at v5.8 35 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct page; 27struct mm_struct; 28struct kmem_cache; 29 30/* Cgroup-specific page state, on top of universal node page state */ 31enum memcg_stat_item { 32 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 33 MEMCG_SOCK, 34 /* XXX: why are these zone and not node counters? */ 35 MEMCG_KERNEL_STACK_KB, 36 MEMCG_NR_STAT, 37}; 38 39enum memcg_memory_event { 40 MEMCG_LOW, 41 MEMCG_HIGH, 42 MEMCG_MAX, 43 MEMCG_OOM, 44 MEMCG_OOM_KILL, 45 MEMCG_SWAP_HIGH, 46 MEMCG_SWAP_MAX, 47 MEMCG_SWAP_FAIL, 48 MEMCG_NR_MEMORY_EVENTS, 49}; 50 51enum mem_cgroup_protection { 52 MEMCG_PROT_NONE, 53 MEMCG_PROT_LOW, 54 MEMCG_PROT_MIN, 55}; 56 57struct mem_cgroup_reclaim_cookie { 58 pg_data_t *pgdat; 59 unsigned int generation; 60}; 61 62#ifdef CONFIG_MEMCG 63 64#define MEM_CGROUP_ID_SHIFT 16 65#define MEM_CGROUP_ID_MAX USHRT_MAX 66 67struct mem_cgroup_id { 68 int id; 69 refcount_t ref; 70}; 71 72/* 73 * Per memcg event counter is incremented at every pagein/pageout. With THP, 74 * it will be incremated by the number of pages. This counter is used for 75 * for trigger some periodic events. This is straightforward and better 76 * than using jiffies etc. to handle periodic memcg event. 77 */ 78enum mem_cgroup_events_target { 79 MEM_CGROUP_TARGET_THRESH, 80 MEM_CGROUP_TARGET_SOFTLIMIT, 81 MEM_CGROUP_NTARGETS, 82}; 83 84struct memcg_vmstats_percpu { 85 long stat[MEMCG_NR_STAT]; 86 unsigned long events[NR_VM_EVENT_ITEMS]; 87 unsigned long nr_page_events; 88 unsigned long targets[MEM_CGROUP_NTARGETS]; 89}; 90 91struct mem_cgroup_reclaim_iter { 92 struct mem_cgroup *position; 93 /* scan generation, increased every round-trip */ 94 unsigned int generation; 95}; 96 97struct lruvec_stat { 98 long count[NR_VM_NODE_STAT_ITEMS]; 99}; 100 101/* 102 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers, 103 * which have elements charged to this memcg. 104 */ 105struct memcg_shrinker_map { 106 struct rcu_head rcu; 107 unsigned long map[]; 108}; 109 110/* 111 * per-node information in memory controller. 112 */ 113struct mem_cgroup_per_node { 114 struct lruvec lruvec; 115 116 /* Legacy local VM stats */ 117 struct lruvec_stat __percpu *lruvec_stat_local; 118 119 /* Subtree VM stats (batched updates) */ 120 struct lruvec_stat __percpu *lruvec_stat_cpu; 121 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 122 123 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 124 125 struct mem_cgroup_reclaim_iter iter; 126 127 struct memcg_shrinker_map __rcu *shrinker_map; 128 129 struct rb_node tree_node; /* RB tree node */ 130 unsigned long usage_in_excess;/* Set to the value by which */ 131 /* the soft limit is exceeded*/ 132 bool on_tree; 133 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 134 /* use container_of */ 135}; 136 137struct mem_cgroup_threshold { 138 struct eventfd_ctx *eventfd; 139 unsigned long threshold; 140}; 141 142/* For threshold */ 143struct mem_cgroup_threshold_ary { 144 /* An array index points to threshold just below or equal to usage. */ 145 int current_threshold; 146 /* Size of entries[] */ 147 unsigned int size; 148 /* Array of thresholds */ 149 struct mem_cgroup_threshold entries[]; 150}; 151 152struct mem_cgroup_thresholds { 153 /* Primary thresholds array */ 154 struct mem_cgroup_threshold_ary *primary; 155 /* 156 * Spare threshold array. 157 * This is needed to make mem_cgroup_unregister_event() "never fail". 158 * It must be able to store at least primary->size - 1 entries. 159 */ 160 struct mem_cgroup_threshold_ary *spare; 161}; 162 163enum memcg_kmem_state { 164 KMEM_NONE, 165 KMEM_ALLOCATED, 166 KMEM_ONLINE, 167}; 168 169#if defined(CONFIG_SMP) 170struct memcg_padding { 171 char x[0]; 172} ____cacheline_internodealigned_in_smp; 173#define MEMCG_PADDING(name) struct memcg_padding name; 174#else 175#define MEMCG_PADDING(name) 176#endif 177 178/* 179 * Remember four most recent foreign writebacks with dirty pages in this 180 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 181 * one in a given round, we're likely to catch it later if it keeps 182 * foreign-dirtying, so a fairly low count should be enough. 