at v5.8 102 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/mmap_lock.h> 19#include <linux/range.h> 20#include <linux/pfn.h> 21#include <linux/percpu-refcount.h> 22#include <linux/bit_spinlock.h> 23#include <linux/shrinker.h> 24#include <linux/resource.h> 25#include <linux/page_ext.h> 26#include <linux/err.h> 27#include <linux/page_ref.h> 28#include <linux/memremap.h> 29#include <linux/overflow.h> 30#include <linux/sizes.h> 31#include <linux/sched.h> 32#include <linux/pgtable.h> 33 34struct mempolicy; 35struct anon_vma; 36struct anon_vma_chain; 37struct file_ra_state; 38struct user_struct; 39struct writeback_control; 40struct bdi_writeback; 41 42void init_mm_internals(void); 43 44#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 45extern unsigned long max_mapnr; 46 47static inline void set_max_mapnr(unsigned long limit) 48{ 49 max_mapnr = limit; 50} 51#else 52static inline void set_max_mapnr(unsigned long limit) { } 53#endif 54 55extern atomic_long_t _totalram_pages; 56static inline unsigned long totalram_pages(void) 57{ 58 return (unsigned long)atomic_long_read(&_totalram_pages); 59} 60 61static inline void totalram_pages_inc(void) 62{ 63 atomic_long_inc(&_totalram_pages); 64} 65 66static inline void totalram_pages_dec(void) 67{ 68 atomic_long_dec(&_totalram_pages); 69} 70 71static inline void totalram_pages_add(long count) 72{ 73 atomic_long_add(count, &_totalram_pages); 74} 75 76extern void * high_memory; 77extern int page_cluster; 78 79#ifdef CONFIG_SYSCTL 80extern int sysctl_legacy_va_layout; 81#else 82#define sysctl_legacy_va_layout 0 83#endif 84 85#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 86extern const int mmap_rnd_bits_min; 87extern const int mmap_rnd_bits_max; 88extern int mmap_rnd_bits __read_mostly; 89#endif 90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 91extern const int mmap_rnd_compat_bits_min; 92extern const int mmap_rnd_compat_bits_max; 93extern int mmap_rnd_compat_bits __read_mostly; 94#endif 95 96#include <asm/page.h> 97#include <asm/processor.h> 98 99/* 100 * Architectures that support memory tagging (assigning tags to memory regions, 101 * embedding these tags into addresses that point to these memory regions, and 102 * checking that the memory and the pointer tags match on memory accesses) 103 * redefine this macro to strip tags from pointers. 104 * It's defined as noop for arcitectures that don't support memory tagging. 105 */ 106#ifndef untagged_addr 107#define untagged_addr(addr) (addr) 108#endif 109 110#ifndef __pa_symbol 111#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 112#endif 113 114#ifndef page_to_virt 115#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 116#endif 117 118#ifndef lm_alias 119#define lm_alias(x) __va(__pa_symbol(x)) 120#endif 121 122/* 123 * To prevent common memory management code establishing 124 * a zero page mapping on a read fault. 125 * This macro should be defined within <asm/pgtable.h>. 126 * s390 does this to prevent multiplexing of hardware bits 127 * related to the physical page in case of virtualization. 128 */ 129#ifndef mm_forbids_zeropage 130#define mm_forbids_zeropage(X) (0) 131#endif 132 133/* 134 * On some architectures it is expensive to call memset() for small sizes. 135 * If an architecture decides to implement their own version of 136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 137 * define their own version of this macro in <asm/pgtable.h> 138 */ 139#if BITS_PER_LONG == 64 140/* This function must be updated when the size of struct page grows above 80 141 * or reduces below 56. The idea that compiler optimizes out switch() 142 * statement, and only leaves move/store instructions. Also the compiler can 143 * combine write statments if they are both assignments and can be reordered, 144 * this can result in several of the writes here being dropped. 145 */ 146#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 147static inline void __mm_zero_struct_page(struct page *page) 148{ 149 unsigned long *_pp = (void *)page; 150 151 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 152 BUILD_BUG_ON(sizeof(struct page) & 7); 153 BUILD_BUG_ON(sizeof(struct page) < 56); 154 BUILD_BUG_ON(sizeof(struct page) > 80); 155 156 switch (sizeof(struct page)) { 157 case 80: 158 _pp[9] = 0; /* fallthrough */ 159 case 72: 160 _pp[8] = 0; /* fallthrough */ 161 case 64: 162 _pp[7] = 0; /* fallthrough */ 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172} 173#else 174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175#endif 176 177/* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193#define MAPCOUNT_ELF_CORE_MARGIN (5) 194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196extern int sysctl_max_map_count; 197 198extern unsigned long sysctl_user_reserve_kbytes; 199extern unsigned long sysctl_admin_reserve_kbytes; 200 201extern int sysctl_overcommit_memory; 202extern int sysctl_overcommit_ratio; 203extern unsigned long sysctl_overcommit_kbytes; 204 205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 210#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 211 212/* to align the pointer to the (next) page boundary */ 213#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 214 215/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 216#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 217 218#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 219 220/* 221 * Linux kernel virtual memory manager primitives. 222 * The idea being to have a "virtual" mm in the same way 223 * we have a virtual fs - giving a cleaner interface to the 224 * mm details, and allowing different kinds of memory mappings 225 * (from shared memory to executable loading to arbitrary 226 * mmap() functions). 227 */ 228 229struct vm_area_struct *vm_area_alloc(struct mm_struct *); 230struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 231void vm_area_free(struct vm_area_struct *); 232 233#ifndef CONFIG_MMU 234extern struct rb_root nommu_region_tree; 235extern struct rw_semaphore nommu_region_sem; 236 237extern unsigned int kobjsize(const void *objp); 238#endif 239 240/* 241 * vm_flags in vm_area_struct, see mm_types.h. 242 * When changing, update also include/trace/events/mmflags.h 243 */ 244#define VM_NONE 0x00000000 245 246#define VM_READ 0x00000001 /* currently active flags */ 247#define VM_WRITE 0x00000002 248#define VM_EXEC 0x00000004 249#define VM_SHARED 0x00000008 250 251/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 252#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 253#define VM_MAYWRITE 0x00000020 254#define VM_MAYEXEC 0x00000040 255#define VM_MAYSHARE 0x00000080 256 257#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 258#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 259#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 260#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 261#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 262 263#define VM_LOCKED 0x00002000 264#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 265 266 /* Used by sys_madvise() */ 267#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 268#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 269 270#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 271#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 272#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 273#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 274#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 275#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 276#define VM_SYNC 0x00800000 /* Synchronous page faults */ 277#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 278#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 279#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 280 281#ifdef CONFIG_MEM_SOFT_DIRTY 282# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 283#else 284# define VM_SOFTDIRTY 0 285#endif 286 287#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 288#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 289#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 290#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 291 292#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 293#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 294#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 295#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 296#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 297#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 298#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 299#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 300#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 301#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 302#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 303#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 304 305#ifdef CONFIG_ARCH_HAS_PKEYS 306# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 307# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 308# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 309# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 310# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 311#ifdef CONFIG_PPC 312# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 313#else 314# define VM_PKEY_BIT4 0 315#endif 316#endif /* CONFIG_ARCH_HAS_PKEYS */ 317 318#if defined(CONFIG_X86) 319# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 320#elif defined(CONFIG_PPC) 321# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 322#elif defined(CONFIG_PARISC) 323# define VM_GROWSUP VM_ARCH_1 324#elif defined(CONFIG_IA64) 325# define VM_GROWSUP VM_ARCH_1 326#elif defined(CONFIG_SPARC64) 327# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 328# define VM_ARCH_CLEAR VM_SPARC_ADI 329#elif defined(CONFIG_ARM64) 330# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 331# define VM_ARCH_CLEAR VM_ARM64_BTI 332#elif !defined(CONFIG_MMU) 333# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 334#endif 335 336#ifndef VM_GROWSUP 337# define VM_GROWSUP VM_NONE 338#endif 339 340/* Bits set in the VMA until the stack is in its final location */ 341#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 342 343#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 344 345/* Common data flag combinations */ 346#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 347 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 348#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 349 VM_MAYWRITE | VM_MAYEXEC) 350#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 351 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 352 353#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 354#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 355#endif 356 357#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 358#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 359#endif 360 361#ifdef CONFIG_STACK_GROWSUP 362#define VM_STACK VM_GROWSUP 363#else 364#define VM_STACK VM_GROWSDOWN 365#endif 366 367#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 368 369/* VMA basic access permission flags */ 370#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 371 372 373/* 374 * Special vmas that are non-mergable, non-mlock()able. 375 */ 376#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 377 378/* This mask prevents VMA from being scanned with khugepaged */ 379#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 380 381/* This mask defines which mm->def_flags a process can inherit its parent */ 382#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 383 384/* This mask is used to clear all the VMA flags used by mlock */ 385#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 386 387/* Arch-specific flags to clear when updating VM flags on protection change */ 388#ifndef VM_ARCH_CLEAR 389# define VM_ARCH_CLEAR VM_NONE 390#endif 391#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 392 393/* 394 * mapping from the currently active vm_flags protection bits (the 395 * low four bits) to a page protection mask.. 396 */ 397extern pgprot_t protection_map[16]; 398 399/** 400 * Fault flag definitions. 401 * 402 * @FAULT_FLAG_WRITE: Fault was a write fault. 403 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 404 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 405 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 406 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 407 * @FAULT_FLAG_TRIED: The fault has been tried once. 408 * @FAULT_FLAG_USER: The fault originated in userspace. 409 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 410 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 411 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 412 * 413 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 414 * whether we would allow page faults to retry by specifying these two 415 * fault flags correctly. Currently there can be three legal combinations: 416 * 417 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 418 * this is the first try 419 * 420 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 421 * we've already tried at least once 422 * 423 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 424 * 425 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 426 * be used. Note that page faults can be allowed to retry for multiple times, 427 * in which case we'll have an initial fault with flags (a) then later on 428 * continuous faults with flags (b). We should always try to detect pending 429 * signals before a retry to make sure the continuous page faults can still be 430 * interrupted if necessary. 