Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
4
5
6#include <linux/types.h>
7#include <linux/hardirq.h>
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
11#include <linux/signal.h>
12#include <linux/sched.h>
13#include <linux/bug.h>
14#include <linux/mm.h>
15#include <linux/mmu_notifier.h>
16#include <linux/preempt.h>
17#include <linux/msi.h>
18#include <linux/slab.h>
19#include <linux/vmalloc.h>
20#include <linux/rcupdate.h>
21#include <linux/ratelimit.h>
22#include <linux/err.h>
23#include <linux/irqflags.h>
24#include <linux/context_tracking.h>
25#include <linux/irqbypass.h>
26#include <linux/rcuwait.h>
27#include <linux/refcount.h>
28#include <linux/nospec.h>
29#include <asm/signal.h>
30
31#include <linux/kvm.h>
32#include <linux/kvm_para.h>
33
34#include <linux/kvm_types.h>
35
36#include <asm/kvm_host.h>
37
38#ifndef KVM_MAX_VCPU_ID
39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS
40#endif
41
42/*
43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
44 * in kvm, other bits are visible for userspace which are defined in
45 * include/linux/kvm_h.
46 */
47#define KVM_MEMSLOT_INVALID (1UL << 16)
48
49/*
50 * Bit 63 of the memslot generation number is an "update in-progress flag",
51 * e.g. is temporarily set for the duration of install_new_memslots().
52 * This flag effectively creates a unique generation number that is used to
53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
54 * i.e. may (or may not) have come from the previous memslots generation.
55 *
56 * This is necessary because the actual memslots update is not atomic with
57 * respect to the generation number update. Updating the generation number
58 * first would allow a vCPU to cache a spte from the old memslots using the
59 * new generation number, and updating the generation number after switching
60 * to the new memslots would allow cache hits using the old generation number
61 * to reference the defunct memslots.
62 *
63 * This mechanism is used to prevent getting hits in KVM's caches while a
64 * memslot update is in-progress, and to prevent cache hits *after* updating
65 * the actual generation number against accesses that were inserted into the
66 * cache *before* the memslots were updated.
67 */
68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
69
70/* Two fragments for cross MMIO pages. */
71#define KVM_MAX_MMIO_FRAGMENTS 2
72
73#ifndef KVM_ADDRESS_SPACE_NUM
74#define KVM_ADDRESS_SPACE_NUM 1
75#endif
76
77/*
78 * For the normal pfn, the highest 12 bits should be zero,
79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
80 * mask bit 63 to indicate the noslot pfn.
81 */
82#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
84#define KVM_PFN_NOSLOT (0x1ULL << 63)
85
86#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
87#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
88#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
89
90/*
91 * error pfns indicate that the gfn is in slot but faild to
92 * translate it to pfn on host.
93 */
94static inline bool is_error_pfn(kvm_pfn_t pfn)
95{
96 return !!(pfn & KVM_PFN_ERR_MASK);
97}
98
99/*
100 * error_noslot pfns indicate that the gfn can not be
101 * translated to pfn - it is not in slot or failed to
102 * translate it to pfn.
103 */
104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
105{
106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
107}
108
109/* noslot pfn indicates that the gfn is not in slot. */
110static inline bool is_noslot_pfn(kvm_pfn_t pfn)
111{
112 return pfn == KVM_PFN_NOSLOT;
113}
114
115/*
116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
117 * provide own defines and kvm_is_error_hva
118 */
119#ifndef KVM_HVA_ERR_BAD
120
121#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
122#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
123
124static inline bool kvm_is_error_hva(unsigned long addr)
125{
126 return addr >= PAGE_OFFSET;
127}
128
129#endif
130
131#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
132
133static inline bool is_error_page(struct page *page)
134{
135 return IS_ERR(page);
136}
137
138#define KVM_REQUEST_MASK GENMASK(7,0)
139#define KVM_REQUEST_NO_WAKEUP BIT(8)
140#define KVM_REQUEST_WAIT BIT(9)
141/*
142 * Architecture-independent vcpu->requests bit members
143 * Bits 4-7 are reserved for more arch-independent bits.
