Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Linux Socket Filter Data Structures
4 */
5#ifndef __LINUX_FILTER_H__
6#define __LINUX_FILTER_H__
7
8#include <stdarg.h>
9
10#include <linux/atomic.h>
11#include <linux/refcount.h>
12#include <linux/compat.h>
13#include <linux/skbuff.h>
14#include <linux/linkage.h>
15#include <linux/printk.h>
16#include <linux/workqueue.h>
17#include <linux/sched.h>
18#include <linux/capability.h>
19#include <linux/set_memory.h>
20#include <linux/kallsyms.h>
21#include <linux/if_vlan.h>
22#include <linux/vmalloc.h>
23#include <crypto/sha.h>
24
25#include <net/sch_generic.h>
26
27#include <asm/byteorder.h>
28#include <uapi/linux/filter.h>
29#include <uapi/linux/bpf.h>
30
31struct sk_buff;
32struct sock;
33struct seccomp_data;
34struct bpf_prog_aux;
35struct xdp_rxq_info;
36struct xdp_buff;
37struct sock_reuseport;
38struct ctl_table;
39struct ctl_table_header;
40
41/* ArgX, context and stack frame pointer register positions. Note,
42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
43 * calls in BPF_CALL instruction.
44 */
45#define BPF_REG_ARG1 BPF_REG_1
46#define BPF_REG_ARG2 BPF_REG_2
47#define BPF_REG_ARG3 BPF_REG_3
48#define BPF_REG_ARG4 BPF_REG_4
49#define BPF_REG_ARG5 BPF_REG_5
50#define BPF_REG_CTX BPF_REG_6
51#define BPF_REG_FP BPF_REG_10
52
53/* Additional register mappings for converted user programs. */
54#define BPF_REG_A BPF_REG_0
55#define BPF_REG_X BPF_REG_7
56#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
57#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
58#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
59
60/* Kernel hidden auxiliary/helper register. */
61#define BPF_REG_AX MAX_BPF_REG
62#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
63#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
64
65/* unused opcode to mark special call to bpf_tail_call() helper */
66#define BPF_TAIL_CALL 0xf0
67
68/* unused opcode to mark special load instruction. Same as BPF_ABS */
69#define BPF_PROBE_MEM 0x20
70
71/* unused opcode to mark call to interpreter with arguments */
72#define BPF_CALL_ARGS 0xe0
73
74/* As per nm, we expose JITed images as text (code) section for
75 * kallsyms. That way, tools like perf can find it to match
76 * addresses.
77 */
78#define BPF_SYM_ELF_TYPE 't'
79
80/* BPF program can access up to 512 bytes of stack space. */
81#define MAX_BPF_STACK 512
82
83/* Helper macros for filter block array initializers. */
84
85/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
86
87#define BPF_ALU64_REG(OP, DST, SRC) \
88 ((struct bpf_insn) { \
89 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
90 .dst_reg = DST, \
91 .src_reg = SRC, \
92 .off = 0, \
93 .imm = 0 })
94
95#define BPF_ALU32_REG(OP, DST, SRC) \
96 ((struct bpf_insn) { \
97 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
98 .dst_reg = DST, \
99 .src_reg = SRC, \
100 .off = 0, \
101 .imm = 0 })
102
103/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
104
105#define BPF_ALU64_IMM(OP, DST, IMM) \
106 ((struct bpf_insn) { \
107 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
108 .dst_reg = DST, \
109 .src_reg = 0, \
110 .off = 0, \
111 .imm = IMM })
112
113#define BPF_ALU32_IMM(OP, DST, IMM) \
114 ((struct bpf_insn) { \
115 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
116 .dst_reg = DST, \
117 .src_reg = 0, \
118 .off = 0, \
119 .imm = IMM })
120
121/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
122
123#define BPF_ENDIAN(TYPE, DST, LEN) \
124 ((struct bpf_insn) { \
125 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
126 .dst_reg = DST, \
127 .src_reg = 0, \
128 .off = 0, \
129 .imm = LEN })
130
131/* Short form of mov, dst_reg = src_reg */
132
133#define BPF_MOV64_REG(DST, SRC) \
134 ((struct bpf_insn) { \
135 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
136 .dst_reg = DST, \
137 .src_reg = SRC, \
138 .off = 0, \
139 .imm = 0 })
140
141#define BPF_MOV32_REG(DST, SRC) \
142 ((struct bpf_insn) { \
143 .code = BPF_ALU | BPF_MOV | BPF_X, \
144 .dst_reg = DST, \
145 .src_reg = SRC, \
146 .off = 0, \
147 .imm = 0 })
148
149/* Short form of mov, dst_reg = imm32 */
150
151#define BPF_MOV64_IMM(DST, IMM) \
152 ((struct bpf_insn) { \
153 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
154 .dst_reg = DST, \
155 .src_reg = 0, \
156 .off = 0, \
157 .imm = IMM })
158
159#define BPF_MOV32_IMM(DST, IMM) \
160 ((struct bpf_insn) { \
161 .code = BPF_ALU | BPF_MOV | BPF_K, \
162 .dst_reg = DST, \
163 .src_reg = 0, \
164 .off = 0, \
165 .imm = IMM })
166