431 */ 432#define FAULT_FLAG_WRITE 0x01 433#define FAULT_FLAG_MKWRITE 0x02 434#define FAULT_FLAG_ALLOW_RETRY 0x04 435#define FAULT_FLAG_RETRY_NOWAIT 0x08 436#define FAULT_FLAG_KILLABLE 0x10 437#define FAULT_FLAG_TRIED 0x20 438#define FAULT_FLAG_USER 0x40 439#define FAULT_FLAG_REMOTE 0x80 440#define FAULT_FLAG_INSTRUCTION 0x100 441#define FAULT_FLAG_INTERRUPTIBLE 0x200 442 443/* 444 * The default fault flags that should be used by most of the 445 * arch-specific page fault handlers. 446 */ 447#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 448 FAULT_FLAG_KILLABLE | \ 449 FAULT_FLAG_INTERRUPTIBLE) 450 451/** 452 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 453 * 454 * This is mostly used for places where we want to try to avoid taking 455 * the mmap_lock for too long a time when waiting for another condition 456 * to change, in which case we can try to be polite to release the 457 * mmap_lock in the first round to avoid potential starvation of other 458 * processes that would also want the mmap_lock. 459 * 460 * Return: true if the page fault allows retry and this is the first 461 * attempt of the fault handling; false otherwise. 462 */ 463static inline bool fault_flag_allow_retry_first(unsigned int flags) 464{ 465 return (flags & FAULT_FLAG_ALLOW_RETRY) && 466 (!(flags & FAULT_FLAG_TRIED)); 467} 468 469#define FAULT_FLAG_TRACE \ 470 { FAULT_FLAG_WRITE, "WRITE" }, \ 471 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 472 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 473 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 474 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 475 { FAULT_FLAG_TRIED, "TRIED" }, \ 476 { FAULT_FLAG_USER, "USER" }, \ 477 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 478 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 479 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 480 481/* 482 * vm_fault is filled by the the pagefault handler and passed to the vma's 483 * ->fault function. The vma's ->fault is responsible for returning a bitmask 484 * of VM_FAULT_xxx flags that give details about how the fault was handled. 485 * 486 * MM layer fills up gfp_mask for page allocations but fault handler might 487 * alter it if its implementation requires a different allocation context. 488 * 489 * pgoff should be used in favour of virtual_address, if possible. 490 */ 491struct vm_fault { 492 struct vm_area_struct *vma; /* Target VMA */ 493 unsigned int flags; /* FAULT_FLAG_xxx flags */ 494 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 495 pgoff_t pgoff; /* Logical page offset based on vma */ 496 unsigned long address; /* Faulting virtual address */ 497 pmd_t *pmd; /* Pointer to pmd entry matching 498 * the 'address' */ 499 pud_t *pud; /* Pointer to pud entry matching 500 * the 'address' 501 */ 502 pte_t orig_pte; /* Value of PTE at the time of fault */ 503 504 struct page *cow_page; /* Page handler may use for COW fault */ 505 struct page *page; /* ->fault handlers should return a 506 * page here, unless VM_FAULT_NOPAGE 507 * is set (which is also implied by 508 * VM_FAULT_ERROR). 509 */ 510 /* These three entries are valid only while holding ptl lock */ 511 pte_t *pte; /* Pointer to pte entry matching 512 * the 'address'. NULL if the page 513 * table hasn't been allocated. 514 */ 515 spinlock_t *ptl; /* Page table lock. 516 * Protects pte page table if 'pte' 517 * is not NULL, otherwise pmd. 518 */ 519 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 520 * vm_ops->map_pages() calls 521 * alloc_set_pte() from atomic context. 522 * do_fault_around() pre-allocates 523 * page table to avoid allocation from 524 * atomic context. 525 */ 526}; 527 528/* page entry size for vm->huge_fault() */ 529enum page_entry_size { 530 PE_SIZE_PTE = 0, 531 PE_SIZE_PMD, 532 PE_SIZE_PUD, 533}; 534 535/* 536 * These are the virtual MM functions - opening of an area, closing and 537 * unmapping it (needed to keep files on disk up-to-date etc), pointer 538 * to the functions called when a no-page or a wp-page exception occurs. 539 */ 540struct vm_operations_struct { 541 void (*open)(struct vm_area_struct * area); 542 void (*close)(struct vm_area_struct * area); 543 int (*split)(struct vm_area_struct * area, unsigned long addr); 544 int (*mremap)(struct vm_area_struct * area); 545 vm_fault_t (*fault)(struct vm_fault *vmf); 546 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 547 enum page_entry_size pe_size); 548 void (*map_pages)(struct vm_fault *vmf, 549 pgoff_t start_pgoff, pgoff_t end_pgoff); 550 unsigned long (*pagesize)(struct vm_area_struct * area); 551 552 /* notification that a previously read-only page is about to become 553 * writable, if an error is returned it will cause a SIGBUS */ 554 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 555 556 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 557 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 558 559 /* called by access_process_vm when get_user_pages() fails, typically 560 * for use by special VMAs that can switch between memory and hardware 561 */ 562 int (*access)(struct vm_area_struct *vma, unsigned long addr, 563 void *buf, int len, int write); 564 565 /* Called by the /proc/PID/maps code to ask the vma whether it 566 * has a special name. Returning non-NULL will also cause this 567 * vma to be dumped unconditionally. */ 568 const char *(*name)(struct vm_area_struct *vma); 569 570#ifdef CONFIG_NUMA 571 /* 572 * set_policy() op must add a reference to any non-NULL @new mempolicy 573 * to hold the policy upon return. Caller should pass NULL @new to 574 * remove a policy and fall back to surrounding context--i.e. do not 575 * install a MPOL_DEFAULT policy, nor the task or system default 576 * mempolicy. 577 */ 578 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 579 580 /* 581 * get_policy() op must add reference [mpol_get()] to any policy at 582 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 583 * in mm/mempolicy.c will do this automatically. 584 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 585 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 586 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 587 * must return NULL--i.e., do not "fallback" to task or system default 588 * policy. 589 */ 590 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 591 unsigned long addr); 592#endif 593 /* 594 * Called by vm_normal_page() for special PTEs to find the 595 * page for @addr. This is useful if the default behavior 596 * (using pte_page()) would not find the correct page. 597 */ 598 struct page *(*find_special_page)(struct vm_area_struct *vma, 599 unsigned long addr); 600}; 601 602static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 603{ 604 static const struct vm_operations_struct dummy_vm_ops = {}; 605 606 memset(vma, 0, sizeof(*vma)); 607 vma->vm_mm = mm; 608 vma->vm_ops = &dummy_vm_ops; 609 INIT_LIST_HEAD(&vma->anon_vma_chain); 610} 611 612static inline void vma_set_anonymous(struct vm_area_struct *vma) 613{ 614 vma->vm_ops = NULL; 615} 616 617static inline bool vma_is_anonymous(struct vm_area_struct *vma) 618{ 619 return !vma->vm_ops; 620} 621 622static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 623{ 624 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 625 626 if (!maybe_stack) 627 return false; 628 629 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 630 VM_STACK_INCOMPLETE_SETUP) 631 return true; 632 633 return false; 634} 635 636static inline bool vma_is_foreign(struct vm_area_struct *vma) 637{ 638 if (!current->mm) 639 return true; 640 641 if (current->mm != vma->vm_mm) 642 return true; 643 644 return false; 645} 646 647static inline bool vma_is_accessible(struct vm_area_struct *vma) 648{ 649 return vma->vm_flags & VM_ACCESS_FLAGS; 650} 651 652#ifdef CONFIG_SHMEM 653/* 654 * The vma_is_shmem is not inline because it is used only by slow 655 * paths in userfault. 656 */ 657bool vma_is_shmem(struct vm_area_struct *vma); 658#else 659static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 660#endif 661 662int vma_is_stack_for_current(struct vm_area_struct *vma); 663 664/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 665#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 666 667struct mmu_gather; 668struct inode; 669 670/* 671 * FIXME: take this include out, include page-flags.h in 672 * files which need it (119 of them) 673 */ 674#include <linux/page-flags.h> 675#include <linux/huge_mm.h> 676 677/* 678 * Methods to modify the page usage count. 679 * 680 * What counts for a page usage: 681 * - cache mapping (page->mapping) 682 * - private data (page->private) 683 * - page mapped in a task's page tables, each mapping 684 * is counted separately 685 * 686 * Also, many kernel routines increase the page count before a critical 687 * routine so they can be sure the page doesn't go away from under them. 688 */ 689 690/* 691 * Drop a ref, return true if the refcount fell to zero (the page has no users) 692 */ 693static inline int put_page_testzero(struct page *page) 694{ 695 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 696 return page_ref_dec_and_test(page); 697} 698 699/* 700 * Try to grab a ref unless the page has a refcount of zero, return false if 701 * that is the case. 702 * This can be called when MMU is off so it must not access 703 * any of the virtual mappings. 704 */ 705static inline int get_page_unless_zero(struct page *page) 706{ 707 return page_ref_add_unless(page, 1, 0); 708} 709 710extern int page_is_ram(unsigned long pfn); 711 712enum { 713 REGION_INTERSECTS, 714 REGION_DISJOINT, 715 REGION_MIXED, 716}; 717 718int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 719 unsigned long desc); 720 721/* Support for virtually mapped pages */ 722struct page *vmalloc_to_page(const void *addr); 723unsigned long vmalloc_to_pfn(const void *addr); 724 725/* 726 * Determine if an address is within the vmalloc range 727 * 728 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 729 * is no special casing required. 730 */ 731 732#ifndef is_ioremap_addr 733#define is_ioremap_addr(x) is_vmalloc_addr(x) 734#endif 735 736#ifdef CONFIG_MMU 737extern bool is_vmalloc_addr(const void *x); 738extern int is_vmalloc_or_module_addr(const void *x); 739#else 740static inline bool is_vmalloc_addr(const void *x) 741{ 742 return false; 743} 744static inline int is_vmalloc_or_module_addr(const void *x) 745{ 746 return 0; 747} 748#endif 749 750extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 751static inline void *kvmalloc(size_t size, gfp_t flags) 752{ 753 return kvmalloc_node(size, flags, NUMA_NO_NODE); 754} 755static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 756{ 757 return kvmalloc_node(size, flags | __GFP_ZERO, node); 758} 759static inline void *kvzalloc(size_t size, gfp_t flags) 760{ 761 return kvmalloc(size, flags | __GFP_ZERO); 762} 763 764static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 765{ 766 size_t bytes; 767 768 if (unlikely(check_mul_overflow(n, size, &bytes))) 769 return NULL; 770 771 return kvmalloc(bytes, flags); 772} 773 774static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 775{ 776 return kvmalloc_array(n, size, flags | __GFP_ZERO); 777} 778 779extern void kvfree(const void *addr); 780extern void kvfree_sensitive(const void *addr, size_t len); 781 782/* 783 * Mapcount of compound page as a whole, does not include mapped sub-pages. 784 * 785 * Must be called only for compound pages or any their tail sub-pages. 786 */ 787static inline int compound_mapcount(struct page *page) 788{ 789 VM_BUG_ON_PAGE(!PageCompound(page), page); 790 page = compound_head(page); 791 return atomic_read(compound_mapcount_ptr(page)) + 1; 792} 793 794/* 795 * The atomic page->_mapcount, starts from -1: so that transitions 796 * both from it and to it can be tracked, using atomic_inc_and_test 797 * and atomic_add_negative(-1). 798 */ 799static inline void page_mapcount_reset(struct page *page) 800{ 801 atomic_set(&(page)->_mapcount, -1); 802} 803 804int __page_mapcount(struct page *page); 805 806/* 807 * Mapcount of 0-order page; when compound sub-page, includes 808 * compound_mapcount(). 809 * 810 * Result is undefined for pages which cannot be mapped into userspace. 811 * For example SLAB or special types of pages. See function page_has_type(). 812 * They use this place in struct page differently. 