183 * 184 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 185 */ 186#define MEMCG_CGWB_FRN_CNT 4 187 188struct memcg_cgwb_frn { 189 u64 bdi_id; /* bdi->id of the foreign inode */ 190 int memcg_id; /* memcg->css.id of foreign inode */ 191 u64 at; /* jiffies_64 at the time of dirtying */ 192 struct wb_completion done; /* tracks in-flight foreign writebacks */ 193}; 194 195/* 196 * The memory controller data structure. The memory controller controls both 197 * page cache and RSS per cgroup. We would eventually like to provide 198 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 199 * to help the administrator determine what knobs to tune. 200 */ 201struct mem_cgroup { 202 struct cgroup_subsys_state css; 203 204 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 205 struct mem_cgroup_id id; 206 207 /* Accounted resources */ 208 struct page_counter memory; 209 struct page_counter swap; 210 211 /* Legacy consumer-oriented counters */ 212 struct page_counter memsw; 213 struct page_counter kmem; 214 struct page_counter tcpmem; 215 216 /* Range enforcement for interrupt charges */ 217 struct work_struct high_work; 218 219 unsigned long soft_limit; 220 221 /* vmpressure notifications */ 222 struct vmpressure vmpressure; 223 224 /* 225 * Should the accounting and control be hierarchical, per subtree? 226 */ 227 bool use_hierarchy; 228 229 /* 230 * Should the OOM killer kill all belonging tasks, had it kill one? 231 */ 232 bool oom_group; 233 234 /* protected by memcg_oom_lock */ 235 bool oom_lock; 236 int under_oom; 237 238 int swappiness; 239 /* OOM-Killer disable */ 240 int oom_kill_disable; 241 242 /* memory.events and memory.events.local */ 243 struct cgroup_file events_file; 244 struct cgroup_file events_local_file; 245 246 /* handle for "memory.swap.events" */ 247 struct cgroup_file swap_events_file; 248 249 /* protect arrays of thresholds */ 250 struct mutex thresholds_lock; 251 252 /* thresholds for memory usage. RCU-protected */ 253 struct mem_cgroup_thresholds thresholds; 254 255 /* thresholds for mem+swap usage. RCU-protected */ 256 struct mem_cgroup_thresholds memsw_thresholds; 257 258 /* For oom notifier event fd */ 259 struct list_head oom_notify; 260 261 /* 262 * Should we move charges of a task when a task is moved into this 263 * mem_cgroup ? And what type of charges should we move ? 264 */ 265 unsigned long move_charge_at_immigrate; 266 /* taken only while moving_account > 0 */ 267 spinlock_t move_lock; 268 unsigned long move_lock_flags; 269 270 MEMCG_PADDING(_pad1_); 271 272 /* 273 * set > 0 if pages under this cgroup are moving to other cgroup. 274 */ 275 atomic_t moving_account; 276 struct task_struct *move_lock_task; 277 278 /* Legacy local VM stats and events */ 279 struct memcg_vmstats_percpu __percpu *vmstats_local; 280 281 /* Subtree VM stats and events (batched updates) */ 282 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 283 284 MEMCG_PADDING(_pad2_); 285 286 atomic_long_t vmstats[MEMCG_NR_STAT]; 287 atomic_long_t vmevents[NR_VM_EVENT_ITEMS]; 288 289 /* memory.events */ 290 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 291 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 292 293 unsigned long socket_pressure; 294 295 /* Legacy tcp memory accounting */ 296 bool tcpmem_active; 297 int tcpmem_pressure; 298 299#ifdef CONFIG_MEMCG_KMEM 300 /* Index in the kmem_cache->memcg_params.memcg_caches array */ 301 int kmemcg_id; 302 enum memcg_kmem_state kmem_state; 303 struct list_head kmem_caches; 304#endif 305 306#ifdef CONFIG_CGROUP_WRITEBACK 307 struct list_head cgwb_list; 308 struct wb_domain cgwb_domain; 309 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 310#endif 311 312 /* List of events which userspace want to receive */ 313 struct list_head event_list; 314 spinlock_t event_list_lock; 315 316#ifdef CONFIG_TRANSPARENT_HUGEPAGE 317 struct deferred_split deferred_split_queue; 318#endif 319 320 struct mem_cgroup_per_node *nodeinfo[0]; 321 /* WARNING: nodeinfo must be the last member here */ 322}; 323 324/* 325 * size of first charge trial. "32" comes from vmscan.c's magic value. 326 * TODO: maybe necessary to use big numbers in big irons. 327 */ 328#define MEMCG_CHARGE_BATCH 32U 329 330extern struct mem_cgroup *root_mem_cgroup; 331 332static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 333{ 334 return (memcg == root_mem_cgroup); 335} 336 337static inline bool mem_cgroup_disabled(void) 338{ 339 return !cgroup_subsys_enabled(memory_cgrp_subsys); 340} 341 342static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg, 343 bool in_low_reclaim) 344{ 345 if (mem_cgroup_disabled()) 346 return 0; 347 348 if (in_low_reclaim) 349 return READ_ONCE(memcg->memory.emin); 350 351 return max(READ_ONCE(memcg->memory.emin), 352 READ_ONCE(memcg->memory.elow)); 353} 354 355enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root, 356 struct mem_cgroup *memcg); 357 358int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); 359 360void mem_cgroup_uncharge(struct page *page); 361void mem_cgroup_uncharge_list(struct list_head *page_list); 362 363void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 364 365static struct mem_cgroup_per_node * 366mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid) 367{ 368 return memcg->nodeinfo[nid]; 369} 370 371/** 372 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 373 * @memcg: memcg of the wanted lruvec 374 * 375 * Returns the lru list vector holding pages for a given @memcg & 376 * @node combination. This can be the node lruvec, if the memory 377 * controller is disabled. 