);
279};
280
281/* These flag bits are private to the generic network queueing
282 * layer; they may not be explicitly referenced by any other
283 * code.
284 */
285
286enum netdev_state_t {
287 __LINK_STATE_START,
288 __LINK_STATE_PRESENT,
289 __LINK_STATE_NOCARRIER,
290 __LINK_STATE_LINKWATCH_PENDING,
291 __LINK_STATE_DORMANT,
292 __LINK_STATE_TESTING,
293};
294
295
296/*
297 * This structure holds boot-time configured netdevice settings. They
298 * are then used in the device probing.
299 */
300struct netdev_boot_setup {
301 char name[IFNAMSIZ];
302 struct ifmap map;
303};
304#define NETDEV_BOOT_SETUP_MAX 8
305
306int __init netdev_boot_setup(char *str);
307
308struct gro_list {
309 struct list_head list;
310 int count;
311};
312
313/*
314 * size of gro hash buckets, must less than bit number of
315 * napi_struct::gro_bitmask
316 */
317#define GRO_HASH_BUCKETS 8
318
319/*
320 * Structure for NAPI scheduling similar to tasklet but with weighting
321 */
322struct napi_struct {
323 /* The poll_list must only be managed by the entity which
324 * changes the state of the NAPI_STATE_SCHED bit. This means
325 * whoever atomically sets that bit can add this napi_struct
326 * to the per-CPU poll_list, and whoever clears that bit
327 * can remove from the list right before clearing the bit.
328 */
329 struct list_head poll_list;
330
331 unsigned long state;
332 int weight;
333 int defer_hard_irqs_count;
334 unsigned long gro_bitmask;
335 int (*poll)(struct napi_struct *, int);
336#ifdef CONFIG_NETPOLL
337 int poll_owner;
338#endif
339 struct net_device *dev;
340 struct gro_list gro_hash[GRO_HASH_BUCKETS];
341 struct sk_buff *skb;
342 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
343 int rx_count; /* length of rx_list */
344 struct hrtimer timer;
345 struct list_head dev_list;
346 struct hlist_node napi_hash_node;
347 unsigned int napi_id;
348};
349
350enum {
351 NAPI_STATE_SCHED, /* Poll is scheduled */
352 NAPI_STATE_MISSED, /* reschedule a napi */
353 NAPI_STATE_DISABLE, /* Disable pending */
354 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
355 NAPI_STATE_HASHED, /* In NAPI hash (busy polling possible) */
356 NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
357 NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
358};
359
360enum {
361 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
362 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
363 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
364 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
365 NAPIF_STATE_HASHED = BIT(NAPI_STATE_HASHED),
366 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
367 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
368};
369
370enum gro_result {
371 GRO_MERGED,
372 GRO_MERGED_FREE,
373 GRO_HELD,
374 GRO_NORMAL,
375 GRO_DROP,
376 GRO_CONSUMED,
377};
378typedef enum gro_result gro_result_t;
379
380/*
381 * enum rx_handler_result - Possible return values for rx_handlers.
382 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
383 * further.
384 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
385 * case skb->dev was changed by rx_handler.
386 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
387 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
388 *
389 * rx_handlers are functions called from inside __netif_receive_skb(), to do
390 * special processing of the skb, prior to delivery to protocol handlers.
391 *
392 * Currently, a net_device can only have a single rx_handler registered. Trying
393 * to register a second rx_handler will return -EBUSY.
394 *
395 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
396 * To unregister a rx_handler on a net_device, use
397 * netdev_rx_handler_unregister().
398 *
399 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
400 * do with the skb.
401 *
402 * If the rx_handler consumed the skb in some way, it should return
403 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
404 * the skb to be delivered in some other way.
405 *
406 * If the rx_handler changed skb->dev, to divert the skb to another
407 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
408 * new device will be called if it exists.
409 *
410 * If the rx_handler decides the skb should be ignored, it should return
411 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
412 * are registered on exact device (ptype->dev == skb->dev).
413 *
414 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
415 * delivered, it should return RX_HANDLER_PASS.
416 *
417 * A device without a registered rx_handler will behave as if rx_handler
418 * returned RX_HANDLER_PASS.
419 */
420
421enum rx_handler_result {
422 RX_HANDLER_CONSUMED,
423 RX_HANDLER_ANOTHER,
424 RX_HANDLER_EXACT,
425 RX_HANDLER_PASS,
426};
427typedef enum rx_handler_result rx_handler_result_t;
428typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
429
430void __napi_schedule(struct napi_struct *n);
431void __napi_schedule_irqoff(struct napi_struct *n);
432
433static inline bool napi_disable_pending(struct napi_struct *n)
434{
435 return test_bit(NAPI_STATE_DISABLE, &n->state);
436}
437
438bool napi_schedule_prep(struct napi_struct *n);
439
440/**
441 * napi_schedule - schedule NAPI poll
442 * @n: NAPI context
443 *
444 * Schedule NAPI poll routine to be called if it is not already
445 * running.
446 */
447static inline void napi_schedule(struct napi_struct *n)
448{
449 if (napi_schedule_prep(n))
450 __napi_schedule(n);
451}
452
453/**
454 * napi_schedule_irqoff - schedule NAPI poll
455 * @n: NAPI context
456 *
457 * Variant of napi_schedule(), assuming hard irqs are masked.
458 */
459static inline void napi_schedule_irqoff(struct napi_struct *n)
460{
461 if (napi_schedule_prep(n))
462 __napi_schedule_irqoff(n);
463}
464
465/* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
466static inline bool napi_reschedule(struct napi_struct *napi)
467{
468 if (napi_schedule_prep(napi)) {
469 __napi_schedule(napi);
470 return true;
471 }
472 return false;
473}
474
475bool napi_complete_done(struct napi_struct *n, int work_done);
476/**
477 * napi_complete - NAPI processing complete
478 * @n: NAPI context
479 *
480 * Mark NAPI processing as complete.
481 * Consider using napi_complete_done() instead.
482 * Return false if device should avoid rearming interrupts.
483 */
484static inline bool napi_complete(struct napi_struct *n)
485{
486 return napi_complete_done(n, 0);
487}
488
489/**
490 * napi_hash_del - remove a NAPI from global table
491 * @napi: NAPI context
492 *
493 * Warning: caller must observe RCU grace period
494 * before freeing memory containing @napi, if
495 * this function returns true.
496 * Note: core networking stack automatically calls it
497 * from netif_napi_del().
498 * Drivers might want to call this helper to combine all
499 * the needed RCU grace periods into a single one.
500 */
501bool napi_hash_del(struct napi_struct *napi);
502
503/**
504 * napi_disable - prevent NAPI from scheduling
505 * @n: NAPI context
506 *
507 * Stop NAPI from being scheduled on this context.
508 * Waits till any outstanding processing completes.
509 */
510void napi_disable(struct napi_struct *n);
511
512/**
513 * napi_enable - enable NAPI scheduling
514 * @n: NAPI context
515 *
516 * Resume NAPI from being scheduled on this context.
517 * Must be paired with napi_disable.
518 */
519static inline void napi_enable(struct napi_struct *n)
520{
521 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
522 smp_mb__before_atomic();
523 clear_bit(NAPI_STATE_SCHED, &n->state);
524 clear_bit(NAPI_STATE_NPSVC, &n->state);
525}
526
527/**
528 * napi_synchronize - wait until NAPI is not running
529 * @n: NAPI context
530 *
531 * Wait until NAPI is done being scheduled on this context.
532 * Waits till any outstanding processing completes but
533 * does not disable future activations.
534 */
535static inline void napi_synchronize(const struct napi_struct *n)
536{
537 if (IS_ENABLED(CONFIG_SMP))
538 while (test_bit(NAPI_STATE_SCHED, &n->state))
539 msleep(1);
540 else
541 barrier();
542}
543
544/**
545 * napi_if_scheduled_mark_missed - if napi is running, set the
546 * NAPIF_STATE_MISSED
547 * @n: NAPI context
548 *
549 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
550 * NAPI is scheduled.
551 **/
552static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
553{
554 unsigned long val, new;
555
556 do {
557 val = READ_ONCE(n->state);
558 if (val & NAPIF_STATE_DISABLE)
559 return true;
560
561 if (!(val & NAPIF_STATE_SCHED))
562 return false;
563
564 new = val | NAPIF_STATE_MISSED;
565 } while (cmpxchg(&n->state, val, new) != val);
566
567 return true;
568}
569
570enum netdev_queue_state_t {
571 __QUEUE_STATE_DRV_XOFF,
572 __QUEUE_STATE_STACK_XOFF,
573 __QUEUE_STATE_FROZEN,
574};
575
576#define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
577#define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
578#define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
579
580#define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
581#define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
582 QUEUE_STATE_FROZEN)
583#define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
584 QUEUE_STATE_FROZEN)
585
586/*
587 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
588 * netif_tx_* functions below are used to manipulate this flag. The
589 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
590 * queue independently. The netif_xmit_*stopped functions below are called
591 * to check if the queue has been stopped by the driver or stack (either
592 * of the XOFF bits are set in the state). Drivers should not need to call
593 * netif_xmit*stopped functions, they should only be using netif_tx_*.
594 */
595
596struct netdev_queue {
597/*
598 * read-mostly part
599 */
600 struct net_device *dev;
601 struct Qdisc __rcu *qdisc;
602 struct Qdisc *qdisc_sleeping;
603#ifdef CONFIG_SYSFS
604 struct kobject kobj;
605#endif
606#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
607 int numa_node;
608#endif
609 unsigned long tx_maxrate;
610 /*
611 * Number of TX timeouts for this queue
612 * (/sys/class/net/DEV/Q/trans_timeout)
613 */
614 unsigned long trans_timeout;
615
616 /* Subordinate device that the queue has been assigned to */
617 struct net_device *sb_dev;
618#ifdef CONFIG_XDP_SOCKETS
619 struct xdp_umem *umem;
620#endif
621/*
622 * write-mostly part
623 */
624 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
625 int xmit_lock_owner;
626 /*
627 * Time (in jiffies) of last Tx
628 */
629 unsigned long trans_start;
630
631 unsigned long state;
632
633#ifdef CONFIG_BQL
634 struct dql dql;
635#endif
636} ____cacheline_aligned_in_smp;
637
638extern int sysctl_fb_tunnels_only_for_init_net;
639extern int sysctl_devconf_inherit_init_net;
640
641static inline bool net_has_fallback_tunnels(const struct net *net)
642{
643 return net == &init_net ||
644 !IS_ENABLED(CONFIG_SYSCTL) ||
645 !sysctl_fb_tunnels_only_for_init_net;
646}
647
648static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
649{
650#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
651 return q->numa_node;
652#else
653 return NUMA_NO_NODE;
654#endif
655}
656
657static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
658{
659#if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
660 q->numa_node = node;
661#endif
662}
663
664#ifdef CONFIG_RPS
665/*
666 * This structure holds an RPS map which can be of variable length. The
667 * map is an array of CPUs.
668 */
669struct rps_map {
670 unsigned int len;
671 struct rcu_head rcu;
672 u16 cpus[];
673};
674#define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
675
676/*
677 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
678 * tail pointer for that CPU's input queue at the time of last enqueue, and
679 * a hardware filter index.
680 */
681struct rps_dev_flow {
682 u16 cpu;
683 u16 filter;
684 unsigned int last_qtail;
685};
686#define RPS_NO_FILTER 0xffff
687
688/*
689 * The rps_dev_flow_table structure contains a table of flow mappings.
690 */
691struct rps_dev_flow_table {
692 unsigned int mask;
693 struct rcu_head rcu;
694 struct rps_dev_flow flows[];
695};
696#define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
697 ((_num) * sizeof(struct rps_dev_flow)))
698
699/*
700 * The rps_sock_flow_table contains mappings of flows to the last CPU
701 * on which they were processed by the application (set in recvmsg).
702 * Each entry is a 32bit value. Upper part is the high-order bits
703 * of flow hash, lower part is CPU number.
704 * rps_cpu_mask is used to partition the space, depending on number of
705 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
706 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
707 * meaning we use 32-6=26 bits for the hash.
708 */
709struct rps_sock_flow_table {
710 u32 mask;
711
712 u32 ents[] ____cacheline_aligned_in_smp;
713};
714#define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
715
716#define RPS_NO_CPU 0xffff
717
718extern u32 rps_cpu_mask;
719extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
720
721static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
722 u32 hash)
723{
724 if (table && hash) {
725 unsigned int index = hash & table->mask;
726 u32 val = hash & ~rps_cpu_mask;
727
728 /* We only give a hint, preemption can change CPU under us */
729 val |= raw_smp_processor_id();
730
731 if (table->ents[index] != val)
732 table->ents[index] = val;
733 }
734}
735
736#ifdef CONFIG_RFS_ACCEL
737bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
738 u16 filter_id);
739#endif
740#endif /* CONFIG_RPS */
741
742/* This structure contains an instance of an RX queue. */
743struct netdev_rx_queue {
744#ifdef CONFIG_RPS
745 struct rps_map __rcu *rps_map;
746 struct rps_dev_flow_table __rcu *rps_flow_table;
747#endif
748 struct kobject kobj;
749 struct net_device *dev;
750 struct xdp_rxq_info xdp_rxq;
751#ifdef CONFIG_XDP_SOCKETS
752 struct xdp_umem *umem;
753#endif
754} ____cacheline_aligned_in_smp;
755
756/*
757 * RX queue sysfs structures and functions.
758 */
759struct rx_queue_attribute {
760 struct attribute attr;
761 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
762 ssize_t (*store)(struct netdev_rx_queue *queue,
763 const char *buf, size_t len);
764};
765
766#ifdef CONFIG_XPS
767/*
768 * This structure holds an XPS map which can be of variable length. The
769 * map is an array of queues.
770 */
771struct xps_map {
772 unsigned int len;
773 unsigned int alloc_len;
774 struct rcu_head rcu;
775 u16 queues[];
776};
777#define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
778#define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
779 - sizeof(struct xps_map)) / sizeof(u16))
780
781/*
782 * This structure holds all XPS maps for device. Maps are indexed by CPU.
783 */
784struct xps_dev_maps {
785 struct rcu_head rcu;
786 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
787};
788
789#define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
790 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
791
792#define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
793 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
794
795#endif /* CONFIG_XPS */
796
797#define TC_MAX_QUEUE 16
798#define TC_BITMASK 15
799/* HW offloaded queuing disciplines txq count and offset maps */
800struct netdev_tc_txq {
801 u16 count;
802 u16 offset;
803};
804
805#if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
806/*
807 * This structure is to hold information about the device
808 * configured to run FCoE protocol stack.
809 */
810struct netdev_fcoe_hbainfo {
811 char manufacturer[64];
812 char serial_number[64];
813 char hardware_version[64];
814 char driver_version[64];
815 char optionrom_version[64];
816 char firmware_version[64];
817 char model[256];
818 char model_description[256];
819};
820#endif
821
822#define MAX_PHYS_ITEM_ID_LEN 32
823
824/* This structure holds a unique identifier to identify some
825 * physical item (port for example) used by a netdevice.
826 */
827struct netdev_phys_item_id {
828 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
829 unsigned char id_len;
830};
831
832static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
833 struct netdev_phys_item_id *b)
834{
835 return a->id_len == b->id_len &&
836 memcmp(a->id, b->id, a->id_len) == 0;
837}
838
839typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
840 struct sk_buff *skb,
841 struct net_device *sb_dev);
842
843enum tc_setup_type {
844 TC_SETUP_QDISC_MQPRIO,
845 TC_SETUP_CLSU32,
846 TC_SETUP_CLSFLOWER,
847 TC_SETUP_CLSMATCHALL,
848 TC_SETUP_CLSBPF,
849 TC_SETUP_BLOCK,
850 TC_SETUP_QDISC_CBS,
851 TC_SETUP_QDISC_RED,
852 TC_SETUP_QDISC_PRIO,
853 TC_SETUP_QDISC_MQ,
854 TC_SETUP_QDISC_ETF,
855 TC_SETUP_ROOT_QDISC,
856 TC_SETUP_QDISC_GRED,
857 TC_SETUP_QDISC_TAPRIO,
858 TC_SETUP_FT,
859 TC_SETUP_QDISC_ETS,
860 TC_SETUP_QDISC_TBF,
861 TC_SETUP_QDISC_FIFO,
862};
863
864/* These structures hold the attributes of bpf state that are being passed
865 * to the netdevice through the bpf op.
866 */
867enum bpf_netdev_command {
868 /* Set or clear a bpf program used in the earliest stages of packet
869 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
870 * is responsible for calling bpf_prog_put on any old progs that are
871 * stored. In case of error, the callee need not release the new prog
872 * reference, but on success it takes ownership and must bpf_prog_put
873 * when it is no longer used.
874 */
875 XDP_SETUP_PROG,
876 XDP_SETUP_PROG_HW,
877 XDP_QUERY_PROG,
878 XDP_QUERY_PROG_HW,
879 /* BPF program for offload callbacks, invoked at program load time. */
880 BPF_OFFLOAD_MAP_ALLOC,
881 BPF_OFFLOAD_MAP_FREE,
882 XDP_SETUP_XSK_UMEM,
883};
884
885struct bpf_prog_offload_ops;
886struct netlink_ext_ack;
887struct xdp_umem;
888struct xdp_dev_bulk_queue;
889
890struct netdev_bpf {
891 enum bpf_netdev_command command;
892 union {
893 /* XDP_SETUP_PROG */
894 struct {
895 u32 flags;
896 struct bpf_prog *prog;
897 struct netlink_ext_ack *extack;
898 };
899 /* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
900 struct {
901 u32 prog_id;
902 /* flags with which program was installed */
903 u32 prog_flags;
904 };
905 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
906 struct {
907 struct bpf_offloaded_map *offmap;
908 };
909 /* XDP_SETUP_XSK_UMEM */
910 struct {
911 struct xdp_umem *umem;
912 u16 queue_id;
913 } xsk;
914 };
915};
916
917/* Flags for ndo_xsk_wakeup. */
918#define XDP_WAKEUP_RX (1 << 0)
919#define XDP_WAKEUP_TX (1 << 1)
920
921#ifdef CONFIG_XFRM_OFFLOAD
922struct xfrmdev_ops {
923 int (*xdo_dev_state_add) (struct xfrm_state *x);
924 void (*xdo_dev_state_delete) (struct xfrm_state *x);
925 void (*xdo_dev_state_free) (struct xfrm_state *x);
926 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
927 struct xfrm_state *x);
928 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
929};
930#endif
931
932struct dev_ifalias {
933 struct rcu_head rcuhead;
934 char ifalias[];
935};
936
937struct devlink;
938struct tlsdev_ops;
939
940struct netdev_name_node {
941 struct hlist_node hlist;
942 struct list_head list;
943 struct net_device *dev;
944 const char *name;
945};
946
947int netdev_name_node_alt_create(struct net_device *dev, const char *name);
948int netdev_name_node_alt_destroy(struct net_device *dev, const char *name);
949
950struct netdev_net_notifier {
951 struct list_head list;
952 struct notifier_block *nb;
953};
954
955/*
956 * This structure defines the management hooks for network devices.