167/* Special form of mov32, used for doing explicit zero extension on dst. */
168#define BPF_ZEXT_REG(DST) \
169 ((struct bpf_insn) { \
170 .code = BPF_ALU | BPF_MOV | BPF_X, \
171 .dst_reg = DST, \
172 .src_reg = DST, \
173 .off = 0, \
174 .imm = 1 })
175
176static inline bool insn_is_zext(const struct bpf_insn *insn)
177{
178 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
179}
180
181/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
182#define BPF_LD_IMM64(DST, IMM) \
183 BPF_LD_IMM64_RAW(DST, 0, IMM)
184
185#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
186 ((struct bpf_insn) { \
187 .code = BPF_LD | BPF_DW | BPF_IMM, \
188 .dst_reg = DST, \
189 .src_reg = SRC, \
190 .off = 0, \
191 .imm = (__u32) (IMM) }), \
192 ((struct bpf_insn) { \
193 .code = 0, /* zero is reserved opcode */ \
194 .dst_reg = 0, \
195 .src_reg = 0, \
196 .off = 0, \
197 .imm = ((__u64) (IMM)) >> 32 })
198
199/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
200#define BPF_LD_MAP_FD(DST, MAP_FD) \
201 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
202
203/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
204
205#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
206 ((struct bpf_insn) { \
207 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
208 .dst_reg = DST, \
209 .src_reg = SRC, \
210 .off = 0, \
211 .imm = IMM })
212
213#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
214 ((struct bpf_insn) { \
215 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
216 .dst_reg = DST, \
217 .src_reg = SRC, \
218 .off = 0, \
219 .imm = IMM })
220
221/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
222
223#define BPF_LD_ABS(SIZE, IMM) \
224 ((struct bpf_insn) { \
225 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
226 .dst_reg = 0, \
227 .src_reg = 0, \
228 .off = 0, \
229 .imm = IMM })
230
231/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
232
233#define BPF_LD_IND(SIZE, SRC, IMM) \
234 ((struct bpf_insn) { \
235 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
236 .dst_reg = 0, \
237 .src_reg = SRC, \
238 .off = 0, \
239 .imm = IMM })
240
241/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
242
243#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
244 ((struct bpf_insn) { \
245 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
246 .dst_reg = DST, \
247 .src_reg = SRC, \
248 .off = OFF, \
249 .imm = 0 })
250
251/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
252
253#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
254 ((struct bpf_insn) { \
255 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
256 .dst_reg = DST, \
257 .src_reg = SRC, \
258 .off = OFF, \
259 .imm = 0 })
260
261/* Atomic memory add, *(uint *)(dst_reg + off16) += src_reg */
262
263#define BPF_STX_XADD(SIZE, DST, SRC, OFF) \
264 ((struct bpf_insn) { \
265 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_XADD, \
266 .dst_reg = DST, \
267 .src_reg = SRC, \
268 .off = OFF, \
269 .imm = 0 })
270
271/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
272
273#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
274 ((struct bpf_insn) { \
275 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
276 .dst_reg = DST, \
277 .src_reg = 0, \
278 .off = OFF, \
279 .imm = IMM })
280
281/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
282
283#define BPF_JMP_REG(OP, DST, SRC, OFF) \
284 ((struct bpf_insn) { \
285 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
286 .dst_reg = DST, \
287 .src_reg = SRC, \
288 .off = OFF, \
289 .imm = 0 })
290
291/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
292
293#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
294 ((struct bpf_insn) { \
295 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
296 .dst_reg = DST, \
297 .src_reg = 0, \
298 .off = OFF, \
299 .imm = IMM })
300
301/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
302
303#define BPF_JMP32_REG(OP, DST, SRC, OFF) \
304 ((struct bpf_insn) { \
305 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
306 .dst_reg = DST, \
307 .src_reg = SRC, \
308 .off = OFF, \
309 .imm = 0 })
310
311/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
312
313#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
314 ((struct bpf_insn) { \
315 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
316 .dst_reg = DST, \
317 .src_reg = 0, \
318 .off = OFF, \
319 .imm = IMM })
320
321/* Unconditional jumps, goto pc + off16 */
322
323#define BPF_JMP_A(OFF) \
324 ((struct bpf_insn) { \
325 .code = BPF_JMP | BPF_JA, \
326 .dst_reg = 0, \