813 */ 814static inline int page_mapcount(struct page *page) 815{ 816 if (unlikely(PageCompound(page))) 817 return __page_mapcount(page); 818 return atomic_read(&page->_mapcount) + 1; 819} 820 821#ifdef CONFIG_TRANSPARENT_HUGEPAGE 822int total_mapcount(struct page *page); 823int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 824#else 825static inline int total_mapcount(struct page *page) 826{ 827 return page_mapcount(page); 828} 829static inline int page_trans_huge_mapcount(struct page *page, 830 int *total_mapcount) 831{ 832 int mapcount = page_mapcount(page); 833 if (total_mapcount) 834 *total_mapcount = mapcount; 835 return mapcount; 836} 837#endif 838 839static inline struct page *virt_to_head_page(const void *x) 840{ 841 struct page *page = virt_to_page(x); 842 843 return compound_head(page); 844} 845 846void __put_page(struct page *page); 847 848void put_pages_list(struct list_head *pages); 849 850void split_page(struct page *page, unsigned int order); 851 852/* 853 * Compound pages have a destructor function. Provide a 854 * prototype for that function and accessor functions. 855 * These are _only_ valid on the head of a compound page. 856 */ 857typedef void compound_page_dtor(struct page *); 858 859/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 860enum compound_dtor_id { 861 NULL_COMPOUND_DTOR, 862 COMPOUND_PAGE_DTOR, 863#ifdef CONFIG_HUGETLB_PAGE 864 HUGETLB_PAGE_DTOR, 865#endif 866#ifdef CONFIG_TRANSPARENT_HUGEPAGE 867 TRANSHUGE_PAGE_DTOR, 868#endif 869 NR_COMPOUND_DTORS, 870}; 871extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 872 873static inline void set_compound_page_dtor(struct page *page, 874 enum compound_dtor_id compound_dtor) 875{ 876 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 877 page[1].compound_dtor = compound_dtor; 878} 879 880static inline void destroy_compound_page(struct page *page) 881{ 882 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 883 compound_page_dtors[page[1].compound_dtor](page); 884} 885 886static inline unsigned int compound_order(struct page *page) 887{ 888 if (!PageHead(page)) 889 return 0; 890 return page[1].compound_order; 891} 892 893static inline bool hpage_pincount_available(struct page *page) 894{ 895 /* 896 * Can the page->hpage_pinned_refcount field be used? That field is in 897 * the 3rd page of the compound page, so the smallest (2-page) compound 898 * pages cannot support it. 899 */ 900 page = compound_head(page); 901 return PageCompound(page) && compound_order(page) > 1; 902} 903 904static inline int compound_pincount(struct page *page) 905{ 906 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 907 page = compound_head(page); 908 return atomic_read(compound_pincount_ptr(page)); 909} 910 911static inline void set_compound_order(struct page *page, unsigned int order) 912{ 913 page[1].compound_order = order; 914} 915 916/* Returns the number of pages in this potentially compound page. */ 917static inline unsigned long compound_nr(struct page *page) 918{ 919 return 1UL << compound_order(page); 920} 921 922/* Returns the number of bytes in this potentially compound page. */ 923static inline unsigned long page_size(struct page *page) 924{ 925 return PAGE_SIZE << compound_order(page); 926} 927 928/* Returns the number of bits needed for the number of bytes in a page */ 929static inline unsigned int page_shift(struct page *page) 930{ 931 return PAGE_SHIFT + compound_order(page); 932} 933 934void free_compound_page(struct page *page); 935 936#ifdef CONFIG_MMU 937/* 938 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 939 * servicing faults for write access. In the normal case, do always want 940 * pte_mkwrite. But get_user_pages can cause write faults for mappings 941 * that do not have writing enabled, when used by access_process_vm. 942 */ 943static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 944{ 945 if (likely(vma->vm_flags & VM_WRITE)) 946 pte = pte_mkwrite(pte); 947 return pte; 948} 949 950vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 951vm_fault_t finish_fault(struct vm_fault *vmf); 952vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 953#endif 954 955/* 956 * Multiple processes may "see" the same page. E.g. for untouched 957 * mappings of /dev/null, all processes see the same page full of 958 * zeroes, and text pages of executables and shared libraries have 959 * only one copy in memory, at most, normally. 960 * 961 * For the non-reserved pages, page_count(page) denotes a reference count. 962 * page_count() == 0 means the page is free. page->lru is then used for 963 * freelist management in the buddy allocator. 964 * page_count() > 0 means the page has been allocated. 965 * 966 * Pages are allocated by the slab allocator in order to provide memory 967 * to kmalloc and kmem_cache_alloc. In this case, the management of the 968 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 969 * unless a particular usage is carefully commented. (the responsibility of 970 * freeing the kmalloc memory is the caller's, of course). 971 * 972 * A page may be used by anyone else who does a __get_free_page(). 973 * In this case, page_count still tracks the references, and should only 974 * be used through the normal accessor functions. The top bits of page->flags 975 * and page->virtual store page management information, but all other fields 976 * are unused and could be used privately, carefully. The management of this 977 * page is the responsibility of the one who allocated it, and those who have 978 * subsequently been given references to it. 979 * 980 * The other pages (we may call them "pagecache pages") are completely 981 * managed by the Linux memory manager: I/O, buffers, swapping etc. 982 * The following discussion applies only to them. 983 * 984 * A pagecache page contains an opaque `private' member, which belongs to the 985 * page's address_space. Usually, this is the address of a circular list of 986 * the page's disk buffers. PG_private must be set to tell the VM to call 987 * into the filesystem to release these pages. 988 * 989 * A page may belong to an inode's memory mapping. In this case, page->mapping 990 * is the pointer to the inode, and page->index is the file offset of the page, 991 * in units of PAGE_SIZE. 992 * 993 * If pagecache pages are not associated with an inode, they are said to be 994 * anonymous pages. These may become associated with the swapcache, and in that 995 * case PG_swapcache is set, and page->private is an offset into the swapcache. 996 * 997 * In either case (swapcache or inode backed), the pagecache itself holds one 998 * reference to the page. Setting PG_private should also increment the 999 * refcount. The each user mapping also has a reference to the page. 1000 * 1001 * The pagecache pages are stored in a per-mapping radix tree, which is 1002 * rooted at mapping->i_pages, and indexed by offset. 1003 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1004 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1005 * 1006 * All pagecache pages may be subject to I/O: 1007 * - inode pages may need to be read from disk, 1008 * - inode pages which have been modified and are MAP_SHARED may need 1009 * to be written back to the inode on disk, 1010 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1011 * modified may need to be swapped out to swap space and (later) to be read 1012 * back into memory. 1013 */ 1014 1015/* 1016 * The zone field is never updated after free_area_init_core() 1017 * sets it, so none of the operations on it need to be atomic. 1018 */ 1019 1020/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1021#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1022#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1023#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1024#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1025#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1026 1027/* 1028 * Define the bit shifts to access each section. For non-existent 1029 * sections we define the shift as 0; that plus a 0 mask ensures 1030 * the compiler will optimise away reference to them. 1031 */ 1032#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1033#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1034#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1035#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1036#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1037 1038/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1039#ifdef NODE_NOT_IN_PAGE_FLAGS 1040#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1041#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1042 SECTIONS_PGOFF : ZONES_PGOFF) 1043#else 1044#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1045#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1046 NODES_PGOFF : ZONES_PGOFF) 1047#endif 1048 1049#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1050 1051#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1052#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1053#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1054#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1055#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1056#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1057 1058static inline enum zone_type page_zonenum(const struct page *page) 1059{ 1060 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1061} 1062 1063#ifdef CONFIG_ZONE_DEVICE 1064static inline bool is_zone_device_page(const struct page *page) 1065{ 1066 return page_zonenum(page) == ZONE_DEVICE; 1067} 1068extern void memmap_init_zone_device(struct zone *, unsigned long, 1069 unsigned long, struct dev_pagemap *); 1070#else 1071static inline bool is_zone_device_page(const struct page *page) 1072{ 1073 return false; 1074} 1075#endif 1076 1077#ifdef CONFIG_DEV_PAGEMAP_OPS 1078void free_devmap_managed_page(struct page *page); 1079DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1080 1081static inline bool page_is_devmap_managed(struct page *page) 1082{ 1083 if (!static_branch_unlikely(&devmap_managed_key)) 1084 return false; 1085 if (!is_zone_device_page(page)) 1086 return false; 1087 switch (page->pgmap->type) { 1088 case MEMORY_DEVICE_PRIVATE: 1089 case MEMORY_DEVICE_FS_DAX: 1090 return true; 1091 default: 1092 break; 1093 } 1094 return false; 1095} 1096 1097void put_devmap_managed_page(struct page *page); 1098 1099#else /* CONFIG_DEV_PAGEMAP_OPS */ 1100static inline bool page_is_devmap_managed(struct page *page) 1101{ 1102 return false; 1103} 1104 1105static inline void put_devmap_managed_page(struct page *page) 1106{ 1107} 1108#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1109 1110static inline bool is_device_private_page(const struct page *page) 1111{ 1112 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1113 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1114 is_zone_device_page(page) && 1115 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1116} 1117 1118static inline bool is_pci_p2pdma_page(const struct page *page) 1119{ 1120 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1121 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1122 is_zone_device_page(page) && 1123 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1124} 1125 1126/* 127: arbitrary random number, small enough to assemble well */ 1127#define page_ref_zero_or_close_to_overflow(page) \ 1128 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1129 1130static inline void get_page(struct page *page) 1131{ 1132 page = compound_head(page); 1133 /* 1134 * Getting a normal page or the head of a compound page 1135 * requires to already have an elevated page->_refcount. 1136 */ 1137 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1138 page_ref_inc(page); 1139} 1140 1141bool __must_check try_grab_page(struct page *page, unsigned int flags); 1142 1143static inline __must_check bool try_get_page(struct page *page) 1144{ 1145 page = compound_head(page); 1146 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1147 return false; 1148 page_ref_inc(page); 1149 return true; 1150} 1151 1152static inline void put_page(struct page *page) 1153{ 1154 page = compound_head(page); 1155 1156 /* 1157 * For devmap managed pages we need to catch refcount transition from 1158 * 2 to 1, when refcount reach one it means the page is free and we 1159 * need to inform the device driver through callback. See 1160 * include/linux/memremap.h and HMM for details. 1161 */ 1162 if (page_is_devmap_managed(page)) { 1163 put_devmap_managed_page(page); 1164 return; 1165 } 1166 1167 if (put_page_testzero(page)) 1168 __put_page(page); 1169} 1170 1171/* 1172 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1173 * the page's refcount so that two separate items are tracked: the original page 1174 * reference count, and also a new count of how many pin_user_pages() calls were 1175 * made against the page. ("gup-pinned" is another term for the latter). 1176 * 1177 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1178 * distinct from normal pages. As such, the unpin_user_page() call (and its 1179 * variants) must be used in order to release gup-pinned pages. 1180 * 1181 * Choice of value: 1182 * 1183 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1184 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1185 * simpler, due to the fact that adding an even power of two to the page 1186 * refcount has the effect of using only the upper N bits, for the code that 1187 * counts up using the bias value. This means that the lower bits are left for 1188 * the exclusive use of the original code that increments and decrements by one 1189 * (or at least, by much smaller values than the bias value). 