Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2#ifndef _LINUX_MEMBLOCK_H
3#define _LINUX_MEMBLOCK_H
4#ifdef __KERNEL__
5
6/*
7 * Logical memory blocks.
8 *
9 * Copyright (C) 2001 Peter Bergner, IBM Corp.
10 */
11
12#include <linux/init.h>
13#include <linux/mm.h>
14#include <asm/dma.h>
15
16extern unsigned long max_low_pfn;
17extern unsigned long min_low_pfn;
18
19/*
20 * highest page
21 */
22extern unsigned long max_pfn;
23/*
24 * highest possible page
25 */
26extern unsigned long long max_possible_pfn;
27
28/**
29 * enum memblock_flags - definition of memory region attributes
30 * @MEMBLOCK_NONE: no special request
31 * @MEMBLOCK_HOTPLUG: hotpluggable region
32 * @MEMBLOCK_MIRROR: mirrored region
33 * @MEMBLOCK_NOMAP: don't add to kernel direct mapping
34 */
35enum memblock_flags {
36 MEMBLOCK_NONE = 0x0, /* No special request */
37 MEMBLOCK_HOTPLUG = 0x1, /* hotpluggable region */
38 MEMBLOCK_MIRROR = 0x2, /* mirrored region */
39 MEMBLOCK_NOMAP = 0x4, /* don't add to kernel direct mapping */
40};
41
42/**
43 * struct memblock_region - represents a memory region
44 * @base: base address of the region
45 * @size: size of the region
46 * @flags: memory region attributes
47 * @nid: NUMA node id
48 */
49struct memblock_region {
50 phys_addr_t base;
51 phys_addr_t size;
52 enum memblock_flags flags;
53#ifdef CONFIG_NEED_MULTIPLE_NODES
54 int nid;
55#endif
56};
57
58/**
59 * struct memblock_type - collection of memory regions of certain type
60 * @cnt: number of regions
61 * @max: size of the allocated array
62 * @total_size: size of all regions
63 * @regions: array of regions
64 * @name: the memory type symbolic name
65 */
66struct memblock_type {
67 unsigned long cnt;
68 unsigned long max;
69 phys_addr_t total_size;
70 struct memblock_region *regions;
71 char *name;
72};
73
74/**
75 * struct memblock - memblock allocator metadata
76 * @bottom_up: is bottom up direction?
77 * @current_limit: physical address of the current allocation limit
78 * @memory: usable memory regions
79 * @reserved: reserved memory regions
80 * @physmem: all physical memory
81 */
82struct memblock {
83 bool bottom_up; /* is bottom up direction? */
84 phys_addr_t current_limit;
85 struct memblock_type memory;
86 struct memblock_type reserved;
87#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
88 struct memblock_type physmem;
89#endif
90};
91
92extern struct memblock memblock;
93extern int memblock_debug;
94
95#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
96#define __init_memblock __meminit
97#define __initdata_memblock __meminitdata
98void memblock_discard(void);
99#else
100#define __init_memblock
101#define __initdata_memblock
102static inline void memblock_discard(void) {}
103#endif
104
105#define memblock_dbg(fmt, ...) \
106 if (memblock_debug) printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__)
107
108phys_addr_t memblock_find_in_range(phys_addr_t start, phys_addr_t end,
109 phys_addr_t size, phys_addr_t align);
110void memblock_allow_resize(void);
111int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid);
112int memblock_add(phys_addr_t base, phys_addr_t size);
113int memblock_remove(phys_addr_t base, phys_addr_t size);
114int memblock_free(phys_addr_t base, phys_addr_t size);
115int memblock_reserve(phys_addr_t base, phys_addr_t size);
116#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
117int memblock_physmem_add(phys_addr_t base, phys_addr_t size);
118#endif
119void memblock_trim_memory(phys_addr_t align);
120bool memblock_overlaps_region(struct memblock_type *type,
121 phys_addr_t base, phys_addr_t size);
122int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size);
123int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size);
124int memblock_mark_mirror(phys_addr_t base, phys_addr_t size);
125int memblock_mark_nomap(phys_addr_t base, phys_addr_t size);
126int memblock_clear_nomap(phys_addr_t base, phys_addr_t size);
127
128unsigned long memblock_free_all(void);
129void reset_node_managed_pages(pg_data_t *pgdat);
130void reset_all_zones_managed_pages(void);
131
132/* Low level functions */
133void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
134 struct memblock_type *type_a,
135 struct memblock_type *type_b, phys_addr_t *out_start,
136 phys_addr_t *out_end, int *out_nid);
137
138void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags,
139 struct memblock_type *type_a,
140 struct memblock_type *type_b, phys_addr_t *out_start,
141 phys_addr_t *out_end, int *out_nid);
142
143void __next_reserved_mem_region(u64 *idx, phys_addr_t *out_start,
144 phys_addr_t *out_end);
145
146void __memblock_free_late(phys_addr_t base, phys_addr_t size);
147
148/**
149 * for_each_mem_range - iterate through memblock areas from type_a and not
150 * included in type_b. Or just type_a if type_b is NULL.