327 .src_reg = 0, \
328 .off = OFF, \
329 .imm = 0 })
330
331/* Relative call */
332
333#define BPF_CALL_REL(TGT) \
334 ((struct bpf_insn) { \
335 .code = BPF_JMP | BPF_CALL, \
336 .dst_reg = 0, \
337 .src_reg = BPF_PSEUDO_CALL, \
338 .off = 0, \
339 .imm = TGT })
340
341/* Function call */
342
343#define BPF_CAST_CALL(x) \
344 ((u64 (*)(u64, u64, u64, u64, u64))(x))
345
346#define BPF_EMIT_CALL(FUNC) \
347 ((struct bpf_insn) { \
348 .code = BPF_JMP | BPF_CALL, \
349 .dst_reg = 0, \
350 .src_reg = 0, \
351 .off = 0, \
352 .imm = ((FUNC) - __bpf_call_base) })
353
354/* Raw code statement block */
355
356#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
357 ((struct bpf_insn) { \
358 .code = CODE, \
359 .dst_reg = DST, \
360 .src_reg = SRC, \
361 .off = OFF, \
362 .imm = IMM })
363
364/* Program exit */
365
366#define BPF_EXIT_INSN() \
367 ((struct bpf_insn) { \
368 .code = BPF_JMP | BPF_EXIT, \
369 .dst_reg = 0, \
370 .src_reg = 0, \
371 .off = 0, \
372 .imm = 0 })
373
374/* Internal classic blocks for direct assignment */
375
376#define __BPF_STMT(CODE, K) \
377 ((struct sock_filter) BPF_STMT(CODE, K))
378
379#define __BPF_JUMP(CODE, K, JT, JF) \
380 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
381
382#define bytes_to_bpf_size(bytes) \
383({ \
384 int bpf_size = -EINVAL; \
385 \
386 if (bytes == sizeof(u8)) \
387 bpf_size = BPF_B; \
388 else if (bytes == sizeof(u16)) \
389 bpf_size = BPF_H; \
390 else if (bytes == sizeof(u32)) \
391 bpf_size = BPF_W; \
392 else if (bytes == sizeof(u64)) \
393 bpf_size = BPF_DW; \
394 \
395 bpf_size; \
396})
397
398#define bpf_size_to_bytes(bpf_size) \
399({ \
400 int bytes = -EINVAL; \
401 \
402 if (bpf_size == BPF_B) \
403 bytes = sizeof(u8); \
404 else if (bpf_size == BPF_H) \
405 bytes = sizeof(u16); \
406 else if (bpf_size == BPF_W) \
407 bytes = sizeof(u32); \
408 else if (bpf_size == BPF_DW) \
409 bytes = sizeof(u64); \
410 \
411 bytes; \
412})
413
414#define BPF_SIZEOF(type) \
415 ({ \
416 const int __size = bytes_to_bpf_size(sizeof(type)); \
417 BUILD_BUG_ON(__size < 0); \
418 __size; \
419 })
420
421#define BPF_FIELD_SIZEOF(type, field) \
422 ({ \
423 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
424 BUILD_BUG_ON(__size < 0); \
425 __size; \
426 })
427
428#define BPF_LDST_BYTES(insn) \
429 ({ \
430 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
431 WARN_ON(__size < 0); \
432 __size; \
433 })
434
435#define __BPF_MAP_0(m, v, ...) v
436#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
437#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
438#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
439#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
440#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
441
442#define __BPF_REG_0(...) __BPF_PAD(5)
443#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
444#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
445#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
446#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
447#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
448
449#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
450#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
451
452#define __BPF_CAST(t, a) \
453 (__force t) \
454 (__force \
455 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
456 (unsigned long)0, (t)0))) a
457#define __BPF_V void
458#define __BPF_N
459
460#define __BPF_DECL_ARGS(t, a) t a
461#define __BPF_DECL_REGS(t, a) u64 a
462
463#define __BPF_PAD(n) \
464 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
465 u64, __ur_3, u64, __ur_4, u64, __ur_5)
466
467#define BPF_CALL_x(x, name, ...) \
468 static __always_inline \
469 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
470 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
471 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
472 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
473 { \
474 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
475 } \
476 static __always_inline \
477 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
478
479#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
480#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
481#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
482#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
483#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
484#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
485
486#define bpf_ctx_range(TYPE, MEMBER) \
487 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