1190 * 1191 * Of course, once the lower bits overflow into the upper bits (and this is 1192 * OK, because subtraction recovers the original values), then visual inspection 1193 * no longer suffices to directly view the separate counts. However, for normal 1194 * applications that don't have huge page reference counts, this won't be an 1195 * issue. 1196 * 1197 * Locking: the lockless algorithm described in page_cache_get_speculative() 1198 * and page_cache_gup_pin_speculative() provides safe operation for 1199 * get_user_pages and page_mkclean and other calls that race to set up page 1200 * table entries. 1201 */ 1202#define GUP_PIN_COUNTING_BIAS (1U << 10) 1203 1204void unpin_user_page(struct page *page); 1205void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1206 bool make_dirty); 1207void unpin_user_pages(struct page **pages, unsigned long npages); 1208 1209/** 1210 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1211 * 1212 * This function checks if a page has been pinned via a call to 1213 * pin_user_pages*(). 1214 * 1215 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1216 * because it means "definitely not pinned for DMA", but true means "probably 1217 * pinned for DMA, but possibly a false positive due to having at least 1218 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1219 * 1220 * False positives are OK, because: a) it's unlikely for a page to get that many 1221 * refcounts, and b) all the callers of this routine are expected to be able to 1222 * deal gracefully with a false positive. 1223 * 1224 * For huge pages, the result will be exactly correct. That's because we have 1225 * more tracking data available: the 3rd struct page in the compound page is 1226 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1227 * scheme). 1228 * 1229 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1230 * 1231 * @page: pointer to page to be queried. 1232 * @Return: True, if it is likely that the page has been "dma-pinned". 1233 * False, if the page is definitely not dma-pinned. 1234 */ 1235static inline bool page_maybe_dma_pinned(struct page *page) 1236{ 1237 if (hpage_pincount_available(page)) 1238 return compound_pincount(page) > 0; 1239 1240 /* 1241 * page_ref_count() is signed. If that refcount overflows, then 1242 * page_ref_count() returns a negative value, and callers will avoid 1243 * further incrementing the refcount. 1244 * 1245 * Here, for that overflow case, use the signed bit to count a little 1246 * bit higher via unsigned math, and thus still get an accurate result. 1247 */ 1248 return ((unsigned int)page_ref_count(compound_head(page))) >= 1249 GUP_PIN_COUNTING_BIAS; 1250} 1251 1252#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1253#define SECTION_IN_PAGE_FLAGS 1254#endif 1255 1256/* 1257 * The identification function is mainly used by the buddy allocator for 1258 * determining if two pages could be buddies. We are not really identifying 1259 * the zone since we could be using the section number id if we do not have 1260 * node id available in page flags. 1261 * We only guarantee that it will return the same value for two combinable 1262 * pages in a zone. 1263 */ 1264static inline int page_zone_id(struct page *page) 1265{ 1266 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1267} 1268 1269#ifdef NODE_NOT_IN_PAGE_FLAGS 1270extern int page_to_nid(const struct page *page); 1271#else 1272static inline int page_to_nid(const struct page *page) 1273{ 1274 struct page *p = (struct page *)page; 1275 1276 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1277} 1278#endif 1279 1280#ifdef CONFIG_NUMA_BALANCING 1281static inline int cpu_pid_to_cpupid(int cpu, int pid) 1282{ 1283 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1284} 1285 1286static inline int cpupid_to_pid(int cpupid) 1287{ 1288 return cpupid & LAST__PID_MASK; 1289} 1290 1291static inline int cpupid_to_cpu(int cpupid) 1292{ 1293 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1294} 1295 1296static inline int cpupid_to_nid(int cpupid) 1297{ 1298 return cpu_to_node(cpupid_to_cpu(cpupid)); 1299} 1300 1301static inline bool cpupid_pid_unset(int cpupid) 1302{ 1303 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1304} 1305 1306static inline bool cpupid_cpu_unset(int cpupid) 1307{ 1308 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1309} 1310 1311static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1312{ 1313 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1314} 1315 1316#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1317#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1318static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1319{ 1320 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1321} 1322 1323static inline int page_cpupid_last(struct page *page) 1324{ 1325 return page->_last_cpupid; 1326} 1327static inline void page_cpupid_reset_last(struct page *page) 1328{ 1329 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1330} 1331#else 1332static inline int page_cpupid_last(struct page *page) 1333{ 1334 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1335} 1336 1337extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1338 1339static inline void page_cpupid_reset_last(struct page *page) 1340{ 1341 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1342} 1343#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1344#else /* !CONFIG_NUMA_BALANCING */ 1345static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1346{ 1347 return page_to_nid(page); /* XXX */ 1348} 1349 1350static inline int page_cpupid_last(struct page *page) 1351{ 1352 return page_to_nid(page); /* XXX */ 1353} 1354 1355static inline int cpupid_to_nid(int cpupid) 1356{ 1357 return -1; 1358} 1359 1360static inline int cpupid_to_pid(int cpupid) 1361{ 1362 return -1; 1363} 1364 1365static inline int cpupid_to_cpu(int cpupid) 1366{ 1367 return -1; 1368} 1369 1370static inline int cpu_pid_to_cpupid(int nid, int pid) 1371{ 1372 return -1; 1373} 1374 1375static inline bool cpupid_pid_unset(int cpupid) 1376{ 1377 return true; 1378} 1379 1380static inline void page_cpupid_reset_last(struct page *page) 1381{ 1382} 1383 1384static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1385{ 1386 return false; 1387} 1388#endif /* CONFIG_NUMA_BALANCING */ 1389 1390#ifdef CONFIG_KASAN_SW_TAGS 1391static inline u8 page_kasan_tag(const struct page *page) 1392{ 1393 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1394} 1395 1396static inline void page_kasan_tag_set(struct page *page, u8 tag) 1397{ 1398 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1399 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1400} 1401 1402static inline void page_kasan_tag_reset(struct page *page) 1403{ 1404 page_kasan_tag_set(page, 0xff); 1405} 1406#else 1407static inline u8 page_kasan_tag(const struct page *page) 1408{ 1409 return 0xff; 1410} 1411 1412static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1413static inline void page_kasan_tag_reset(struct page *page) { } 1414#endif 1415 1416static inline struct zone *page_zone(const struct page *page) 1417{ 1418 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1419} 1420 1421static inline pg_data_t *page_pgdat(const struct page *page) 1422{ 1423 return NODE_DATA(page_to_nid(page)); 1424} 1425 1426#ifdef SECTION_IN_PAGE_FLAGS 1427static inline void set_page_section(struct page *page, unsigned long section) 1428{ 1429 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1430 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1431} 1432 1433static inline unsigned long page_to_section(const struct page *page) 1434{ 1435 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1436} 1437#endif 1438 1439static inline void set_page_zone(struct page *page, enum zone_type zone) 1440{ 1441 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1442 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1443} 1444 1445static inline void set_page_node(struct page *page, unsigned long node) 1446{ 1447 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1448 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1449} 1450 1451static inline void set_page_links(struct page *page, enum zone_type zone, 1452 unsigned long node, unsigned long pfn) 1453{ 1454 set_page_zone(page, zone); 1455 set_page_node(page, node); 1456#ifdef SECTION_IN_PAGE_FLAGS 1457 set_page_section(page, pfn_to_section_nr(pfn)); 1458#endif 1459} 1460 1461#ifdef CONFIG_MEMCG 1462static inline struct mem_cgroup *page_memcg(struct page *page) 1463{ 1464 return page->mem_cgroup; 1465} 1466static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1467{ 1468 WARN_ON_ONCE(!rcu_read_lock_held()); 1469 return READ_ONCE(page->mem_cgroup); 1470} 1471#else 1472static inline struct mem_cgroup *page_memcg(struct page *page) 1473{ 1474 return NULL; 1475} 1476static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1477{ 1478 WARN_ON_ONCE(!rcu_read_lock_held()); 1479 return NULL; 1480} 1481#endif 1482 1483/* 1484 * Some inline functions in vmstat.h depend on page_zone() 1485 */ 1486#include <linux/vmstat.h> 1487 1488static __always_inline void *lowmem_page_address(const struct page *page) 1489{ 1490 return page_to_virt(page); 1491} 1492 1493#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1494#define HASHED_PAGE_VIRTUAL 1495#endif 1496 1497#if defined(WANT_PAGE_VIRTUAL) 1498static inline void *page_address(const struct page *page) 1499{ 1500 return page->virtual; 1501} 1502static inline void set_page_address(struct page *page, void *address) 1503{ 1504 page->virtual = address; 1505} 1506#define page_address_init() do { } while(0) 1507#endif 1508 1509#if defined(HASHED_PAGE_VIRTUAL) 1510void *page_address(const struct page *page); 1511void set_page_address(struct page *page, void *virtual); 1512void page_address_init(void); 1513#endif 1514 1515#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1516#define page_address(page) lowmem_page_address(page) 1517#define set_page_address(page, address) do { } while(0) 1518#define page_address_init() do { } while(0) 1519#endif 1520 1521extern void *page_rmapping(struct page *page); 1522extern struct anon_vma *page_anon_vma(struct page *page); 1523extern struct address_space *page_mapping(struct page *page); 1524 1525extern struct address_space *__page_file_mapping(struct page *); 1526 1527static inline 1528struct address_space *page_file_mapping(struct page *page) 1529{ 1530 if (unlikely(PageSwapCache(page))) 1531 return __page_file_mapping(page); 1532 1533 return page->mapping; 1534} 1535 1536extern pgoff_t __page_file_index(struct page *page); 1537 1538/* 1539 * Return the pagecache index of the passed page. Regular pagecache pages 1540 * use ->index whereas swapcache pages use swp_offset(->private) 1541 */ 1542static inline pgoff_t page_index(struct page *page) 1543{ 1544 if (unlikely(PageSwapCache(page))) 1545 return __page_file_index(page); 1546 return page->index; 1547} 1548 1549bool page_mapped(struct page *page); 1550struct address_space *page_mapping(struct page *page); 1551struct address_space *page_mapping_file(struct page *page); 1552 1553/* 1554 * Return true only if the page has been allocated with 1555 * ALLOC_NO_WATERMARKS and the low watermark was not 1556 * met implying that the system is under some pressure. 1557 */ 1558static inline bool page_is_pfmemalloc(struct page *page) 1559{ 1560 /* 1561 * Page index cannot be this large so this must be 1562 * a pfmemalloc page. 1563 */ 1564 return page->index == -1UL; 1565} 1566 1567/* 1568 * Only to be called by the page allocator on a freshly allocated 1569 * page. 1570 */ 1571static inline void set_page_pfmemalloc(struct page *page) 1572{ 1573 page->index = -1UL; 1574} 1575 1576static inline void clear_page_pfmemalloc(struct page *page) 1577{ 1578 page->index = 0; 1579} 1580 1581/* 1582 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1583 */ 1584extern void pagefault_out_of_memory(void); 1585 1586#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1587 1588/* 1589 * Flags passed to show_mem() and show_free_areas() to suppress output in 1590 * various contexts. 1591 */ 1592#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1593 1594extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1595 1596#ifdef CONFIG_MMU 1597extern bool can_do_mlock(void); 1598#else 1599static inline bool can_do_mlock(void) { return false; } 1600#endif 1601extern int user_shm_lock(size_t, struct user_struct *); 1602extern void user_shm_unlock(size_t, struct user_struct *); 1603 1604/* 1605 * Parameter block passed down to zap_pte_range in exceptional cases. 