378 */ 379static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 380 struct pglist_data *pgdat) 381{ 382 struct mem_cgroup_per_node *mz; 383 struct lruvec *lruvec; 384 385 if (mem_cgroup_disabled()) { 386 lruvec = &pgdat->__lruvec; 387 goto out; 388 } 389 390 if (!memcg) 391 memcg = root_mem_cgroup; 392 393 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id); 394 lruvec = &mz->lruvec; 395out: 396 /* 397 * Since a node can be onlined after the mem_cgroup was created, 398 * we have to be prepared to initialize lruvec->pgdat here; 399 * and if offlined then reonlined, we need to reinitialize it. 400 */ 401 if (unlikely(lruvec->pgdat != pgdat)) 402 lruvec->pgdat = pgdat; 403 return lruvec; 404} 405 406struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *); 407 408struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 409 410struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 411 412struct mem_cgroup *get_mem_cgroup_from_page(struct page *page); 413 414static inline 415struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 416 return css ? container_of(css, struct mem_cgroup, css) : NULL; 417} 418 419static inline void mem_cgroup_put(struct mem_cgroup *memcg) 420{ 421 if (memcg) 422 css_put(&memcg->css); 423} 424 425#define mem_cgroup_from_counter(counter, member) \ 426 container_of(counter, struct mem_cgroup, member) 427 428struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 429 struct mem_cgroup *, 430 struct mem_cgroup_reclaim_cookie *); 431void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 432int mem_cgroup_scan_tasks(struct mem_cgroup *, 433 int (*)(struct task_struct *, void *), void *); 434 435static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 436{ 437 if (mem_cgroup_disabled()) 438 return 0; 439 440 return memcg->id.id; 441} 442struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 443 444static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 445{ 446 return mem_cgroup_from_css(seq_css(m)); 447} 448 449static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 450{ 451 struct mem_cgroup_per_node *mz; 452 453 if (mem_cgroup_disabled()) 454 return NULL; 455 456 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 457 return mz->memcg; 458} 459 460/** 461 * parent_mem_cgroup - find the accounting parent of a memcg 462 * @memcg: memcg whose parent to find 463 * 464 * Returns the parent memcg, or NULL if this is the root or the memory 465 * controller is in legacy no-hierarchy mode. 466 */ 467static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 468{ 469 if (!memcg->memory.parent) 470 return NULL; 471 return mem_cgroup_from_counter(memcg->memory.parent, memory); 472} 473 474static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 475 struct mem_cgroup *root) 476{ 477 if (root == memcg) 478 return true; 479 if (!root->use_hierarchy) 480 return false; 481 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 482} 483 484static inline bool mm_match_cgroup(struct mm_struct *mm, 485 struct mem_cgroup *memcg) 486{ 487 struct mem_cgroup *task_memcg; 488 bool match = false; 489 490 rcu_read_lock(); 491 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 492 if (task_memcg) 493 match = mem_cgroup_is_descendant(task_memcg, memcg); 494 rcu_read_unlock(); 495 return match; 496} 497 498struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 499ino_t page_cgroup_ino(struct page *page); 500 501static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 502{ 503 if (mem_cgroup_disabled()) 504 return true; 505 return !!(memcg->css.flags & CSS_ONLINE); 506} 507 508/* 509 * For memory reclaim. 510 */ 511int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 512 513void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 514 int zid, int nr_pages); 515 516static inline 517unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 518 enum lru_list lru, int zone_idx) 519{ 520 struct mem_cgroup_per_node *mz; 521 522 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 523 return mz->lru_zone_size[zone_idx][lru]; 524} 525 526void mem_cgroup_handle_over_high(void); 527 528unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 529 530unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 531 532void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 533 struct task_struct *p); 534 