488#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
489 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
490#if BITS_PER_LONG == 64
491# define bpf_ctx_range_ptr(TYPE, MEMBER) \
492 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
493#else
494# define bpf_ctx_range_ptr(TYPE, MEMBER) \
495 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
496#endif /* BITS_PER_LONG == 64 */
497
498#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
499 ({ \
500 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \
501 *(PTR_SIZE) = (SIZE); \
502 offsetof(TYPE, MEMBER); \
503 })
504
505#ifdef CONFIG_COMPAT
506/* A struct sock_filter is architecture independent. */
507struct compat_sock_fprog {
508 u16 len;
509 compat_uptr_t filter; /* struct sock_filter * */
510};
511#endif
512
513struct sock_fprog_kern {
514 u16 len;
515 struct sock_filter *filter;
516};
517
518/* Some arches need doubleword alignment for their instructions and/or data */
519#define BPF_IMAGE_ALIGNMENT 8
520
521struct bpf_binary_header {
522 u32 pages;
523 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
524};
525
526struct bpf_prog {
527 u16 pages; /* Number of allocated pages */
528 u16 jited:1, /* Is our filter JIT'ed? */
529 jit_requested:1,/* archs need to JIT the prog */
530 gpl_compatible:1, /* Is filter GPL compatible? */
531 cb_access:1, /* Is control block accessed? */
532 dst_needed:1, /* Do we need dst entry? */
533 blinded:1, /* Was blinded */
534 is_func:1, /* program is a bpf function */
535 kprobe_override:1, /* Do we override a kprobe? */
536 has_callchain_buf:1, /* callchain buffer allocated? */
537 enforce_expected_attach_type:1; /* Enforce expected_attach_type checking at attach time */
538 enum bpf_prog_type type; /* Type of BPF program */
539 enum bpf_attach_type expected_attach_type; /* For some prog types */
540 u32 len; /* Number of filter blocks */
541 u32 jited_len; /* Size of jited insns in bytes */
542 u8 tag[BPF_TAG_SIZE];
543 struct bpf_prog_aux *aux; /* Auxiliary fields */
544 struct sock_fprog_kern *orig_prog; /* Original BPF program */
545 unsigned int (*bpf_func)(const void *ctx,
546 const struct bpf_insn *insn);
547 /* Instructions for interpreter */
548 struct sock_filter insns[0];
549 struct bpf_insn insnsi[];
550};
551
552struct sk_filter {
553 refcount_t refcnt;
554 struct rcu_head rcu;
555 struct bpf_prog *prog;
556};
557
558DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
559
560#define __BPF_PROG_RUN(prog, ctx, dfunc) ({ \
561 u32 ret; \
562 cant_migrate(); \
563 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \
564 struct bpf_prog_stats *stats; \
565 u64 start = sched_clock(); \
566 ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \
567 stats = this_cpu_ptr(prog->aux->stats); \
568 u64_stats_update_begin(&stats->syncp); \
569 stats->cnt++; \
570 stats->nsecs += sched_clock() - start; \
571 u64_stats_update_end(&stats->syncp); \
572 } else { \
573 ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \
574 } \
575 ret; })
576
577#define BPF_PROG_RUN(prog, ctx) \
578 __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
579
580/*
581 * Use in preemptible and therefore migratable context to make sure that
582 * the execution of the BPF program runs on one CPU.
583 *
584 * This uses migrate_disable/enable() explicitly to document that the
585 * invocation of a BPF program does not require reentrancy protection
586 * against a BPF program which is invoked from a preempting task.
587 *
588 * For non RT enabled kernels migrate_disable/enable() maps to
589 * preempt_disable/enable(), i.e. it disables also preemption.
590 */
591static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
592 const void *ctx)
593{
594 u32 ret;
595
596 migrate_disable();
597 ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
598 migrate_enable();
599 return ret;
600}
601
602#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
603
604struct bpf_skb_data_end {
605 struct qdisc_skb_cb qdisc_cb;
606 void *data_meta;
607 void *data_end;
608};
609
610struct bpf_redirect_info {
611 u32 flags;
612 u32 tgt_index;
613 void *tgt_value;
614 struct bpf_map *map;
615 u32 kern_flags;
616};
617
618DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
619
620/* flags for bpf_redirect_info kern_flags */
621#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
622
623/* Compute the linear packet data range [data, data_end) which
624 * will be accessed by various program types (cls_bpf, act_bpf,
625 * lwt, ...). Subsystems allowing direct data access must (!)