144 */
145#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
146#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
147#define KVM_REQ_PENDING_TIMER 2
148#define KVM_REQ_UNHALT 3
149#define KVM_REQUEST_ARCH_BASE 8
150
151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
154})
155#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
156
157#define KVM_USERSPACE_IRQ_SOURCE_ID 0
158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
159
160extern struct mutex kvm_lock;
161extern struct list_head vm_list;
162
163struct kvm_io_range {
164 gpa_t addr;
165 int len;
166 struct kvm_io_device *dev;
167};
168
169#define NR_IOBUS_DEVS 1000
170
171struct kvm_io_bus {
172 int dev_count;
173 int ioeventfd_count;
174 struct kvm_io_range range[];
175};
176
177enum kvm_bus {
178 KVM_MMIO_BUS,
179 KVM_PIO_BUS,
180 KVM_VIRTIO_CCW_NOTIFY_BUS,
181 KVM_FAST_MMIO_BUS,
182 KVM_NR_BUSES
183};
184
185int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
186 int len, const void *val);
187int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
188 gpa_t addr, int len, const void *val, long cookie);
189int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
190 int len, void *val);
191int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
192 int len, struct kvm_io_device *dev);
193void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
194 struct kvm_io_device *dev);
195struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
196 gpa_t addr);
197
198#ifdef CONFIG_KVM_ASYNC_PF
199struct kvm_async_pf {
200 struct work_struct work;
201 struct list_head link;
202 struct list_head queue;
203 struct kvm_vcpu *vcpu;
204 struct mm_struct *mm;
205 gpa_t cr2_or_gpa;
206 unsigned long addr;
207 struct kvm_arch_async_pf arch;
208 bool wakeup_all;
209 bool notpresent_injected;
210};
211
212void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
213void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
214int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
215 unsigned long hva, struct kvm_arch_async_pf *arch);
216int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
217#endif
218
219enum {
220 OUTSIDE_GUEST_MODE,
221 IN_GUEST_MODE,
222 EXITING_GUEST_MODE,
223 READING_SHADOW_PAGE_TABLES,
224};
225
226#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
227
228struct kvm_host_map {
229 /*
230 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
231 * a 'struct page' for it. When using mem= kernel parameter some memory
232 * can be used as guest memory but they are not managed by host
233 * kernel).
234 * If 'pfn' is not managed by the host kernel, this field is
235 * initialized to KVM_UNMAPPED_PAGE.
236 */
237 struct page *page;
238 void *hva;
239 kvm_pfn_t pfn;
240 kvm_pfn_t gfn;
241};
242
243/*
244 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
245 * directly to check for that.
246 */
247static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
248{
249 return !!map->hva;
250}
251
252/*
253 * Sometimes a large or cross-page mmio needs to be broken up into separate
254 * exits for userspace servicing.
255 */
256struct kvm_mmio_fragment {
257 gpa_t gpa;
258 void *data;
259 unsigned len;
260};
261
262struct kvm_vcpu {
263 struct kvm *kvm;
264#ifdef CONFIG_PREEMPT_NOTIFIERS
265 struct preempt_notifier preempt_notifier;
266#endif
267 int cpu;
268 int vcpu_id; /* id given by userspace at creation */
269 int vcpu_idx; /* index in kvm->vcpus array */
270 int srcu_idx;
271 int mode;
272 u64 requests;
273 unsigned long guest_debug;
274
275 int pre_pcpu;
276 struct list_head blocked_vcpu_list;
277
278 struct mutex mutex;
279 struct kvm_run *run;
280
281 struct rcuwait wait;
282 struct pid __rcu *pid;
283 int sigset_active;
284 sigset_t sigset;
285 struct kvm_vcpu_stat stat;
286 unsigned int halt_poll_ns;
287 bool valid_wakeup;
288
289#ifdef CONFIG_HAS_IOMEM
290 int mmio_needed;
291 int mmio_read_completed;
292 int mmio_is_write;
293 int mmio_cur_fragment;
294 int mmio_nr_fragments;
295 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
296#endif
297
298#ifdef CONFIG_KVM_ASYNC_PF
299 struct {
300 u32 queued;
301 struct list_head queue;
302 struct list_head done;
303 spinlock_t lock;
304 } async_pf;
305#endif
306
307#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
308 /*
309 * Cpu relax intercept or pause loop exit optimization
310 * in_spin_loop: set when a vcpu does a pause loop exit
311 * or cpu relax intercepted.
312 * dy_eligible: indicates whether vcpu is eligible for directed yield.
313 */
314 struct {
315 bool in_spin_loop;
316 bool dy_eligible;
317 } spin_loop;
318#endif
319 bool preempted;
320 bool ready;
321 struct kvm_vcpu_arch arch;
322};
323
324static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
325{
326 /*
327 * The memory barrier ensures a previous write to vcpu->requests cannot
328 * be reordered with the read of vcpu->mode. It pairs with the general
329 * memory barrier following the write of vcpu->mode in VCPU RUN.
330 */
331 smp_mb__before_atomic();
332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
333}
334
335/*
336 * Some of the bitops functions do not support too long bitmaps.
337 * This number must be determined not to exceed such limits.
