Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MMU_NOTIFIER_H
3#define _LINUX_MMU_NOTIFIER_H
4
5#include <linux/list.h>
6#include <linux/spinlock.h>
7#include <linux/mm_types.h>
8#include <linux/mmap_lock.h>
9#include <linux/srcu.h>
10#include <linux/interval_tree.h>
11
12struct mmu_notifier_subscriptions;
13struct mmu_notifier;
14struct mmu_notifier_range;
15struct mmu_interval_notifier;
16
17/**
18 * enum mmu_notifier_event - reason for the mmu notifier callback
19 * @MMU_NOTIFY_UNMAP: either munmap() that unmap the range or a mremap() that
20 * move the range
21 *
22 * @MMU_NOTIFY_CLEAR: clear page table entry (many reasons for this like
23 * madvise() or replacing a page by another one, ...).
24 *
25 * @MMU_NOTIFY_PROTECTION_VMA: update is due to protection change for the range
26 * ie using the vma access permission (vm_page_prot) to update the whole range
27 * is enough no need to inspect changes to the CPU page table (mprotect()
28 * syscall)
29 *
30 * @MMU_NOTIFY_PROTECTION_PAGE: update is due to change in read/write flag for
31 * pages in the range so to mirror those changes the user must inspect the CPU
32 * page table (from the end callback).
33 *
34 * @MMU_NOTIFY_SOFT_DIRTY: soft dirty accounting (still same page and same
35 * access flags). User should soft dirty the page in the end callback to make
36 * sure that anyone relying on soft dirtyness catch pages that might be written
37 * through non CPU mappings.
38 *
39 * @MMU_NOTIFY_RELEASE: used during mmu_interval_notifier invalidate to signal
40 * that the mm refcount is zero and the range is no longer accessible.
41 */
42enum mmu_notifier_event {
43 MMU_NOTIFY_UNMAP = 0,
44 MMU_NOTIFY_CLEAR,
45 MMU_NOTIFY_PROTECTION_VMA,
46 MMU_NOTIFY_PROTECTION_PAGE,
47 MMU_NOTIFY_SOFT_DIRTY,
48 MMU_NOTIFY_RELEASE,
49};
50
51#define MMU_NOTIFIER_RANGE_BLOCKABLE (1 << 0)
52
53struct mmu_notifier_ops {
54 /*
55 * Called either by mmu_notifier_unregister or when the mm is
56 * being destroyed by exit_mmap, always before all pages are
57 * freed. This can run concurrently with other mmu notifier
58 * methods (the ones invoked outside the mm context) and it
59 * should tear down all secondary mmu mappings and freeze the
60 * secondary mmu. If this method isn't implemented you've to
61 * be sure that nothing could possibly write to the pages
62 * through the secondary mmu by the time the last thread with
63 * tsk->mm == mm exits.
64 *
65 * As side note: the pages freed after ->release returns could
66 * be immediately reallocated by the gart at an alias physical
67 * address with a different cache model, so if ->release isn't
68 * implemented because all _software_ driven memory accesses
69 * through the secondary mmu are terminated by the time the
70 * last thread of this mm quits, you've also to be sure that
71 * speculative _hardware_ operations can't allocate dirty
72 * cachelines in the cpu that could not be snooped and made
73 * coherent with the other read and write operations happening
74 * through the gart alias address, so leading to memory
75 * corruption.
76 */
77 void (*release)(struct mmu_notifier *subscription,
78 struct mm_struct *mm);
79
80 /*
81 * clear_flush_young is called after the VM is
82 * test-and-clearing the young/accessed bitflag in the
83 * pte. This way the VM will provide proper aging to the
84 * accesses to the page through the secondary MMUs and not
85 * only to the ones through the Linux pte.
86 * Start-end is necessary in case the secondary MMU is mapping the page
87 * at a smaller granularity than the primary MMU.
88 */
89 int (*clear_flush_young)(struct mmu_notifier *subscription,
90 struct mm_struct *mm,
91 unsigned long start,
92 unsigned long end);
93
94 /*
95 * clear_young is a lightweight version of clear_flush_young. Like the
96 * latter, it is supposed to test-and-clear the young/accessed bitflag
97 * in the secondary pte, but it may omit flushing the secondary tlb.