957 * The following hooks can be defined; unless noted otherwise, they are
958 * optional and can be filled with a null pointer.
959 *
960 * int (*ndo_init)(struct net_device *dev);
961 * This function is called once when a network device is registered.
962 * The network device can use this for any late stage initialization
963 * or semantic validation. It can fail with an error code which will
964 * be propagated back to register_netdev.
965 *
966 * void (*ndo_uninit)(struct net_device *dev);
967 * This function is called when device is unregistered or when registration
968 * fails. It is not called if init fails.
969 *
970 * int (*ndo_open)(struct net_device *dev);
971 * This function is called when a network device transitions to the up
972 * state.
973 *
974 * int (*ndo_stop)(struct net_device *dev);
975 * This function is called when a network device transitions to the down
976 * state.
977 *
978 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
979 * struct net_device *dev);
980 * Called when a packet needs to be transmitted.
981 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
982 * the queue before that can happen; it's for obsolete devices and weird
983 * corner cases, but the stack really does a non-trivial amount
984 * of useless work if you return NETDEV_TX_BUSY.
985 * Required; cannot be NULL.
986 *
987 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
988 * struct net_device *dev
989 * netdev_features_t features);
990 * Called by core transmit path to determine if device is capable of
991 * performing offload operations on a given packet. This is to give
992 * the device an opportunity to implement any restrictions that cannot
993 * be otherwise expressed by feature flags. The check is called with
994 * the set of features that the stack has calculated and it returns
995 * those the driver believes to be appropriate.
996 *
997 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
998 * struct net_device *sb_dev);
999 * Called to decide which queue to use when device supports multiple
1000 * transmit queues.
1001 *
1002 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1003 * This function is called to allow device receiver to make
1004 * changes to configuration when multicast or promiscuous is enabled.
1005 *
1006 * void (*ndo_set_rx_mode)(struct net_device *dev);
1007 * This function is called device changes address list filtering.
1008 * If driver handles unicast address filtering, it should set
1009 * IFF_UNICAST_FLT in its priv_flags.
1010 *
1011 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1012 * This function is called when the Media Access Control address
1013 * needs to be changed. If this interface is not defined, the
1014 * MAC address can not be changed.
1015 *
1016 * int (*ndo_validate_addr)(struct net_device *dev);
1017 * Test if Media Access Control address is valid for the device.
1018 *
1019 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1020 * Called when a user requests an ioctl which can't be handled by
1021 * the generic interface code. If not defined ioctls return
1022 * not supported error code.
1023 *
1024 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1025 * Used to set network devices bus interface parameters. This interface
1026 * is retained for legacy reasons; new devices should use the bus
1027 * interface (PCI) for low level management.
1028 *
1029 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1030 * Called when a user wants to change the Maximum Transfer Unit
1031 * of a device.
1032 *
1033 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1034 * Callback used when the transmitter has not made any progress
1035 * for dev->watchdog ticks.
1036 *
1037 * void (*ndo_get_stats64)(struct net_device *dev,
1038 * struct rtnl_link_stats64 *storage);
1039 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1040 * Called when a user wants to get the network device usage
1041 * statistics. Drivers must do one of the following:
1042 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1043 * rtnl_link_stats64 structure passed by the caller.
1044 * 2. Define @ndo_get_stats to update a net_device_stats structure
1045 * (which should normally be dev->stats) and return a pointer to
1046 * it. The structure may be changed asynchronously only if each
1047 * field is written atomically.
1048 * 3. Update dev->stats asynchronously and atomically, and define
1049 * neither operation.
1050 *
1051 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1052 * Return true if this device supports offload stats of this attr_id.
1053 *
1054 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1055 * void *attr_data)
1056 * Get statistics for offload operations by attr_id. Write it into the
1057 * attr_data pointer.
1058 *
1059 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1060 * If device supports VLAN filtering this function is called when a
1061 * VLAN id is registered.
1062 *
1063 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1064 * If device supports VLAN filtering this function is called when a
1065 * VLAN id is unregistered.
1066 *
1067 * void (*ndo_poll_controller)(struct net_device *dev);
1068 *
1069 * SR-IOV management functions.
1070 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1071 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1072 * u8 qos, __be16 proto);
1073 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1074 * int max_tx_rate);
1075 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1076 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1077 * int (*ndo_get_vf_config)(struct net_device *dev,
1078 * int vf, struct ifla_vf_info *ivf);
1079 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1080 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1081 * struct nlattr *port[]);
1082 *
1083 * Enable or disable the VF ability to query its RSS Redirection Table and
1084 * Hash Key. This is needed since on some devices VF share this information
1085 * with PF and querying it may introduce a theoretical security risk.
1086 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1087 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1088 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1089 * void *type_data);
1090 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1091 * This is always called from the stack with the rtnl lock held and netif
1092 * tx queues stopped. This allows the netdevice to perform queue
1093 * management safely.
1094 *
1095 * Fiber Channel over Ethernet (FCoE) offload functions.
1096 * int (*ndo_fcoe_enable)(struct net_device *dev);
1097 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1098 * so the underlying device can perform whatever needed configuration or
1099 * initialization to support acceleration of FCoE traffic.
1100 *
1101 * int (*ndo_fcoe_disable)(struct net_device *dev);
1102 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1103 * so the underlying device can perform whatever needed clean-ups to
1104 * stop supporting acceleration of FCoE traffic.
1105 *
1106 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1107 * struct scatterlist *sgl, unsigned int sgc);
1108 * Called when the FCoE Initiator wants to initialize an I/O that
1109 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1110 * perform necessary setup and returns 1 to indicate the device is set up
1111 * successfully to perform DDP on this I/O, otherwise this returns 0.
1112 *
1113 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1114 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1115 * indicated by the FC exchange id 'xid', so the underlying device can
1116 * clean up and reuse resources for later DDP requests.
1117 *
1118 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1119 * struct scatterlist *sgl, unsigned int sgc);
1120 * Called when the FCoE Target wants to initialize an I/O that
1121 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1122 * perform necessary setup and returns 1 to indicate the device is set up
1123 * successfully to perform DDP on this I/O, otherwise this returns 0.
1124 *
1125 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1126 * struct netdev_fcoe_hbainfo *hbainfo);
1127 * Called when the FCoE Protocol stack wants information on the underlying
1128 * device. This information is utilized by the FCoE protocol stack to
1129 * register attributes with Fiber Channel management service as per the
1130 * FC-GS Fabric Device Management Information(FDMI) specification.
1131 *
1132 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1133 * Called when the underlying device wants to override default World Wide
1134 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1135 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1136 * protocol stack to use.
1137 *
1138 * RFS acceleration.
1139 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1140 * u16 rxq_index, u32 flow_id);
1141 * Set hardware filter for RFS. rxq_index is the target queue index;
1142 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1143 * Return the filter ID on success, or a negative error code.
1144 *
1145 * Slave management functions (for bridge, bonding, etc).
1146 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1147 * Called to make another netdev an underling.
1148 *
1149 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1150 * Called to release previously enslaved netdev.
1151 *
1152 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1153 * struct sk_buff *skb,
1154 * bool all_slaves);
1155 * Get the xmit slave of master device. If all_slaves is true, function
1156 * assume all the slaves can transmit.
1157 *
1158 * Feature/offload setting functions.
1159 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1160 * netdev_features_t features);
1161 * Adjusts the requested feature flags according to device-specific
1162 * constraints, and returns the resulting flags. Must not modify
1163 * the device state.
1164 *
1165 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1166 * Called to update device configuration to new features. Passed
1167 * feature set might be less than what was returned by ndo_fix_features()).
1168 * Must return >0 or -errno if it changed dev->features itself.
1169 *
1170 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1171 * struct net_device *dev,
1172 * const unsigned char *addr, u16 vid, u16 flags,
1173 * struct netlink_ext_ack *extack);
1174 * Adds an FDB entry to dev for addr.
1175 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1176 * struct net_device *dev,
1177 * const unsigned char *addr, u16 vid)
1178 * Deletes the FDB entry from dev coresponding to addr.
1179 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1180 * struct net_device *dev, struct net_device *filter_dev,
1181 * int *idx)
1182 * Used to add FDB entries to dump requests. Implementers should add
1183 * entries to skb and update idx with the number of entries.
1184 *
1185 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1186 * u16 flags, struct netlink_ext_ack *extack)
1187 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1188 * struct net_device *dev, u32 filter_mask,
1189 * int nlflags)
1190 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1191 * u16 flags);
1192 *
1193 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1194 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1195 * which do not represent real hardware may define this to allow their
1196 * userspace components to manage their virtual carrier state. Devices
1197 * that determine carrier state from physical hardware properties (eg
1198 * network cables) or protocol-dependent mechanisms (eg
1199 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1200 *
1201 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1202 * struct netdev_phys_item_id *ppid);
1203 * Called to get ID of physical port of this device. If driver does
1204 * not implement this, it is assumed that the hw is not able to have
1205 * multiple net devices on single physical port.
1206 *
1207 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1208 * struct netdev_phys_item_id *ppid)
1209 * Called to get the parent ID of the physical port of this device.
1210 *
1211 * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1212 * struct udp_tunnel_info *ti);
1213 * Called by UDP tunnel to notify a driver about the UDP port and socket
1214 * address family that a UDP tunnel is listnening to. It is called only
1215 * when a new port starts listening. The operation is protected by the
1216 * RTNL.
1217 *
1218 * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1219 * struct udp_tunnel_info *ti);
1220 * Called by UDP tunnel to notify the driver about a UDP port and socket
1221 * address family that the UDP tunnel is not listening to anymore. The
1222 * operation is protected by the RTNL.
1223 *
1224 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1225 * struct net_device *dev)
1226 * Called by upper layer devices to accelerate switching or other
1227 * station functionality into hardware. 'pdev is the lowerdev
1228 * to use for the offload and 'dev' is the net device that will
1229 * back the offload. Returns a pointer to the private structure
1230 * the upper layer will maintain.
1231 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1232 * Called by upper layer device to delete the station created
1233 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1234 * the station and priv is the structure returned by the add
1235 * operation.
1236 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1237 * int queue_index, u32 maxrate);
1238 * Called when a user wants to set a max-rate limitation of specific
1239 * TX queue.
1240 * int (*ndo_get_iflink)(const struct net_device *dev);
1241 * Called to get the iflink value of this device.
1242 * void (*ndo_change_proto_down)(struct net_device *dev,
1243 * bool proto_down);
1244 * This function is used to pass protocol port error state information
1245 * to the switch driver. The switch driver can react to the proto_down
1246 * by doing a phys down on the associated switch port.
1247 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1248 * This function is used to get egress tunnel information for given skb.
1249 * This is useful for retrieving outer tunnel header parameters while
1250 * sampling packet.
1251 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1252 * This function is used to specify the headroom that the skb must
1253 * consider when allocation skb during packet reception. Setting
1254 * appropriate rx headroom value allows avoiding skb head copy on
1255 * forward. Setting a negative value resets the rx headroom to the
1256 * default value.
1257 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1258 * This function is used to set or query state related to XDP on the
1259 * netdevice and manage BPF offload. See definition of
1260 * enum bpf_netdev_command for details.
1261 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1262 * u32 flags);
1263 * This function is used to submit @n XDP packets for transmit on a
1264 * netdevice. Returns number of frames successfully transmitted, frames
1265 * that got dropped are freed/returned via xdp_return_frame().
1266 * Returns negative number, means general error invoking ndo, meaning
1267 * no frames were xmit'ed and core-caller will free all frames.
1268 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1269 * This function is used to wake up the softirq, ksoftirqd or kthread
1270 * responsible for sending and/or receiving packets on a specific
1271 * queue id bound to an AF_XDP socket. The flags field specifies if
1272 * only RX, only Tx, or both should be woken up using the flags
1273 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1274 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1275 * Get devlink port instance associated with a given netdev.
1276 * Called with a reference on the netdevice and devlink locks only,
1277 * rtnl_lock is not held.
1278 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1279 * int cmd);
1280 * Add, change, delete or get information on an IPv4 tunnel.
1281 */
1282struct net_device_ops {
1283 int (*ndo_init)(struct net_device *dev);
1284 void (*ndo_uninit)(struct net_device *dev);
1285 int (*ndo_open)(struct net_device *dev);
1286 int (*ndo_stop)(struct net_device *dev);
1287 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1288 struct net_device *dev);
1289 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1290 struct net_device *dev,
1291 netdev_features_t features);
1292 u16 (*ndo_select_queue)(struct net_device *dev,
1293 struct sk_buff *skb,
1294 struct net_device *sb_dev);
1295 void (*ndo_change_rx_flags)(struct net_device *dev,
1296 int flags);
1297 void (*ndo_set_rx_mode)(struct net_device *dev);
1298 int (*ndo_set_mac_address)(struct net_device *dev,
1299 void *addr);
1300 int (*ndo_validate_addr)(struct net_device *dev);
1301 int (*ndo_do_ioctl)(struct net_device *dev,
1302 struct ifreq *ifr, int cmd);
1303 int (*ndo_set_config)(struct net_device *dev,
1304 struct ifmap *map);
1305 int (*ndo_change_mtu)(struct net_device *dev,
1306 int new_mtu);
1307 int (*ndo_neigh_setup)(struct net_device *dev,
1308 struct neigh_parms *);
1309 void (*ndo_tx_timeout) (struct net_device *dev,
1310 unsigned int txqueue);
1311
1312 void (*ndo_get_stats64)(struct net_device *dev,
1313 struct rtnl_link_stats64 *storage);
1314 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1315 int (*ndo_get_offload_stats)(int attr_id,
1316 const struct net_device *dev,
1317 void *attr_data);
1318 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1319
1320 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1321 __be16 proto, u16 vid);
1322 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1323 __be16 proto, u16 vid);
1324#ifdef CONFIG_NET_POLL_CONTROLLER
1325 void (*ndo_poll_controller)(struct net_device *dev);
1326 int (*ndo_netpoll_setup)(struct net_device *dev,
1327 struct netpoll_info *info);
1328 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1329#endif
1330 int (*ndo_set_vf_mac)(struct net_device *dev,
1331 int queue, u8 *mac);
1332 int (*ndo_set_vf_vlan)(struct net_device *dev,
1333 int queue, u16 vlan,
1334 u8 qos, __be16 proto);
1335 int (*ndo_set_vf_rate)(struct net_device *dev,
1336 int vf, int min_tx_rate,
1337 int max_tx_rate);
1338 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1339 int vf, bool setting);
1340 int (*ndo_set_vf_trust)(struct net_device *dev,
1341 int vf, bool setting);
1342 int (*ndo_get_vf_config)(struct net_device *dev,
1343 int vf,
1344 struct ifla_vf_info *ivf);
1345 int (*ndo_set_vf_link_state)(struct net_device *dev,
1346 int vf, int link_state);
1347 int (*ndo_get_vf_stats)(struct net_device *dev,
1348 int vf,
1349 struct ifla_vf_stats
1350 *vf_stats);
1351 int (*ndo_set_vf_port)(struct net_device *dev,
1352 int vf,
1353 struct nlattr *port[]);
1354 int (*ndo_get_vf_port)(struct net_device *dev,
1355 int vf, struct sk_buff *skb);
1356 int (*ndo_get_vf_guid)(struct net_device *dev,
1357 int vf,
1358 struct ifla_vf_guid *node_guid,
1359 struct ifla_vf_guid *port_guid);
1360 int (*ndo_set_vf_guid)(struct net_device *dev,
1361 int vf, u64 guid,
1362 int guid_type);
1363 int (*ndo_set_vf_rss_query_en)(
1364 struct net_device *dev,
1365 int vf, bool setting);
1366 int (*ndo_setup_tc)(struct net_device *dev,
1367 enum tc_setup_type type,
1368 void *type_data);
1369#if IS_ENABLED(CONFIG_FCOE)
1370 int (*ndo_fcoe_enable)(struct net_device *dev);
1371 int (*ndo_fcoe_disable)(struct net_device *dev);
1372 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1373 u16 xid,
1374 struct scatterlist *sgl,
1375 unsigned int sgc);
1376 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1377 u16 xid);
1378 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1379 u16 xid,
1380 struct scatterlist *sgl,
1381 unsigned int sgc);
1382 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1383 struct netdev_fcoe_hbainfo *hbainfo);
1384#endif
1385
1386#if IS_ENABLED(CONFIG_LIBFCOE)
1387#define NETDEV_FCOE_WWNN 0
1388#define NETDEV_FCOE_WWPN 1
1389 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1390 u64 *wwn, int type);
1391#endif
1392
1393#ifdef CONFIG_RFS_ACCEL
1394 int (*ndo_rx_flow_steer)(struct net_device *dev,
1395 const struct sk_buff *skb,
1396 u16 rxq_index,
1397 u32 flow_id);
1398#endif
1399 int (*ndo_add_slave)(struct net_device *dev,
1400 struct net_device *slave_dev,
1401 struct netlink_ext_ack *extack);
1402 int (*ndo_del_slave)(struct net_device *dev,
1403 struct net_device *slave_dev);
1404 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1405 struct sk_buff *skb,
1406 bool all_slaves);
1407 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1408 netdev_features_t features);
1409 int (*ndo_set_features)(struct net_device *dev,
1410 netdev_features_t features);
1411 int (*ndo_neigh_construct)(struct net_device *dev,
1412 struct neighbour *n);
1413 void (*ndo_neigh_destroy)(struct net_device *dev,
1414 struct neighbour *n);
1415
1416 int (*ndo_fdb_add)(struct ndmsg *ndm,
1417 struct nlattr *tb[],
1418 struct net_device *dev,
1419 const unsigned char *addr,
1420 u16 vid,
1421 u16 flags,
1422 struct netlink_ext_ack *extack);
1423 int (*ndo_fdb_del)(struct ndmsg *ndm,
1424 struct nlattr *tb[],
1425 struct net_device *dev,
1426 const unsigned char *addr,
1427 u16 vid);
1428 int (*ndo_fdb_dump)(struct sk_buff *skb,
1429 struct netlink_callback *cb,
1430 struct net_device *dev,
1431 struct net_device *filter_dev,
1432 int *idx);
1433 int (*ndo_fdb_get)(struct sk_buff *skb,
1434 struct nlattr *tb[],
1435 struct net_device *dev,
1436 const unsigned char *addr,
1437 u16 vid, u32 portid, u32 seq,
1438 struct netlink_ext_ack *extack);
1439 int (*ndo_bridge_setlink)(struct net_device *dev,
1440 struct nlmsghdr *nlh,
1441 u16 flags,
1442 struct netlink_ext_ack *extack);
1443 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1444 u32 pid, u32 seq,
1445 struct net_device *dev,
1446 u32 filter_mask,
1447 int nlflags);
1448 int (*ndo_bridge_dellink)(struct net_device *dev,
1449 struct nlmsghdr *nlh,
1450 u16 flags);
1451 int (*ndo_change_carrier)(struct net_device *dev,
1452 bool new_carrier);
1453 int (*ndo_get_phys_port_id)(struct net_device *dev,
1454 struct netdev_phys_item_id *ppid);
1455 int (*ndo_get_port_parent_id)(struct net_device *dev,
1456 struct netdev_phys_item_id *ppid);
1457 int (*ndo_get_phys_port_name)(struct net_device *dev,
1458 char *name, size_t len);
1459 void (*ndo_udp_tunnel_add)(struct net_device *dev,
1460 struct udp_tunnel_info *ti);
1461 void (*ndo_udp_tunnel_del)(struct net_device *dev,
1462 struct udp_tunnel_info *ti);
1463 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1464 struct net_device *dev);
1465 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1466 void *priv);
1467
1468 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1469 int queue_index,
1470 u32 maxrate);
1471 int (*ndo_get_iflink)(const struct net_device *dev);
1472 int (*ndo_change_proto_down)(struct net_device *dev,
1473 bool proto_down);
1474 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1475 struct sk_buff *skb);
1476 void (*ndo_set_rx_headroom)(struct net_device *dev,
1477 int needed_headroom);
1478 int (*ndo_bpf)(struct net_device *dev,
1479 struct netdev_bpf *bpf);
1480 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1481 struct xdp_frame **xdp,
1482 u32 flags);
1483 int (*ndo_xsk_wakeup)(struct net_device *dev,
1484 u32 queue_id, u32 flags);
1485 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1486 int (*ndo_tunnel_ctl)(struct net_device *dev,
1487 struct ip_tunnel_parm *p, int cmd);
1488};
1489
1490/**
1491 * enum net_device_priv_flags - &struct net_device priv_flags
1492 *
1493 * These are the &struct net_device, they are only set internally
1494 * by drivers and used in the kernel. These flags are invisible to
1495 * userspace; this means that the order of these flags can change
1496 * during any kernel release.