535void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 536 537static inline void mem_cgroup_enter_user_fault(void) 538{ 539 WARN_ON(current->in_user_fault); 540 current->in_user_fault = 1; 541} 542 543static inline void mem_cgroup_exit_user_fault(void) 544{ 545 WARN_ON(!current->in_user_fault); 546 current->in_user_fault = 0; 547} 548 549static inline bool task_in_memcg_oom(struct task_struct *p) 550{ 551 return p->memcg_in_oom; 552} 553 554bool mem_cgroup_oom_synchronize(bool wait); 555struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 556 struct mem_cgroup *oom_domain); 557void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 558 559#ifdef CONFIG_MEMCG_SWAP 560extern bool cgroup_memory_noswap; 561#endif 562 563struct mem_cgroup *lock_page_memcg(struct page *page); 564void __unlock_page_memcg(struct mem_cgroup *memcg); 565void unlock_page_memcg(struct page *page); 566 567/* 568 * idx can be of type enum memcg_stat_item or node_stat_item. 569 * Keep in sync with memcg_exact_page_state(). 570 */ 571static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 572{ 573 long x = atomic_long_read(&memcg->vmstats[idx]); 574#ifdef CONFIG_SMP 575 if (x < 0) 576 x = 0; 577#endif 578 return x; 579} 580 581/* 582 * idx can be of type enum memcg_stat_item or node_stat_item. 583 * Keep in sync with memcg_exact_page_state(). 584 */ 585static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 586 int idx) 587{ 588 long x = 0; 589 int cpu; 590 591 for_each_possible_cpu(cpu) 592 x += per_cpu(memcg->vmstats_local->stat[idx], cpu); 593#ifdef CONFIG_SMP 594 if (x < 0) 595 x = 0; 596#endif 597 return x; 598} 599 600void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 601 602/* idx can be of type enum memcg_stat_item or node_stat_item */ 603static inline void mod_memcg_state(struct mem_cgroup *memcg, 604 int idx, int val) 605{ 606 unsigned long flags; 607 608 local_irq_save(flags); 609 __mod_memcg_state(memcg, idx, val); 610 local_irq_restore(flags); 611} 612 613/** 614 * mod_memcg_page_state - update page state statistics 615 * @page: the page 616 * @idx: page state item to account 617 * @val: number of pages (positive or negative) 618 * 619 * The @page must be locked or the caller must use lock_page_memcg() 620 * to prevent double accounting when the page is concurrently being 621 * moved to another memcg: 622 * 623 * lock_page(page) or lock_page_memcg(page) 624 * if (TestClearPageState(page)) 625 * mod_memcg_page_state(page, state, -1); 626 * unlock_page(page) or unlock_page_memcg(page) 627 * 628 * Kernel pages are an exception to this, since they'll never move. 629 */ 630static inline void __mod_memcg_page_state(struct page *page, 631 int idx, int val) 632{ 633 if (page->mem_cgroup) 634 __mod_memcg_state(page->mem_cgroup, idx, val); 635} 636 637static inline void mod_memcg_page_state(struct page *page, 638 int idx, int val) 639{ 640 if (page->mem_cgroup) 641 mod_memcg_state(page->mem_cgroup, idx, val); 642} 643 644static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 645 enum node_stat_item idx) 646{ 647 struct mem_cgroup_per_node *pn; 648 long x; 649 650 if (mem_cgroup_disabled()) 651 return node_page_state(lruvec_pgdat(lruvec), idx); 652 653 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 654 x = atomic_long_read(&pn->lruvec_stat[idx]); 655#ifdef CONFIG_SMP 656 if (x < 0) 657 x = 0; 658#endif 659 return x; 660} 661 662static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 663 enum node_stat_item idx) 664{ 665 struct mem_cgroup_per_node *pn; 666 long x = 0; 667 int cpu; 668 669 if (mem_cgroup_disabled()) 670 return node_page_state(lruvec_pgdat(lruvec), idx); 671 672 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 673 for_each_possible_cpu(cpu) 674 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 675#ifdef CONFIG_SMP 676 if (x < 0) 677 x = 0; 678#endif 679 return x; 680} 681 682void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 683 int val); 684void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val); 685void mod_memcg_obj_state(void *p, int idx, int val); 686 687static inline void mod_lruvec_state(struct lruvec *lruvec, 688 enum node_stat_item idx, int val) 689{ 690 unsigned long flags; 691 692 local_irq_save(flags); 693 __mod_lruvec_state(lruvec, idx, val); 694 local_irq_restore(flags); 695} 696 697static inline void __mod_lruvec_page_state(struct page *page, 698 enum node_stat_item idx, int val) 699{ 700 struct page *head = compound_head(page); /* rmap on tail pages */ 701 pg_data_t *pgdat = page_pgdat(page); 702 struct lruvec *lruvec; 703 704 /* Untracked pages have no memcg, no lruvec. Update only the node */ 705 if (!head->mem_cgroup) { 706 __mod_node_page_state(pgdat, idx, val); 707 return; 708 } 709 710 lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat); 711 __mod_lruvec_state(lruvec, idx, val); 712} 713 714static inline void mod_lruvec_page_state(struct page *page, 715 enum node_stat_item idx, int val) 716{ 717 unsigned long flags; 718 719 local_irq_save(flags); 720 __mod_lruvec_page_state(page, idx, val); 721 local_irq_restore(flags); 722} 723 724unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 725 gfp_t gfp_mask, 726 unsigned long *total_scanned); 727 728void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 729 unsigned long count); 730 731static inline void count_memcg_events(struct mem_cgroup *memcg, 732 enum vm_event_item idx, 733 unsigned long count) 734{ 735 unsigned long flags; 736 737 local_irq_save(flags); 738 __count_memcg_events(memcg, idx, count); 739 local_irq_restore(flags); 740} 741 742static inline void count_memcg_page_event(struct page *page, 743 enum vm_event_item idx) 744{ 745 if (page->mem_cgroup) 746 count_memcg_events(page->mem_cgroup, idx, 1); 747} 748 749static inline void count_memcg_event_mm(struct mm_struct *mm, 750 enum vm_event_item idx) 751{ 752 struct mem_cgroup *memcg; 753 754 if (mem_cgroup_disabled()) 755 return; 756 757 rcu_read_lock(); 758 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 759 if (likely(memcg)) 760 count_memcg_events(memcg, idx, 1); 761 rcu_read_unlock(); 762} 763 764static inline void memcg_memory_event(struct mem_cgroup *memcg, 765 enum memcg_memory_event event) 766{ 767 atomic_long_inc(&memcg->memory_events_local[event]); 768 cgroup_file_notify(&memcg->events_local_file); 769 770 do { 771 atomic_long_inc(&memcg->memory_events[event]); 772 cgroup_file_notify(&memcg->events_file); 773 774 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 775 break; 776 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 777 break; 778 } while ((memcg = parent_mem_cgroup(memcg)) && 779 !mem_cgroup_is_root(memcg)); 780} 781 782static inline void memcg_memory_event_mm(struct mm_struct *mm, 783 enum memcg_memory_event event) 784{ 785 struct mem_cgroup *memcg; 786 787 if (mem_cgroup_disabled()) 788 return; 789 790 rcu_read_lock(); 791 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 792 if (likely(memcg)) 793 memcg_memory_event(memcg, event); 794 rcu_read_unlock(); 795} 796 797#ifdef CONFIG_TRANSPARENT_HUGEPAGE 798void mem_cgroup_split_huge_fixup(struct page *head); 799#endif 800 801#else /* CONFIG_MEMCG */ 802 803#define MEM_CGROUP_ID_SHIFT 0 804#define MEM_CGROUP_ID_MAX 0 805 806struct mem_cgroup; 807 808static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 809{ 810 return true; 811} 812 813static inline bool mem_cgroup_disabled(void) 814{ 815 return true; 816} 817 818static inline void memcg_memory_event(struct mem_cgroup *memcg, 819 enum memcg_memory_event event) 820{ 821} 822 823static inline void memcg_memory_event_mm(struct mm_struct *mm, 824 enum memcg_memory_event event) 825{ 826} 827 828static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg, 829 bool in_low_reclaim) 830{ 831 return 0; 832} 833 834static inline enum mem_cgroup_protection mem_cgroup_protected( 835 struct mem_cgroup *root, struct mem_cgroup *memcg) 836{ 837 return MEMCG_PROT_NONE; 838} 839 840static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 841 gfp_t gfp_mask) 842{ 843 return 0; 844} 845 846static inline void mem_cgroup_uncharge(struct page *page) 847{ 848} 849 850static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 851{ 852} 853 854static inline void mem_cgroup_migrate(struct page *old, struct page *new) 855{ 856} 857 858static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 859 struct pglist_data *pgdat) 860{ 861 return &pgdat->__lruvec; 862} 863 864static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 865 struct pglist_data *pgdat) 866{ 867 return &pgdat->__lruvec; 868} 869 870static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 871{ 872 return NULL; 873} 874 875static inline bool mm_match_cgroup(struct mm_struct *mm, 876 struct mem_cgroup *memcg) 877{ 878 return true; 879} 880 881static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 882{ 883 return NULL; 884} 885 886static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page) 887{ 888 return NULL; 889} 890 891static inline void mem_cgroup_put(struct mem_cgroup *memcg) 892{ 893} 894 895static inline struct mem_cgroup * 896mem_cgroup_iter(struct mem_cgroup *root, 897 struct mem_cgroup *prev, 898 struct mem_cgroup_reclaim_cookie *reclaim) 899{ 900 return NULL; 901} 902 903static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 904 struct mem_cgroup *prev) 905{ 906} 907 