98 */
99 int (*clear_young)(struct mmu_notifier *subscription,
100 struct mm_struct *mm,
101 unsigned long start,
102 unsigned long end);
103
104 /*
105 * test_young is called to check the young/accessed bitflag in
106 * the secondary pte. This is used to know if the page is
107 * frequently used without actually clearing the flag or tearing
108 * down the secondary mapping on the page.
109 */
110 int (*test_young)(struct mmu_notifier *subscription,
111 struct mm_struct *mm,
112 unsigned long address);
113
114 /*
115 * change_pte is called in cases that pte mapping to page is changed:
116 * for example, when ksm remaps pte to point to a new shared page.
117 */
118 void (*change_pte)(struct mmu_notifier *subscription,
119 struct mm_struct *mm,
120 unsigned long address,
121 pte_t pte);
122
123 /*
124 * invalidate_range_start() and invalidate_range_end() must be
125 * paired and are called only when the mmap_lock and/or the
126 * locks protecting the reverse maps are held. If the subsystem
127 * can't guarantee that no additional references are taken to
128 * the pages in the range, it has to implement the
129 * invalidate_range() notifier to remove any references taken
130 * after invalidate_range_start().
131 *
132 * Invalidation of multiple concurrent ranges may be
133 * optionally permitted by the driver. Either way the
134 * establishment of sptes is forbidden in the range passed to
135 * invalidate_range_begin/end for the whole duration of the
136 * invalidate_range_begin/end critical section.
137 *
138 * invalidate_range_start() is called when all pages in the
139 * range are still mapped and have at least a refcount of one.
140 *
141 * invalidate_range_end() is called when all pages in the
142 * range have been unmapped and the pages have been freed by
143 * the VM.
144 *
145 * The VM will remove the page table entries and potentially
146 * the page between invalidate_range_start() and
147 * invalidate_range_end(). If the page must not be freed
148 * because of pending I/O or other circumstances then the
149 * invalidate_range_start() callback (or the initial mapping
150 * by the driver) must make sure that the refcount is kept
151 * elevated.
152 *
153 * If the driver increases the refcount when the pages are
154 * initially mapped into an address space then either
155 * invalidate_range_start() or invalidate_range_end() may
156 * decrease the refcount. If the refcount is decreased on
157 * invalidate_range_start() then the VM can free pages as page
158 * table entries are removed. If the refcount is only
159 * droppped on invalidate_range_end() then the driver itself
160 * will drop the last refcount but it must take care to flush
161 * any secondary tlb before doing the final free on the
162 * page. Pages will no longer be referenced by the linux
163 * address space but may still be referenced by sptes until
164 * the last refcount is dropped.
165 *
166 * If blockable argument is set to false then the callback cannot
167 * sleep and has to return with -EAGAIN. 0 should be returned
168 * otherwise. Please note that if invalidate_range_start approves
169 * a non-blocking behavior then the same applies to
170 * invalidate_range_end.
171 *
172 */
173 int (*invalidate_range_start)(struct mmu_notifier *subscription,
174 const struct mmu_notifier_range *range);
175 void (*invalidate_range_end)(struct mmu_notifier *subscription,
176 const struct mmu_notifier_range *range);
177
178 /*
179 * invalidate_range() is either called between
180 * invalidate_range_start() and invalidate_range_end() when the
181 * VM has to free pages that where unmapped, but before the
182 * pages are actually freed, or outside of _start()/_end() when
183 * a (remote) TLB is necessary.
184 *
185 * If invalidate_range() is used to manage a non-CPU TLB with
186 * shared page-tables, it not necessary to implement the
187 * invalidate_range_start()/end() notifiers, as
188 * invalidate_range() alread catches the points in time when an
189 * external TLB range needs to be flushed. For more in depth
190 * discussion on this see Documentation/vm/mmu_notifier.rst
191 *
192 * Note that this function might be called with just a sub-range
193 * of what was passed to invalidate_range_start()/end(), if
194 * called between those functions.
195 */
196 void (*invalidate_range)(struct mmu_notifier *subscription,
197 struct mm_struct *mm,
198 unsigned long start,
199 unsigned long end);
200
201 /*
202 * These callbacks are used with the get/put interface to manage the
203 * lifetime of the mmu_notifier memory. alloc_notifier() returns a new
204 * notifier for use with the mm.