151 * @i: u64 used as loop variable
152 * @type_a: ptr to memblock_type to iterate
153 * @type_b: ptr to memblock_type which excludes from the iteration
154 * @nid: node selector, %NUMA_NO_NODE for all nodes
155 * @flags: pick from blocks based on memory attributes
156 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
157 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
158 * @p_nid: ptr to int for nid of the range, can be %NULL
159 */
160#define for_each_mem_range(i, type_a, type_b, nid, flags, \
161 p_start, p_end, p_nid) \
162 for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b, \
163 p_start, p_end, p_nid); \
164 i != (u64)ULLONG_MAX; \
165 __next_mem_range(&i, nid, flags, type_a, type_b, \
166 p_start, p_end, p_nid))
167
168/**
169 * for_each_mem_range_rev - reverse iterate through memblock areas from
170 * type_a and not included in type_b. Or just type_a if type_b is NULL.
171 * @i: u64 used as loop variable
172 * @type_a: ptr to memblock_type to iterate
173 * @type_b: ptr to memblock_type which excludes from the iteration
174 * @nid: node selector, %NUMA_NO_NODE for all nodes
175 * @flags: pick from blocks based on memory attributes
176 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
177 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
178 * @p_nid: ptr to int for nid of the range, can be %NULL
179 */
180#define for_each_mem_range_rev(i, type_a, type_b, nid, flags, \
181 p_start, p_end, p_nid) \
182 for (i = (u64)ULLONG_MAX, \
183 __next_mem_range_rev(&i, nid, flags, type_a, type_b,\
184 p_start, p_end, p_nid); \
185 i != (u64)ULLONG_MAX; \
186 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \
187 p_start, p_end, p_nid))
188
189/**
190 * for_each_reserved_mem_region - iterate over all reserved memblock areas
191 * @i: u64 used as loop variable
192 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
193 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
194 *
195 * Walks over reserved areas of memblock. Available as soon as memblock
196 * is initialized.
197 */
198#define for_each_reserved_mem_region(i, p_start, p_end) \
199 for (i = 0UL, __next_reserved_mem_region(&i, p_start, p_end); \
200 i != (u64)ULLONG_MAX; \
201 __next_reserved_mem_region(&i, p_start, p_end))
202
203static inline bool memblock_is_hotpluggable(struct memblock_region *m)
204{
205 return m->flags & MEMBLOCK_HOTPLUG;
206}
207
208static inline bool memblock_is_mirror(struct memblock_region *m)
209{
210 return m->flags & MEMBLOCK_MIRROR;
211}
212
213static inline bool memblock_is_nomap(struct memblock_region *m)
214{
215 return m->flags & MEMBLOCK_NOMAP;
216}
217
218int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn,
219 unsigned long *end_pfn);
220void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
221 unsigned long *out_end_pfn, int *out_nid);
222
223/**
224 * for_each_mem_pfn_range - early memory pfn range iterator
225 * @i: an integer used as loop variable
226 * @nid: node selector, %MAX_NUMNODES for all nodes
227 * @p_start: ptr to ulong for start pfn of the range, can be %NULL
228 * @p_end: ptr to ulong for end pfn of the range, can be %NULL
229 * @p_nid: ptr to int for nid of the range, can be %NULL
230 *
231 * Walks over configured memory ranges.
232 */
233#define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \
234 for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
235 i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
236
237#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
238void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
239 unsigned long *out_spfn,
240 unsigned long *out_epfn);
241/**
242 * for_each_free_mem_range_in_zone - iterate through zone specific free
243 * memblock areas
244 * @i: u64 used as loop variable
245 * @zone: zone in which all of the memory blocks reside
246 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
247 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
248 *
249 * Walks over free (memory && !reserved) areas of memblock in a specific
250 * zone. Available once memblock and an empty zone is initialized. The main
251 * assumption is that the zone start, end, and pgdat have been associated.
252 * This way we can use the zone to determine NUMA node, and if a given part
253 * of the memblock is valid for the zone.
254 */
255#define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end) \
256 for (i = 0, \
257 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end); \
258 i != U64_MAX; \
259 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
260
261/**
262 * for_each_free_mem_range_in_zone_from - iterate through zone specific
263 * free memblock areas from a given point
264 * @i: u64 used as loop variable
265 * @zone: zone in which all of the memory blocks reside
266 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
267 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
268 *
269 * Walks over free (memory && !reserved) areas of memblock in a specific
270 * zone, continuing from current position. Available as soon as memblock is
271 * initialized.