908static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 909 int (*fn)(struct task_struct *, void *), void *arg) 910{ 911 return 0; 912} 913 914static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 915{ 916 return 0; 917} 918 919static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 920{ 921 WARN_ON_ONCE(id); 922 /* XXX: This should always return root_mem_cgroup */ 923 return NULL; 924} 925 926static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 927{ 928 return NULL; 929} 930 931static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 932{ 933 return NULL; 934} 935 936static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 937{ 938 return true; 939} 940 941static inline 942unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 943 enum lru_list lru, int zone_idx) 944{ 945 return 0; 946} 947 948static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 949{ 950 return 0; 951} 952 953static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 954{ 955 return 0; 956} 957 958static inline void 959mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 960{ 961} 962 963static inline void 964mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 965{ 966} 967 968static inline struct mem_cgroup *lock_page_memcg(struct page *page) 969{ 970 return NULL; 971} 972 973static inline void __unlock_page_memcg(struct mem_cgroup *memcg) 974{ 975} 976 977static inline void unlock_page_memcg(struct page *page) 978{ 979} 980 981static inline void mem_cgroup_handle_over_high(void) 982{ 983} 984 985static inline void mem_cgroup_enter_user_fault(void) 986{ 987} 988 989static inline void mem_cgroup_exit_user_fault(void) 990{ 991} 992 993static inline bool task_in_memcg_oom(struct task_struct *p) 994{ 995 return false; 996} 997 998static inline bool mem_cgroup_oom_synchronize(bool wait) 999{ 1000 return false; 1001} 1002 1003static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1004 struct task_struct *victim, struct mem_cgroup *oom_domain) 1005{ 1006 return NULL; 1007} 1008 1009static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1010{ 1011} 1012 1013static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1014{ 1015 return 0; 1016} 1017 1018static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg, 1019 int idx) 1020{ 1021 return 0; 1022} 1023 1024static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1025 int idx, 1026 int nr) 1027{ 1028} 1029 1030static inline void mod_memcg_state(struct mem_cgroup *memcg, 1031 int idx, 1032 int nr) 1033{ 1034} 1035 1036static inline void __mod_memcg_page_state(struct page *page, 1037 int idx, 1038 int nr) 1039{ 1040} 1041 1042static inline void mod_memcg_page_state(struct page *page, 1043 int idx, 1044 int nr) 1045{ 1046} 1047 1048static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1049 enum node_stat_item idx) 1050{ 1051 return node_page_state(lruvec_pgdat(lruvec), idx); 1052} 1053 1054static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1055 enum node_stat_item idx) 1056{ 1057 return node_page_state(lruvec_pgdat(lruvec), idx); 1058} 1059 1060static inline void __mod_lruvec_state(struct lruvec *lruvec, 1061 enum node_stat_item idx, int val) 1062{ 1063 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1064} 1065 1066static inline void mod_lruvec_state(struct lruvec *lruvec, 1067 enum node_stat_item idx, int val) 1068{ 1069 mod_node_page_state(lruvec_pgdat(lruvec), idx, val); 1070} 1071 1072static inline void __mod_lruvec_page_state(struct page *page, 1073 enum node_stat_item idx, int val) 1074{ 1075 __mod_node_page_state(page_pgdat(page), idx, val); 1076} 1077 1078static inline void mod_lruvec_page_state(struct page *page, 1079 enum node_stat_item idx, int val) 1080{ 1081 mod_node_page_state(page_pgdat(page), idx, val); 1082} 1083 1084static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, 1085 int val) 1086{ 1087 struct page *page = virt_to_head_page(p); 1088 1089 __mod_node_page_state(page_pgdat(page), idx, val); 1090} 1091 1092static inline void mod_memcg_obj_state(void *p, int idx, int val) 1093{ 1094} 1095 1096static inline 1097unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1098 gfp_t gfp_mask, 1099 unsigned long *total_scanned) 1100{ 1101 return 0; 1102} 1103 1104static inline void mem_cgroup_split_huge_fixup(struct page *head) 1105{ 1106} 1107 1108static inline void count_memcg_events(struct mem_cgroup *memcg, 1109 enum vm_event_item idx, 1110 unsigned long count) 1111{ 1112} 1113 1114static inline void __count_memcg_events(struct mem_cgroup *memcg, 1115 enum vm_event_item idx, 1116 unsigned long count) 1117{ 1118} 1119 1120static inline void count_memcg_page_event(struct page *page, 1121 int idx) 1122{ 