205 *
206 * free_notifier() is only called after the mmu_notifier has been
207 * fully put, calls to any ops callback are prevented and no ops
208 * callbacks are currently running. It is called from a SRCU callback
209 * and cannot sleep.
210 */
211 struct mmu_notifier *(*alloc_notifier)(struct mm_struct *mm);
212 void (*free_notifier)(struct mmu_notifier *subscription);
213};
214
215/*
216 * The notifier chains are protected by mmap_lock and/or the reverse map
217 * semaphores. Notifier chains are only changed when all reverse maps and
218 * the mmap_lock locks are taken.
219 *
220 * Therefore notifier chains can only be traversed when either
221 *
222 * 1. mmap_lock is held.
223 * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
224 * 3. No other concurrent thread can access the list (release)
225 */
226struct mmu_notifier {
227 struct hlist_node hlist;
228 const struct mmu_notifier_ops *ops;
229 struct mm_struct *mm;
230 struct rcu_head rcu;
231 unsigned int users;
232};
233
234/**
235 * struct mmu_interval_notifier_ops
236 * @invalidate: Upon return the caller must stop using any SPTEs within this
237 * range. This function can sleep. Return false only if sleeping
238 * was required but mmu_notifier_range_blockable(range) is false.
239 */
240struct mmu_interval_notifier_ops {
241 bool (*invalidate)(struct mmu_interval_notifier *interval_sub,
242 const struct mmu_notifier_range *range,
243 unsigned long cur_seq);
244};
245
246struct mmu_interval_notifier {
247 struct interval_tree_node interval_tree;
248 const struct mmu_interval_notifier_ops *ops;
249 struct mm_struct *mm;
250 struct hlist_node deferred_item;
251 unsigned long invalidate_seq;
252};
253
254#ifdef CONFIG_MMU_NOTIFIER
255
256#ifdef CONFIG_LOCKDEP
257extern struct lockdep_map __mmu_notifier_invalidate_range_start_map;
258#endif
259
260struct mmu_notifier_range {
261 struct vm_area_struct *vma;
262 struct mm_struct *mm;
263 unsigned long start;
264 unsigned long end;
265 unsigned flags;
266 enum mmu_notifier_event event;
267};
268
269static inline int mm_has_notifiers(struct mm_struct *mm)
270{
271 return unlikely(mm->notifier_subscriptions);
272}
273
274struct mmu_notifier *mmu_notifier_get_locked(const struct mmu_notifier_ops *ops,
275 struct mm_struct *mm);
276static inline struct mmu_notifier *
277mmu_notifier_get(const struct mmu_notifier_ops *ops, struct mm_struct *mm)
278{
279 struct mmu_notifier *ret;
280
281 mmap_write_lock(mm);
282 ret = mmu_notifier_get_locked(ops, mm);
283 mmap_write_unlock(mm);
284 return ret;
285}
286void mmu_notifier_put(struct mmu_notifier *subscription);
287void mmu_notifier_synchronize(void);
288
289extern int mmu_notifier_register(struct mmu_notifier *subscription,
290 struct mm_struct *mm);
291extern int __mmu_notifier_register(struct mmu_notifier *subscription,
292 struct mm_struct *mm);
293extern void mmu_notifier_unregister(struct mmu_notifier *subscription,
294 struct mm_struct *mm);
295
296unsigned long
297mmu_interval_read_begin(struct mmu_interval_notifier *interval_sub);
298int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub,
299 struct mm_struct *mm, unsigned long start,
300 unsigned long length,
301 const struct mmu_interval_notifier_ops *ops);
302int mmu_interval_notifier_insert_locked(
303 struct mmu_interval_notifier *interval_sub, struct mm_struct *mm,
304 unsigned long start, unsigned long length,
305 const struct mmu_interval_notifier_ops *ops);
306void mmu_interval_notifier_remove(struct mmu_interval_notifier *interval_sub);
307
308/**
309 * mmu_interval_set_seq - Save the invalidation sequence
310 * @interval_sub - The subscription passed to invalidate
311 * @cur_seq - The cur_seq passed to the invalidate() callback
312 *
313 * This must be called unconditionally from the invalidate callback of a
314 * struct mmu_interval_notifier_ops under the same lock that is used to call
315 * mmu_interval_read_retry(). It updates the sequence number for later use by
316 * mmu_interval_read_retry(). The provided cur_seq will always be odd.