1497 *
1498 * You should have a pretty good reason to be extending these flags.
1499 *
1500 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1501 * @IFF_EBRIDGE: Ethernet bridging device
1502 * @IFF_BONDING: bonding master or slave
1503 * @IFF_ISATAP: ISATAP interface (RFC4214)
1504 * @IFF_WAN_HDLC: WAN HDLC device
1505 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1506 * release skb->dst
1507 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1508 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1509 * @IFF_MACVLAN_PORT: device used as macvlan port
1510 * @IFF_BRIDGE_PORT: device used as bridge port
1511 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1512 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1513 * @IFF_UNICAST_FLT: Supports unicast filtering
1514 * @IFF_TEAM_PORT: device used as team port
1515 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1516 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1517 * change when it's running
1518 * @IFF_MACVLAN: Macvlan device
1519 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1520 * underlying stacked devices
1521 * @IFF_L3MDEV_MASTER: device is an L3 master device
1522 * @IFF_NO_QUEUE: device can run without qdisc attached
1523 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1524 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1525 * @IFF_TEAM: device is a team device
1526 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1527 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1528 * entity (i.e. the master device for bridged veth)
1529 * @IFF_MACSEC: device is a MACsec device
1530 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1531 * @IFF_FAILOVER: device is a failover master device
1532 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1533 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1534 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1535 */
1536enum netdev_priv_flags {
1537 IFF_802_1Q_VLAN = 1<<0,
1538 IFF_EBRIDGE = 1<<1,
1539 IFF_BONDING = 1<<2,
1540 IFF_ISATAP = 1<<3,
1541 IFF_WAN_HDLC = 1<<4,
1542 IFF_XMIT_DST_RELEASE = 1<<5,
1543 IFF_DONT_BRIDGE = 1<<6,
1544 IFF_DISABLE_NETPOLL = 1<<7,
1545 IFF_MACVLAN_PORT = 1<<8,
1546 IFF_BRIDGE_PORT = 1<<9,
1547 IFF_OVS_DATAPATH = 1<<10,
1548 IFF_TX_SKB_SHARING = 1<<11,
1549 IFF_UNICAST_FLT = 1<<12,
1550 IFF_TEAM_PORT = 1<<13,
1551 IFF_SUPP_NOFCS = 1<<14,
1552 IFF_LIVE_ADDR_CHANGE = 1<<15,
1553 IFF_MACVLAN = 1<<16,
1554 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1555 IFF_L3MDEV_MASTER = 1<<18,
1556 IFF_NO_QUEUE = 1<<19,
1557 IFF_OPENVSWITCH = 1<<20,
1558 IFF_L3MDEV_SLAVE = 1<<21,
1559 IFF_TEAM = 1<<22,
1560 IFF_RXFH_CONFIGURED = 1<<23,
1561 IFF_PHONY_HEADROOM = 1<<24,
1562 IFF_MACSEC = 1<<25,
1563 IFF_NO_RX_HANDLER = 1<<26,
1564 IFF_FAILOVER = 1<<27,
1565 IFF_FAILOVER_SLAVE = 1<<28,
1566 IFF_L3MDEV_RX_HANDLER = 1<<29,
1567 IFF_LIVE_RENAME_OK = 1<<30,
1568};
1569
1570#define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1571#define IFF_EBRIDGE IFF_EBRIDGE
1572#define IFF_BONDING IFF_BONDING
1573#define IFF_ISATAP IFF_ISATAP
1574#define IFF_WAN_HDLC IFF_WAN_HDLC
1575#define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1576#define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1577#define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1578#define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1579#define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1580#define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1581#define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1582#define IFF_UNICAST_FLT IFF_UNICAST_FLT
1583#define IFF_TEAM_PORT IFF_TEAM_PORT
1584#define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1585#define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1586#define IFF_MACVLAN IFF_MACVLAN
1587#define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1588#define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1589#define IFF_NO_QUEUE IFF_NO_QUEUE
1590#define IFF_OPENVSWITCH IFF_OPENVSWITCH
1591#define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1592#define IFF_TEAM IFF_TEAM
1593#define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1594#define IFF_MACSEC IFF_MACSEC
1595#define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1596#define IFF_FAILOVER IFF_FAILOVER
1597#define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1598#define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1599#define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1600
1601/**
1602 * struct net_device - The DEVICE structure.
1603 *
1604 * Actually, this whole structure is a big mistake. It mixes I/O
1605 * data with strictly "high-level" data, and it has to know about
1606 * almost every data structure used in the INET module.
1607 *
1608 * @name: This is the first field of the "visible" part of this structure
1609 * (i.e. as seen by users in the "Space.c" file). It is the name
1610 * of the interface.
1611 *
1612 * @name_node: Name hashlist node
1613 * @ifalias: SNMP alias
1614 * @mem_end: Shared memory end
1615 * @mem_start: Shared memory start
1616 * @base_addr: Device I/O address
1617 * @irq: Device IRQ number
1618 *
1619 * @state: Generic network queuing layer state, see netdev_state_t
1620 * @dev_list: The global list of network devices
1621 * @napi_list: List entry used for polling NAPI devices
1622 * @unreg_list: List entry when we are unregistering the
1623 * device; see the function unregister_netdev
1624 * @close_list: List entry used when we are closing the device
1625 * @ptype_all: Device-specific packet handlers for all protocols
1626 * @ptype_specific: Device-specific, protocol-specific packet handlers
1627 *
1628 * @adj_list: Directly linked devices, like slaves for bonding
1629 * @features: Currently active device features
1630 * @hw_features: User-changeable features
1631 *
1632 * @wanted_features: User-requested features
1633 * @vlan_features: Mask of features inheritable by VLAN devices
1634 *
1635 * @hw_enc_features: Mask of features inherited by encapsulating devices
1636 * This field indicates what encapsulation
1637 * offloads the hardware is capable of doing,
1638 * and drivers will need to set them appropriately.
1639 *
1640 * @mpls_features: Mask of features inheritable by MPLS
1641 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1642 *
1643 * @ifindex: interface index
1644 * @group: The group the device belongs to
1645 *
1646 * @stats: Statistics struct, which was left as a legacy, use
1647 * rtnl_link_stats64 instead
1648 *
1649 * @rx_dropped: Dropped packets by core network,
1650 * do not use this in drivers
1651 * @tx_dropped: Dropped packets by core network,
1652 * do not use this in drivers
1653 * @rx_nohandler: nohandler dropped packets by core network on
1654 * inactive devices, do not use this in drivers
1655 * @carrier_up_count: Number of times the carrier has been up
1656 * @carrier_down_count: Number of times the carrier has been down
1657 *
1658 * @wireless_handlers: List of functions to handle Wireless Extensions,
1659 * instead of ioctl,
1660 * see <net/iw_handler.h> for details.
1661 * @wireless_data: Instance data managed by the core of wireless extensions
1662 *
1663 * @netdev_ops: Includes several pointers to callbacks,
1664 * if one wants to override the ndo_*() functions
1665 * @ethtool_ops: Management operations
1666 * @l3mdev_ops: Layer 3 master device operations
1667 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1668 * discovery handling. Necessary for e.g. 6LoWPAN.
1669 * @xfrmdev_ops: Transformation offload operations
1670 * @tlsdev_ops: Transport Layer Security offload operations
1671 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1672 * of Layer 2 headers.
1673 *
1674 * @flags: Interface flags (a la BSD)
1675 * @priv_flags: Like 'flags' but invisible to userspace,
1676 * see if.h for the definitions
1677 * @gflags: Global flags ( kept as legacy )
1678 * @padded: How much padding added by alloc_netdev()
1679 * @operstate: RFC2863 operstate
1680 * @link_mode: Mapping policy to operstate
1681 * @if_port: Selectable AUI, TP, ...
1682 * @dma: DMA channel
1683 * @mtu: Interface MTU value
1684 * @min_mtu: Interface Minimum MTU value
1685 * @max_mtu: Interface Maximum MTU value
1686 * @type: Interface hardware type
1687 * @hard_header_len: Maximum hardware header length.
1688 * @min_header_len: Minimum hardware header length
1689 *
1690 * @needed_headroom: Extra headroom the hardware may need, but not in all
1691 * cases can this be guaranteed
1692 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1693 * cases can this be guaranteed. Some cases also use
1694 * LL_MAX_HEADER instead to allocate the skb
1695 *
1696 * interface address info:
1697 *
1698 * @perm_addr: Permanent hw address
1699 * @addr_assign_type: Hw address assignment type
1700 * @addr_len: Hardware address length
1701 * @upper_level: Maximum depth level of upper devices.
1702 * @lower_level: Maximum depth level of lower devices.
1703 * @neigh_priv_len: Used in neigh_alloc()
1704 * @dev_id: Used to differentiate devices that share
1705 * the same link layer address
1706 * @dev_port: Used to differentiate devices that share
1707 * the same function
1708 * @addr_list_lock: XXX: need comments on this one
1709 * @name_assign_type: network interface name assignment type
1710 * @uc_promisc: Counter that indicates promiscuous mode
1711 * has been enabled due to the need to listen to
1712 * additional unicast addresses in a device that
1713 * does not implement ndo_set_rx_mode()
1714 * @uc: unicast mac addresses
1715 * @mc: multicast mac addresses
1716 * @dev_addrs: list of device hw addresses
1717 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1718 * @promiscuity: Number of times the NIC is told to work in
1719 * promiscuous mode; if it becomes 0 the NIC will
1720 * exit promiscuous mode
1721 * @allmulti: Counter, enables or disables allmulticast mode
1722 *
1723 * @vlan_info: VLAN info
1724 * @dsa_ptr: dsa specific data
1725 * @tipc_ptr: TIPC specific data
1726 * @atalk_ptr: AppleTalk link
1727 * @ip_ptr: IPv4 specific data
1728 * @dn_ptr: DECnet specific data
1729 * @ip6_ptr: IPv6 specific data
1730 * @ax25_ptr: AX.25 specific data
1731 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1732 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1733 * device struct
1734 * @mpls_ptr: mpls_dev struct pointer
1735 *
1736 * @dev_addr: Hw address (before bcast,
1737 * because most packets are unicast)
1738 *
1739 * @_rx: Array of RX queues
1740 * @num_rx_queues: Number of RX queues
1741 * allocated at register_netdev() time
1742 * @real_num_rx_queues: Number of RX queues currently active in device
1743 * @xdp_prog: XDP sockets filter program pointer
1744 * @gro_flush_timeout: timeout for GRO layer in NAPI
1745 *
1746 * @rx_handler: handler for received packets
1747 * @rx_handler_data: XXX: need comments on this one
1748 * @miniq_ingress: ingress/clsact qdisc specific data for
1749 * ingress processing
1750 * @ingress_queue: XXX: need comments on this one
1751 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1752 * @broadcast: hw bcast address
1753 *
1754 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1755 * indexed by RX queue number. Assigned by driver.
1756 * This must only be set if the ndo_rx_flow_steer
1757 * operation is defined
1758 * @index_hlist: Device index hash chain
1759 *
1760 * @_tx: Array of TX queues
1761 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1762 * @real_num_tx_queues: Number of TX queues currently active in device
1763 * @qdisc: Root qdisc from userspace point of view
1764 * @tx_queue_len: Max frames per queue allowed
1765 * @tx_global_lock: XXX: need comments on this one
1766 * @xdp_bulkq: XDP device bulk queue
1767 * @xps_cpus_map: all CPUs map for XPS device
1768 * @xps_rxqs_map: all RXQs map for XPS device
1769 *
1770 * @xps_maps: XXX: need comments on this one
1771 * @miniq_egress: clsact qdisc specific data for
1772 * egress processing
1773 * @qdisc_hash: qdisc hash table
1774 * @watchdog_timeo: Represents the timeout that is used by
1775 * the watchdog (see dev_watchdog())
1776 * @watchdog_timer: List of timers
1777 *
1778 * @pcpu_refcnt: Number of references to this device
1779 * @todo_list: Delayed register/unregister
1780 * @link_watch_list: XXX: need comments on this one
1781 *
1782 * @reg_state: Register/unregister state machine
1783 * @dismantle: Device is going to be freed
1784 * @rtnl_link_state: This enum represents the phases of creating
1785 * a new link
1786 *
1787 * @needs_free_netdev: Should unregister perform free_netdev?
1788 * @priv_destructor: Called from unregister
1789 * @npinfo: XXX: need comments on this one
1790 * @nd_net: Network namespace this network device is inside
1791 *
1792 * @ml_priv: Mid-layer private
1793 * @lstats: Loopback statistics
1794 * @tstats: Tunnel statistics
1795 * @dstats: Dummy statistics
1796 * @vstats: Virtual ethernet statistics
1797 *
1798 * @garp_port: GARP
1799 * @mrp_port: MRP
1800 *
1801 * @dev: Class/net/name entry
1802 * @sysfs_groups: Space for optional device, statistics and wireless
1803 * sysfs groups
1804 *
1805 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1806 * @rtnl_link_ops: Rtnl_link_ops
1807 *
1808 * @gso_max_size: Maximum size of generic segmentation offload
1809 * @gso_max_segs: Maximum number of segments that can be passed to the
1810 * NIC for GSO
1811 *
1812 * @dcbnl_ops: Data Center Bridging netlink ops
1813 * @num_tc: Number of traffic classes in the net device
1814 * @tc_to_txq: XXX: need comments on this one
1815 * @prio_tc_map: XXX: need comments on this one
1816 *
1817 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1818 *
1819 * @priomap: XXX: need comments on this one
1820 * @phydev: Physical device may attach itself
1821 * for hardware timestamping
1822 * @sfp_bus: attached &struct sfp_bus structure.
1823 *
1824 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1825 * @qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1826 *
1827 * @proto_down: protocol port state information can be sent to the
1828 * switch driver and used to set the phys state of the
1829 * switch port.
1830 *
1831 * @wol_enabled: Wake-on-LAN is enabled
1832 *
1833 * @net_notifier_list: List of per-net netdev notifier block
1834 * that follow this device when it is moved
1835 * to another network namespace.
1836 *
1837 * @macsec_ops: MACsec offloading ops
1838 *
1839 * FIXME: cleanup struct net_device such that network protocol info
1840 * moves out.
1841 */
1842
1843struct net_device {
1844 char name[IFNAMSIZ];
1845 struct netdev_name_node *name_node;
1846 struct dev_ifalias __rcu *ifalias;
1847 /*
1848 * I/O specific fields
1849 * FIXME: Merge these and struct ifmap into one
1850 */
1851 unsigned long mem_end;
1852 unsigned long mem_start;
1853 unsigned long base_addr;
1854 int irq;
1855
1856 /*
1857 * Some hardware also needs these fields (state,dev_list,
1858 * napi_list,unreg_list,close_list) but they are not
1859 * part of the usual set specified in Space.c.
1860 */
1861
1862 unsigned long state;
1863
1864 struct list_head dev_list;
1865 struct list_head napi_list;
1866 struct list_head unreg_list;
1867 struct list_head close_list;
1868 struct list_head ptype_all;
1869 struct list_head ptype_specific;
1870
1871 struct {
1872 struct list_head upper;
1873 struct list_head lower;
1874 } adj_list;
1875
1876 netdev_features_t features;
1877 netdev_features_t hw_features;
1878 netdev_features_t wanted_features;
1879 netdev_features_t vlan_features;
1880 netdev_features_t hw_enc_features;
1881 netdev_features_t mpls_features;
1882 netdev_features_t gso_partial_features;
1883
1884 int ifindex;
1885 int group;
1886
1887 struct net_device_stats stats;
1888
1889 atomic_long_t rx_dropped;
1890 atomic_long_t tx_dropped;
1891 atomic_long_t rx_nohandler;
1892
1893 /* Stats to monitor link on/off, flapping */
1894 atomic_t carrier_up_count;
1895 atomic_t carrier_down_count;
1896
1897#ifdef CONFIG_WIRELESS_EXT
1898 const struct iw_handler_def *wireless_handlers;
1899 struct iw_public_data *wireless_data;
1900#endif
1901 const struct net_device_ops *netdev_ops;
1902 const struct ethtool_ops *ethtool_ops;
1903#ifdef CONFIG_NET_L3_MASTER_DEV
1904 const struct l3mdev_ops *l3mdev_ops;
1905#endif
1906#if IS_ENABLED(CONFIG_IPV6)
1907 const struct ndisc_ops *ndisc_ops;
1908#endif
1909
1910#ifdef CONFIG_XFRM_OFFLOAD
1911 const struct xfrmdev_ops *xfrmdev_ops;
1912#endif
1913
1914#if IS_ENABLED(CONFIG_TLS_DEVICE)
1915 const struct tlsdev_ops *tlsdev_ops;
1916#endif
1917
1918 const struct header_ops *header_ops;
1919
1920 unsigned int flags;
1921 unsigned int priv_flags;
1922
1923 unsigned short gflags;
1924 unsigned short padded;
1925
1926 unsigned char operstate;
1927 unsigned char link_mode;
1928
1929 unsigned char if_port;
1930 unsigned char dma;
1931
1932 /* Note : dev->mtu is often read without holding a lock.