272 */
273#define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \
274 for (; i != U64_MAX; \
275 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
276
277int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask);
278
279#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
280
281/**
282 * for_each_free_mem_range - iterate through free memblock areas
283 * @i: u64 used as loop variable
284 * @nid: node selector, %NUMA_NO_NODE for all nodes
285 * @flags: pick from blocks based on memory attributes
286 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
287 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
288 * @p_nid: ptr to int for nid of the range, can be %NULL
289 *
290 * Walks over free (memory && !reserved) areas of memblock. Available as
291 * soon as memblock is initialized.
292 */
293#define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid) \
294 for_each_mem_range(i, &memblock.memory, &memblock.reserved, \
295 nid, flags, p_start, p_end, p_nid)
296
297/**
298 * for_each_free_mem_range_reverse - rev-iterate through free memblock areas
299 * @i: u64 used as loop variable
300 * @nid: node selector, %NUMA_NO_NODE for all nodes
301 * @flags: pick from blocks based on memory attributes
302 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
303 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
304 * @p_nid: ptr to int for nid of the range, can be %NULL
305 *
306 * Walks over free (memory && !reserved) areas of memblock in reverse
307 * order. Available as soon as memblock is initialized.
308 */
309#define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, \
310 p_nid) \
311 for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \
312 nid, flags, p_start, p_end, p_nid)
313
314int memblock_set_node(phys_addr_t base, phys_addr_t size,
315 struct memblock_type *type, int nid);
316
317#ifdef CONFIG_NEED_MULTIPLE_NODES
318static inline void memblock_set_region_node(struct memblock_region *r, int nid)
319{
320 r->nid = nid;
321}
322
323static inline int memblock_get_region_node(const struct memblock_region *r)
324{
325 return r->nid;
326}
327#else
328static inline void memblock_set_region_node(struct memblock_region *r, int nid)
329{
330}
331
332static inline int memblock_get_region_node(const struct memblock_region *r)
333{
334 return 0;
335}
336#endif /* CONFIG_NEED_MULTIPLE_NODES */
337
338/* Flags for memblock allocation APIs */
339#define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0)
340#define MEMBLOCK_ALLOC_ACCESSIBLE 0
341#define MEMBLOCK_ALLOC_KASAN 1
342
343/* We are using top down, so it is safe to use 0 here */
344#define MEMBLOCK_LOW_LIMIT 0
345
346#ifndef ARCH_LOW_ADDRESS_LIMIT
347#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
348#endif
349
350phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align,
351 phys_addr_t start, phys_addr_t end);
352phys_addr_t memblock_alloc_range_nid(phys_addr_t size,
353 phys_addr_t align, phys_addr_t start,
354 phys_addr_t end, int nid, bool exact_nid);
355phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
356
357static inline phys_addr_t memblock_phys_alloc(phys_addr_t size,
358 phys_addr_t align)
359{
360 return memblock_phys_alloc_range(size, align, 0,
361 MEMBLOCK_ALLOC_ACCESSIBLE);
362}
363
364void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align,
365 phys_addr_t min_addr, phys_addr_t max_addr,
366 int nid);
367void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
368 phys_addr_t min_addr, phys_addr_t max_addr,
369 int nid);
370void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align,
371 phys_addr_t min_addr, phys_addr_t max_addr,
372 int nid);
373
374static inline void * __init memblock_alloc(phys_addr_t size, phys_addr_t align)
375{
376 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
377 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
378}
379
380static inline void * __init memblock_alloc_raw(phys_addr_t size,
381 phys_addr_t align)
382{
383 return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT,
384 MEMBLOCK_ALLOC_ACCESSIBLE,
385 NUMA_NO_NODE);
386}
387
388static inline void * __init memblock_alloc_from(phys_addr_t size,
389 phys_addr_t align,
390 phys_addr_t min_addr)
391{
392 return memblock_alloc_try_nid(size, align, min_addr,
393 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
394}
395
396static inline void * __init memblock_alloc_low(phys_addr_t size,
397 phys_addr_t align)
398{
399 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
400 ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE);
401}
402
403static inline void * __init memblock_alloc_node(phys_addr_t size,
404 phys_addr_t align, int nid)
405{
406 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
407 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
408}
409
410static inline void __init memblock_free_early(phys_addr_t base,
411 phys_addr_t size)
412{
413 memblock_free(base, size);
414}
415
416static inline void __init memblock_free_early_nid(phys_addr_t base,
417 phys_addr_t size, int nid)
418{
419 memblock_free(base, size);
420}
421
422static inline void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
423{
424 __memblock_free_late(base, size);
425}
426
427/*
428 * Set the allocation direction to bottom-up or top-down.