317 *
318 * If the caller does not call mmu_interval_read_begin() or
319 * mmu_interval_read_retry() then this call is not required.
320 */
321static inline void
322mmu_interval_set_seq(struct mmu_interval_notifier *interval_sub,
323 unsigned long cur_seq)
324{
325 WRITE_ONCE(interval_sub->invalidate_seq, cur_seq);
326}
327
328/**
329 * mmu_interval_read_retry - End a read side critical section against a VA range
330 * interval_sub: The subscription
331 * seq: The return of the paired mmu_interval_read_begin()
332 *
333 * This MUST be called under a user provided lock that is also held
334 * unconditionally by op->invalidate() when it calls mmu_interval_set_seq().
335 *
336 * Each call should be paired with a single mmu_interval_read_begin() and
337 * should be used to conclude the read side.
338 *
339 * Returns true if an invalidation collided with this critical section, and
340 * the caller should retry.
341 */
342static inline bool
343mmu_interval_read_retry(struct mmu_interval_notifier *interval_sub,
344 unsigned long seq)
345{
346 return interval_sub->invalidate_seq != seq;
347}
348
349/**
350 * mmu_interval_check_retry - Test if a collision has occurred
351 * interval_sub: The subscription
352 * seq: The return of the matching mmu_interval_read_begin()
353 *
354 * This can be used in the critical section between mmu_interval_read_begin()
355 * and mmu_interval_read_retry(). A return of true indicates an invalidation
356 * has collided with this critical region and a future
357 * mmu_interval_read_retry() will return true.
358 *
359 * False is not reliable and only suggests a collision may not have
360 * occured. It can be called many times and does not have to hold the user
361 * provided lock.
362 *
363 * This call can be used as part of loops and other expensive operations to
364 * expedite a retry.
365 */
366static inline bool
367mmu_interval_check_retry(struct mmu_interval_notifier *interval_sub,
368 unsigned long seq)
369{
370 /* Pairs with the WRITE_ONCE in mmu_interval_set_seq() */
371 return READ_ONCE(interval_sub->invalidate_seq) != seq;
372}
373
374extern void __mmu_notifier_subscriptions_destroy(struct mm_struct *mm);
375extern void __mmu_notifier_release(struct mm_struct *mm);
376extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
377 unsigned long start,
378 unsigned long end);
379extern int __mmu_notifier_clear_young(struct mm_struct *mm,
380 unsigned long start,
381 unsigned long end);
382extern int __mmu_notifier_test_young(struct mm_struct *mm,
383 unsigned long address);
384extern void __mmu_notifier_change_pte(struct mm_struct *mm,
385 unsigned long address, pte_t pte);
386extern int __mmu_notifier_invalidate_range_start(struct mmu_notifier_range *r);
387extern void __mmu_notifier_invalidate_range_end(struct mmu_notifier_range *r,
388 bool only_end);
389extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
390 unsigned long start, unsigned long end);
391extern bool
392mmu_notifier_range_update_to_read_only(const struct mmu_notifier_range *range);
393
394static inline bool
395mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
396{
397 return (range->flags & MMU_NOTIFIER_RANGE_BLOCKABLE);
398}
399
400static inline void mmu_notifier_release(struct mm_struct *mm)
401{
402 if (mm_has_notifiers(mm))
403 __mmu_notifier_release(mm);
404}
405
406static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
407 unsigned long start,
408 unsigned long end)
409{
410 if (mm_has_notifiers(mm))
411 return __mmu_notifier_clear_flush_young(mm, start, end);
412 return 0;
413}
414
415static inline int mmu_notifier_clear_young(struct mm_struct *mm,
416 unsigned long start,
417 unsigned long end)
418{
419 if (mm_has_notifiers(mm))
420 return __mmu_notifier_clear_young(mm, start, end);
421 return 0;
422}
423
424static inline int mmu_notifier_test_young(struct mm_struct *mm,
425 unsigned long address)
426{
427 if (mm_has_notifiers(mm))
428 return __mmu_notifier_test_young(mm, address);
429 return 0;
430}
431
432static inline void mmu_notifier_change_pte(struct mm_struct *mm,
433 unsigned long address, pte_t pte)
434{
435 if (mm_has_notifiers(mm))
436 __mmu_notifier_change_pte(mm, address, pte);
437}
438
439static inline void
440mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
441{
442 might_sleep();
443
444 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
445 if (mm_has_notifiers(range->mm)) {
446 range->flags |= MMU_NOTIFIER_RANGE_BLOCKABLE;
447 __mmu_notifier_invalidate_range_start(range);
448 }