1933 * Writers usually hold RTNL.
1934 * It is recommended to use READ_ONCE() to annotate the reads,
1935 * and to use WRITE_ONCE() to annotate the writes.
1936 */
1937 unsigned int mtu;
1938 unsigned int min_mtu;
1939 unsigned int max_mtu;
1940 unsigned short type;
1941 unsigned short hard_header_len;
1942 unsigned char min_header_len;
1943
1944 unsigned short needed_headroom;
1945 unsigned short needed_tailroom;
1946
1947 /* Interface address info. */
1948 unsigned char perm_addr[MAX_ADDR_LEN];
1949 unsigned char addr_assign_type;
1950 unsigned char addr_len;
1951 unsigned char upper_level;
1952 unsigned char lower_level;
1953 unsigned short neigh_priv_len;
1954 unsigned short dev_id;
1955 unsigned short dev_port;
1956 spinlock_t addr_list_lock;
1957 unsigned char name_assign_type;
1958 bool uc_promisc;
1959 struct netdev_hw_addr_list uc;
1960 struct netdev_hw_addr_list mc;
1961 struct netdev_hw_addr_list dev_addrs;
1962
1963#ifdef CONFIG_SYSFS
1964 struct kset *queues_kset;
1965#endif
1966 unsigned int promiscuity;
1967 unsigned int allmulti;
1968
1969
1970 /* Protocol-specific pointers */
1971
1972#if IS_ENABLED(CONFIG_VLAN_8021Q)
1973 struct vlan_info __rcu *vlan_info;
1974#endif
1975#if IS_ENABLED(CONFIG_NET_DSA)
1976 struct dsa_port *dsa_ptr;
1977#endif
1978#if IS_ENABLED(CONFIG_TIPC)
1979 struct tipc_bearer __rcu *tipc_ptr;
1980#endif
1981#if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1982 void *atalk_ptr;
1983#endif
1984 struct in_device __rcu *ip_ptr;
1985#if IS_ENABLED(CONFIG_DECNET)
1986 struct dn_dev __rcu *dn_ptr;
1987#endif
1988 struct inet6_dev __rcu *ip6_ptr;
1989#if IS_ENABLED(CONFIG_AX25)
1990 void *ax25_ptr;
1991#endif
1992 struct wireless_dev *ieee80211_ptr;
1993 struct wpan_dev *ieee802154_ptr;
1994#if IS_ENABLED(CONFIG_MPLS_ROUTING)
1995 struct mpls_dev __rcu *mpls_ptr;
1996#endif
1997
1998/*
1999 * Cache lines mostly used on receive path (including eth_type_trans())
2000 */
2001 /* Interface address info used in eth_type_trans() */
2002 unsigned char *dev_addr;
2003
2004 struct netdev_rx_queue *_rx;
2005 unsigned int num_rx_queues;
2006 unsigned int real_num_rx_queues;
2007
2008 struct bpf_prog __rcu *xdp_prog;
2009 unsigned long gro_flush_timeout;
2010 int napi_defer_hard_irqs;
2011 rx_handler_func_t __rcu *rx_handler;
2012 void __rcu *rx_handler_data;
2013
2014#ifdef CONFIG_NET_CLS_ACT
2015 struct mini_Qdisc __rcu *miniq_ingress;
2016#endif
2017 struct netdev_queue __rcu *ingress_queue;
2018#ifdef CONFIG_NETFILTER_INGRESS
2019 struct nf_hook_entries __rcu *nf_hooks_ingress;
2020#endif
2021
2022 unsigned char broadcast[MAX_ADDR_LEN];
2023#ifdef CONFIG_RFS_ACCEL
2024 struct cpu_rmap *rx_cpu_rmap;
2025#endif
2026 struct hlist_node index_hlist;
2027
2028/*
2029 * Cache lines mostly used on transmit path
2030 */
2031 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2032 unsigned int num_tx_queues;
2033 unsigned int real_num_tx_queues;
2034 struct Qdisc *qdisc;
2035 unsigned int tx_queue_len;
2036 spinlock_t tx_global_lock;
2037
2038 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2039
2040#ifdef CONFIG_XPS
2041 struct xps_dev_maps __rcu *xps_cpus_map;
2042 struct xps_dev_maps __rcu *xps_rxqs_map;
2043#endif
2044#ifdef CONFIG_NET_CLS_ACT
2045 struct mini_Qdisc __rcu *miniq_egress;
2046#endif
2047
2048#ifdef CONFIG_NET_SCHED
2049 DECLARE_HASHTABLE (qdisc_hash, 4);
2050#endif
2051 /* These may be needed for future network-power-down code. */
2052 struct timer_list watchdog_timer;
2053 int watchdog_timeo;
2054
2055 struct list_head todo_list;
2056 int __percpu *pcpu_refcnt;
2057
2058 struct list_head link_watch_list;
2059
2060 enum { NETREG_UNINITIALIZED=0,
2061 NETREG_REGISTERED, /* completed register_netdevice */
2062 NETREG_UNREGISTERING, /* called unregister_netdevice */
2063 NETREG_UNREGISTERED, /* completed unregister todo */
2064 NETREG_RELEASED, /* called free_netdev */
2065 NETREG_DUMMY, /* dummy device for NAPI poll */
2066 } reg_state:8;
2067
2068 bool dismantle;
2069
2070 enum {
2071 RTNL_LINK_INITIALIZED,
2072 RTNL_LINK_INITIALIZING,
2073 } rtnl_link_state:16;
2074
2075 bool needs_free_netdev;
2076 void (*priv_destructor)(struct net_device *dev);
2077
2078#ifdef CONFIG_NETPOLL
2079 struct netpoll_info __rcu *npinfo;
2080#endif
2081
2082 possible_net_t nd_net;
2083
2084 /* mid-layer private */
2085 union {
2086 void *ml_priv;
2087 struct pcpu_lstats __percpu *lstats;
2088 struct pcpu_sw_netstats __percpu *tstats;
2089 struct pcpu_dstats __percpu *dstats;
2090 };
2091
2092#if IS_ENABLED(CONFIG_GARP)
2093 struct garp_port __rcu *garp_port;
2094#endif
2095#if IS_ENABLED(CONFIG_MRP)
2096 struct mrp_port __rcu *mrp_port;
2097#endif
2098
2099 struct device dev;
2100 const struct attribute_group *sysfs_groups[4];
2101 const struct attribute_group *sysfs_rx_queue_group;
2102
2103 const struct rtnl_link_ops *rtnl_link_ops;
2104
2105 /* for setting kernel sock attribute on TCP connection setup */
2106#define GSO_MAX_SIZE 65536
2107 unsigned int gso_max_size;
2108#define GSO_MAX_SEGS 65535
2109 u16 gso_max_segs;
2110
2111#ifdef CONFIG_DCB
2112 const struct dcbnl_rtnl_ops *dcbnl_ops;
2113#endif
2114 s16 num_tc;
2115 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2116 u8 prio_tc_map[TC_BITMASK + 1];
2117
2118#if IS_ENABLED(CONFIG_FCOE)
2119 unsigned int fcoe_ddp_xid;
2120#endif
2121#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2122 struct netprio_map __rcu *priomap;
2123#endif
2124 struct phy_device *phydev;
2125 struct sfp_bus *sfp_bus;
2126 struct lock_class_key *qdisc_tx_busylock;
2127 struct lock_class_key *qdisc_running_key;
2128 bool proto_down;
2129 unsigned wol_enabled:1;
2130
2131 struct list_head net_notifier_list;
2132
2133#if IS_ENABLED(CONFIG_MACSEC)
2134 /* MACsec management functions */
2135 const struct macsec_ops *macsec_ops;
2136#endif
2137};
2138#define to_net_dev(d) container_of(d, struct net_device, dev)
2139
2140static inline bool netif_elide_gro(const struct net_device *dev)
2141{
2142 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2143 return true;
2144 return false;
2145}
2146
2147#define NETDEV_ALIGN 32
2148
2149static inline
2150int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2151{
2152 return dev->prio_tc_map[prio & TC_BITMASK];
2153}
2154
2155static inline
2156int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2157{
2158 if (tc >= dev->num_tc)
2159 return -EINVAL;
2160
2161 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2162 return 0;
2163}
2164
2165int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2166void netdev_reset_tc(struct net_device *dev);
2167int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2168int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2169
2170static inline
2171int netdev_get_num_tc(struct net_device *dev)
2172{
2173 return dev->num_tc;
2174}
2175
2176void netdev_unbind_sb_channel(struct net_device *dev,
2177 struct net_device *sb_dev);
2178int netdev_bind_sb_channel_queue(struct net_device *dev,
2179 struct net_device *sb_dev,
2180 u8 tc, u16 count, u16 offset);
2181int netdev_set_sb_channel(struct net_device *dev, u16 channel);
2182static inline int netdev_get_sb_channel(struct net_device *dev)
2183{
2184 return max_t(int, -dev->num_tc, 0);
2185}
2186
2187static inline
2188struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2189 unsigned int index)
2190{
2191 return &dev->_tx[index];
2192}
2193
2194static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2195 const struct sk_buff *skb)
2196{
2197 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2198}
2199
2200static inline void netdev_for_each_tx_queue(struct net_device *dev,
2201 void (*f)(struct net_device *,
2202 struct netdev_queue *,
2203 void *),
2204 void *arg)
2205{
2206 unsigned int i;
2207
2208 for (i = 0; i < dev->num_tx_queues; i++)
2209 f(dev, &dev->_tx[i], arg);
2210}
2211
2212#define netdev_lockdep_set_classes(dev) \
2213{ \
2214 static struct lock_class_key qdisc_tx_busylock_key; \
2215 static struct lock_class_key qdisc_running_key; \
2216 static struct lock_class_key qdisc_xmit_lock_key; \
2217 static struct lock_class_key dev_addr_list_lock_key; \
2218 unsigned int i; \
2219 \
2220 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2221 (dev)->qdisc_running_key = &qdisc_running_key; \
2222 lockdep_set_class(&(dev)->addr_list_lock, \
2223 &dev_addr_list_lock_key); \
2224 for (i = 0; i < (dev)->num_tx_queues; i++) \
2225 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2226 &qdisc_xmit_lock_key); \
2227}
2228
2229u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2230 struct net_device *sb_dev);
2231struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2232 struct sk_buff *skb,
2233 struct net_device *sb_dev);
2234
2235/* returns the headroom that the master device needs to take in account
2236 * when forwarding to this dev
2237 */
2238static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2239{
2240 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2241}
2242
2243static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2244{
2245 if (dev->netdev_ops->ndo_set_rx_headroom)
2246 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2247}
2248
2249/* set the device rx headroom to the dev's default */
2250static inline void netdev_reset_rx_headroom(struct net_device *dev)
2251{
2252 netdev_set_rx_headroom(dev, -1);
2253}
2254
2255/*
2256 * Net namespace inlines
2257 */
2258static inline
2259struct net *dev_net(const struct net_device *dev)
2260{
2261 return read_pnet(&dev->nd_net);
2262}
2263
2264static inline
2265void dev_net_set(struct net_device *dev, struct net *net)
2266{
2267 write_pnet(&dev->nd_net, net);
2268}
2269
2270/**
2271 * netdev_priv - access network device private data
2272 * @dev: network device
2273 *
2274 * Get network device private data
2275 */
2276static inline void *netdev_priv(const struct net_device *dev)
2277{
2278 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2279}
2280
2281/* Set the sysfs physical device reference for the network logical device
2282 * if set prior to registration will cause a symlink during initialization.
2283 */
2284#define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2285
2286/* Set the sysfs device type for the network logical device to allow
2287 * fine-grained identification of different network device types. For
2288 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2289 */
2290#define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2291
2292/* Default NAPI poll() weight
2293 * Device drivers are strongly advised to not use bigger value
2294 */
2295#define NAPI_POLL_WEIGHT 64
2296
2297/**
2298 * netif_napi_add - initialize a NAPI context
2299 * @dev: network device
2300 * @napi: NAPI context
2301 * @poll: polling function
2302 * @weight: default weight
2303 *
2304 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2305 * *any* of the other NAPI-related functions.
2306 */
2307void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2308 int (*poll)(struct napi_struct *, int), int weight);
2309
2310/**
2311 * netif_tx_napi_add - initialize a NAPI context
2312 * @dev: network device
2313 * @napi: NAPI context
2314 * @poll: polling function
2315 * @weight: default weight
2316 *
2317 * This variant of netif_napi_add() should be used from drivers using NAPI
2318 * to exclusively poll a TX queue.
2319 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2320 */
2321static inline void netif_tx_napi_add(struct net_device *dev,
2322 struct napi_struct *napi,
2323 int (*poll)(struct napi_struct *, int),
2324 int weight)
2325{
2326 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2327 netif_napi_add(dev, napi, poll, weight);
2328}
2329
2330/**
2331 * netif_napi_del - remove a NAPI context
2332 * @napi: NAPI context
2333 *
2334 * netif_napi_del() removes a NAPI context from the network device NAPI list
2335 */
2336void netif_napi_del(struct napi_struct *napi);
2337
2338struct napi_gro_cb {
2339 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2340 void *frag0;
2341
2342 /* Length of frag0. */
2343 unsigned int frag0_len;
2344
2345 /* This indicates where we are processing relative to skb->data. */
2346 int data_offset;
2347
2348 /* This is non-zero if the packet cannot be merged with the new skb. */
2349 u16 flush;
2350
2351 /* Save the IP ID here and check when we get to the transport layer */
2352 u16 flush_id;
2353
2354 /* Number of segments aggregated. */
2355 u16 count;
2356
2357 /* Start offset for remote checksum offload */
2358 u16 gro_remcsum_start;
2359
2360 /* jiffies when first packet was created/queued */
2361 unsigned long age;
2362
2363 /* Used in ipv6_gro_receive() and foo-over-udp */
2364 u16 proto;
2365
2366 /* This is non-zero if the packet may be of the same flow. */
2367 u8 same_flow:1;
2368
2369 /* Used in tunnel GRO receive */
2370 u8 encap_mark:1;
2371
2372 /* GRO checksum is valid */
2373 u8 csum_valid:1;
2374
2375 /* Number of checksums via CHECKSUM_UNNECESSARY */
2376 u8 csum_cnt:3;
2377
2378 /* Free the skb? */
2379 u8 free:2;
2380#define NAPI_GRO_FREE 1
2381#define NAPI_GRO_FREE_STOLEN_HEAD 2
2382
2383 /* Used in foo-over-udp, set in udp[46]_gro_receive */
2384 u8 is_ipv6:1;
2385
2386 /* Used in GRE, set in fou/gue_gro_receive */
2387 u8 is_fou:1;
2388
2389 /* Used to determine if flush_id can be ignored */
2390 u8 is_atomic:1;
2391
2392 /* Number of gro_receive callbacks this packet already went through */
2393 u8 recursion_counter:4;
2394
2395 /* GRO is done by frag_list pointer chaining. */
2396 u8 is_flist:1;
2397
2398 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2399 __wsum csum;
2400
2401 /* used in skb_gro_receive() slow path */
2402 struct sk_buff *last;
2403};
2404
2405#define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2406
2407#define GRO_RECURSION_LIMIT 15
2408static inline int gro_recursion_inc_test(struct sk_buff *skb)
2409{
2410 return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2411}
2412
2413typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
2414static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2415 struct list_head *head,
2416 struct sk_buff *skb)
2417{
2418 if (unlikely(gro_recursion_inc_test(skb))) {
2419 NAPI_GRO_CB(skb)->flush |= 1;
2420 return NULL;
2421 }
2422
2423 return cb(head, skb);
2424}
2425
2426typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2427 struct sk_buff *);
2428static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2429 struct sock *sk,
2430 struct list_head *head,
2431 struct sk_buff *skb)
2432{
2433 if (unlikely(gro_recursion_inc_test(skb))) {
2434 NAPI_GRO_CB(skb)->flush |= 1;
2435 return NULL;
2436 }
2437
2438 return cb(sk, head, skb);
2439}
2440
2441struct packet_type {
2442 __be16 type; /* This is really htons(ether_type). */
2443 bool ignore_outgoing;
2444 struct net_device *dev; /* NULL is wildcarded here */
2445 int (*func) (struct sk_buff *,
2446 struct net_device *,
2447 struct packet_type *,
2448 struct net_device *);
2449 void (*list_func) (struct list_head *,
2450 struct packet_type *,
2451 struct net_device *);
2452 bool (*id_match)(struct packet_type *ptype,
2453 struct sock *sk);
2454 void *af_packet_priv;
2455 struct list_head list;
2456};
2457
2458struct offload_callbacks {
2459 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2460 netdev_features_t features);
2461 struct sk_buff *(*gro_receive)(struct list_head *head,
2462 struct sk_buff *skb);
2463 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2464};
2465
2466struct packet_offload {
2467 __be16 type; /* This is really htons(ether_type). */
2468 u16 priority;
2469 struct offload_callbacks callbacks;
2470 struct list_head list;
2471};
2472
2473/* often modified stats are per-CPU, other are shared (netdev->stats) */
2474struct pcpu_sw_netstats {
2475 u64 rx_packets;
2476 u64 rx_bytes;
2477 u64 tx_packets;
2478 u64 tx_bytes;
2479 struct u64_stats_sync syncp;
2480} __aligned(4 * sizeof(u64));
2481
2482struct pcpu_lstats {
2483 u64_stats_t packets;
2484 u64_stats_t bytes;
2485 struct u64_stats_sync syncp;
2486} __aligned(2 * sizeof(u64));
2487
2488void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2489
2490static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2491{
2492 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2493
2494 u64_stats_update_begin(&lstats->syncp);
2495 u64_stats_add(&lstats->bytes, len);
2496 u64_stats_inc(&lstats->packets);
2497 u64_stats_update_end(&lstats->syncp);
2498}
2499
2500#define __netdev_alloc_pcpu_stats(type, gfp) \
2501({ \
2502 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2503 if (pcpu_stats) { \
2504 int __cpu; \
2505 for_each_possible_cpu(__cpu) { \
2506 typeof(type) *stat; \
2507 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2508 u64_stats_init(&stat->syncp); \
2509 } \
2510 } \
2511 pcpu_stats; \
2512})
2513
2514#define netdev_alloc_pcpu_stats(type) \
2515 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2516
2517enum netdev_lag_tx_type {
2518 NETDEV_LAG_TX_TYPE_UNKNOWN,
2519 NETDEV_LAG_TX_TYPE_RANDOM,
2520 NETDEV_LAG_TX_TYPE_BROADCAST,
2521 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2522 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2523 NETDEV_LAG_TX_TYPE_HASH,
2524};
2525
2526enum netdev_lag_hash {
2527 NETDEV_LAG_HASH_NONE,
2528 NETDEV_LAG_HASH_L2,
2529 NETDEV_LAG_HASH_L34,
2530 NETDEV_LAG_HASH_L23,
2531 NETDEV_LAG_HASH_E23,
2532 NETDEV_LAG_HASH_E34,
2533 NETDEV_LAG_HASH_UNKNOWN,
2534};
2535
2536struct netdev_lag_upper_info {
2537 enum netdev_lag_tx_type tx_type;
2538 enum netdev_lag_hash hash_type;
2539};
2540
2541struct netdev_lag_lower_state_info {
2542 u8 link_up : 1,
2543 tx_enabled : 1;
2544};
2545
2546#include <linux/notifier.h>
2547
2548/* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2549 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2550 * adding new types.