338 */
339#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
340
341struct kvm_memory_slot {
342 gfn_t base_gfn;
343 unsigned long npages;
344 unsigned long *dirty_bitmap;
345 struct kvm_arch_memory_slot arch;
346 unsigned long userspace_addr;
347 u32 flags;
348 short id;
349};
350
351static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
352{
353 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
354}
355
356static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
357{
358 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
359
360 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
361}
362
363#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
364#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
365#endif
366
367struct kvm_s390_adapter_int {
368 u64 ind_addr;
369 u64 summary_addr;
370 u64 ind_offset;
371 u32 summary_offset;
372 u32 adapter_id;
373};
374
375struct kvm_hv_sint {
376 u32 vcpu;
377 u32 sint;
378};
379
380struct kvm_kernel_irq_routing_entry {
381 u32 gsi;
382 u32 type;
383 int (*set)(struct kvm_kernel_irq_routing_entry *e,
384 struct kvm *kvm, int irq_source_id, int level,
385 bool line_status);
386 union {
387 struct {
388 unsigned irqchip;
389 unsigned pin;
390 } irqchip;
391 struct {
392 u32 address_lo;
393 u32 address_hi;
394 u32 data;
395 u32 flags;
396 u32 devid;
397 } msi;
398 struct kvm_s390_adapter_int adapter;
399 struct kvm_hv_sint hv_sint;
400 };
401 struct hlist_node link;
402};
403
404#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
405struct kvm_irq_routing_table {
406 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
407 u32 nr_rt_entries;
408 /*
409 * Array indexed by gsi. Each entry contains list of irq chips
410 * the gsi is connected to.
411 */
412 struct hlist_head map[];
413};
414#endif
415
416#ifndef KVM_PRIVATE_MEM_SLOTS
417#define KVM_PRIVATE_MEM_SLOTS 0
418#endif
419
420#ifndef KVM_MEM_SLOTS_NUM
421#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)
422#endif
423
424#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
425static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
426{
427 return 0;
428}
429#endif
430
431/*
432 * Note:
433 * memslots are not sorted by id anymore, please use id_to_memslot()
434 * to get the memslot by its id.
435 */
436struct kvm_memslots {
437 u64 generation;
438 /* The mapping table from slot id to the index in memslots[]. */
439 short id_to_index[KVM_MEM_SLOTS_NUM];
440 atomic_t lru_slot;
441 int used_slots;
442 struct kvm_memory_slot memslots[];
443};
444
445struct kvm {
446 spinlock_t mmu_lock;
447 struct mutex slots_lock;
448 struct mm_struct *mm; /* userspace tied to this vm */
449 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
450 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS];
451
452 /*
453 * created_vcpus is protected by kvm->lock, and is incremented
454 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
455 * incremented after storing the kvm_vcpu pointer in vcpus,
456 * and is accessed atomically.
457 */
458 atomic_t online_vcpus;
459 int created_vcpus;
460 int last_boosted_vcpu;
461 struct list_head vm_list;
462 struct mutex lock;
463 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
464#ifdef CONFIG_HAVE_KVM_EVENTFD
465 struct {
466 spinlock_t lock;
467 struct list_head items;
468 struct list_head resampler_list;
469 struct mutex resampler_lock;
470 } irqfds;
471 struct list_head ioeventfds;
472#endif
473 struct kvm_vm_stat stat;
474 struct kvm_arch arch;
475 refcount_t users_count;
476#ifdef CONFIG_KVM_MMIO
477 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
478 spinlock_t ring_lock;
479 struct list_head coalesced_zones;
480#endif
481
482 struct mutex irq_lock;
483#ifdef CONFIG_HAVE_KVM_IRQCHIP
484 /*
485 * Update side is protected by irq_lock.