449 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
450}
451
452static inline int
453mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
454{
455 int ret = 0;
456
457 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
458 if (mm_has_notifiers(range->mm)) {
459 range->flags &= ~MMU_NOTIFIER_RANGE_BLOCKABLE;
460 ret = __mmu_notifier_invalidate_range_start(range);
461 }
462 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
463 return ret;
464}
465
466static inline void
467mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
468{
469 if (mmu_notifier_range_blockable(range))
470 might_sleep();
471
472 if (mm_has_notifiers(range->mm))
473 __mmu_notifier_invalidate_range_end(range, false);
474}
475
476static inline void
477mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
478{
479 if (mm_has_notifiers(range->mm))
480 __mmu_notifier_invalidate_range_end(range, true);
481}
482
483static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
484 unsigned long start, unsigned long end)
485{
486 if (mm_has_notifiers(mm))
487 __mmu_notifier_invalidate_range(mm, start, end);
488}
489
490static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
491{
492 mm->notifier_subscriptions = NULL;
493}
494
495static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
496{
497 if (mm_has_notifiers(mm))
498 __mmu_notifier_subscriptions_destroy(mm);
499}
500
501
502static inline void mmu_notifier_range_init(struct mmu_notifier_range *range,
503 enum mmu_notifier_event event,
504 unsigned flags,
505 struct vm_area_struct *vma,
506 struct mm_struct *mm,
507 unsigned long start,
508 unsigned long end)
509{
510 range->vma = vma;
511 range->event = event;
512 range->mm = mm;
513 range->start = start;
514 range->end = end;
515 range->flags = flags;
516}
517
518#define ptep_clear_flush_young_notify(__vma, __address, __ptep) \
519({ \
520 int __young; \
521 struct vm_area_struct *___vma = __vma; \
522 unsigned long ___address = __address; \
523 __young = ptep_clear_flush_young(___vma, ___address, __ptep); \
524 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
525 ___address, \
526 ___address + \
527 PAGE_SIZE); \
528 __young; \
529})
530
531#define pmdp_clear_flush_young_notify(__vma, __address, __pmdp) \
532({ \
533 int __young; \
534 struct vm_area_struct *___vma = __vma; \
535 unsigned long ___address = __address; \
536 __young = pmdp_clear_flush_young(___vma, ___address, __pmdp); \
537 __young |= mmu_notifier_clear_flush_young(___vma->vm_mm, \
538 ___address, \
539 ___address + \
540 PMD_SIZE); \
541 __young; \
542})
543
544#define ptep_clear_young_notify(__vma, __address, __ptep) \
545({ \
546 int __young; \
547 struct vm_area_struct *___vma = __vma; \
548 unsigned long ___address = __address; \
549 __young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
550 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
551 ___address + PAGE_SIZE); \
552 __young; \
553})
554
555#define pmdp_clear_young_notify(__vma, __address, __pmdp) \
556({ \
557 int __young; \
558 struct vm_area_struct *___vma = __vma; \
559 unsigned long ___address = __address; \
560 __young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
561 __young |= mmu_notifier_clear_young(___vma->vm_mm, ___address, \
562 ___address + PMD_SIZE); \
563 __young; \
564})
565
566#define ptep_clear_flush_notify(__vma, __address, __ptep) \
567({ \
568 unsigned long ___addr = __address & PAGE_MASK; \
569 struct mm_struct *___mm = (__vma)->vm_mm; \
570 pte_t ___pte; \
571 \
572 ___pte = ptep_clear_flush(__vma, __address, __ptep); \
573 mmu_notifier_invalidate_range(___mm, ___addr, \
574 ___addr + PAGE_SIZE); \
575 \
576 ___pte; \
577})
578
579#define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd) \
580({ \
581 unsigned long ___haddr = __haddr & HPAGE_PMD_MASK; \
582 struct mm_struct *___mm = (__vma)->vm_mm; \
583 pmd_t ___pmd; \
584 \
585 ___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd); \
586 mmu_notifier_invalidate_range(___mm, ___haddr, \
587 ___haddr + HPAGE_PMD_SIZE); \
588 \
589 ___pmd; \
590})
591
592#define pudp_huge_clear_flush_notify(__vma, __haddr, __pud) \
593({ \
594 unsigned long ___haddr = __haddr & HPAGE_PUD_MASK; \
595 struct mm_struct *___mm = (__vma)->vm_mm; \
596 pud_t ___pud; \
597 \
598 ___pud = pudp_huge_clear_flush(__vma, __haddr, __pud); \
599 mmu_notifier_invalidate_range(___mm, ___haddr, \
600 ___haddr + HPAGE_PUD_SIZE); \
601 \
602 ___pud; \
603})
604
605/*
606 * set_pte_at_notify() sets the pte _after_ running the notifier.