1606 */ 1607struct zap_details { 1608 struct address_space *check_mapping; /* Check page->mapping if set */ 1609 pgoff_t first_index; /* Lowest page->index to unmap */ 1610 pgoff_t last_index; /* Highest page->index to unmap */ 1611}; 1612 1613struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1614 pte_t pte); 1615struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1616 pmd_t pmd); 1617 1618void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1619 unsigned long size); 1620void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1621 unsigned long size); 1622void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1623 unsigned long start, unsigned long end); 1624 1625struct mmu_notifier_range; 1626 1627void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1628 unsigned long end, unsigned long floor, unsigned long ceiling); 1629int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1630 struct vm_area_struct *vma); 1631int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1632 struct mmu_notifier_range *range, 1633 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1634int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1635 unsigned long *pfn); 1636int follow_phys(struct vm_area_struct *vma, unsigned long address, 1637 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1638int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1639 void *buf, int len, int write); 1640 1641extern void truncate_pagecache(struct inode *inode, loff_t new); 1642extern void truncate_setsize(struct inode *inode, loff_t newsize); 1643void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1644void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1645int truncate_inode_page(struct address_space *mapping, struct page *page); 1646int generic_error_remove_page(struct address_space *mapping, struct page *page); 1647int invalidate_inode_page(struct page *page); 1648 1649#ifdef CONFIG_MMU 1650extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1651 unsigned long address, unsigned int flags); 1652extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1653 unsigned long address, unsigned int fault_flags, 1654 bool *unlocked); 1655void unmap_mapping_pages(struct address_space *mapping, 1656 pgoff_t start, pgoff_t nr, bool even_cows); 1657void unmap_mapping_range(struct address_space *mapping, 1658 loff_t const holebegin, loff_t const holelen, int even_cows); 1659#else 1660static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1661 unsigned long address, unsigned int flags) 1662{ 1663 /* should never happen if there's no MMU */ 1664 BUG(); 1665 return VM_FAULT_SIGBUS; 1666} 1667static inline int fixup_user_fault(struct task_struct *tsk, 1668 struct mm_struct *mm, unsigned long address, 1669 unsigned int fault_flags, bool *unlocked) 1670{ 1671 /* should never happen if there's no MMU */ 1672 BUG(); 1673 return -EFAULT; 1674} 1675static inline void unmap_mapping_pages(struct address_space *mapping, 1676 pgoff_t start, pgoff_t nr, bool even_cows) { } 1677static inline void unmap_mapping_range(struct address_space *mapping, 1678 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1679#endif 1680 1681static inline void unmap_shared_mapping_range(struct address_space *mapping, 1682 loff_t const holebegin, loff_t const holelen) 1683{ 1684 unmap_mapping_range(mapping, holebegin, holelen, 0); 1685} 1686 1687extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1688 void *buf, int len, unsigned int gup_flags); 1689extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1690 void *buf, int len, unsigned int gup_flags); 1691extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1692 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1693 1694long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1695 unsigned long start, unsigned long nr_pages, 1696 unsigned int gup_flags, struct page **pages, 1697 struct vm_area_struct **vmas, int *locked); 1698long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1699 unsigned long start, unsigned long nr_pages, 1700 unsigned int gup_flags, struct page **pages, 1701 struct vm_area_struct **vmas, int *locked); 1702long get_user_pages(unsigned long start, unsigned long nr_pages, 1703 unsigned int gup_flags, struct page **pages, 1704 struct vm_area_struct **vmas); 1705long pin_user_pages(unsigned long start, unsigned long nr_pages, 1706 unsigned int gup_flags, struct page **pages, 1707 struct vm_area_struct **vmas); 1708long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1709 unsigned int gup_flags, struct page **pages, int *locked); 1710long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1711 unsigned int gup_flags, struct page **pages, int *locked); 1712long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1713 struct page **pages, unsigned int gup_flags); 1714long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1715 struct page **pages, unsigned int gup_flags); 1716 1717int get_user_pages_fast(unsigned long start, int nr_pages, 1718 unsigned int gup_flags, struct page **pages); 1719int pin_user_pages_fast(unsigned long start, int nr_pages, 1720 unsigned int gup_flags, struct page **pages); 1721 1722int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1723int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1724 struct task_struct *task, bool bypass_rlim); 1725 1726/* Container for pinned pfns / pages */ 1727struct frame_vector { 1728 unsigned int nr_allocated; /* Number of frames we have space for */ 1729 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1730 bool got_ref; /* Did we pin pages by getting page ref? */ 1731 bool is_pfns; /* Does array contain pages or pfns? */ 1732 void *ptrs[]; /* Array of pinned pfns / pages. Use 1733 * pfns_vector_pages() or pfns_vector_pfns() 1734 * for access */ 1735}; 1736 1737struct frame_vector *frame_vector_create(unsigned int nr_frames); 1738void frame_vector_destroy(struct frame_vector *vec); 1739int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1740 unsigned int gup_flags, struct frame_vector *vec); 1741void put_vaddr_frames(struct frame_vector *vec); 1742int frame_vector_to_pages(struct frame_vector *vec); 1743void frame_vector_to_pfns(struct frame_vector *vec); 1744 1745static inline unsigned int frame_vector_count(struct frame_vector *vec) 1746{ 1747 return vec->nr_frames; 1748} 1749 1750static inline struct page **frame_vector_pages(struct frame_vector *vec) 1751{ 1752 if (vec->is_pfns) { 1753 int err = frame_vector_to_pages(vec); 1754 1755 if (err) 1756 return ERR_PTR(err); 1757 } 1758 return (struct page **)(vec->ptrs); 1759} 1760 1761static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1762{ 1763 if (!vec->is_pfns) 1764 frame_vector_to_pfns(vec); 1765 return (unsigned long *)(vec->ptrs); 1766} 1767 1768struct kvec; 1769int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1770 struct page **pages); 1771int get_kernel_page(unsigned long start, int write, struct page **pages); 1772struct page *get_dump_page(unsigned long addr); 1773 1774extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1775extern void do_invalidatepage(struct page *page, unsigned int offset, 1776 unsigned int length); 1777 1778void __set_page_dirty(struct page *, struct address_space *, int warn); 1779int __set_page_dirty_nobuffers(struct page *page); 1780int __set_page_dirty_no_writeback(struct page *page); 1781int redirty_page_for_writepage(struct writeback_control *wbc, 1782 struct page *page); 1783void account_page_dirtied(struct page *page, struct address_space *mapping); 1784void account_page_cleaned(struct page *page, struct address_space *mapping, 1785 struct bdi_writeback *wb); 1786int set_page_dirty(struct page *page); 1787int set_page_dirty_lock(struct page *page); 1788void __cancel_dirty_page(struct page *page); 1789static inline void cancel_dirty_page(struct page *page) 1790{ 1791 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1792 if (PageDirty(page)) 1793 __cancel_dirty_page(page); 1794} 1795int clear_page_dirty_for_io(struct page *page); 1796 1797int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1798 1799extern unsigned long move_page_tables(struct vm_area_struct *vma, 1800 unsigned long old_addr, struct vm_area_struct *new_vma, 1801 unsigned long new_addr, unsigned long len, 1802 bool need_rmap_locks); 1803 1804/* 1805 * Flags used by change_protection(). For now we make it a bitmap so 1806 * that we can pass in multiple flags just like parameters. However 1807 * for now all the callers are only use one of the flags at the same 1808 * time. 1809 */ 1810/* Whether we should allow dirty bit accounting */ 1811#define MM_CP_DIRTY_ACCT (1UL << 0) 1812/* Whether this protection change is for NUMA hints */ 1813#define MM_CP_PROT_NUMA (1UL << 1) 1814/* Whether this change is for write protecting */ 1815#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1816#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1817#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1818 MM_CP_UFFD_WP_RESOLVE) 1819 1820extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1821 unsigned long end, pgprot_t newprot, 1822 unsigned long cp_flags); 1823extern int mprotect_fixup(struct vm_area_struct *vma, 1824 struct vm_area_struct **pprev, unsigned long start, 1825 unsigned long end, unsigned long newflags); 1826 1827/* 1828 * doesn't attempt to fault and will return short. 1829 */ 1830int get_user_pages_fast_only(unsigned long start, int nr_pages, 1831 unsigned int gup_flags, struct page **pages); 1832int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1833 unsigned int gup_flags, struct page **pages); 1834 1835static inline bool get_user_page_fast_only(unsigned long addr, 1836 unsigned int gup_flags, struct page **pagep) 1837{ 1838 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1839} 1840/* 1841 * per-process(per-mm_struct) statistics. 1842 */ 1843static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1844{ 1845 long val = atomic_long_read(&mm->rss_stat.count[member]); 1846 1847#ifdef SPLIT_RSS_COUNTING 1848 /* 1849 * counter is updated in asynchronous manner and may go to minus. 1850 * But it's never be expected number for users. 1851 */ 1852 if (val < 0) 1853 val = 0; 1854#endif 1855 return (unsigned long)val; 1856} 1857 1858void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1859 1860static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1861{ 1862 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1863 1864 mm_trace_rss_stat(mm, member, count); 1865} 1866 1867static inline void inc_mm_counter(struct mm_struct *mm, int member) 1868{ 1869 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1870 1871 mm_trace_rss_stat(mm, member, count); 1872} 1873 1874static inline void dec_mm_counter(struct mm_struct *mm, int member) 1875{ 1876 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1877 1878 mm_trace_rss_stat(mm, member, count); 1879} 1880 1881/* Optimized variant when page is already known not to be PageAnon */ 1882static inline int mm_counter_file(struct page *page) 1883{ 1884 if (PageSwapBacked(page)) 1885 return MM_SHMEMPAGES; 1886 return MM_FILEPAGES; 1887} 1888 1889static inline int mm_counter(struct page *page) 1890{ 1891 if (PageAnon(page)) 1892 return MM_ANONPAGES; 1893 return mm_counter_file(page); 1894} 1895 1896static inline unsigned long get_mm_rss(struct mm_struct *mm) 1897{ 1898 return get_mm_counter(mm, MM_FILEPAGES) + 1899 get_mm_counter(mm, MM_ANONPAGES) + 1900 get_mm_counter(mm, MM_SHMEMPAGES); 1901} 1902 1903static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1904{ 1905 return max(mm->hiwater_rss, get_mm_rss(mm)); 1906} 1907 1908static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1909{ 1910 return max(mm->hiwater_vm, mm->total_vm); 1911} 1912 1913static inline void update_hiwater_rss(struct mm_struct *mm) 1914{ 1915 unsigned long _rss = get_mm_rss(mm); 1916 1917 if ((mm)->hiwater_rss < _rss) 1918 (mm)->hiwater_rss = _rss; 1919} 1920 1921static inline void update_hiwater_vm(struct mm_struct *mm) 1922{ 1923 if (mm->hiwater_vm < mm->total_vm) 1924 mm->hiwater_vm = mm->total_vm; 1925} 1926 1927static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1928{ 1929 mm->hiwater_rss = get_mm_rss(mm); 1930} 1931 1932static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1933 struct mm_struct *mm) 1934{ 1935 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1936 1937 if (*maxrss < hiwater_rss) 1938 *maxrss = hiwater_rss; 1939} 1940 1941#if defined(SPLIT_RSS_COUNTING) 1942void sync_mm_rss(struct mm_struct *mm); 1943#else 1944static inline void sync_mm_rss(struct mm_struct *mm) 1945{ 1946} 1947#endif 1948 1949#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1950static inline int pte_special(pte_t pte) 1951{ 1952 return 0; 1953} 1954 1955static inline pte_t pte_mkspecial(pte_t pte) 1956{ 1957 return pte; 1958} 1959#endif 1960 1961#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1962static inline int pte_devmap(pte_t pte) 1963{ 1964 return 0; 1965} 1966#endif 1967 1968int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1969 1970extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1971 spinlock_t **ptl); 1972static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1973 spinlock_t **ptl) 1974{ 1975 pte_t *ptep; 1976 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1977 return ptep; 1978} 1979 1980#ifdef __PAGETABLE_P4D_FOLDED 1981static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1982 unsigned long address) 1983{ 1984 return 0; 1985} 1986#else 1987int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1988#endif 1989 1990#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1991static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1992 unsigned long address) 1993{ 1994 return 0; 1995} 1996static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1997static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1998 1999#else 2000int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2001 