486 */
487 struct kvm_irq_routing_table __rcu *irq_routing;
488#endif
489#ifdef CONFIG_HAVE_KVM_IRQFD
490 struct hlist_head irq_ack_notifier_list;
491#endif
492
493#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
494 struct mmu_notifier mmu_notifier;
495 unsigned long mmu_notifier_seq;
496 long mmu_notifier_count;
497#endif
498 long tlbs_dirty;
499 struct list_head devices;
500 u64 manual_dirty_log_protect;
501 struct dentry *debugfs_dentry;
502 struct kvm_stat_data **debugfs_stat_data;
503 struct srcu_struct srcu;
504 struct srcu_struct irq_srcu;
505 pid_t userspace_pid;
506 unsigned int max_halt_poll_ns;
507};
508
509#define kvm_err(fmt, ...) \
510 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
511#define kvm_info(fmt, ...) \
512 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
513#define kvm_debug(fmt, ...) \
514 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
515#define kvm_debug_ratelimited(fmt, ...) \
516 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
517 ## __VA_ARGS__)
518#define kvm_pr_unimpl(fmt, ...) \
519 pr_err_ratelimited("kvm [%i]: " fmt, \
520 task_tgid_nr(current), ## __VA_ARGS__)
521
522/* The guest did something we don't support. */
523#define vcpu_unimpl(vcpu, fmt, ...) \
524 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
525 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
526
527#define vcpu_debug(vcpu, fmt, ...) \
528 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
529#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
530 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
531 ## __VA_ARGS__)
532#define vcpu_err(vcpu, fmt, ...) \
533 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
534
535static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
536{
537 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
538}
539
540static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
541{
542 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
543 lockdep_is_held(&kvm->slots_lock) ||
544 !refcount_read(&kvm->users_count));
545}
546
547static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
548{
549 int num_vcpus = atomic_read(&kvm->online_vcpus);
550 i = array_index_nospec(i, num_vcpus);
551
552 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
553 smp_rmb();
554 return kvm->vcpus[i];
555}
556
557#define kvm_for_each_vcpu(idx, vcpup, kvm) \
558 for (idx = 0; \
559 idx < atomic_read(&kvm->online_vcpus) && \
560 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \
561 idx++)
562
563static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
564{
565 struct kvm_vcpu *vcpu = NULL;
566 int i;
567
568 if (id < 0)
569 return NULL;
570 if (id < KVM_MAX_VCPUS)
571 vcpu = kvm_get_vcpu(kvm, id);
572 if (vcpu && vcpu->vcpu_id == id)
573 return vcpu;
574 kvm_for_each_vcpu(i, vcpu, kvm)
575 if (vcpu->vcpu_id == id)
576 return vcpu;
577 return NULL;
578}
579
580static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
581{
582 return vcpu->vcpu_idx;
583}
584
585#define kvm_for_each_memslot(memslot, slots) \
586 for (memslot = &slots->memslots[0]; \
587 memslot < slots->memslots + slots->used_slots; memslot++) \
588 if (WARN_ON_ONCE(!memslot->npages)) { \
589 } else
590
591void kvm_vcpu_destroy(struct kvm_vcpu *vcpu);
592
593void vcpu_load(struct kvm_vcpu *vcpu);
594void vcpu_put(struct kvm_vcpu *vcpu);
595
596#ifdef __KVM_HAVE_IOAPIC
597void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
598void kvm_arch_post_irq_routing_update(struct kvm *kvm);
599#else
600static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
601{
602}
603static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
604{
605}
606#endif
607
608#ifdef CONFIG_HAVE_KVM_IRQFD
609int kvm_irqfd_init(void);
610void kvm_irqfd_exit(void);
611#else
612static inline int kvm_irqfd_init(void)
613{
614 return 0;
615}
616
617static inline void kvm_irqfd_exit(void)
618{
619}
620#endif
621int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
622 struct module *module);
623void kvm_exit(void);
624
625void kvm_get_kvm(struct kvm *kvm);
626void kvm_put_kvm(struct kvm *kvm);
627void kvm_put_kvm_no_destroy(struct kvm *kvm);
628
629static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
630{
631 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
632 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
633 lockdep_is_held(&kvm->slots_lock) ||
634 !refcount_read(&kvm->users_count));
635}
636
637static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
638{
639 return __kvm_memslots(kvm, 0);
640}
641
642static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
643{
644 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
645
646 return __kvm_memslots(vcpu->kvm, as_id);
647}
648
649static inline
650struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
651{
652 int index = slots->id_to_index[id];
653 struct kvm_memory_slot *slot;
654
655 if (index < 0)
656 return NULL;
657
658 slot = &slots->memslots[index];
659
660 WARN_ON(slot->id != id);
661 return slot;
662}
663
664/*
665 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
666 * - create a new memory slot
667 * - delete an existing memory slot
668 * - modify an existing memory slot
669 * -- move it in the guest physical memory space
670 * -- just change its flags
671 *
672 * Since flags can be changed by some of these operations, the following
673 * differentiation is the best we can do for __kvm_set_memory_region():
674 */
675enum kvm_mr_change {
676 KVM_MR_CREATE,
677 KVM_MR_DELETE,
678 KVM_MR_MOVE,
679 KVM_MR_FLAGS_ONLY,
680};
681
682int kvm_set_memory_region(struct kvm *kvm,
683 const struct kvm_userspace_memory_region *mem);
684int __kvm_set_memory_region(struct kvm *kvm,
685 const struct kvm_userspace_memory_region *mem);
686void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
687void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
688int kvm_arch_prepare_memory_region(struct kvm *kvm,
689 struct kvm_memory_slot *memslot,
690 const struct kvm_userspace_memory_region *mem,
691 enum kvm_mr_change change);
692void kvm_arch_commit_memory_region(struct kvm *kvm,
693 const struct kvm_userspace_memory_region *mem,
694 struct kvm_memory_slot *old,
695 const struct kvm_memory_slot *new,
696 enum kvm_mr_change change);
697/* flush all memory translations */
698void kvm_arch_flush_shadow_all(struct kvm *kvm);
699/* flush memory translations pointing to 'slot' */
700void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
701 struct kvm_memory_slot *slot);
702
703int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
704 struct page **pages, int nr_pages);
705
706struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
707unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
708unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
709unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
710unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
711 bool *writable);
712void kvm_release_page_clean(struct page *page);
713void kvm_release_page_dirty(struct page *page);
714void kvm_set_page_accessed(struct page *page);
715
716kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
717kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
718 bool *writable);
719kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
720kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn);
721kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
722 bool atomic, bool *async, bool write_fault,
723 bool *writable);
724
725void kvm_release_pfn_clean(kvm_pfn_t pfn);
726void kvm_release_pfn_dirty(kvm_pfn_t pfn);
727void kvm_set_pfn_dirty(kvm_pfn_t pfn);