429 */
430static inline void __init memblock_set_bottom_up(bool enable)
431{
432 memblock.bottom_up = enable;
433}
434
435/*
436 * Check if the allocation direction is bottom-up or not.
437 * if this is true, that said, memblock will allocate memory
438 * in bottom-up direction.
439 */
440static inline bool memblock_bottom_up(void)
441{
442 return memblock.bottom_up;
443}
444
445phys_addr_t memblock_phys_mem_size(void);
446phys_addr_t memblock_reserved_size(void);
447phys_addr_t memblock_mem_size(unsigned long limit_pfn);
448phys_addr_t memblock_start_of_DRAM(void);
449phys_addr_t memblock_end_of_DRAM(void);
450void memblock_enforce_memory_limit(phys_addr_t memory_limit);
451void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size);
452void memblock_mem_limit_remove_map(phys_addr_t limit);
453bool memblock_is_memory(phys_addr_t addr);
454bool memblock_is_map_memory(phys_addr_t addr);
455bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size);
456bool memblock_is_reserved(phys_addr_t addr);
457bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size);
458
459extern void __memblock_dump_all(void);
460
461static inline void memblock_dump_all(void)
462{
463 if (memblock_debug)
464 __memblock_dump_all();
465}
466
467/**
468 * memblock_set_current_limit - Set the current allocation limit to allow
469 * limiting allocations to what is currently
470 * accessible during boot
471 * @limit: New limit value (physical address)
472 */
473void memblock_set_current_limit(phys_addr_t limit);
474
475
476phys_addr_t memblock_get_current_limit(void);
477
478/*
479 * pfn conversion functions
480 *
481 * While the memory MEMBLOCKs should always be page aligned, the reserved
482 * MEMBLOCKs may not be. This accessor attempt to provide a very clear
483 * idea of what they return for such non aligned MEMBLOCKs.
484 */
485
486/**
487 * memblock_region_memory_base_pfn - get the lowest pfn of the memory region
488 * @reg: memblock_region structure
489 *
490 * Return: the lowest pfn intersecting with the memory region
491 */
492static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg)
493{
494 return PFN_UP(reg->base);
495}
496
497/**
498 * memblock_region_memory_end_pfn - get the end pfn of the memory region
499 * @reg: memblock_region structure
500 *
501 * Return: the end_pfn of the reserved region
502 */
503static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg)
504{
505 return PFN_DOWN(reg->base + reg->size);
506}
507
508/**
509 * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region
510 * @reg: memblock_region structure
511 *
512 * Return: the lowest pfn intersecting with the reserved region
513 */
514static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg)
515{
516 return PFN_DOWN(reg->base);
517}
518
519/**
520 * memblock_region_reserved_end_pfn - get the end pfn of the reserved region
521 * @reg: memblock_region structure
522 *
523 * Return: the end_pfn of the reserved region
524 */
525static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg)
526{
527 return PFN_UP(reg->base + reg->size);
528}
529
530#define for_each_memblock(memblock_type, region) \
531 for (region = memblock.memblock_type.regions; \
532 region < (memblock.memblock_type.regions + memblock.memblock_type.cnt); \
533 region++)
534
535#define for_each_memblock_type(i, memblock_type, rgn) \
536 for (i = 0, rgn = &memblock_type->regions[0]; \
537 i < memblock_type->cnt; \
538 i++, rgn = &memblock_type->regions[i])
539
540extern void *alloc_large_system_hash(const char *tablename,
541 unsigned long bucketsize,
542 unsigned long numentries,
543 int scale,
544 int flags,
545 unsigned int *_hash_shift,
546 unsigned int *_hash_mask,
547 unsigned long low_limit,
548 unsigned long high_limit);
549
550#define HASH_EARLY 0x00000001 /* Allocating during early boot? */
551#define HASH_SMALL 0x00000002 /* sub-page allocation allowed, min
552 * shift passed via *_hash_shift */
553#define HASH_ZERO 0x00000004 /* Zero allocated hash table */
554
555/* Only NUMA needs hash distribution. 64bit NUMA architectures have
556 * sufficient vmalloc space.
557 */
558#ifdef CONFIG_NUMA
559#define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT)
560extern int hashdist; /* Distribute hashes across NUMA nodes? */
561#else
562#define hashdist (0)
563#endif
564
565#ifdef CONFIG_MEMTEST
566extern void early_memtest(phys_addr_t start, phys_addr_t end);
567#else
568static inline void early_memtest(phys_addr_t start, phys_addr_t end)
569{
570}
571#endif
572
573#endif /* __KERNEL__ */
574
575#endif /* _LINUX_MEMBLOCK_H */