607 * This is safe to start by updating the secondary MMUs, because the primary MMU
608 * pte invalidate must have already happened with a ptep_clear_flush() before
609 * set_pte_at_notify() has been invoked. Updating the secondary MMUs first is
610 * required when we change both the protection of the mapping from read-only to
611 * read-write and the pfn (like during copy on write page faults). Otherwise the
612 * old page would remain mapped readonly in the secondary MMUs after the new
613 * page is already writable by some CPU through the primary MMU.
614 */
615#define set_pte_at_notify(__mm, __address, __ptep, __pte) \
616({ \
617 struct mm_struct *___mm = __mm; \
618 unsigned long ___address = __address; \
619 pte_t ___pte = __pte; \
620 \
621 mmu_notifier_change_pte(___mm, ___address, ___pte); \
622 set_pte_at(___mm, ___address, __ptep, ___pte); \
623})
624
625#else /* CONFIG_MMU_NOTIFIER */
626
627struct mmu_notifier_range {
628 unsigned long start;
629 unsigned long end;
630};
631
632static inline void _mmu_notifier_range_init(struct mmu_notifier_range *range,
633 unsigned long start,
634 unsigned long end)
635{
636 range->start = start;
637 range->end = end;
638}
639
640#define mmu_notifier_range_init(range,event,flags,vma,mm,start,end) \
641 _mmu_notifier_range_init(range, start, end)
642
643static inline bool
644mmu_notifier_range_blockable(const struct mmu_notifier_range *range)
645{
646 return true;
647}
648
649static inline int mm_has_notifiers(struct mm_struct *mm)
650{
651 return 0;
652}
653
654static inline void mmu_notifier_release(struct mm_struct *mm)
655{
656}
657
658static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
659 unsigned long start,
660 unsigned long end)
661{
662 return 0;
663}
664
665static inline int mmu_notifier_test_young(struct mm_struct *mm,
666 unsigned long address)
667{
668 return 0;
669}
670
671static inline void mmu_notifier_change_pte(struct mm_struct *mm,
672 unsigned long address, pte_t pte)
673{
674}
675
676static inline void
677mmu_notifier_invalidate_range_start(struct mmu_notifier_range *range)
678{
679}
680
681static inline int
682mmu_notifier_invalidate_range_start_nonblock(struct mmu_notifier_range *range)
683{
684 return 0;
685}
686
687static inline
688void mmu_notifier_invalidate_range_end(struct mmu_notifier_range *range)
689{
690}
691
692static inline void
693mmu_notifier_invalidate_range_only_end(struct mmu_notifier_range *range)
694{
695}
696
697static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
698 unsigned long start, unsigned long end)
699{
700}
701
702static inline void mmu_notifier_subscriptions_init(struct mm_struct *mm)
703{
704}
705
706static inline void mmu_notifier_subscriptions_destroy(struct mm_struct *mm)
707{
708}
709
710#define mmu_notifier_range_update_to_read_only(r) false
711
712#define ptep_clear_flush_young_notify ptep_clear_flush_young
713#define pmdp_clear_flush_young_notify pmdp_clear_flush_young
714#define ptep_clear_young_notify ptep_test_and_clear_young
715#define pmdp_clear_young_notify pmdp_test_and_clear_young
716#define ptep_clear_flush_notify ptep_clear_flush
717#define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
718#define pudp_huge_clear_flush_notify pudp_huge_clear_flush
719#define set_pte_at_notify set_pte_at
720
721static inline void mmu_notifier_synchronize(void)
722{
723}
724
725#endif /* CONFIG_MMU_NOTIFIER */
726
727#endif /* _LINUX_MMU_NOTIFIER_H */