728void kvm_set_pfn_accessed(kvm_pfn_t pfn);
729void kvm_get_pfn(kvm_pfn_t pfn);
730
731void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache);
732int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
733 int len);
734int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
735int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
736 void *data, unsigned long len);
737int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
738 void *data, unsigned int offset,
739 unsigned long len);
740int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
741 int offset, int len);
742int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
743 unsigned long len);
744int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
745 void *data, unsigned long len);
746int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
747 void *data, unsigned int offset,
748 unsigned long len);
749int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
750 gpa_t gpa, unsigned long len);
751
752#define __kvm_put_guest(kvm, gfn, offset, value, type) \
753({ \
754 unsigned long __addr = gfn_to_hva(kvm, gfn); \
755 type __user *__uaddr = (type __user *)(__addr + offset); \
756 int __ret = -EFAULT; \
757 \
758 if (!kvm_is_error_hva(__addr)) \
759 __ret = put_user(value, __uaddr); \
760 if (!__ret) \
761 mark_page_dirty(kvm, gfn); \
762 __ret; \
763})
764
765#define kvm_put_guest(kvm, gpa, value, type) \
766({ \
767 gpa_t __gpa = gpa; \
768 struct kvm *__kvm = kvm; \
769 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
770 offset_in_page(__gpa), (value), type); \
771})
772
773int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len);
774int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
775struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
776bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
777unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
778void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
779
780struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
781struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
782kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
783kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
784int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
785int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
786 struct gfn_to_pfn_cache *cache, bool atomic);
787struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
788void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
789int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
790 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic);
791unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
792unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
793int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
794 int len);
795int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
796 unsigned long len);
797int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
798 unsigned long len);
799int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
800 int offset, int len);
801int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
802 unsigned long len);
803void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
804
805void kvm_sigset_activate(struct kvm_vcpu *vcpu);
806void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
807
808void kvm_vcpu_block(struct kvm_vcpu *vcpu);
809void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
810void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
811bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
812void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
813int kvm_vcpu_yield_to(struct kvm_vcpu *target);
814void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
815
816void kvm_flush_remote_tlbs(struct kvm *kvm);
817void kvm_reload_remote_mmus(struct kvm *kvm);
818
819bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
820 struct kvm_vcpu *except,
821 unsigned long *vcpu_bitmap, cpumask_var_t tmp);
822bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
823bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
824 struct kvm_vcpu *except);
825bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
826 unsigned long *vcpu_bitmap);
827
828long kvm_arch_dev_ioctl(struct file *filp,
829 unsigned int ioctl, unsigned long arg);
830long kvm_arch_vcpu_ioctl(struct file *filp,
831 unsigned int ioctl, unsigned long arg);
832vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
833
834int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
835
836void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
837 struct kvm_memory_slot *slot,
838 gfn_t gfn_offset,
839 unsigned long mask);
840void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
841
842#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
843void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
844 struct kvm_memory_slot *memslot);
845#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
846int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
847int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
848 int *is_dirty, struct kvm_memory_slot **memslot);
849#endif
850
851int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
852 bool line_status);
853int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
854 struct kvm_enable_cap *cap);
855long kvm_arch_vm_ioctl(struct file *filp,
856 unsigned int ioctl, unsigned long arg);
857
858int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
859int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
860
861int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
862 struct kvm_translation *tr);
863
864int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
865int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
866int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
867 struct kvm_sregs *sregs);
868int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
869 struct kvm_sregs *sregs);
870int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
871 struct kvm_mp_state *mp_state);
872int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
873 struct kvm_mp_state *mp_state);
874int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
875 struct kvm_guest_debug *dbg);
876int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
877
878int kvm_arch_init(void *opaque);
879void kvm_arch_exit(void);
880
881void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
882
883void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
884void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
885int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
886int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
887void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
888void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
889
890#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
891void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
892#endif
893
894int kvm_arch_hardware_enable(void);
895void kvm_arch_hardware_disable(void);
896int kvm_arch_hardware_setup(void *opaque);
897void kvm_arch_hardware_unsetup(void);
898int kvm_arch_check_processor_compat(void *opaque);
899int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
900bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
901int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
902bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
903int kvm_arch_post_init_vm(struct kvm *kvm);
904void kvm_arch_pre_destroy_vm(struct kvm *kvm);
905
906#ifndef __KVM_HAVE_ARCH_VM_ALLOC
907/*
908 * All architectures that want to use vzalloc currently also
909 * need their own kvm_arch_alloc_vm implementation.