2551 */
2552enum netdev_cmd {
2553 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2554 NETDEV_DOWN,
2555 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2556 detected a hardware crash and restarted
2557 - we can use this eg to kick tcp sessions
2558 once done */
2559 NETDEV_CHANGE, /* Notify device state change */
2560 NETDEV_REGISTER,
2561 NETDEV_UNREGISTER,
2562 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2563 NETDEV_CHANGEADDR, /* notify after the address change */
2564 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2565 NETDEV_GOING_DOWN,
2566 NETDEV_CHANGENAME,
2567 NETDEV_FEAT_CHANGE,
2568 NETDEV_BONDING_FAILOVER,
2569 NETDEV_PRE_UP,
2570 NETDEV_PRE_TYPE_CHANGE,
2571 NETDEV_POST_TYPE_CHANGE,
2572 NETDEV_POST_INIT,
2573 NETDEV_RELEASE,
2574 NETDEV_NOTIFY_PEERS,
2575 NETDEV_JOIN,
2576 NETDEV_CHANGEUPPER,
2577 NETDEV_RESEND_IGMP,
2578 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2579 NETDEV_CHANGEINFODATA,
2580 NETDEV_BONDING_INFO,
2581 NETDEV_PRECHANGEUPPER,
2582 NETDEV_CHANGELOWERSTATE,
2583 NETDEV_UDP_TUNNEL_PUSH_INFO,
2584 NETDEV_UDP_TUNNEL_DROP_INFO,
2585 NETDEV_CHANGE_TX_QUEUE_LEN,
2586 NETDEV_CVLAN_FILTER_PUSH_INFO,
2587 NETDEV_CVLAN_FILTER_DROP_INFO,
2588 NETDEV_SVLAN_FILTER_PUSH_INFO,
2589 NETDEV_SVLAN_FILTER_DROP_INFO,
2590};
2591const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2592
2593int register_netdevice_notifier(struct notifier_block *nb);
2594int unregister_netdevice_notifier(struct notifier_block *nb);
2595int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2596int unregister_netdevice_notifier_net(struct net *net,
2597 struct notifier_block *nb);
2598int register_netdevice_notifier_dev_net(struct net_device *dev,
2599 struct notifier_block *nb,
2600 struct netdev_net_notifier *nn);
2601int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2602 struct notifier_block *nb,
2603 struct netdev_net_notifier *nn);
2604
2605struct netdev_notifier_info {
2606 struct net_device *dev;
2607 struct netlink_ext_ack *extack;
2608};
2609
2610struct netdev_notifier_info_ext {
2611 struct netdev_notifier_info info; /* must be first */
2612 union {
2613 u32 mtu;
2614 } ext;
2615};
2616
2617struct netdev_notifier_change_info {
2618 struct netdev_notifier_info info; /* must be first */
2619 unsigned int flags_changed;
2620};
2621
2622struct netdev_notifier_changeupper_info {
2623 struct netdev_notifier_info info; /* must be first */
2624 struct net_device *upper_dev; /* new upper dev */
2625 bool master; /* is upper dev master */
2626 bool linking; /* is the notification for link or unlink */
2627 void *upper_info; /* upper dev info */
2628};
2629
2630struct netdev_notifier_changelowerstate_info {
2631 struct netdev_notifier_info info; /* must be first */
2632 void *lower_state_info; /* is lower dev state */
2633};
2634
2635struct netdev_notifier_pre_changeaddr_info {
2636 struct netdev_notifier_info info; /* must be first */
2637 const unsigned char *dev_addr;
2638};
2639
2640static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2641 struct net_device *dev)
2642{
2643 info->dev = dev;
2644 info->extack = NULL;
2645}
2646
2647static inline struct net_device *
2648netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2649{
2650 return info->dev;
2651}
2652
2653static inline struct netlink_ext_ack *
2654netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2655{
2656 return info->extack;
2657}
2658
2659int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2660
2661
2662extern rwlock_t dev_base_lock; /* Device list lock */
2663
2664#define for_each_netdev(net, d) \
2665 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2666#define for_each_netdev_reverse(net, d) \
2667 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2668#define for_each_netdev_rcu(net, d) \
2669 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2670#define for_each_netdev_safe(net, d, n) \
2671 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2672#define for_each_netdev_continue(net, d) \
2673 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2674#define for_each_netdev_continue_reverse(net, d) \
2675 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2676 dev_list)
2677#define for_each_netdev_continue_rcu(net, d) \
2678 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2679#define for_each_netdev_in_bond_rcu(bond, slave) \
2680 for_each_netdev_rcu(&init_net, slave) \
2681 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2682#define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2683
2684static inline struct net_device *next_net_device(struct net_device *dev)
2685{
2686 struct list_head *lh;
2687 struct net *net;
2688
2689 net = dev_net(dev);
2690 lh = dev->dev_list.next;
2691 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2692}
2693
2694static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2695{
2696 struct list_head *lh;
2697 struct net *net;
2698
2699 net = dev_net(dev);
2700 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2701 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2702}
2703
2704static inline struct net_device *first_net_device(struct net *net)
2705{
2706 return list_empty(&net->dev_base_head) ? NULL :
2707 net_device_entry(net->dev_base_head.next);
2708}
2709
2710static inline struct net_device *first_net_device_rcu(struct net *net)
2711{
2712 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2713
2714 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2715}
2716
2717int netdev_boot_setup_check(struct net_device *dev);
2718unsigned long netdev_boot_base(const char *prefix, int unit);
2719struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2720 const char *hwaddr);
2721struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2722struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2723void dev_add_pack(struct packet_type *pt);
2724void dev_remove_pack(struct packet_type *pt);
2725void __dev_remove_pack(struct packet_type *pt);
2726void dev_add_offload(struct packet_offload *po);
2727void dev_remove_offload(struct packet_offload *po);
2728
2729int dev_get_iflink(const struct net_device *dev);
2730int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2731struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2732 unsigned short mask);
2733struct net_device *dev_get_by_name(struct net *net, const char *name);
2734struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2735struct net_device *__dev_get_by_name(struct net *net, const char *name);
2736int dev_alloc_name(struct net_device *dev, const char *name);
2737int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2738void dev_close(struct net_device *dev);
2739void dev_close_many(struct list_head *head, bool unlink);
2740void dev_disable_lro(struct net_device *dev);
2741int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2742u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2743 struct net_device *sb_dev);
2744u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2745 struct net_device *sb_dev);
2746int dev_queue_xmit(struct sk_buff *skb);
2747int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2748int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2749int register_netdevice(struct net_device *dev);
2750void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2751void unregister_netdevice_many(struct list_head *head);
2752static inline void unregister_netdevice(struct net_device *dev)
2753{
2754 unregister_netdevice_queue(dev, NULL);
2755}
2756
2757int netdev_refcnt_read(const struct net_device *dev);
2758void free_netdev(struct net_device *dev);
2759void netdev_freemem(struct net_device *dev);
2760void synchronize_net(void);
2761int init_dummy_netdev(struct net_device *dev);
2762
2763struct net_device *netdev_get_xmit_slave(struct net_device *dev,
2764 struct sk_buff *skb,
2765 bool all_slaves);
2766struct net_device *dev_get_by_index(struct net *net, int ifindex);
2767struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2768struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2769struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2770int netdev_get_name(struct net *net, char *name, int ifindex);
2771int dev_restart(struct net_device *dev);
2772int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2773int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb);
2774
2775static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2776{
2777 return NAPI_GRO_CB(skb)->data_offset;
2778}
2779
2780static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2781{
2782 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2783}
2784
2785static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2786{
2787 NAPI_GRO_CB(skb)->data_offset += len;
2788}
2789
2790static inline void *skb_gro_header_fast(struct sk_buff *skb,
2791 unsigned int offset)
2792{
2793 return NAPI_GRO_CB(skb)->frag0 + offset;
2794}
2795
2796static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2797{
2798 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2799}
2800
2801static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2802{
2803 NAPI_GRO_CB(skb)->frag0 = NULL;
2804 NAPI_GRO_CB(skb)->frag0_len = 0;
2805}
2806
2807static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2808 unsigned int offset)
2809{
2810 if (!pskb_may_pull(skb, hlen))
2811 return NULL;
2812
2813 skb_gro_frag0_invalidate(skb);
2814 return skb->data + offset;
2815}
2816
2817static inline void *skb_gro_network_header(struct sk_buff *skb)
2818{
2819 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2820 skb_network_offset(skb);
2821}
2822
2823static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2824 const void *start, unsigned int len)
2825{
2826 if (NAPI_GRO_CB(skb)->csum_valid)
2827 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2828 csum_partial(start, len, 0));
2829}
2830
2831/* GRO checksum functions. These are logical equivalents of the normal
2832 * checksum functions (in skbuff.h) except that they operate on the GRO
2833 * offsets and fields in sk_buff.
2834 */
2835
2836__sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2837
2838static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2839{
2840 return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2841}
2842
2843static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2844 bool zero_okay,
2845 __sum16 check)
2846{
2847 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2848 skb_checksum_start_offset(skb) <
2849 skb_gro_offset(skb)) &&
2850 !skb_at_gro_remcsum_start(skb) &&
2851 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2852 (!zero_okay || check));
2853}
2854
2855static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2856 __wsum psum)
2857{
2858 if (NAPI_GRO_CB(skb)->csum_valid &&
2859 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2860 return 0;
2861
2862 NAPI_GRO_CB(skb)->csum = psum;
2863
2864 return __skb_gro_checksum_complete(skb);
2865}
2866
2867static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2868{
2869 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2870 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2871 NAPI_GRO_CB(skb)->csum_cnt--;
2872 } else {
2873 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2874 * verified a new top level checksum or an encapsulated one
2875 * during GRO. This saves work if we fallback to normal path.
2876 */
2877 __skb_incr_checksum_unnecessary(skb);
2878 }
2879}
2880
2881#define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2882 compute_pseudo) \
2883({ \
2884 __sum16 __ret = 0; \
2885 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2886 __ret = __skb_gro_checksum_validate_complete(skb, \
2887 compute_pseudo(skb, proto)); \
2888 if (!__ret) \
2889 skb_gro_incr_csum_unnecessary(skb); \
2890 __ret; \
2891})
2892
2893#define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2894 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2895
2896#define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2897 compute_pseudo) \
2898 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2899
2900#define skb_gro_checksum_simple_validate(skb) \
2901 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2902
2903static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2904{
2905 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2906 !NAPI_GRO_CB(skb)->csum_valid);
2907}
2908
2909static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2910 __wsum pseudo)
2911{
2912 NAPI_GRO_CB(skb)->csum = ~pseudo;
2913 NAPI_GRO_CB(skb)->csum_valid = 1;
2914}
2915
2916#define skb_gro_checksum_try_convert(skb, proto, compute_pseudo) \
2917do { \
2918 if (__skb_gro_checksum_convert_check(skb)) \
2919 __skb_gro_checksum_convert(skb, \
2920 compute_pseudo(skb, proto)); \
2921} while (0)
2922
2923struct gro_remcsum {
2924 int offset;
2925 __wsum delta;
2926};
2927
2928static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2929{
2930 grc->offset = 0;
2931 grc->delta = 0;
2932}
2933
2934static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2935 unsigned int off, size_t hdrlen,
2936 int start, int offset,
2937 struct gro_remcsum *grc,
2938 bool nopartial)
2939{
2940 __wsum delta;
2941 size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2942
2943 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2944
2945 if (!nopartial) {
2946 NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2947 return ptr;
2948 }
2949
2950 ptr = skb_gro_header_fast(skb, off);
2951 if (skb_gro_header_hard(skb, off + plen)) {
2952 ptr = skb_gro_header_slow(skb, off + plen, off);
2953 if (!ptr)
2954 return NULL;
2955 }
2956
2957 delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2958 start, offset);
2959
2960 /* Adjust skb->csum since we changed the packet */
2961 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2962
2963 grc->offset = off + hdrlen + offset;
2964 grc->delta = delta;
2965
2966 return ptr;
2967}
2968
2969static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2970 struct gro_remcsum *grc)
2971{
2972 void *ptr;
2973 size_t plen = grc->offset + sizeof(u16);
2974
2975 if (!grc->delta)
2976 return;
2977
2978 ptr = skb_gro_header_fast(skb, grc->offset);
2979 if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2980 ptr = skb_gro_header_slow(skb, plen, grc->offset);
2981 if (!ptr)
2982 return;
2983 }
2984
2985 remcsum_unadjust((__sum16 *)ptr, grc->delta);
2986}
2987
2988#ifdef CONFIG_XFRM_OFFLOAD
2989static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2990{
2991 if (PTR_ERR(pp) != -EINPROGRESS)
2992 NAPI_GRO_CB(skb)->flush |= flush;
2993}
2994static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2995 struct sk_buff *pp,
2996 int flush,
2997 struct gro_remcsum *grc)
2998{
2999 if (PTR_ERR(pp) != -EINPROGRESS) {
3000 NAPI_GRO_CB(skb)->flush |= flush;
3001 skb_gro_remcsum_cleanup(skb, grc);
3002 skb->remcsum_offload = 0;
3003 }
3004}
3005#else
3006static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
3007{
3008 NAPI_GRO_CB(skb)->flush |= flush;
3009}
3010static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
3011 struct sk_buff *pp,
3012 int flush,
3013 struct gro_remcsum *grc)
3014{
3015 NAPI_GRO_CB(skb)->flush |= flush;
3016 skb_gro_remcsum_cleanup(skb, grc);
3017 skb->remcsum_offload = 0;
3018}
3019#endif
3020
3021static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3022 unsigned short type,
3023 const void *daddr, const void *saddr,
3024 unsigned int len)
3025{
3026 if (!dev->header_ops || !dev->header_ops->create)
3027 return 0;
3028
3029 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3030}
3031
3032static inline int dev_parse_header(const struct sk_buff *skb,
3033 unsigned char *haddr)
3034{
3035 const struct net_device *dev = skb->dev;
3036
3037 if (!dev->header_ops || !dev->header_ops->parse)
3038 return 0;
3039 return dev->header_ops->parse(skb, haddr);
3040}
3041
3042static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3043{
3044 const struct net_device *dev = skb->dev;
3045
3046 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3047 return 0;
3048 return dev->header_ops->parse_protocol(skb);
3049}
3050
3051/* ll_header must have at least hard_header_len allocated */
3052static inline bool dev_validate_header(const struct net_device *dev,
3053 char *ll_header, int len)
3054{
3055 if (likely(len >= dev->hard_header_len))
3056 return true;
3057 if (len < dev->min_header_len)
3058 return false;
3059
3060 if (capable(CAP_SYS_RAWIO)) {
3061 memset(ll_header + len, 0, dev->hard_header_len - len);
3062 return true;
3063 }
3064
3065 if (dev->header_ops && dev->header_ops->validate)
3066 return dev->header_ops->validate(ll_header, len);
3067
3068 return false;
3069}
3070
3071typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
3072 int len, int size);
3073int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
3074static inline int unregister_gifconf(unsigned int family)
3075{
3076 return register_gifconf(family, NULL);
3077}
3078
3079#ifdef CONFIG_NET_FLOW_LIMIT
3080#define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
3081struct sd_flow_limit {
3082 u64 count;
3083 unsigned int num_buckets;
3084 unsigned int history_head;
3085 u16 history[FLOW_LIMIT_HISTORY];
3086 u8 buckets[];
3087};
3088
3089extern int netdev_flow_limit_table_len;
3090#endif /* CONFIG_NET_FLOW_LIMIT */
3091
3092/*
3093 * Incoming packets are placed on per-CPU queues
3094 */
3095struct softnet_data {
3096 struct list_head poll_list;
3097 struct sk_buff_head process_queue;
3098
3099 /* stats */
3100 unsigned int processed;
3101 unsigned int time_squeeze;
3102 unsigned int received_rps;
3103#ifdef CONFIG_RPS
3104 struct softnet_data *rps_ipi_list;
3105#endif
3106#ifdef CONFIG_NET_FLOW_LIMIT
3107 struct sd_flow_limit __rcu *flow_limit;
3108#endif
3109 struct Qdisc *output_queue;
3110 struct Qdisc **output_queue_tailp;
3111 struct sk_buff *completion_queue;
3112#ifdef CONFIG_XFRM_OFFLOAD
3113 struct sk_buff_head xfrm_backlog;
3114#endif
3115 /* written and read only by owning cpu: */
3116 struct {
3117 u16 recursion;
3118 u8 more;
3119 } xmit;
3120#ifdef CONFIG_RPS
3121 /* input_queue_head should be written by cpu owning this struct,
3122 * and only read by other cpus. Worth using a cache line.
3123 */
3124 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3125
3126 /* Elements below can be accessed between CPUs for RPS/RFS */
3127 call_single_data_t csd ____cacheline_aligned_in_smp;
3128 struct softnet_data *rps_ipi_next;
3129 unsigned int cpu;
3130 unsigned int input_queue_tail;
3131#endif
3132 unsigned int dropped;
3133 struct sk_buff_head input_pkt_queue;
3134 struct napi_struct backlog;
3135
3136};
3137
3138static inline void input_queue_head_incr(struct softnet_data *sd)
3139{
3140#ifdef CONFIG_RPS
3141 sd->input_queue_head++;
3142#endif
3143}
3144
3145static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3146 unsigned int *qtail)
3147{
3148#ifdef CONFIG_RPS
3149 *qtail = ++sd->input_queue_tail;
3150#endif
3151}
3152
3153DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3154
3155static inline int dev_recursion_level(void)
3156{
3157 return this_cpu_read(softnet_data.xmit.recursion);
3158}
3159
3160#define XMIT_RECURSION_LIMIT 8
3161static inline bool dev_xmit_recursion(void)
3162{
3163 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3164 XMIT_RECURSION_LIMIT);
3165}
3166
3167static inline void dev_xmit_recursion_inc(void)
3168{
3169 __this_cpu_inc(softnet_data.xmit.recursion);
3170}
3171
3172static inline void dev_xmit_recursion_dec(void)
3173{
3174 __this_cpu_dec(softnet_data.xmit.recursion);
3175}
3176
3177void __netif_schedule(struct Qdisc *q);
3178void netif_schedule_queue(struct netdev_queue *txq);
3179
3180static inline void netif_tx_schedule_all(struct net_device *dev)
3181{
3182 unsigned int i;
3183
3184 for (i = 0; i < dev->num_tx_queues; i++)
3185 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3186}
3187
3188static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3189{
3190 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3191}
3192
3193/**
3194 * netif_start_queue - allow transmit
3195 * @dev: network device
3196 *
3197 * Allow upper layers to call the device hard_start_xmit routine.