2002static inline void mm_inc_nr_puds(struct mm_struct *mm) 2003{ 2004 if (mm_pud_folded(mm)) 2005 return; 2006 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2007} 2008 2009static inline void mm_dec_nr_puds(struct mm_struct *mm) 2010{ 2011 if (mm_pud_folded(mm)) 2012 return; 2013 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2014} 2015#endif 2016 2017#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2018static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2019 unsigned long address) 2020{ 2021 return 0; 2022} 2023 2024static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2025static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2026 2027#else 2028int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2029 2030static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2031{ 2032 if (mm_pmd_folded(mm)) 2033 return; 2034 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2035} 2036 2037static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2038{ 2039 if (mm_pmd_folded(mm)) 2040 return; 2041 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2042} 2043#endif 2044 2045#ifdef CONFIG_MMU 2046static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2047{ 2048 atomic_long_set(&mm->pgtables_bytes, 0); 2049} 2050 2051static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2052{ 2053 return atomic_long_read(&mm->pgtables_bytes); 2054} 2055 2056static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2057{ 2058 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2059} 2060 2061static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2062{ 2063 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2064} 2065#else 2066 2067static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2068static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2069{ 2070 return 0; 2071} 2072 2073static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2074static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2075#endif 2076 2077int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2078int __pte_alloc_kernel(pmd_t *pmd); 2079 2080#if defined(CONFIG_MMU) 2081 2082static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2083 unsigned long address) 2084{ 2085 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2086 NULL : p4d_offset(pgd, address); 2087} 2088 2089static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2090 unsigned long address) 2091{ 2092 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2093 NULL : pud_offset(p4d, address); 2094} 2095 2096static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd, 2097 unsigned long address, 2098 pgtbl_mod_mask *mod_mask) 2099 2100{ 2101 if (unlikely(pgd_none(*pgd))) { 2102 if (__p4d_alloc(mm, pgd, address)) 2103 return NULL; 2104 *mod_mask |= PGTBL_PGD_MODIFIED; 2105 } 2106 2107 return p4d_offset(pgd, address); 2108} 2109 2110static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d, 2111 unsigned long address, 2112 pgtbl_mod_mask *mod_mask) 2113{ 2114 if (unlikely(p4d_none(*p4d))) { 2115 if (__pud_alloc(mm, p4d, address)) 2116 return NULL; 2117 *mod_mask |= PGTBL_P4D_MODIFIED; 2118 } 2119 2120 return pud_offset(p4d, address); 2121} 2122 2123static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2124{ 2125 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2126 NULL: pmd_offset(pud, address); 2127} 2128 2129static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud, 2130 unsigned long address, 2131 pgtbl_mod_mask *mod_mask) 2132{ 2133 if (unlikely(pud_none(*pud))) { 2134 if (__pmd_alloc(mm, pud, address)) 2135 return NULL; 2136 *mod_mask |= PGTBL_PUD_MODIFIED; 2137 } 2138 2139 return pmd_offset(pud, address); 2140} 2141#endif /* CONFIG_MMU */ 2142 2143#if USE_SPLIT_PTE_PTLOCKS 2144#if ALLOC_SPLIT_PTLOCKS 2145void __init ptlock_cache_init(void); 2146extern bool ptlock_alloc(struct page *page); 2147extern void ptlock_free(struct page *page); 2148 2149static inline spinlock_t *ptlock_ptr(struct page *page) 2150{ 2151 return page->ptl; 2152} 2153#else /* ALLOC_SPLIT_PTLOCKS */ 2154static inline void ptlock_cache_init(void) 2155{ 2156} 2157 2158static inline bool ptlock_alloc(struct page *page) 2159{ 2160 return true; 2161} 2162 2163static inline void ptlock_free(struct page *page) 2164{ 2165} 2166 2167static inline spinlock_t *ptlock_ptr(struct page *page) 2168{ 2169 return &page->ptl; 2170} 2171#endif /* ALLOC_SPLIT_PTLOCKS */ 2172 2173static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2174{ 2175 return ptlock_ptr(pmd_page(*pmd)); 2176} 2177 2178static inline bool ptlock_init(struct page *page) 2179{ 2180 /* 2181 * prep_new_page() initialize page->private (and therefore page->ptl) 2182 * with 0. Make sure nobody took it in use in between. 2183 * 2184 * It can happen if arch try to use slab for page table allocation: 2185 * slab code uses page->slab_cache, which share storage with page->ptl. 2186 */ 2187 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2188 if (!ptlock_alloc(page)) 2189 return false; 2190 spin_lock_init(ptlock_ptr(page)); 2191 return true; 2192} 2193 2194#else /* !USE_SPLIT_PTE_PTLOCKS */ 2195/* 2196 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2197 */ 2198static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2199{ 2200 return &mm->page_table_lock; 2201} 2202static inline void ptlock_cache_init(void) {} 2203static inline bool ptlock_init(struct page *page) { return true; } 2204static inline void ptlock_free(struct page *page) {} 2205#endif /* USE_SPLIT_PTE_PTLOCKS */ 2206 2207static inline void pgtable_init(void) 2208{ 2209 ptlock_cache_init(); 2210 pgtable_cache_init(); 2211} 2212 2213static inline bool pgtable_pte_page_ctor(struct page *page) 2214{ 2215 if (!ptlock_init(page)) 2216 return false; 2217 __SetPageTable(page); 2218 inc_zone_page_state(page, NR_PAGETABLE); 2219 return true; 2220} 2221 2222static inline void pgtable_pte_page_dtor(struct page *page) 2223{ 2224 ptlock_free(page); 2225 __ClearPageTable(page); 2226 dec_zone_page_state(page, NR_PAGETABLE); 2227} 2228 2229#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2230({ \ 2231 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2232 pte_t *__pte = pte_offset_map(pmd, address); \ 2233 *(ptlp) = __ptl; \ 2234 spin_lock(__ptl); \ 2235 __pte; \ 2236}) 2237 2238#define pte_unmap_unlock(pte, ptl) do { \ 2239 spin_unlock(ptl); \ 2240 pte_unmap(pte); \ 2241} while (0) 2242 2243#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2244 2245#define pte_alloc_map(mm, pmd, address) \ 2246 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2247 2248#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2249 (pte_alloc(mm, pmd) ? \ 2250 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2251 2252#define pte_alloc_kernel(pmd, address) \ 2253 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2254 NULL: pte_offset_kernel(pmd, address)) 2255 2256#define pte_alloc_kernel_track(pmd, address, mask) \ 2257 ((unlikely(pmd_none(*(pmd))) && \ 2258 (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\ 2259 NULL: pte_offset_kernel(pmd, address)) 2260 2261#if USE_SPLIT_PMD_PTLOCKS 2262 2263static struct page *pmd_to_page(pmd_t *pmd) 2264{ 2265 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2266 return virt_to_page((void *)((unsigned long) pmd & mask)); 2267} 2268 2269static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2270{ 2271 return ptlock_ptr(pmd_to_page(pmd)); 2272} 2273 2274static inline bool pgtable_pmd_page_ctor(struct page *page) 2275{ 2276#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2277 page->pmd_huge_pte = NULL; 2278#endif 2279 return ptlock_init(page); 2280} 2281 2282static inline void pgtable_pmd_page_dtor(struct page *page) 2283{ 2284#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2285 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2286#endif 2287 ptlock_free(page); 2288} 2289 2290#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2291 2292#else 2293 2294static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2295{ 2296 return &mm->page_table_lock; 2297} 2298 2299static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2300static inline void pgtable_pmd_page_dtor(struct page *page) {} 2301 2302#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2303 2304#endif 2305 2306static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2307{ 2308 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2309 spin_lock(ptl); 2310 return ptl; 2311} 2312 2313/* 2314 * No scalability reason to split PUD locks yet, but follow the same pattern 2315 * as the PMD locks to make it easier if we decide to. The VM should not be 2316 * considered ready to switch to split PUD locks yet; there may be places 2317 * which need to be converted from page_table_lock. 2318 */ 2319static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2320{ 2321 return &mm->page_table_lock; 2322} 2323 2324static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2325{ 2326 spinlock_t *ptl = pud_lockptr(mm, pud); 2327 2328 spin_lock(ptl); 2329 return ptl; 2330} 2331 2332extern void __init pagecache_init(void); 2333extern void __init free_area_init_memoryless_node(int nid); 2334extern void free_initmem(void); 2335 2336/* 2337 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2338 * into the buddy system. The freed pages will be poisoned with pattern 2339 * "poison" if it's within range [0, UCHAR_MAX]. 2340 * Return pages freed into the buddy system. 2341 */ 2342extern unsigned long free_reserved_area(void *start, void *end, 2343 int poison, const char *s); 2344 2345#ifdef CONFIG_HIGHMEM 2346/* 2347 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2348 * and totalram_pages. 2349 */ 2350extern void free_highmem_page(struct page *page); 2351#endif 2352 2353extern void adjust_managed_page_count(struct page *page, long count); 2354extern void mem_init_print_info(const char *str); 2355 2356extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2357 2358/* Free the reserved page into the buddy system, so it gets managed. */ 2359static inline void __free_reserved_page(struct page *page) 2360{ 2361 ClearPageReserved(page); 2362 init_page_count(page); 2363 __free_page(page); 2364} 2365 2366static inline void free_reserved_page(struct page *page) 2367{ 2368 __free_reserved_page(page); 2369 adjust_managed_page_count(page, 1); 2370} 2371 2372static inline void mark_page_reserved(struct page *page) 2373{ 2374 SetPageReserved(page); 2375 adjust_managed_page_count(page, -1); 2376} 2377 2378/* 2379 * Default method to free all the __init memory into the buddy system. 2380 * The freed pages will be poisoned with pattern "poison" if it's within 2381 * range [0, UCHAR_MAX]. 2382 * Return pages freed into the buddy system. 2383 */ 2384static inline unsigned long free_initmem_default(int poison) 2385{ 2386 extern char __init_begin[], __init_end[]; 2387 2388 return free_reserved_area(&__init_begin, &__init_end, 2389 poison, "unused kernel"); 2390} 2391 2392static inline unsigned long get_num_physpages(void) 2393{ 2394 int nid; 2395 unsigned long phys_pages = 0; 2396 2397 for_each_online_node(nid) 2398 phys_pages += node_present_pages(nid); 2399 2400 return phys_pages; 2401} 2402 2403/* 2404 * Using memblock node mappings, an architecture may initialise its 2405 * zones, allocate the backing mem_map and account for memory holes in an 2406 * architecture independent manner. 2407 * 2408 * An architecture is expected to register range of page frames backed by 2409 * physical memory with memblock_add[_node]() before calling 2410 * free_area_init() passing in the PFN each zone ends at. At a basic 2411 * usage, an architecture is expected to do something like 2412 * 2413 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2414 * max_highmem_pfn}; 2415 * for_each_valid_physical_page_range() 2416 * memblock_add_node(base, size, nid) 2417 * free_area_init(max_zone_pfns); 2418 * 2419 * sparse_memory_present_with_active_regions() calls memory_present() for 2420 * each range when SPARSEMEM is enabled. 