910 */
911static inline struct kvm *kvm_arch_alloc_vm(void)
912{
913 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
914}
915
916static inline void kvm_arch_free_vm(struct kvm *kvm)
917{
918 kfree(kvm);
919}
920#endif
921
922#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
923static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
924{
925 return -ENOTSUPP;
926}
927#endif
928
929#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
930void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
931void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
932bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
933#else
934static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
935{
936}
937
938static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
939{
940}
941
942static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
943{
944 return false;
945}
946#endif
947#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
948void kvm_arch_start_assignment(struct kvm *kvm);
949void kvm_arch_end_assignment(struct kvm *kvm);
950bool kvm_arch_has_assigned_device(struct kvm *kvm);
951#else
952static inline void kvm_arch_start_assignment(struct kvm *kvm)
953{
954}
955
956static inline void kvm_arch_end_assignment(struct kvm *kvm)
957{
958}
959
960static inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
961{
962 return false;
963}
964#endif
965
966static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
967{
968#ifdef __KVM_HAVE_ARCH_WQP
969 return vcpu->arch.waitp;
970#else
971 return &vcpu->wait;
972#endif
973}
974
975#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
976/*
977 * returns true if the virtual interrupt controller is initialized and
978 * ready to accept virtual IRQ. On some architectures the virtual interrupt
979 * controller is dynamically instantiated and this is not always true.
980 */
981bool kvm_arch_intc_initialized(struct kvm *kvm);
982#else
983static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
984{
985 return true;
986}
987#endif
988
989int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
990void kvm_arch_destroy_vm(struct kvm *kvm);
991void kvm_arch_sync_events(struct kvm *kvm);
992
993int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
994
995bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
996bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
997bool kvm_is_transparent_hugepage(kvm_pfn_t pfn);
998
999struct kvm_irq_ack_notifier {
1000 struct hlist_node link;
1001 unsigned gsi;
1002 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1003};
1004
1005int kvm_irq_map_gsi(struct kvm *kvm,
1006 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1007int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1008
1009int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1010 bool line_status);
1011int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1012 int irq_source_id, int level, bool line_status);
1013int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1014 struct kvm *kvm, int irq_source_id,
1015 int level, bool line_status);
1016bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1017void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1018void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1019void kvm_register_irq_ack_notifier(struct kvm *kvm,
1020 struct kvm_irq_ack_notifier *kian);
1021void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1022 struct kvm_irq_ack_notifier *kian);
1023int kvm_request_irq_source_id(struct kvm *kvm);
1024void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1025bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1026
1027/*
1028 * search_memslots() and __gfn_to_memslot() are here because they are
1029 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c.
1030 * gfn_to_memslot() itself isn't here as an inline because that would
1031 * bloat other code too much.
1032 *
1033 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN!