3198 */
3199static inline void netif_start_queue(struct net_device *dev)
3200{
3201 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3202}
3203
3204static inline void netif_tx_start_all_queues(struct net_device *dev)
3205{
3206 unsigned int i;
3207
3208 for (i = 0; i < dev->num_tx_queues; i++) {
3209 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3210 netif_tx_start_queue(txq);
3211 }
3212}
3213
3214void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3215
3216/**
3217 * netif_wake_queue - restart transmit
3218 * @dev: network device
3219 *
3220 * Allow upper layers to call the device hard_start_xmit routine.
3221 * Used for flow control when transmit resources are available.
3222 */
3223static inline void netif_wake_queue(struct net_device *dev)
3224{
3225 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3226}
3227
3228static inline void netif_tx_wake_all_queues(struct net_device *dev)
3229{
3230 unsigned int i;
3231
3232 for (i = 0; i < dev->num_tx_queues; i++) {
3233 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3234 netif_tx_wake_queue(txq);
3235 }
3236}
3237
3238static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3239{
3240 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3241}
3242
3243/**
3244 * netif_stop_queue - stop transmitted packets
3245 * @dev: network device
3246 *
3247 * Stop upper layers calling the device hard_start_xmit routine.
3248 * Used for flow control when transmit resources are unavailable.
3249 */
3250static inline void netif_stop_queue(struct net_device *dev)
3251{
3252 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3253}
3254
3255void netif_tx_stop_all_queues(struct net_device *dev);
3256
3257static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3258{
3259 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3260}
3261
3262/**
3263 * netif_queue_stopped - test if transmit queue is flowblocked
3264 * @dev: network device
3265 *
3266 * Test if transmit queue on device is currently unable to send.
3267 */
3268static inline bool netif_queue_stopped(const struct net_device *dev)
3269{
3270 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3271}
3272
3273static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3274{
3275 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3276}
3277
3278static inline bool
3279netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3280{
3281 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3282}
3283
3284static inline bool
3285netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3286{
3287 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3288}
3289
3290/**
3291 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3292 * @dev_queue: pointer to transmit queue
3293 *
3294 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3295 * to give appropriate hint to the CPU.
3296 */
3297static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3298{
3299#ifdef CONFIG_BQL
3300 prefetchw(&dev_queue->dql.num_queued);
3301#endif
3302}
3303
3304/**
3305 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3306 * @dev_queue: pointer to transmit queue
3307 *
3308 * BQL enabled drivers might use this helper in their TX completion path,
3309 * to give appropriate hint to the CPU.
3310 */
3311static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3312{
3313#ifdef CONFIG_BQL
3314 prefetchw(&dev_queue->dql.limit);
3315#endif
3316}
3317
3318static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3319 unsigned int bytes)
3320{
3321#ifdef CONFIG_BQL
3322 dql_queued(&dev_queue->dql, bytes);
3323
3324 if (likely(dql_avail(&dev_queue->dql) >= 0))
3325 return;
3326
3327 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3328
3329 /*
3330 * The XOFF flag must be set before checking the dql_avail below,
3331 * because in netdev_tx_completed_queue we update the dql_completed
3332 * before checking the XOFF flag.
3333 */
3334 smp_mb();
3335
3336 /* check again in case another CPU has just made room avail */
3337 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3338 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3339#endif
3340}
3341
3342/* Variant of netdev_tx_sent_queue() for drivers that are aware
3343 * that they should not test BQL status themselves.
3344 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3345 * skb of a batch.
3346 * Returns true if the doorbell must be used to kick the NIC.
3347 */
3348static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3349 unsigned int bytes,
3350 bool xmit_more)
3351{
3352 if (xmit_more) {
3353#ifdef CONFIG_BQL
3354 dql_queued(&dev_queue->dql, bytes);
3355#endif
3356 return netif_tx_queue_stopped(dev_queue);
3357 }
3358 netdev_tx_sent_queue(dev_queue, bytes);
3359 return true;
3360}
3361
3362/**
3363 * netdev_sent_queue - report the number of bytes queued to hardware
3364 * @dev: network device
3365 * @bytes: number of bytes queued to the hardware device queue
3366 *
3367 * Report the number of bytes queued for sending/completion to the network
3368 * device hardware queue. @bytes should be a good approximation and should
3369 * exactly match netdev_completed_queue() @bytes
3370 */
3371static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3372{
3373 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3374}
3375
3376static inline bool __netdev_sent_queue(struct net_device *dev,
3377 unsigned int bytes,
3378 bool xmit_more)
3379{
3380 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3381 xmit_more);
3382}
3383
3384static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3385 unsigned int pkts, unsigned int bytes)
3386{
3387#ifdef CONFIG_BQL
3388 if (unlikely(!bytes))
3389 return;
3390
3391 dql_completed(&dev_queue->dql, bytes);
3392
3393 /*
3394 * Without the memory barrier there is a small possiblity that
3395 * netdev_tx_sent_queue will miss the update and cause the queue to
3396 * be stopped forever
3397 */
3398 smp_mb();
3399
3400 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3401 return;
3402
3403 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3404 netif_schedule_queue(dev_queue);
3405#endif
3406}
3407
3408/**
3409 * netdev_completed_queue - report bytes and packets completed by device
3410 * @dev: network device
3411 * @pkts: actual number of packets sent over the medium
3412 * @bytes: actual number of bytes sent over the medium
3413 *
3414 * Report the number of bytes and packets transmitted by the network device
3415 * hardware queue over the physical medium, @bytes must exactly match the
3416 * @bytes amount passed to netdev_sent_queue()
3417 */
3418static inline void netdev_completed_queue(struct net_device *dev,
3419 unsigned int pkts, unsigned int bytes)
3420{
3421 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3422}
3423
3424static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3425{
3426#ifdef CONFIG_BQL
3427 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3428 dql_reset(&q->dql);
3429#endif
3430}
3431
3432/**
3433 * netdev_reset_queue - reset the packets and bytes count of a network device
3434 * @dev_queue: network device
3435 *
3436 * Reset the bytes and packet count of a network device and clear the
3437 * software flow control OFF bit for this network device
3438 */
3439static inline void netdev_reset_queue(struct net_device *dev_queue)
3440{
3441 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3442}
3443
3444/**
3445 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3446 * @dev: network device
3447 * @queue_index: given tx queue index
3448 *
3449 * Returns 0 if given tx queue index >= number of device tx queues,
3450 * otherwise returns the originally passed tx queue index.
3451 */
3452static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3453{
3454 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3455 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3456 dev->name, queue_index,
3457 dev->real_num_tx_queues);
3458 return 0;
3459 }
3460
3461 return queue_index;
3462}
3463
3464/**
3465 * netif_running - test if up
3466 * @dev: network device
3467 *
3468 * Test if the device has been brought up.
3469 */
3470static inline bool netif_running(const struct net_device *dev)
3471{
3472 return test_bit(__LINK_STATE_START, &dev->state);
3473}
3474
3475/*
3476 * Routines to manage the subqueues on a device. We only need start,
3477 * stop, and a check if it's stopped. All other device management is
3478 * done at the overall netdevice level.
3479 * Also test the device if we're multiqueue.
3480 */
3481
3482/**
3483 * netif_start_subqueue - allow sending packets on subqueue
3484 * @dev: network device
3485 * @queue_index: sub queue index
3486 *
3487 * Start individual transmit queue of a device with multiple transmit queues.
3488 */
3489static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3490{
3491 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3492
3493 netif_tx_start_queue(txq);
3494}
3495
3496/**
3497 * netif_stop_subqueue - stop sending packets on subqueue
3498 * @dev: network device
3499 * @queue_index: sub queue index
3500 *
3501 * Stop individual transmit queue of a device with multiple transmit queues.
3502 */
3503static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3504{
3505 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3506 netif_tx_stop_queue(txq);
3507}
3508
3509/**
3510 * netif_subqueue_stopped - test status of subqueue
3511 * @dev: network device
3512 * @queue_index: sub queue index
3513 *
3514 * Check individual transmit queue of a device with multiple transmit queues.
3515 */
3516static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3517 u16 queue_index)
3518{
3519 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3520
3521 return netif_tx_queue_stopped(txq);
3522}
3523
3524static inline bool netif_subqueue_stopped(const struct net_device *dev,
3525 struct sk_buff *skb)
3526{
3527 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3528}
3529
3530/**
3531 * netif_wake_subqueue - allow sending packets on subqueue
3532 * @dev: network device
3533 * @queue_index: sub queue index
3534 *
3535 * Resume individual transmit queue of a device with multiple transmit queues.
3536 */
3537static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3538{
3539 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3540
3541 netif_tx_wake_queue(txq);
3542}
3543
3544#ifdef CONFIG_XPS
3545int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3546 u16 index);
3547int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3548 u16 index, bool is_rxqs_map);
3549
3550/**
3551 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3552 * @j: CPU/Rx queue index
3553 * @mask: bitmask of all cpus/rx queues
3554 * @nr_bits: number of bits in the bitmask
3555 *
3556 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3557 */
3558static inline bool netif_attr_test_mask(unsigned long j,
3559 const unsigned long *mask,
3560 unsigned int nr_bits)
3561{
3562 cpu_max_bits_warn(j, nr_bits);
3563 return test_bit(j, mask);
3564}
3565
3566/**
3567 * netif_attr_test_online - Test for online CPU/Rx queue
3568 * @j: CPU/Rx queue index
3569 * @online_mask: bitmask for CPUs/Rx queues that are online
3570 * @nr_bits: number of bits in the bitmask
3571 *
3572 * Returns true if a CPU/Rx queue is online.
3573 */
3574static inline bool netif_attr_test_online(unsigned long j,
3575 const unsigned long *online_mask,
3576 unsigned int nr_bits)
3577{
3578 cpu_max_bits_warn(j, nr_bits);
3579
3580 if (online_mask)
3581 return test_bit(j, online_mask);
3582
3583 return (j < nr_bits);
3584}
3585
3586/**
3587 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3588 * @n: CPU/Rx queue index
3589 * @srcp: the cpumask/Rx queue mask pointer
3590 * @nr_bits: number of bits in the bitmask
3591 *
3592 * Returns >= nr_bits if no further CPUs/Rx queues set.
3593 */
3594static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3595 unsigned int nr_bits)
3596{
3597 /* -1 is a legal arg here. */
3598 if (n != -1)
3599 cpu_max_bits_warn(n, nr_bits);
3600
3601 if (srcp)
3602 return find_next_bit(srcp, nr_bits, n + 1);
3603
3604 return n + 1;
3605}
3606
3607/**
3608 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3609 * @n: CPU/Rx queue index
3610 * @src1p: the first CPUs/Rx queues mask pointer
3611 * @src2p: the second CPUs/Rx queues mask pointer
3612 * @nr_bits: number of bits in the bitmask
3613 *
3614 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3615 */
3616static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3617 const unsigned long *src2p,
3618 unsigned int nr_bits)
3619{
3620 /* -1 is a legal arg here. */
3621 if (n != -1)
3622 cpu_max_bits_warn(n, nr_bits);
3623
3624 if (src1p && src2p)
3625 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3626 else if (src1p)
3627 return find_next_bit(src1p, nr_bits, n + 1);
3628 else if (src2p)
3629 return find_next_bit(src2p, nr_bits, n + 1);
3630
3631 return n + 1;
3632}
3633#else
3634static inline int netif_set_xps_queue(struct net_device *dev,
3635 const struct cpumask *mask,
3636 u16 index)
3637{
3638 return 0;
3639}
3640
3641static inline int __netif_set_xps_queue(struct net_device *dev,
3642 const unsigned long *mask,
3643 u16 index, bool is_rxqs_map)
3644{
3645 return 0;
3646}
3647#endif
3648
3649/**
3650 * netif_is_multiqueue - test if device has multiple transmit queues
3651 * @dev: network device
3652 *
3653 * Check if device has multiple transmit queues
3654 */
3655static inline bool netif_is_multiqueue(const struct net_device *dev)
3656{
3657 return dev->num_tx_queues > 1;
3658}
3659
3660int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3661
3662#ifdef CONFIG_SYSFS
3663int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3664#else
3665static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3666 unsigned int rxqs)
3667{
3668 dev->real_num_rx_queues = rxqs;
3669 return 0;
3670}
3671#endif
3672
3673static inline struct netdev_rx_queue *
3674__netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3675{
3676 return dev->_rx + rxq;
3677}
3678
3679#ifdef CONFIG_SYSFS
3680static inline unsigned int get_netdev_rx_queue_index(
3681 struct netdev_rx_queue *queue)
3682{
3683 struct net_device *dev = queue->dev;
3684 int index = queue - dev->_rx;
3685
3686 BUG_ON(index >= dev->num_rx_queues);
3687 return index;
3688}
3689#endif
3690
3691#define DEFAULT_MAX_NUM_RSS_QUEUES (8)
3692int netif_get_num_default_rss_queues(void);
3693
3694enum skb_free_reason {
3695 SKB_REASON_CONSUMED,
3696 SKB_REASON_DROPPED,
3697};
3698
3699void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3700void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3701
3702/*
3703 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3704 * interrupt context or with hardware interrupts being disabled.
3705 * (in_irq() || irqs_disabled())
3706 *
3707 * We provide four helpers that can be used in following contexts :
3708 *
3709 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3710 * replacing kfree_skb(skb)
3711 *
3712 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3713 * Typically used in place of consume_skb(skb) in TX completion path
3714 *
3715 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3716 * replacing kfree_skb(skb)
3717 *
3718 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3719 * and consumed a packet. Used in place of consume_skb(skb)
3720 */
3721static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3722{
3723 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3724}
3725
3726static inline void dev_consume_skb_irq(struct sk_buff *skb)
3727{
3728 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3729}
3730
3731static inline void dev_kfree_skb_any(struct sk_buff *skb)
3732{
3733 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3734}
3735
3736static inline void dev_consume_skb_any(struct sk_buff *skb)
3737{
3738 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3739}
3740
3741void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3742int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3743int netif_rx(struct sk_buff *skb);
3744int netif_rx_ni(struct sk_buff *skb);
3745int netif_receive_skb(struct sk_buff *skb);
3746int netif_receive_skb_core(struct sk_buff *skb);
3747void netif_receive_skb_list(struct list_head *head);
3748gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3749void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3750struct sk_buff *napi_get_frags(struct napi_struct *napi);
3751gro_result_t napi_gro_frags(struct napi_struct *napi);
3752struct packet_offload *gro_find_receive_by_type(__be16 type);
3753struct packet_offload *gro_find_complete_by_type(__be16 type);
3754
3755static inline void napi_free_frags(struct napi_struct *napi)
3756{
3757 kfree_skb(napi->skb);
3758 napi->skb = NULL;
3759}
3760
3761bool netdev_is_rx_handler_busy(struct net_device *dev);
3762int netdev_rx_handler_register(struct net_device *dev,
3763 rx_handler_func_t *rx_handler,
3764 void *rx_handler_data);
3765void netdev_rx_handler_unregister(struct net_device *dev);
3766
3767bool dev_valid_name(const char *name);
3768int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3769 bool *need_copyout);
3770int dev_ifconf(struct net *net, struct ifconf *, int);
3771int dev_ethtool(struct net *net, struct ifreq *);
3772unsigned int dev_get_flags(const struct net_device *);
3773int __dev_change_flags(struct net_device *dev, unsigned int flags,
3774 struct netlink_ext_ack *extack);
3775int dev_change_flags(struct net_device *dev, unsigned int flags,
3776 struct netlink_ext_ack *extack);
3777void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3778 unsigned int gchanges);
3779int dev_change_name(struct net_device *, const char *);
3780int dev_set_alias(struct net_device *, const char *, size_t);
3781int dev_get_alias(const struct net_device *, char *, size_t);
3782int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3783int __dev_set_mtu(struct net_device *, int);
3784int dev_validate_mtu(struct net_device *dev, int mtu,
3785 struct netlink_ext_ack *extack);
3786int dev_set_mtu_ext(struct net_device *dev, int mtu,
3787 struct netlink_ext_ack *extack);
3788int dev_set_mtu(struct net_device *, int);
3789int dev_change_tx_queue_len(struct net_device *, unsigned long);
3790void dev_set_group(struct net_device *, int);
3791int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3792 struct netlink_ext_ack *extack);
3793int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3794 struct netlink_ext_ack *extack);
3795int dev_change_carrier(struct net_device *, bool new_carrier);
3796int dev_get_phys_port_id(struct net_device *dev,
3797 struct netdev_phys_item_id *ppid);
3798int dev_get_phys_port_name(struct net_device *dev,
3799 char *name, size_t len);
3800int dev_get_port_parent_id(struct net_device *dev,
3801 struct netdev_phys_item_id *ppid, bool recurse);
3802bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3803int dev_change_proto_down(struct net_device *dev, bool proto_down);
3804int dev_change_proto_down_generic(struct net_device *dev, bool proto_down);
3805struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3806struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3807 struct netdev_queue *txq, int *ret);
3808
3809typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3810int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3811 int fd, int expected_fd, u32 flags);
3812u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3813 enum bpf_netdev_command cmd);
3814int xdp_umem_query(struct net_device *dev, u16 queue_id);
3815
3816int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3817int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3818bool is_skb_forwardable(const struct net_device *dev,
3819 const struct sk_buff *skb);
3820
3821static __always_inline int ____dev_forward_skb(struct net_device *dev,
3822 struct sk_buff *skb)
3823{
3824 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3825 unlikely(!is_skb_forwardable(dev, skb))) {
3826 atomic_long_inc(&dev->rx_dropped);
3827 kfree_skb(skb);
3828 return NET_RX_DROP;
3829 }
3830
3831 skb_scrub_packet(skb, true);
3832 skb->priority = 0;
3833 return 0;
3834}
3835
3836bool dev_nit_active(struct net_device *dev);
3837void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3838
3839extern int netdev_budget;
3840extern unsigned int netdev_budget_usecs;
3841
3842/* Called by rtnetlink.c:rtnl_unlock() */
3843void netdev_run_todo(void);
3844
3845/**
3846 * dev_put - release reference to device
3847 * @dev: network device
3848 *
3849 * Release reference to device to allow it to be freed.