2421 */ 2422void free_area_init(unsigned long *max_zone_pfn); 2423unsigned long node_map_pfn_alignment(void); 2424unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2425 unsigned long end_pfn); 2426extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2427 unsigned long end_pfn); 2428extern void get_pfn_range_for_nid(unsigned int nid, 2429 unsigned long *start_pfn, unsigned long *end_pfn); 2430extern unsigned long find_min_pfn_with_active_regions(void); 2431extern void sparse_memory_present_with_active_regions(int nid); 2432 2433#ifndef CONFIG_NEED_MULTIPLE_NODES 2434static inline int early_pfn_to_nid(unsigned long pfn) 2435{ 2436 return 0; 2437} 2438#else 2439/* please see mm/page_alloc.c */ 2440extern int __meminit early_pfn_to_nid(unsigned long pfn); 2441/* there is a per-arch backend function. */ 2442extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2443 struct mminit_pfnnid_cache *state); 2444#endif 2445 2446extern void set_dma_reserve(unsigned long new_dma_reserve); 2447extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2448 enum memmap_context, struct vmem_altmap *); 2449extern void setup_per_zone_wmarks(void); 2450extern int __meminit init_per_zone_wmark_min(void); 2451extern void mem_init(void); 2452extern void __init mmap_init(void); 2453extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2454extern long si_mem_available(void); 2455extern void si_meminfo(struct sysinfo * val); 2456extern void si_meminfo_node(struct sysinfo *val, int nid); 2457#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2458extern unsigned long arch_reserved_kernel_pages(void); 2459#endif 2460 2461extern __printf(3, 4) 2462void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2463 2464extern void setup_per_cpu_pageset(void); 2465 2466/* page_alloc.c */ 2467extern int min_free_kbytes; 2468extern int watermark_boost_factor; 2469extern int watermark_scale_factor; 2470extern bool arch_has_descending_max_zone_pfns(void); 2471 2472/* nommu.c */ 2473extern atomic_long_t mmap_pages_allocated; 2474extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2475 2476/* interval_tree.c */ 2477void vma_interval_tree_insert(struct vm_area_struct *node, 2478 struct rb_root_cached *root); 2479void vma_interval_tree_insert_after(struct vm_area_struct *node, 2480 struct vm_area_struct *prev, 2481 struct rb_root_cached *root); 2482void vma_interval_tree_remove(struct vm_area_struct *node, 2483 struct rb_root_cached *root); 2484struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2485 unsigned long start, unsigned long last); 2486struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2487 unsigned long start, unsigned long last); 2488 2489#define vma_interval_tree_foreach(vma, root, start, last) \ 2490 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2491 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2492 2493void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2494 struct rb_root_cached *root); 2495void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2496 struct rb_root_cached *root); 2497struct anon_vma_chain * 2498anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2499 unsigned long start, unsigned long last); 2500struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2501 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2502#ifdef CONFIG_DEBUG_VM_RB 2503void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2504#endif 2505 2506#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2507 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2508 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2509 2510/* mmap.c */ 2511extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2512extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2513 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2514 struct vm_area_struct *expand); 2515static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2516 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2517{ 2518 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2519} 2520extern struct vm_area_struct *vma_merge(struct mm_struct *, 2521 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2522 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2523 struct mempolicy *, struct vm_userfaultfd_ctx); 2524extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2525extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2526 unsigned long addr, int new_below); 2527extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2528 unsigned long addr, int new_below); 2529extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2530extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2531 struct rb_node **, struct rb_node *); 2532extern void unlink_file_vma(struct vm_area_struct *); 2533extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2534 unsigned long addr, unsigned long len, pgoff_t pgoff, 2535 bool *need_rmap_locks); 2536extern void exit_mmap(struct mm_struct *); 2537 2538static inline int check_data_rlimit(unsigned long rlim, 2539 unsigned long new, 2540 unsigned long start, 2541 unsigned long end_data, 2542 unsigned long start_data) 2543{ 2544 if (rlim < RLIM_INFINITY) { 2545 if (((new - start) + (end_data - start_data)) > rlim) 2546 return -ENOSPC; 2547 } 2548 2549 return 0; 2550} 2551 2552extern int mm_take_all_locks(struct mm_struct *mm); 2553extern void mm_drop_all_locks(struct mm_struct *mm); 2554 2555extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2556extern struct file *get_mm_exe_file(struct mm_struct *mm); 2557extern struct file *get_task_exe_file(struct task_struct *task); 2558 2559extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2560extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2561 2562extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2563 const struct vm_special_mapping *sm); 2564extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2565 unsigned long addr, unsigned long len, 2566 unsigned long flags, 2567 const struct vm_special_mapping *spec); 2568/* This is an obsolete alternative to _install_special_mapping. */ 2569extern int install_special_mapping(struct mm_struct *mm, 2570 unsigned long addr, unsigned long len, 2571 unsigned long flags, struct page **pages); 2572 2573unsigned long randomize_stack_top(unsigned long stack_top); 2574 2575extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2576 2577extern unsigned long mmap_region(struct file *file, unsigned long addr, 2578 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2579 struct list_head *uf); 2580extern unsigned long do_mmap(struct file *file, unsigned long addr, 2581 unsigned long len, unsigned long prot, unsigned long flags, 2582 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2583 struct list_head *uf); 2584extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2585 struct list_head *uf, bool downgrade); 2586extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2587 struct list_head *uf); 2588extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2589 2590static inline unsigned long 2591do_mmap_pgoff(struct file *file, unsigned long addr, 2592 unsigned long len, unsigned long prot, unsigned long flags, 2593 unsigned long pgoff, unsigned long *populate, 2594 struct list_head *uf) 2595{ 2596 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2597} 2598 2599#ifdef CONFIG_MMU 2600extern int __mm_populate(unsigned long addr, unsigned long len, 2601 int ignore_errors); 2602static inline void mm_populate(unsigned long addr, unsigned long len) 2603{ 2604 /* Ignore errors */ 2605 (void) __mm_populate(addr, len, 1); 2606} 2607#else 2608static inline void mm_populate(unsigned long addr, unsigned long len) {} 2609#endif 2610 2611/* These take the mm semaphore themselves */ 2612extern int __must_check vm_brk(unsigned long, unsigned long); 2613extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2614extern int vm_munmap(unsigned long, size_t); 2615extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2616 unsigned long, unsigned long, 2617 unsigned long, unsigned long); 2618 2619struct vm_unmapped_area_info { 2620#define VM_UNMAPPED_AREA_TOPDOWN 1 2621 unsigned long flags; 2622 unsigned long length; 2623 unsigned long low_limit; 2624 unsigned long high_limit; 2625 unsigned long align_mask; 2626 unsigned long align_offset; 2627}; 2628 2629extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2630 2631/* truncate.c */ 2632extern void truncate_inode_pages(struct address_space *, loff_t); 2633extern void truncate_inode_pages_range(struct address_space *, 2634 loff_t lstart, loff_t lend); 2635extern void truncate_inode_pages_final(struct address_space *); 2636 2637/* generic vm_area_ops exported for stackable file systems */ 2638extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2639extern void filemap_map_pages(struct vm_fault *vmf, 2640 pgoff_t start_pgoff, pgoff_t end_pgoff); 2641extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2642 2643/* mm/page-writeback.c */ 2644int __must_check write_one_page(struct page *page); 2645void task_dirty_inc(struct task_struct *tsk); 2646 2647extern unsigned long stack_guard_gap; 2648/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2649extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2650 2651/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2652extern int expand_downwards(struct vm_area_struct *vma, 2653 unsigned long address); 2654#if VM_GROWSUP 2655extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2656#else 2657 #define expand_upwards(vma, address) (0) 2658#endif 2659 2660/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2661extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2662extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2663 struct vm_area_struct **pprev); 2664 2665/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2666 NULL if none. Assume start_addr < end_addr. */ 2667static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2668{ 2669 struct vm_area_struct * vma = find_vma(mm,start_addr); 2670 2671 if (vma && end_addr <= vma->vm_start) 2672 vma = NULL; 2673 return vma; 2674} 2675 2676static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2677{ 2678 unsigned long vm_start = vma->vm_start; 2679 2680 if (vma->vm_flags & VM_GROWSDOWN) { 2681 vm_start -= stack_guard_gap; 2682 if (vm_start > vma->vm_start) 2683 vm_start = 0; 2684 } 2685 return vm_start; 2686} 2687 2688static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2689{ 2690 unsigned long vm_end = vma->vm_end; 2691 2692 if (vma->vm_flags & VM_GROWSUP) { 2693 vm_end += stack_guard_gap; 2694 if (vm_end < vma->vm_end) 2695 vm_end = -PAGE_SIZE; 2696 } 2697 return vm_end; 2698} 2699 2700static inline unsigned long vma_pages(struct vm_area_struct *vma) 2701{ 2702 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2703} 2704 2705/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2706static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2707 unsigned long vm_start, unsigned long vm_end) 2708{ 2709 struct vm_area_struct *vma = find_vma(mm, vm_start); 2710 2711 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2712 vma = NULL; 2713 2714 return vma; 2715} 2716 2717static inline bool range_in_vma(struct vm_area_struct *vma, 2718 unsigned long start, unsigned long end) 2719{ 2720 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2721} 2722 2723#ifdef CONFIG_MMU 2724pgprot_t vm_get_page_prot(unsigned long vm_flags); 2725void vma_set_page_prot(struct vm_area_struct *vma); 2726#else 2727static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2728{ 2729 return __pgprot(0); 2730} 2731static inline void vma_set_page_prot(struct vm_area_struct *vma) 2732{ 2733 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2734} 2735#endif 2736 2737#ifdef CONFIG_NUMA_BALANCING 2738unsigned long change_prot_numa(struct vm_area_struct *vma, 2739 unsigned long start, unsigned long end); 2740#endif 2741 2742struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2743int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2744 unsigned long pfn, unsigned long size, pgprot_t); 2745int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2746int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2747 struct page **pages, unsigned long *num); 2748int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2749 unsigned long num); 2750int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2751 unsigned long num); 2752vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2753 unsigned long pfn); 2754vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2755 unsigned long pfn, pgprot_t pgprot); 2756vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2757 pfn_t pfn); 2758vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2759 pfn_t pfn, pgprot_t pgprot); 2760vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2761 unsigned long addr, pfn_t pfn); 2762int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2763 2764static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2765 unsigned long addr, struct page *page) 2766{ 2767 int err = vm_insert_page(vma, addr, page); 2768 2769 if (err == -ENOMEM) 2770 return VM_FAULT_OOM; 2771 if (err < 0 && err != -EBUSY) 2772 return VM_FAULT_SIGBUS; 2773 2774 return VM_FAULT_NOPAGE; 2775} 2776 2777static inline vm_fault_t vmf_error(int err) 2778{ 2779 if (err == -ENOMEM) 2780 return VM_FAULT_OOM; 2781 return VM_FAULT_SIGBUS; 2782} 2783 2784struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2785 unsigned int foll_flags); 2786 2787#define FOLL_WRITE 0x01 /* check pte is writable */ 2788#define FOLL_TOUCH 0x02 /* mark page accessed */ 2789#define FOLL_GET 0x04 /* do get_page on page */ 2790#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2791#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2792#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2793 * and return without waiting upon it */ 2794#define FOLL_POPULATE 0x40 /* fault in page */ 2795#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2796#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2797#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2798#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2799#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2800#define FOLL_MLOCK 0x1000 /* lock present pages */ 2801#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2802#define FOLL_COW 0x4000 /* internal GUP flag */ 2803#define FOLL_ANON 0x8000 /* don't do file mappings */ 2804#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2805#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2806#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2807#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2808 2809/* 2810 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2811 * other. Here is what they mean, and how to use them: 2812 * 2813 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2814 * period _often_ under userspace control. This is in contrast to 2815 * iov_iter_get_pages(), whose usages are transient. 