1034 */
1035static inline struct kvm_memory_slot *
1036search_memslots(struct kvm_memslots *slots, gfn_t gfn)
1037{
1038 int start = 0, end = slots->used_slots;
1039 int slot = atomic_read(&slots->lru_slot);
1040 struct kvm_memory_slot *memslots = slots->memslots;
1041
1042 if (unlikely(!slots->used_slots))
1043 return NULL;
1044
1045 if (gfn >= memslots[slot].base_gfn &&
1046 gfn < memslots[slot].base_gfn + memslots[slot].npages)
1047 return &memslots[slot];
1048
1049 while (start < end) {
1050 slot = start + (end - start) / 2;
1051
1052 if (gfn >= memslots[slot].base_gfn)
1053 end = slot;
1054 else
1055 start = slot + 1;
1056 }
1057
1058 if (start < slots->used_slots && gfn >= memslots[start].base_gfn &&
1059 gfn < memslots[start].base_gfn + memslots[start].npages) {
1060 atomic_set(&slots->lru_slot, start);
1061 return &memslots[start];
1062 }
1063
1064 return NULL;
1065}
1066
1067static inline struct kvm_memory_slot *
1068__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1069{
1070 return search_memslots(slots, gfn);
1071}
1072
1073static inline unsigned long
1074__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1075{
1076 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE;
1077}
1078
1079static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1080{
1081 return gfn_to_memslot(kvm, gfn)->id;
1082}
1083
1084static inline gfn_t
1085hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1086{
1087 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1088
1089 return slot->base_gfn + gfn_offset;
1090}
1091
1092static inline gpa_t gfn_to_gpa(gfn_t gfn)
1093{
1094 return (gpa_t)gfn << PAGE_SHIFT;
1095}
1096
1097static inline gfn_t gpa_to_gfn(gpa_t gpa)
1098{
1099 return (gfn_t)(gpa >> PAGE_SHIFT);
1100}
1101
1102static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1103{
1104 return (hpa_t)pfn << PAGE_SHIFT;
1105}
1106
1107static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1108 gpa_t gpa)
1109{
1110 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1111}
1112
1113static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1114{
1115 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1116
1117 return kvm_is_error_hva(hva);
1118}
1119
1120enum kvm_stat_kind {
1121 KVM_STAT_VM,
1122 KVM_STAT_VCPU,
1123};
1124
1125struct kvm_stat_data {
1126 struct kvm *kvm;
1127 struct kvm_stats_debugfs_item *dbgfs_item;
1128};
1129
1130struct kvm_stats_debugfs_item {
1131 const char *name;
1132 int offset;
1133 enum kvm_stat_kind kind;
1134 int mode;
1135};
1136
1137#define KVM_DBGFS_GET_MODE(dbgfs_item) \
1138 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644)
1139
1140#define VM_STAT(n, x, ...) \
1141 { n, offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__ }
1142#define VCPU_STAT(n, x, ...) \
1143 { n, offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__ }
1144
1145extern struct kvm_stats_debugfs_item debugfs_entries[];
1146extern struct dentry *kvm_debugfs_dir;
1147
1148#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1149static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1150{
1151 if (unlikely(kvm->mmu_notifier_count))
1152 return 1;
1153 /*
1154 * Ensure the read of mmu_notifier_count happens before the read
1155 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1156 * mmu_notifier_invalidate_range_end to make sure that the caller
1157 * either sees the old (non-zero) value of mmu_notifier_count or
1158 * the new (incremented) value of mmu_notifier_seq.
1159 * PowerPC Book3s HV KVM calls this under a per-page lock
1160 * rather than under kvm->mmu_lock, for scalability, so
1161 * can't rely on kvm->mmu_lock to keep things ordered.
1162 */
1163 smp_rmb();
1164 if (kvm->mmu_notifier_seq != mmu_seq)
1165 return 1;
1166 return 0;
1167}
1168#endif
1169
1170#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1171
1172#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1173
1174bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1175int kvm_set_irq_routing(struct kvm *kvm,
1176 const struct kvm_irq_routing_entry *entries,
1177 unsigned nr,
1178 unsigned flags);
1179int kvm_set_routing_entry(struct kvm *kvm,
1180 struct kvm_kernel_irq_routing_entry *e,
1181 const struct kvm_irq_routing_entry *ue);
1182void kvm_free_irq_routing(struct kvm *kvm);
1183
1184#else
1185
1186static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1187
1188#endif
1189
1190int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1191
1192#ifdef CONFIG_HAVE_KVM_EVENTFD
1193
1194void kvm_eventfd_init(struct kvm *kvm);
1195int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1196
1197#ifdef CONFIG_HAVE_KVM_IRQFD
1198int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1199void kvm_irqfd_release(struct kvm *kvm);
1200void kvm_irq_routing_update(struct kvm *);
1201#else
1202static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1203{
1204 return -EINVAL;
1205}
1206
1207static inline void kvm_irqfd_release(struct kvm *kvm) {}
1208#endif
1209
1210#else
1211
1212static inline void kvm_eventfd_init(struct kvm *kvm) {}
1213
1214static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1215{
1216 return -EINVAL;
1217}
1218
1219static inline void kvm_irqfd_release(struct kvm *kvm) {}
1220
1221#ifdef CONFIG_HAVE_KVM_IRQCHIP
1222static inline void kvm_irq_routing_update(struct kvm *kvm)
1223{
1224}
1225#endif
1226
1227static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
1228{
1229 return -ENOSYS;
1230}
1231
1232#endif /* CONFIG_HAVE_KVM_EVENTFD */
1233
1234void kvm_arch_irq_routing_update(struct kvm *kvm);
1235
1236static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
1237{
1238 /*
1239 * Ensure the rest of the request is published to kvm_check_request's
1240 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
1241 */
1242 smp_wmb();
1243 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1244}
1245
1246static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
1247{
1248 return READ_ONCE(vcpu->requests);
1249}
1250
1251static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
1252{
1253 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1254}
1255
1256static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
1257{
1258 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
1259}
1260
1261static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
1262{
1263 if (kvm_test_request(req, vcpu)) {
1264 kvm_clear_request(req, vcpu);
1265
1266 /*
1267 * Ensure the rest of the request is visible to kvm_check_request's
1268 * caller. Paired with the smp_wmb in kvm_make_request.