3850 */
3851static inline void dev_put(struct net_device *dev)
3852{
3853 this_cpu_dec(*dev->pcpu_refcnt);
3854}
3855
3856/**
3857 * dev_hold - get reference to device
3858 * @dev: network device
3859 *
3860 * Hold reference to device to keep it from being freed.
3861 */
3862static inline void dev_hold(struct net_device *dev)
3863{
3864 this_cpu_inc(*dev->pcpu_refcnt);
3865}
3866
3867/* Carrier loss detection, dial on demand. The functions netif_carrier_on
3868 * and _off may be called from IRQ context, but it is caller
3869 * who is responsible for serialization of these calls.
3870 *
3871 * The name carrier is inappropriate, these functions should really be
3872 * called netif_lowerlayer_*() because they represent the state of any
3873 * kind of lower layer not just hardware media.
3874 */
3875
3876void linkwatch_init_dev(struct net_device *dev);
3877void linkwatch_fire_event(struct net_device *dev);
3878void linkwatch_forget_dev(struct net_device *dev);
3879
3880/**
3881 * netif_carrier_ok - test if carrier present
3882 * @dev: network device
3883 *
3884 * Check if carrier is present on device
3885 */
3886static inline bool netif_carrier_ok(const struct net_device *dev)
3887{
3888 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3889}
3890
3891unsigned long dev_trans_start(struct net_device *dev);
3892
3893void __netdev_watchdog_up(struct net_device *dev);
3894
3895void netif_carrier_on(struct net_device *dev);
3896
3897void netif_carrier_off(struct net_device *dev);
3898
3899/**
3900 * netif_dormant_on - mark device as dormant.
3901 * @dev: network device
3902 *
3903 * Mark device as dormant (as per RFC2863).
3904 *
3905 * The dormant state indicates that the relevant interface is not
3906 * actually in a condition to pass packets (i.e., it is not 'up') but is
3907 * in a "pending" state, waiting for some external event. For "on-
3908 * demand" interfaces, this new state identifies the situation where the
3909 * interface is waiting for events to place it in the up state.
3910 */
3911static inline void netif_dormant_on(struct net_device *dev)
3912{
3913 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3914 linkwatch_fire_event(dev);
3915}
3916
3917/**
3918 * netif_dormant_off - set device as not dormant.
3919 * @dev: network device
3920 *
3921 * Device is not in dormant state.
3922 */
3923static inline void netif_dormant_off(struct net_device *dev)
3924{
3925 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3926 linkwatch_fire_event(dev);
3927}
3928
3929/**
3930 * netif_dormant - test if device is dormant
3931 * @dev: network device
3932 *
3933 * Check if device is dormant.
3934 */
3935static inline bool netif_dormant(const struct net_device *dev)
3936{
3937 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3938}
3939
3940
3941/**
3942 * netif_testing_on - mark device as under test.
3943 * @dev: network device
3944 *
3945 * Mark device as under test (as per RFC2863).
3946 *
3947 * The testing state indicates that some test(s) must be performed on
3948 * the interface. After completion, of the test, the interface state
3949 * will change to up, dormant, or down, as appropriate.
3950 */
3951static inline void netif_testing_on(struct net_device *dev)
3952{
3953 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
3954 linkwatch_fire_event(dev);
3955}
3956
3957/**
3958 * netif_testing_off - set device as not under test.
3959 * @dev: network device
3960 *
3961 * Device is not in testing state.
3962 */
3963static inline void netif_testing_off(struct net_device *dev)
3964{
3965 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
3966 linkwatch_fire_event(dev);
3967}
3968
3969/**
3970 * netif_testing - test if device is under test
3971 * @dev: network device
3972 *
3973 * Check if device is under test
3974 */
3975static inline bool netif_testing(const struct net_device *dev)
3976{
3977 return test_bit(__LINK_STATE_TESTING, &dev->state);
3978}
3979
3980
3981/**
3982 * netif_oper_up - test if device is operational
3983 * @dev: network device
3984 *
3985 * Check if carrier is operational
3986 */
3987static inline bool netif_oper_up(const struct net_device *dev)
3988{
3989 return (dev->operstate == IF_OPER_UP ||
3990 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3991}
3992
3993/**
3994 * netif_device_present - is device available or removed
3995 * @dev: network device
3996 *
3997 * Check if device has not been removed from system.
3998 */
3999static inline bool netif_device_present(struct net_device *dev)
4000{
4001 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4002}
4003
4004void netif_device_detach(struct net_device *dev);
4005
4006void netif_device_attach(struct net_device *dev);
4007
4008/*
4009 * Network interface message level settings
4010 */
4011
4012enum {
4013 NETIF_MSG_DRV_BIT,
4014 NETIF_MSG_PROBE_BIT,
4015 NETIF_MSG_LINK_BIT,
4016 NETIF_MSG_TIMER_BIT,
4017 NETIF_MSG_IFDOWN_BIT,
4018 NETIF_MSG_IFUP_BIT,
4019 NETIF_MSG_RX_ERR_BIT,
4020 NETIF_MSG_TX_ERR_BIT,
4021 NETIF_MSG_TX_QUEUED_BIT,
4022 NETIF_MSG_INTR_BIT,
4023 NETIF_MSG_TX_DONE_BIT,
4024 NETIF_MSG_RX_STATUS_BIT,
4025 NETIF_MSG_PKTDATA_BIT,
4026 NETIF_MSG_HW_BIT,
4027 NETIF_MSG_WOL_BIT,
4028
4029 /* When you add a new bit above, update netif_msg_class_names array
4030 * in net/ethtool/common.c
4031 */
4032 NETIF_MSG_CLASS_COUNT,
4033};
4034/* Both ethtool_ops interface and internal driver implementation use u32 */
4035static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4036
4037#define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4038#define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4039
4040#define NETIF_MSG_DRV __NETIF_MSG(DRV)
4041#define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4042#define NETIF_MSG_LINK __NETIF_MSG(LINK)
4043#define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4044#define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4045#define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4046#define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4047#define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4048#define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4049#define NETIF_MSG_INTR __NETIF_MSG(INTR)
4050#define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4051#define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4052#define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4053#define NETIF_MSG_HW __NETIF_MSG(HW)
4054#define NETIF_MSG_WOL __NETIF_MSG(WOL)
4055
4056#define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4057#define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4058#define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4059#define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4060#define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4061#define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4062#define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4063#define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4064#define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4065#define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4066#define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4067#define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4068#define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4069#define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4070#define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4071
4072static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4073{
4074 /* use default */
4075 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4076 return default_msg_enable_bits;
4077 if (debug_value == 0) /* no output */
4078 return 0;
4079 /* set low N bits */
4080 return (1U << debug_value) - 1;
4081}
4082
4083static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4084{
4085 spin_lock(&txq->_xmit_lock);
4086 txq->xmit_lock_owner = cpu;
4087}
4088
4089static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4090{
4091 __acquire(&txq->_xmit_lock);
4092 return true;
4093}
4094
4095static inline void __netif_tx_release(struct netdev_queue *txq)
4096{
4097 __release(&txq->_xmit_lock);
4098}
4099
4100static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4101{
4102 spin_lock_bh(&txq->_xmit_lock);
4103 txq->xmit_lock_owner = smp_processor_id();
4104}
4105
4106static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4107{
4108 bool ok = spin_trylock(&txq->_xmit_lock);
4109 if (likely(ok))
4110 txq->xmit_lock_owner = smp_processor_id();
4111 return ok;
4112}
4113
4114static inline void __netif_tx_unlock(struct netdev_queue *txq)
4115{
4116 txq->xmit_lock_owner = -1;
4117 spin_unlock(&txq->_xmit_lock);
4118}
4119
4120static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4121{
4122 txq->xmit_lock_owner = -1;
4123 spin_unlock_bh(&txq->_xmit_lock);
4124}
4125
4126static inline void txq_trans_update(struct netdev_queue *txq)
4127{
4128 if (txq->xmit_lock_owner != -1)
4129 txq->trans_start = jiffies;
4130}
4131
4132/* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
4133static inline void netif_trans_update(struct net_device *dev)
4134{
4135 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4136
4137 if (txq->trans_start != jiffies)
4138 txq->trans_start = jiffies;
4139}
4140
4141/**
4142 * netif_tx_lock - grab network device transmit lock
4143 * @dev: network device
4144 *
4145 * Get network device transmit lock
4146 */
4147static inline void netif_tx_lock(struct net_device *dev)
4148{
4149 unsigned int i;
4150 int cpu;
4151
4152 spin_lock(&dev->tx_global_lock);
4153 cpu = smp_processor_id();
4154 for (i = 0; i < dev->num_tx_queues; i++) {
4155 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4156
4157 /* We are the only thread of execution doing a
4158 * freeze, but we have to grab the _xmit_lock in
4159 * order to synchronize with threads which are in
4160 * the ->hard_start_xmit() handler and already
4161 * checked the frozen bit.
4162 */
4163 __netif_tx_lock(txq, cpu);
4164 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
4165 __netif_tx_unlock(txq);
4166 }
4167}
4168
4169static inline void netif_tx_lock_bh(struct net_device *dev)
4170{
4171 local_bh_disable();
4172 netif_tx_lock(dev);
4173}
4174
4175static inline void netif_tx_unlock(struct net_device *dev)
4176{
4177 unsigned int i;
4178
4179 for (i = 0; i < dev->num_tx_queues; i++) {
4180 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4181
4182 /* No need to grab the _xmit_lock here. If the
4183 * queue is not stopped for another reason, we
4184 * force a schedule.
4185 */
4186 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
4187 netif_schedule_queue(txq);
4188 }
4189 spin_unlock(&dev->tx_global_lock);
4190}
4191
4192static inline void netif_tx_unlock_bh(struct net_device *dev)
4193{
4194 netif_tx_unlock(dev);
4195 local_bh_enable();
4196}
4197
4198#define HARD_TX_LOCK(dev, txq, cpu) { \
4199 if ((dev->features & NETIF_F_LLTX) == 0) { \
4200 __netif_tx_lock(txq, cpu); \
4201 } else { \
4202 __netif_tx_acquire(txq); \
4203 } \
4204}
4205
4206#define HARD_TX_TRYLOCK(dev, txq) \
4207 (((dev->features & NETIF_F_LLTX) == 0) ? \
4208 __netif_tx_trylock(txq) : \
4209 __netif_tx_acquire(txq))
4210
4211#define HARD_TX_UNLOCK(dev, txq) { \
4212 if ((dev->features & NETIF_F_LLTX) == 0) { \
4213 __netif_tx_unlock(txq); \
4214 } else { \
4215 __netif_tx_release(txq); \
4216 } \
4217}
4218
4219static inline void netif_tx_disable(struct net_device *dev)
4220{
4221 unsigned int i;
4222 int cpu;
4223
4224 local_bh_disable();
4225 cpu = smp_processor_id();
4226 for (i = 0; i < dev->num_tx_queues; i++) {
4227 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4228
4229 __netif_tx_lock(txq, cpu);
4230 netif_tx_stop_queue(txq);
4231 __netif_tx_unlock(txq);
4232 }
4233 local_bh_enable();
4234}
4235
4236static inline void netif_addr_lock(struct net_device *dev)
4237{
4238 spin_lock(&dev->addr_list_lock);
4239}
4240
4241static inline void netif_addr_lock_nested(struct net_device *dev)
4242{
4243 spin_lock_nested(&dev->addr_list_lock, dev->lower_level);
4244}
4245
4246static inline void netif_addr_lock_bh(struct net_device *dev)
4247{
4248 spin_lock_bh(&dev->addr_list_lock);
4249}
4250
4251static inline void netif_addr_unlock(struct net_device *dev)
4252{
4253 spin_unlock(&dev->addr_list_lock);
4254}
4255
4256static inline void netif_addr_unlock_bh(struct net_device *dev)
4257{
4258 spin_unlock_bh(&dev->addr_list_lock);
4259}
4260
4261/*
4262 * dev_addrs walker. Should be used only for read access. Call with
4263 * rcu_read_lock held.
4264 */
4265#define for_each_dev_addr(dev, ha) \
4266 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4267
4268/* These functions live elsewhere (drivers/net/net_init.c, but related) */
4269
4270void ether_setup(struct net_device *dev);
4271
4272/* Support for loadable net-drivers */
4273struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4274 unsigned char name_assign_type,
4275 void (*setup)(struct net_device *),
4276 unsigned int txqs, unsigned int rxqs);
4277#define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4278 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4279
4280#define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4281 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4282 count)
4283
4284int register_netdev(struct net_device *dev);
4285void unregister_netdev(struct net_device *dev);
4286
4287int devm_register_netdev(struct device *dev, struct net_device *ndev);
4288
4289/* General hardware address lists handling functions */
4290int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4291 struct netdev_hw_addr_list *from_list, int addr_len);
4292void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4293 struct netdev_hw_addr_list *from_list, int addr_len);
4294int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4295 struct net_device *dev,
4296 int (*sync)(struct net_device *, const unsigned char *),
4297 int (*unsync)(struct net_device *,
4298 const unsigned char *));
4299int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4300 struct net_device *dev,
4301 int (*sync)(struct net_device *,
4302 const unsigned char *, int),
4303 int (*unsync)(struct net_device *,
4304 const unsigned char *, int));
4305void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4306 struct net_device *dev,
4307 int (*unsync)(struct net_device *,
4308 const unsigned char *, int));
4309void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4310 struct net_device *dev,
4311 int (*unsync)(struct net_device *,
4312 const unsigned char *));
4313void __hw_addr_init(struct netdev_hw_addr_list *list);
4314
4315/* Functions used for device addresses handling */
4316int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4317 unsigned char addr_type);
4318int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4319 unsigned char addr_type);
4320void dev_addr_flush(struct net_device *dev);
4321int dev_addr_init(struct net_device *dev);
4322
4323/* Functions used for unicast addresses handling */
4324int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4325int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4326int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4327int dev_uc_sync(struct net_device *to, struct net_device *from);
4328int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4329void dev_uc_unsync(struct net_device *to, struct net_device *from);
4330void dev_uc_flush(struct net_device *dev);
4331void dev_uc_init(struct net_device *dev);
4332
4333/**
4334 * __dev_uc_sync - Synchonize device's unicast list
4335 * @dev: device to sync
4336 * @sync: function to call if address should be added
4337 * @unsync: function to call if address should be removed
4338 *
4339 * Add newly added addresses to the interface, and release
4340 * addresses that have been deleted.
4341 */
4342static inline int __dev_uc_sync(struct net_device *dev,
4343 int (*sync)(struct net_device *,
4344 const unsigned char *),
4345 int (*unsync)(struct net_device *,
4346 const unsigned char *))
4347{
4348 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4349}
4350
4351/**
4352 * __dev_uc_unsync - Remove synchronized addresses from device
4353 * @dev: device to sync
4354 * @unsync: function to call if address should be removed
4355 *
4356 * Remove all addresses that were added to the device by dev_uc_sync().
4357 */
4358static inline void __dev_uc_unsync(struct net_device *dev,
4359 int (*unsync)(struct net_device *,
4360 const unsigned char *))
4361{
4362 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4363}
4364
4365/* Functions used for multicast addresses handling */
4366int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4367int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4368int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4369int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4370int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4371int dev_mc_sync(struct net_device *to, struct net_device *from);
4372int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4373void dev_mc_unsync(struct net_device *to, struct net_device *from);
4374void dev_mc_flush(struct net_device *dev);
4375void dev_mc_init(struct net_device *dev);
4376
4377/**
4378 * __dev_mc_sync - Synchonize device's multicast list
4379 * @dev: device to sync
4380 * @sync: function to call if address should be added
4381 * @unsync: function to call if address should be removed
4382 *
4383 * Add newly added addresses to the interface, and release
4384 * addresses that have been deleted.
4385 */
4386static inline int __dev_mc_sync(struct net_device *dev,
4387 int (*sync)(struct net_device *,
4388 const unsigned char *),
4389 int (*unsync)(struct net_device *,
4390 const unsigned char *))
4391{
4392 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4393}
4394
4395/**
4396 * __dev_mc_unsync - Remove synchronized addresses from device
4397 * @dev: device to sync
4398 * @unsync: function to call if address should be removed
4399 *
4400 * Remove all addresses that were added to the device by dev_mc_sync().