2816 * 2817 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2818 * lifetime enforced by the filesystem and we need guarantees that longterm 2819 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2820 * the filesystem. Ideas for this coordination include revoking the longterm 2821 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2822 * added after the problem with filesystems was found FS DAX VMAs are 2823 * specifically failed. Filesystem pages are still subject to bugs and use of 2824 * FOLL_LONGTERM should be avoided on those pages. 2825 * 2826 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2827 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2828 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2829 * is due to an incompatibility with the FS DAX check and 2830 * FAULT_FLAG_ALLOW_RETRY. 2831 * 2832 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2833 * that region. And so, CMA attempts to migrate the page before pinning, when 2834 * FOLL_LONGTERM is specified. 2835 * 2836 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2837 * but an additional pin counting system) will be invoked. This is intended for 2838 * anything that gets a page reference and then touches page data (for example, 2839 * Direct IO). This lets the filesystem know that some non-file-system entity is 2840 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2841 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2842 * a call to unpin_user_page(). 2843 * 2844 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2845 * and separate refcounting mechanisms, however, and that means that each has 2846 * its own acquire and release mechanisms: 2847 * 2848 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2849 * 2850 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2851 * 2852 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2853 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2854 * calls applied to them, and that's perfectly OK. This is a constraint on the 2855 * callers, not on the pages.) 2856 * 2857 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2858 * directly by the caller. That's in order to help avoid mismatches when 2859 * releasing pages: get_user_pages*() pages must be released via put_page(), 2860 * while pin_user_pages*() pages must be released via unpin_user_page(). 2861 * 2862 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2863 */ 2864 2865static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2866{ 2867 if (vm_fault & VM_FAULT_OOM) 2868 return -ENOMEM; 2869 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2870 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2871 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2872 return -EFAULT; 2873 return 0; 2874} 2875 2876typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2877extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2878 unsigned long size, pte_fn_t fn, void *data); 2879extern int apply_to_existing_page_range(struct mm_struct *mm, 2880 unsigned long address, unsigned long size, 2881 pte_fn_t fn, void *data); 2882 2883#ifdef CONFIG_PAGE_POISONING 2884extern bool page_poisoning_enabled(void); 2885extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2886#else 2887static inline bool page_poisoning_enabled(void) { return false; } 2888static inline void kernel_poison_pages(struct page *page, int numpages, 2889 int enable) { } 2890#endif 2891 2892#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2893DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2894#else 2895DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2896#endif 2897static inline bool want_init_on_alloc(gfp_t flags) 2898{ 2899 if (static_branch_unlikely(&init_on_alloc) && 2900 !page_poisoning_enabled()) 2901 return true; 2902 return flags & __GFP_ZERO; 2903} 2904 2905#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2906DECLARE_STATIC_KEY_TRUE(init_on_free); 2907#else 2908DECLARE_STATIC_KEY_FALSE(init_on_free); 2909#endif 2910static inline bool want_init_on_free(void) 2911{ 2912 return static_branch_unlikely(&init_on_free) && 2913 !page_poisoning_enabled(); 2914} 2915 2916#ifdef CONFIG_DEBUG_PAGEALLOC 2917extern void init_debug_pagealloc(void); 2918#else 2919static inline void init_debug_pagealloc(void) {} 2920#endif 2921extern bool _debug_pagealloc_enabled_early; 2922DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2923 2924static inline bool debug_pagealloc_enabled(void) 2925{ 2926 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2927 _debug_pagealloc_enabled_early; 2928} 2929 2930/* 2931 * For use in fast paths after init_debug_pagealloc() has run, or when a 2932 * false negative result is not harmful when called too early. 2933 */ 2934static inline bool debug_pagealloc_enabled_static(void) 2935{ 2936 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2937 return false; 2938 2939 return static_branch_unlikely(&_debug_pagealloc_enabled); 2940} 2941 2942#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2943extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2944 2945/* 2946 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2947 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2948 */ 2949static inline void 2950kernel_map_pages(struct page *page, int numpages, int enable) 2951{ 2952 __kernel_map_pages(page, numpages, enable); 2953} 2954#ifdef CONFIG_HIBERNATION 2955extern bool kernel_page_present(struct page *page); 2956#endif /* CONFIG_HIBERNATION */ 2957#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2958static inline void 2959kernel_map_pages(struct page *page, int numpages, int enable) {} 2960#ifdef CONFIG_HIBERNATION 2961static inline bool kernel_page_present(struct page *page) { return true; } 2962#endif /* CONFIG_HIBERNATION */ 2963#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2964 2965#ifdef __HAVE_ARCH_GATE_AREA 2966extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2967extern int in_gate_area_no_mm(unsigned long addr); 2968extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2969#else 2970static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2971{ 2972 return NULL; 2973} 2974static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2975static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2976{ 2977 return 0; 2978} 2979#endif /* __HAVE_ARCH_GATE_AREA */ 2980 2981extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2982 2983#ifdef CONFIG_SYSCTL 2984extern int sysctl_drop_caches; 2985int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2986 loff_t *); 2987#endif 2988 2989void drop_slab(void); 2990void drop_slab_node(int nid); 2991 2992#ifndef CONFIG_MMU 2993#define randomize_va_space 0 2994#else 2995extern int randomize_va_space; 2996#endif 2997 2998const char * arch_vma_name(struct vm_area_struct *vma); 2999#ifdef CONFIG_MMU 3000void print_vma_addr(char *prefix, unsigned long rip); 3001#else 3002static inline void print_vma_addr(char *prefix, unsigned long rip) 3003{ 3004} 3005#endif 3006 3007void *sparse_buffer_alloc(unsigned long size); 3008struct page * __populate_section_memmap(unsigned long pfn, 3009 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3010pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3011p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3012pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3013pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3014pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 3015void *vmemmap_alloc_block(unsigned long size, int node); 3016struct vmem_altmap; 3017void *vmemmap_alloc_block_buf(unsigned long size, int node); 3018void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 3019void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3020int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3021 int node); 3022int vmemmap_populate(unsigned long start, unsigned long end, int node, 3023 struct vmem_altmap *altmap); 3024void vmemmap_populate_print_last(void); 3025#ifdef CONFIG_MEMORY_HOTPLUG 3026void vmemmap_free(unsigned long start, unsigned long end, 3027 struct vmem_altmap *altmap); 3028#endif 3029void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3030 unsigned long nr_pages); 3031 3032enum mf_flags { 3033 MF_COUNT_INCREASED = 1 << 0, 3034 MF_ACTION_REQUIRED = 1 << 1, 3035 MF_MUST_KILL = 1 << 2, 3036 MF_SOFT_OFFLINE = 1 << 3, 3037}; 3038extern int memory_failure(unsigned long pfn, int flags); 3039extern void memory_failure_queue(unsigned long pfn, int flags); 3040extern void memory_failure_queue_kick(int cpu); 3041extern int unpoison_memory(unsigned long pfn); 3042extern int get_hwpoison_page(struct page *page); 3043#define put_hwpoison_page(page) put_page(page) 3044extern int sysctl_memory_failure_early_kill; 3045extern int sysctl_memory_failure_recovery; 3046extern void shake_page(struct page *p, int access); 3047extern atomic_long_t num_poisoned_pages __read_mostly; 3048extern int soft_offline_page(unsigned long pfn, int flags); 3049 3050 3051/* 3052 * Error handlers for various types of pages. 3053 */ 3054enum mf_result { 3055 MF_IGNORED, /* Error: cannot be handled */ 3056 MF_FAILED, /* Error: handling failed */ 3057 MF_DELAYED, /* Will be handled later */ 3058 MF_RECOVERED, /* Successfully recovered */ 3059}; 3060 3061enum mf_action_page_type { 3062 MF_MSG_KERNEL, 3063 MF_MSG_KERNEL_HIGH_ORDER, 3064 MF_MSG_SLAB, 3065 MF_MSG_DIFFERENT_COMPOUND, 3066 MF_MSG_POISONED_HUGE, 3067 MF_MSG_HUGE, 3068 MF_MSG_FREE_HUGE, 3069 MF_MSG_NON_PMD_HUGE, 3070 MF_MSG_UNMAP_FAILED, 3071 MF_MSG_DIRTY_SWAPCACHE, 3072 MF_MSG_CLEAN_SWAPCACHE, 3073 MF_MSG_DIRTY_MLOCKED_LRU, 3074 MF_MSG_CLEAN_MLOCKED_LRU, 3075 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3076 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3077 MF_MSG_DIRTY_LRU, 3078 MF_MSG_CLEAN_LRU, 3079 MF_MSG_TRUNCATED_LRU, 3080 MF_MSG_BUDDY, 3081 MF_MSG_BUDDY_2ND, 3082 MF_MSG_DAX, 3083 MF_MSG_UNKNOWN, 3084}; 3085 3086#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3087extern void clear_huge_page(struct page *page, 3088 unsigned long addr_hint, 3089 unsigned int pages_per_huge_page); 3090extern void copy_user_huge_page(struct page *dst, struct page *src, 3091 unsigned long addr_hint, 3092 struct vm_area_struct *vma, 3093 unsigned int pages_per_huge_page); 3094extern long copy_huge_page_from_user(struct page *dst_page, 3095 const void __user *usr_src, 3096 unsigned int pages_per_huge_page, 3097 bool allow_pagefault); 3098 3099/** 3100 * vma_is_special_huge - Are transhuge page-table entries considered special? 3101 * @vma: Pointer to the struct vm_area_struct to consider 3102 * 3103 * Whether transhuge page-table entries are considered "special" following 3104 * the definition in vm_normal_page(). 3105 * 3106 * Return: true if transhuge page-table entries should be considered special, 3107 * false otherwise. 3108 */ 3109static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3110{ 3111 return vma_is_dax(vma) || (vma->vm_file && 3112 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3113} 3114 3115#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3116 3117#ifdef CONFIG_DEBUG_PAGEALLOC 3118extern unsigned int _debug_guardpage_minorder; 3119DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3120 3121static inline unsigned int debug_guardpage_minorder(void) 3122{ 3123 return _debug_guardpage_minorder; 3124} 3125 3126static inline bool debug_guardpage_enabled(void) 3127{ 3128 return static_branch_unlikely(&_debug_guardpage_enabled); 3129} 3130 3131static inline bool page_is_guard(struct page *page) 3132{ 3133 if (!debug_guardpage_enabled()) 3134 return false; 3135 3136 return PageGuard(page); 3137} 3138#else 3139static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3140static inline bool debug_guardpage_enabled(void) { return false; } 3141static inline bool page_is_guard(struct page *page) { return false; } 3142#endif /* CONFIG_DEBUG_PAGEALLOC */ 3143 3144#if MAX_NUMNODES > 1 3145void __init setup_nr_node_ids(void); 3146#else 3147static inline void setup_nr_node_ids(void) {} 3148#endif 3149 3150extern int memcmp_pages(struct page *page1, struct page *page2); 3151 3152static inline int pages_identical(struct page *page1, struct page *page2) 3153{ 3154 return !memcmp_pages(page1, page2); 3155} 3156 3157#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3158unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3159 pgoff_t first_index, pgoff_t nr, 3160 pgoff_t bitmap_pgoff, 3161 unsigned long *bitmap, 3162 pgoff_t *start, 3163 pgoff_t *end); 3164 3165unsigned long wp_shared_mapping_range(struct address_space *mapping, 3166 pgoff_t first_index, pgoff_t nr); 3167#endif 3168 3169extern int sysctl_nr_trim_pages; 3170 3171#endif /* __KERNEL__ */ 3172#endif /* _LINUX_MM_H */