1269 */
1270 smp_mb__after_atomic();
1271 return true;
1272 } else {
1273 return false;
1274 }
1275}
1276
1277extern bool kvm_rebooting;
1278
1279extern unsigned int halt_poll_ns;
1280extern unsigned int halt_poll_ns_grow;
1281extern unsigned int halt_poll_ns_grow_start;
1282extern unsigned int halt_poll_ns_shrink;
1283
1284struct kvm_device {
1285 const struct kvm_device_ops *ops;
1286 struct kvm *kvm;
1287 void *private;
1288 struct list_head vm_node;
1289};
1290
1291/* create, destroy, and name are mandatory */
1292struct kvm_device_ops {
1293 const char *name;
1294
1295 /*
1296 * create is called holding kvm->lock and any operations not suitable
1297 * to do while holding the lock should be deferred to init (see
1298 * below).
1299 */
1300 int (*create)(struct kvm_device *dev, u32 type);
1301
1302 /*
1303 * init is called after create if create is successful and is called
1304 * outside of holding kvm->lock.
1305 */
1306 void (*init)(struct kvm_device *dev);
1307
1308 /*
1309 * Destroy is responsible for freeing dev.
1310 *
1311 * Destroy may be called before or after destructors are called
1312 * on emulated I/O regions, depending on whether a reference is
1313 * held by a vcpu or other kvm component that gets destroyed
1314 * after the emulated I/O.
1315 */
1316 void (*destroy)(struct kvm_device *dev);
1317
1318 /*
1319 * Release is an alternative method to free the device. It is
1320 * called when the device file descriptor is closed. Once
1321 * release is called, the destroy method will not be called
1322 * anymore as the device is removed from the device list of
1323 * the VM. kvm->lock is held.
1324 */
1325 void (*release)(struct kvm_device *dev);
1326
1327 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1328 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1329 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
1330 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
1331 unsigned long arg);
1332 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
1333};
1334
1335void kvm_device_get(struct kvm_device *dev);
1336void kvm_device_put(struct kvm_device *dev);
1337struct kvm_device *kvm_device_from_filp(struct file *filp);
1338int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
1339void kvm_unregister_device_ops(u32 type);
1340
1341extern struct kvm_device_ops kvm_mpic_ops;
1342extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
1343extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
1344
1345#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1346
1347static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1348{
1349 vcpu->spin_loop.in_spin_loop = val;
1350}
1351static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1352{
1353 vcpu->spin_loop.dy_eligible = val;
1354}
1355
1356#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1357
1358static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
1359{
1360}
1361
1362static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
1363{
1364}
1365#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1366
1367static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
1368{
1369 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
1370 !(memslot->flags & KVM_MEMSLOT_INVALID));
1371}
1372
1373struct kvm_vcpu *kvm_get_running_vcpu(void);
1374struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
1375
1376#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
1377bool kvm_arch_has_irq_bypass(void);
1378int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
1379 struct irq_bypass_producer *);
1380void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
1381 struct irq_bypass_producer *);
1382void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
1383void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
1384int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
1385 uint32_t guest_irq, bool set);
1386#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
1387
1388#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
1389/* If we wakeup during the poll time, was it a sucessful poll? */
1390static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1391{
1392 return vcpu->valid_wakeup;
1393}
1394
1395#else
1396static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
1397{
1398 return true;
1399}
1400#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
1401
1402#ifdef CONFIG_HAVE_KVM_NO_POLL
1403/* Callback that tells if we must not poll */
1404bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
1405#else
1406static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
1407{
1408 return false;
1409}
1410#endif /* CONFIG_HAVE_KVM_NO_POLL */
1411
1412#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
1413long kvm_arch_vcpu_async_ioctl(struct file *filp,
1414 unsigned int ioctl, unsigned long arg);
1415#else
1416static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
1417 unsigned int ioctl,
1418 unsigned long arg)
1419{
1420 return -ENOIOCTLCMD;
1421}
1422#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
1423
1424void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
1425 unsigned long start, unsigned long end);
1426
1427#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
1428int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
1429#else
1430static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
1431{
1432 return 0;
1433}
1434#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
1435
1436typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
1437
1438int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
1439 uintptr_t data, const char *name,
1440 struct task_struct **thread_ptr);
1441
1442#endif