4401 */
4402static inline void __dev_mc_unsync(struct net_device *dev,
4403 int (*unsync)(struct net_device *,
4404 const unsigned char *))
4405{
4406 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4407}
4408
4409/* Functions used for secondary unicast and multicast support */
4410void dev_set_rx_mode(struct net_device *dev);
4411void __dev_set_rx_mode(struct net_device *dev);
4412int dev_set_promiscuity(struct net_device *dev, int inc);
4413int dev_set_allmulti(struct net_device *dev, int inc);
4414void netdev_state_change(struct net_device *dev);
4415void netdev_notify_peers(struct net_device *dev);
4416void netdev_features_change(struct net_device *dev);
4417/* Load a device via the kmod */
4418void dev_load(struct net *net, const char *name);
4419struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4420 struct rtnl_link_stats64 *storage);
4421void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4422 const struct net_device_stats *netdev_stats);
4423
4424extern int netdev_max_backlog;
4425extern int netdev_tstamp_prequeue;
4426extern int weight_p;
4427extern int dev_weight_rx_bias;
4428extern int dev_weight_tx_bias;
4429extern int dev_rx_weight;
4430extern int dev_tx_weight;
4431extern int gro_normal_batch;
4432
4433bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4434struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4435 struct list_head **iter);
4436struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4437 struct list_head **iter);
4438
4439/* iterate through upper list, must be called under RCU read lock */
4440#define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4441 for (iter = &(dev)->adj_list.upper, \
4442 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4443 updev; \
4444 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4445
4446int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4447 int (*fn)(struct net_device *upper_dev,
4448 void *data),
4449 void *data);
4450
4451bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4452 struct net_device *upper_dev);
4453
4454bool netdev_has_any_upper_dev(struct net_device *dev);
4455
4456void *netdev_lower_get_next_private(struct net_device *dev,
4457 struct list_head **iter);
4458void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4459 struct list_head **iter);
4460
4461#define netdev_for_each_lower_private(dev, priv, iter) \
4462 for (iter = (dev)->adj_list.lower.next, \
4463 priv = netdev_lower_get_next_private(dev, &(iter)); \
4464 priv; \
4465 priv = netdev_lower_get_next_private(dev, &(iter)))
4466
4467#define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4468 for (iter = &(dev)->adj_list.lower, \
4469 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4470 priv; \
4471 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4472
4473void *netdev_lower_get_next(struct net_device *dev,
4474 struct list_head **iter);
4475
4476#define netdev_for_each_lower_dev(dev, ldev, iter) \
4477 for (iter = (dev)->adj_list.lower.next, \
4478 ldev = netdev_lower_get_next(dev, &(iter)); \
4479 ldev; \
4480 ldev = netdev_lower_get_next(dev, &(iter)))
4481
4482struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4483 struct list_head **iter);
4484int netdev_walk_all_lower_dev(struct net_device *dev,
4485 int (*fn)(struct net_device *lower_dev,
4486 void *data),
4487 void *data);
4488int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4489 int (*fn)(struct net_device *lower_dev,
4490 void *data),
4491 void *data);
4492
4493void *netdev_adjacent_get_private(struct list_head *adj_list);
4494void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4495struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4496struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4497int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4498 struct netlink_ext_ack *extack);
4499int netdev_master_upper_dev_link(struct net_device *dev,
4500 struct net_device *upper_dev,
4501 void *upper_priv, void *upper_info,
4502 struct netlink_ext_ack *extack);
4503void netdev_upper_dev_unlink(struct net_device *dev,
4504 struct net_device *upper_dev);
4505int netdev_adjacent_change_prepare(struct net_device *old_dev,
4506 struct net_device *new_dev,
4507 struct net_device *dev,
4508 struct netlink_ext_ack *extack);
4509void netdev_adjacent_change_commit(struct net_device *old_dev,
4510 struct net_device *new_dev,
4511 struct net_device *dev);
4512void netdev_adjacent_change_abort(struct net_device *old_dev,
4513 struct net_device *new_dev,
4514 struct net_device *dev);
4515void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4516void *netdev_lower_dev_get_private(struct net_device *dev,
4517 struct net_device *lower_dev);
4518void netdev_lower_state_changed(struct net_device *lower_dev,
4519 void *lower_state_info);
4520
4521/* RSS keys are 40 or 52 bytes long */
4522#define NETDEV_RSS_KEY_LEN 52
4523extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4524void netdev_rss_key_fill(void *buffer, size_t len);
4525
4526int skb_checksum_help(struct sk_buff *skb);
4527int skb_crc32c_csum_help(struct sk_buff *skb);
4528int skb_csum_hwoffload_help(struct sk_buff *skb,
4529 const netdev_features_t features);
4530
4531struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4532 netdev_features_t features, bool tx_path);
4533struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4534 netdev_features_t features);
4535
4536struct netdev_bonding_info {
4537 ifslave slave;
4538 ifbond master;
4539};
4540
4541struct netdev_notifier_bonding_info {
4542 struct netdev_notifier_info info; /* must be first */
4543 struct netdev_bonding_info bonding_info;
4544};
4545
4546void netdev_bonding_info_change(struct net_device *dev,
4547 struct netdev_bonding_info *bonding_info);
4548
4549#if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4550void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4551#else
4552static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4553 const void *data)
4554{
4555}
4556#endif
4557
4558static inline
4559struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4560{
4561 return __skb_gso_segment(skb, features, true);
4562}
4563__be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4564
4565static inline bool can_checksum_protocol(netdev_features_t features,
4566 __be16 protocol)
4567{
4568 if (protocol == htons(ETH_P_FCOE))
4569 return !!(features & NETIF_F_FCOE_CRC);
4570
4571 /* Assume this is an IP checksum (not SCTP CRC) */
4572
4573 if (features & NETIF_F_HW_CSUM) {
4574 /* Can checksum everything */
4575 return true;
4576 }
4577
4578 switch (protocol) {
4579 case htons(ETH_P_IP):
4580 return !!(features & NETIF_F_IP_CSUM);
4581 case htons(ETH_P_IPV6):
4582 return !!(features & NETIF_F_IPV6_CSUM);
4583 default:
4584 return false;
4585 }
4586}
4587
4588#ifdef CONFIG_BUG
4589void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4590#else
4591static inline void netdev_rx_csum_fault(struct net_device *dev,
4592 struct sk_buff *skb)
4593{
4594}
4595#endif
4596/* rx skb timestamps */
4597void net_enable_timestamp(void);
4598void net_disable_timestamp(void);
4599
4600#ifdef CONFIG_PROC_FS
4601int __init dev_proc_init(void);
4602#else
4603#define dev_proc_init() 0
4604#endif
4605
4606static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4607 struct sk_buff *skb, struct net_device *dev,
4608 bool more)
4609{
4610 __this_cpu_write(softnet_data.xmit.more, more);
4611 return ops->ndo_start_xmit(skb, dev);
4612}
4613
4614static inline bool netdev_xmit_more(void)
4615{
4616 return __this_cpu_read(softnet_data.xmit.more);
4617}
4618
4619static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4620 struct netdev_queue *txq, bool more)
4621{
4622 const struct net_device_ops *ops = dev->netdev_ops;
4623 netdev_tx_t rc;
4624
4625 rc = __netdev_start_xmit(ops, skb, dev, more);
4626 if (rc == NETDEV_TX_OK)
4627 txq_trans_update(txq);
4628
4629 return rc;
4630}
4631
4632int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4633 const void *ns);
4634void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4635 const void *ns);
4636
4637static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4638{
4639 return netdev_class_create_file_ns(class_attr, NULL);
4640}
4641
4642static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4643{
4644 netdev_class_remove_file_ns(class_attr, NULL);
4645}
4646
4647extern const struct kobj_ns_type_operations net_ns_type_operations;
4648
4649const char *netdev_drivername(const struct net_device *dev);
4650
4651void linkwatch_run_queue(void);
4652
4653static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4654 netdev_features_t f2)
4655{
4656 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4657 if (f1 & NETIF_F_HW_CSUM)
4658 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4659 else
4660 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4661 }
4662
4663 return f1 & f2;
4664}
4665
4666static inline netdev_features_t netdev_get_wanted_features(
4667 struct net_device *dev)
4668{
4669 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4670}
4671netdev_features_t netdev_increment_features(netdev_features_t all,
4672 netdev_features_t one, netdev_features_t mask);
4673
4674/* Allow TSO being used on stacked device :
4675 * Performing the GSO segmentation before last device
4676 * is a performance improvement.
4677 */
4678static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4679 netdev_features_t mask)
4680{
4681 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4682}
4683
4684int __netdev_update_features(struct net_device *dev);
4685void netdev_update_features(struct net_device *dev);
4686void netdev_change_features(struct net_device *dev);
4687
4688void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4689 struct net_device *dev);
4690
4691netdev_features_t passthru_features_check(struct sk_buff *skb,
4692 struct net_device *dev,
4693 netdev_features_t features);
4694netdev_features_t netif_skb_features(struct sk_buff *skb);
4695
4696static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4697{
4698 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4699
4700 /* check flags correspondence */
4701 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4702 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4703 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4704 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4705 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4706 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4707 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4708 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4709 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4710 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4711 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4712 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4713 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4714 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4715 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4716 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4717 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4718 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4719 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4720
4721 return (features & feature) == feature;
4722}
4723
4724static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4725{
4726 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4727 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4728}
4729
4730static inline bool netif_needs_gso(struct sk_buff *skb,
4731 netdev_features_t features)
4732{
4733 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4734 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4735 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4736}
4737
4738static inline void netif_set_gso_max_size(struct net_device *dev,
4739 unsigned int size)
4740{
4741 dev->gso_max_size = size;
4742}
4743
4744static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4745 int pulled_hlen, u16 mac_offset,
4746 int mac_len)
4747{
4748 skb->protocol = protocol;
4749 skb->encapsulation = 1;
4750 skb_push(skb, pulled_hlen);
4751 skb_reset_transport_header(skb);
4752 skb->mac_header = mac_offset;
4753 skb->network_header = skb->mac_header + mac_len;
4754 skb->mac_len = mac_len;
4755}
4756
4757static inline bool netif_is_macsec(const struct net_device *dev)
4758{
4759 return dev->priv_flags & IFF_MACSEC;
4760}
4761
4762static inline bool netif_is_macvlan(const struct net_device *dev)
4763{
4764 return dev->priv_flags & IFF_MACVLAN;
4765}
4766
4767static inline bool netif_is_macvlan_port(const struct net_device *dev)
4768{
4769 return dev->priv_flags & IFF_MACVLAN_PORT;
4770}
4771
4772static inline bool netif_is_bond_master(const struct net_device *dev)
4773{
4774 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4775}
4776
4777static inline bool netif_is_bond_slave(const struct net_device *dev)
4778{
4779 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4780}
4781
4782static inline bool netif_supports_nofcs(struct net_device *dev)
4783{
4784 return dev->priv_flags & IFF_SUPP_NOFCS;
4785}
4786
4787static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4788{
4789 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4790}
4791
4792static inline bool netif_is_l3_master(const struct net_device *dev)
4793{
4794 return dev->priv_flags & IFF_L3MDEV_MASTER;
4795}
4796
4797static inline bool netif_is_l3_slave(const struct net_device *dev)
4798{
4799 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4800}
4801
4802static inline bool netif_is_bridge_master(const struct net_device *dev)
4803{
4804 return dev->priv_flags & IFF_EBRIDGE;
4805}
4806
4807static inline bool netif_is_bridge_port(const struct net_device *dev)
4808{
4809 return dev->priv_flags & IFF_BRIDGE_PORT;
4810}
4811
4812static inline bool netif_is_ovs_master(const struct net_device *dev)
4813{
4814 return dev->priv_flags & IFF_OPENVSWITCH;
4815}
4816
4817static inline bool netif_is_ovs_port(const struct net_device *dev)
4818{
4819 return dev->priv_flags & IFF_OVS_DATAPATH;
4820}
4821
4822static inline bool netif_is_team_master(const struct net_device *dev)
4823{
4824 return dev->priv_flags & IFF_TEAM;
4825}
4826
4827static inline bool netif_is_team_port(const struct net_device *dev)
4828{
4829 return dev->priv_flags & IFF_TEAM_PORT;
4830}
4831
4832static inline bool netif_is_lag_master(const struct net_device *dev)
4833{
4834 return netif_is_bond_master(dev) || netif_is_team_master(dev);
4835}
4836
4837static inline bool netif_is_lag_port(const struct net_device *dev)
4838{
4839 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4840}
4841
4842static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4843{
4844 return dev->priv_flags & IFF_RXFH_CONFIGURED;
4845}
4846
4847static inline bool netif_is_failover(const struct net_device *dev)
4848{
4849 return dev->priv_flags & IFF_FAILOVER;
4850}
4851
4852static inline bool netif_is_failover_slave(const struct net_device *dev)
4853{
4854 return dev->priv_flags & IFF_FAILOVER_SLAVE;
4855}
4856
4857/* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
4858static inline void netif_keep_dst(struct net_device *dev)
4859{
4860 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4861}
4862
4863/* return true if dev can't cope with mtu frames that need vlan tag insertion */
4864static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4865{
4866 /* TODO: reserve and use an additional IFF bit, if we get more users */
4867 return dev->priv_flags & IFF_MACSEC;
4868}
4869
4870extern struct pernet_operations __net_initdata loopback_net_ops;
4871
4872/* Logging, debugging and troubleshooting/diagnostic helpers. */
4873
4874/* netdev_printk helpers, similar to dev_printk */
4875
4876static inline const char *netdev_name(const struct net_device *dev)
4877{
4878 if (!dev->name[0] || strchr(dev->name, '%'))
4879 return "(unnamed net_device)";
4880 return dev->name;
4881}
4882
4883static inline bool netdev_unregistering(const struct net_device *dev)
4884{
4885 return dev->reg_state == NETREG_UNREGISTERING;
4886}
4887
4888static inline const char *netdev_reg_state(const struct net_device *dev)
4889{
4890 switch (dev->reg_state) {
4891 case NETREG_UNINITIALIZED: return " (uninitialized)";
4892 case NETREG_REGISTERED: return "";
4893 case NETREG_UNREGISTERING: return " (unregistering)";
4894 case NETREG_UNREGISTERED: return " (unregistered)";
4895 case NETREG_RELEASED: return " (released)";
4896 case NETREG_DUMMY: return " (dummy)";
4897 }
4898
4899 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4900 return " (unknown)";
4901}
4902
4903__printf(3, 4) __cold
4904void netdev_printk(const char *level, const struct net_device *dev,
4905 const char *format, ...);
4906__printf(2, 3) __cold
4907void netdev_emerg(const struct net_device *dev, const char *format, ...);
4908__printf(2, 3) __cold
4909void netdev_alert(const struct net_device *dev, const char *format, ...);
4910__printf(2, 3) __cold
4911void netdev_crit(const struct net_device *dev, const char *format, ...);
4912__printf(2, 3) __cold
4913void netdev_err(const struct net_device *dev, const char *format, ...);
4914__printf(2, 3) __cold
4915void netdev_warn(const struct net_device *dev, const char *format, ...);
4916__printf(2, 3) __cold
4917void netdev_notice(const struct net_device *dev, const char *format, ...);
4918__printf(2, 3) __cold
4919void netdev_info(const struct net_device *dev, const char *format, ...);
4920
4921#define netdev_level_once(level, dev, fmt, ...) \
4922do { \
4923 static bool __print_once __read_mostly; \
4924 \
4925 if (!__print_once) { \
4926 __print_once = true; \
4927 netdev_printk(level, dev, fmt, ##__VA_ARGS__); \
4928 } \
4929} while (0)
4930
4931#define netdev_emerg_once(dev, fmt, ...) \
4932 netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4933#define netdev_alert_once(dev, fmt, ...) \
4934 netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4935#define netdev_crit_once(dev, fmt, ...) \
4936 netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4937#define netdev_err_once(dev, fmt, ...) \
4938 netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4939#define netdev_warn_once(dev, fmt, ...) \
4940 netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4941#define netdev_notice_once(dev, fmt, ...) \
4942 netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4943#define netdev_info_once(dev, fmt, ...) \
4944 netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4945
4946#define MODULE_ALIAS_NETDEV(device) \
4947 MODULE_ALIAS("netdev-" device)
4948
4949#if defined(CONFIG_DYNAMIC_DEBUG) || \
4950 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
4951#define netdev_dbg(__dev, format, args...) \
4952do { \
4953 dynamic_netdev_dbg(__dev, format, ##args); \
4954} while (0)
4955#elif defined(DEBUG)
4956#define netdev_dbg(__dev, format, args...) \
4957 netdev_printk(KERN_DEBUG, __dev, format, ##args)
4958#else
4959#define netdev_dbg(__dev, format, args...) \
4960({ \
4961 if (0) \
4962 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4963})
4964#endif
4965
4966#if defined(VERBOSE_DEBUG)
4967#define netdev_vdbg netdev_dbg
4968#else
4969
4970#define netdev_vdbg(dev, format, args...) \
4971({ \
4972 if (0) \
4973 netdev_printk(KERN_DEBUG, dev, format, ##args); \
4974 0; \
4975})
4976#endif
4977
4978/*
4979 * netdev_WARN() acts like dev_printk(), but with the key difference
4980 * of using a WARN/WARN_ON to get the message out, including the
4981 * file/line information and a backtrace.
4982 */
4983#define netdev_WARN(dev, format, args...) \
4984 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
4985 netdev_reg_state(dev), ##args)
4986
4987#define netdev_WARN_ONCE(dev, format, args...) \
4988 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
4989 netdev_reg_state(dev), ##args)
4990
4991/* netif printk helpers, similar to netdev_printk */
4992
4993#define netif_printk(priv, type, level, dev, fmt, args...) \
4994do { \
4995 if (netif_msg_##type(priv)) \
4996 netdev_printk(level, (dev), fmt, ##args); \
4997} while (0)
4998
4999#define netif_level(level, priv, type, dev, fmt, args...) \
5000do { \
5001 if (netif_msg_##type(priv)) \
5002 netdev_##level(dev, fmt, ##args); \
5003} while (0)
5004
5005#define netif_emerg(priv, type, dev, fmt, args...) \
5006 netif_level(emerg, priv, type, dev, fmt, ##args)
5007#define netif_alert(priv, type, dev, fmt, args...) \
5008 netif_level(alert, priv, type, dev, fmt, ##args)
5009#define netif_crit(priv, type, dev, fmt, args...) \
5010 netif_level(crit, priv, type, dev, fmt, ##args)
5011#define netif_err(priv, type, dev, fmt, args...) \
5012 netif_level(err, priv, type, dev, fmt, ##args)
5013#define netif_warn(priv, type, dev, fmt, args...) \
5014 netif_level(warn, priv, type, dev, fmt, ##args)
5015#define netif_notice(priv, type, dev, fmt, args...) \
5016 netif_level(notice, priv, type, dev, fmt, ##args)
5017#define netif_info(priv, type, dev, fmt, args...) \
5018 netif_level(info, priv, type, dev, fmt, ##args)
5019
5020#if defined(CONFIG_DYNAMIC_DEBUG) || \
5021 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
5022#define netif_dbg(priv, type, netdev, format, args...) \
5023do { \
5024 if (netif_msg_##type(priv)) \
5025 dynamic_netdev_dbg(netdev, format, ##args); \
5026} while (0)
5027#elif defined(DEBUG)
5028#define netif_dbg(priv, type, dev, format, args...) \
5029 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
5030#else
5031#define netif_dbg(priv, type, dev, format, args...) \
5032({ \
5033 if (0) \
5034 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5035 0; \
5036})
5037#endif
5038
5039/* if @cond then downgrade to debug, else print at @level */
5040#define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...) \
5041 do { \
5042 if (cond) \
5043 netif_dbg(priv, type, netdev, fmt, ##args); \
5044 else \
5045 netif_ ## level(priv, type, netdev, fmt, ##args); \
5046 } while (0)
5047
5048#if defined(VERBOSE_DEBUG)
5049#define netif_vdbg netif_dbg
5050#else
5051#define netif_vdbg(priv, type, dev, format, args...) \
5052({ \
5053 if (0) \
5054 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
5055 0; \
5056})
5057#endif
5058
5059/*
5060 * The list of packet types we will receive (as opposed to discard)
5061 * and the routines to invoke.
5062 *
5063 * Why 16. Because with 16 the only overlap we get on a hash of the
5064 * low nibble of the protocol value is RARP/SNAP/X.25.
5065 *
5066 * 0800 IP
5067 * 0001 802.3
5068 * 0002 AX.25
5069 * 0004 802.2
5070 * 8035 RARP
5071 * 0005 SNAP
5072 * 0805 X.25
5073 * 0806 ARP
5074 * 8137 IPX
5075 * 0009 Localtalk
5076 * 86DD IPv6
5077 */
5078#define PTYPE_HASH_SIZE (16)
5079#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5080
5081extern struct net_device *blackhole_netdev;
5082
5083#endif /* _LINUX_NETDEVICE_H */