1123} 1124 1125static inline 1126void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1127{ 1128} 1129#endif /* CONFIG_MEMCG */ 1130 1131/* idx can be of type enum memcg_stat_item or node_stat_item */ 1132static inline void __inc_memcg_state(struct mem_cgroup *memcg, 1133 int idx) 1134{ 1135 __mod_memcg_state(memcg, idx, 1); 1136} 1137 1138/* idx can be of type enum memcg_stat_item or node_stat_item */ 1139static inline void __dec_memcg_state(struct mem_cgroup *memcg, 1140 int idx) 1141{ 1142 __mod_memcg_state(memcg, idx, -1); 1143} 1144 1145/* idx can be of type enum memcg_stat_item or node_stat_item */ 1146static inline void __inc_memcg_page_state(struct page *page, 1147 int idx) 1148{ 1149 __mod_memcg_page_state(page, idx, 1); 1150} 1151 1152/* idx can be of type enum memcg_stat_item or node_stat_item */ 1153static inline void __dec_memcg_page_state(struct page *page, 1154 int idx) 1155{ 1156 __mod_memcg_page_state(page, idx, -1); 1157} 1158 1159static inline void __inc_lruvec_state(struct lruvec *lruvec, 1160 enum node_stat_item idx) 1161{ 1162 __mod_lruvec_state(lruvec, idx, 1); 1163} 1164 1165static inline void __dec_lruvec_state(struct lruvec *lruvec, 1166 enum node_stat_item idx) 1167{ 1168 __mod_lruvec_state(lruvec, idx, -1); 1169} 1170 1171static inline void __inc_lruvec_page_state(struct page *page, 1172 enum node_stat_item idx) 1173{ 1174 __mod_lruvec_page_state(page, idx, 1); 1175} 1176 1177static inline void __dec_lruvec_page_state(struct page *page, 1178 enum node_stat_item idx) 1179{ 1180 __mod_lruvec_page_state(page, idx, -1); 1181} 1182 1183static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx) 1184{ 1185 __mod_lruvec_slab_state(p, idx, 1); 1186} 1187 1188static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx) 1189{ 1190 __mod_lruvec_slab_state(p, idx, -1); 1191} 1192 1193/* idx can be of type enum memcg_stat_item or node_stat_item */ 1194static inline void inc_memcg_state(struct mem_cgroup *memcg, 1195 int idx) 1196{ 1197 mod_memcg_state(memcg, idx, 1); 1198} 1199 1200/* idx can be of type enum memcg_stat_item or node_stat_item */ 1201static inline void dec_memcg_state(struct mem_cgroup *memcg, 1202 int idx) 1203{ 1204 mod_memcg_state(memcg, idx, -1); 1205} 1206 1207/* idx can be of type enum memcg_stat_item or node_stat_item */ 1208static inline void inc_memcg_page_state(struct page *page, 1209 int idx) 1210{ 1211 mod_memcg_page_state(page, idx, 1); 1212} 1213 1214/* idx can be of type enum memcg_stat_item or node_stat_item */ 1215static inline void dec_memcg_page_state(struct page *page, 1216 int idx) 1217{ 1218 mod_memcg_page_state(page, idx, -1); 1219} 1220 1221static inline void inc_lruvec_state(struct lruvec *lruvec, 1222 enum node_stat_item idx) 1223{ 1224 mod_lruvec_state(lruvec, idx, 1); 1225} 1226 1227static inline void dec_lruvec_state(struct lruvec *lruvec, 1228 enum node_stat_item idx) 1229{ 1230 mod_lruvec_state(lruvec, idx, -1); 1231} 1232 1233static inline void inc_lruvec_page_state(struct page *page, 1234 enum node_stat_item idx) 1235{ 1236 mod_lruvec_page_state(page, idx, 1); 1237} 1238 1239static inline void dec_lruvec_page_state(struct page *page, 1240 enum node_stat_item idx) 1241{ 1242 mod_lruvec_page_state(page, idx, -1); 1243} 1244 1245static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1246{ 1247 struct mem_cgroup *memcg; 1248 1249 memcg = lruvec_memcg(lruvec); 1250 if (!memcg) 1251 return NULL; 1252 memcg = parent_mem_cgroup(memcg); 1253 if (!memcg) 1254 return NULL; 1255 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1256} 1257 1258#ifdef CONFIG_CGROUP_WRITEBACK 1259 1260struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1261void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1262 unsigned long *pheadroom, unsigned long *pdirty, 1263 unsigned long *pwriteback); 1264 1265void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1266 struct bdi_writeback *wb); 1267 1268static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1269 struct bdi_writeback *wb) 1270{ 1271 if (mem_cgroup_disabled()) 1272 return; 1273 1274 if (unlikely(&page->mem_cgroup->css != wb->memcg_css)) 1275 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1276} 1277 1278void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1279 1280#else /* CONFIG_CGROUP_WRITEBACK */ 1281 1282static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1283{ 1284 return NULL; 1285} 1286 1287static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1288 unsigned long *pfilepages, 1289 unsigned long *pheadroom, 1290 unsigned long *pdirty, 1291 unsigned long *pwriteback) 1292{ 1293} 1294 1295static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1296 struct bdi_writeback *wb) 1297{ 1298} 1299 1300static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1301{ 1302} 1303 1304#endif /* CONFIG_CGROUP_WRITEBACK */ 1305 1306struct sock; 1307bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1308void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1309#ifdef CONFIG_MEMCG 1310extern struct static_key_false memcg_sockets_enabled_key; 1311#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1312void mem_cgroup_sk_alloc(struct sock *sk); 1313void mem_cgroup_sk_free(struct sock *sk); 1314static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1315{ 1316 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1317 return true; 1318 do { 1319 if (time_before(jiffies, memcg->socket_pressure)) 1320 return true; 1321 } while ((memcg = parent_mem_cgroup(memcg))); 1322 return false; 1323} 1324 1325extern int memcg_expand_shrinker_maps(int new_id); 1326 1327extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1328 int nid, int shrinker_id); 1329#else 1330#define mem_cgroup_sockets_enabled 0 1331static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1332static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1333static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1334{ 1335 return false; 1336} 1337 1338static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg, 1339 int nid, int shrinker_id) 1340{ 1341} 1342#endif 1343 1344struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep); 1345void memcg_kmem_put_cache(struct kmem_cache *cachep); 1346 1347#ifdef CONFIG_MEMCG_KMEM 1348int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1349 unsigned int nr_pages); 1350void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages); 1351int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1352void __memcg_kmem_uncharge_page(struct page *page, int order); 1353 1354extern struct static_key_false memcg_kmem_enabled_key; 1355extern struct workqueue_struct *memcg_kmem_cache_wq; 1356 1357extern int memcg_nr_cache_ids; 1358void memcg_get_cache_ids(void); 1359void memcg_put_cache_ids(void); 1360 1361/* 1362 * Helper macro to loop through all memcg-specific caches. Callers must still 1363 * check if the cache is valid (it is either valid or NULL). 1364 * the slab_mutex must be held when looping through those caches 1365 */ 1366#define for_each_memcg_cache_index(_idx) \ 1367 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1368 1369static inline bool memcg_kmem_enabled(void) 1370{ 1371 return static_branch_unlikely(&memcg_kmem_enabled_key); 1372} 1373 1374static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1375 int order) 1376{ 1377 if (memcg_kmem_enabled()) 1378 return __memcg_kmem_charge_page(page, gfp, order); 1379 return 0; 1380} 1381 1382static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1383{ 1384 if (memcg_kmem_enabled()) 1385 __memcg_kmem_uncharge_page(page, order); 1386} 1387 1388static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp, 1389 unsigned int nr_pages) 1390{ 1391 if (memcg_kmem_enabled()) 1392 return __memcg_kmem_charge(memcg, gfp, nr_pages); 1393 return 0; 1394} 1395 1396static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg, 1397 unsigned int nr_pages) 1398{ 1399 if (memcg_kmem_enabled()) 1400 __memcg_kmem_uncharge(memcg, nr_pages); 1401} 1402 1403/* 1404 * helper for accessing a memcg's index. It will be used as an index in the 1405 * child cache array in kmem_cache, and also to derive its name. This function 1406 * will return -1 when this is not a kmem-limited memcg. 1407 */ 1408static inline int memcg_cache_id(struct mem_cgroup *memcg) 1409{ 1410 return memcg ? memcg->kmemcg_id : -1; 1411} 1412 1413struct mem_cgroup *mem_cgroup_from_obj(void *p); 1414 1415#else 1416 1417static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1418 int order) 1419{ 1420 return 0; 1421} 1422 1423static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1424{ 1425} 1426 1427static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1428 int order) 1429{ 1430 return 0; 1431} 1432 1433static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1434{ 1435} 1436 1437#define for_each_memcg_cache_index(_idx) \ 1438 for (; NULL; ) 1439 1440static inline bool memcg_kmem_enabled(void) 1441{ 1442 return false; 1443} 1444 1445static inline int memcg_cache_id(struct mem_cgroup *memcg) 1446{ 1447 return -1; 1448} 1449 1450static inline void memcg_get_cache_ids(void) 1451{ 1452} 1453 1454static inline void memcg_put_cache_ids(void) 1455{ 1456} 1457 1458static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1459{ 1460 return NULL; 1461} 1462 1463#endif /* CONFIG_MEMCG_KMEM */ 1464 1465#endif /* _LINUX_MEMCONTROL_H */