626 * ensure that cb[] area can be written to when BPF program is
627 * invoked (otherwise cb[] save/restore is necessary).
628 */
629static inline void bpf_compute_data_pointers(struct sk_buff *skb)
630{
631 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
632
633 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
634 cb->data_meta = skb->data - skb_metadata_len(skb);
635 cb->data_end = skb->data + skb_headlen(skb);
636}
637
638/* Similar to bpf_compute_data_pointers(), except that save orginal
639 * data in cb->data and cb->meta_data for restore.
640 */
641static inline void bpf_compute_and_save_data_end(
642 struct sk_buff *skb, void **saved_data_end)
643{
644 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
645
646 *saved_data_end = cb->data_end;
647 cb->data_end = skb->data + skb_headlen(skb);
648}
649
650/* Restore data saved by bpf_compute_data_pointers(). */
651static inline void bpf_restore_data_end(
652 struct sk_buff *skb, void *saved_data_end)
653{
654 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
655
656 cb->data_end = saved_data_end;
657}
658
659static inline u8 *bpf_skb_cb(struct sk_buff *skb)
660{
661 /* eBPF programs may read/write skb->cb[] area to transfer meta
662 * data between tail calls. Since this also needs to work with
663 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
664 *
665 * In some socket filter cases, the cb unfortunately needs to be
666 * saved/restored so that protocol specific skb->cb[] data won't
667 * be lost. In any case, due to unpriviledged eBPF programs
668 * attached to sockets, we need to clear the bpf_skb_cb() area
669 * to not leak previous contents to user space.
670 */
671 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
672 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
673 sizeof_field(struct qdisc_skb_cb, data));
674
675 return qdisc_skb_cb(skb)->data;
676}
677
678/* Must be invoked with migration disabled */
679static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
680 struct sk_buff *skb)
681{
682 u8 *cb_data = bpf_skb_cb(skb);
683 u8 cb_saved[BPF_SKB_CB_LEN];
684 u32 res;
685
686 if (unlikely(prog->cb_access)) {
687 memcpy(cb_saved, cb_data, sizeof(cb_saved));
688 memset(cb_data, 0, sizeof(cb_saved));
689 }
690
691 res = BPF_PROG_RUN(prog, skb);
692
693 if (unlikely(prog->cb_access))
694 memcpy(cb_data, cb_saved, sizeof(cb_saved));
695
696 return res;
697}
698
699static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
700 struct sk_buff *skb)
701{
702 u32 res;
703
704 migrate_disable();
705 res = __bpf_prog_run_save_cb(prog, skb);
706 migrate_enable();
707 return res;
708}
709
710static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
711 struct sk_buff *skb)
712{
713 u8 *cb_data = bpf_skb_cb(skb);
714 u32 res;
715
716 if (unlikely(prog->cb_access))
717 memset(cb_data, 0, BPF_SKB_CB_LEN);
718
719 res = bpf_prog_run_pin_on_cpu(prog, skb);
720 return res;
721}
722
723DECLARE_BPF_DISPATCHER(xdp)
724
725static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
726 struct xdp_buff *xdp)
727{
728 /* Caller needs to hold rcu_read_lock() (!), otherwise program
729 * can be released while still running, or map elements could be
730 * freed early while still having concurrent users. XDP fastpath
731 * already takes rcu_read_lock() when fetching the program, so
732 * it's not necessary here anymore.
733 */
734 return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
735}
736
737void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
738
739static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
740{
741 return prog->len * sizeof(struct bpf_insn);
742}
743
744static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
745{
746 return round_up(bpf_prog_insn_size(prog) +
747 sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
748}
749
750static inline unsigned int bpf_prog_size(unsigned int proglen)
751{
752 return max(sizeof(struct bpf_prog),
753 offsetof(struct bpf_prog, insns[proglen]));
754}
755
756static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
757{
758 /* When classic BPF programs have been loaded and the arch
759 * does not have a classic BPF JIT (anymore), they have been
760 * converted via bpf_migrate_filter() to eBPF and thus always
761 * have an unspec program type.
762 */
763 return prog->type == BPF_PROG_TYPE_UNSPEC;
764}
765
766static inline u32 bpf_ctx_off_adjust_machine(u32 size)
767{
768 const u32 size_machine = sizeof(unsigned long);
769
770 if (size > size_machine && size % size_machine == 0)
771 size = size_machine;
772
773 return size;
774}
775
776static inline bool
777bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
778{
779 return size <= size_default && (size & (size - 1)) == 0;
780}
781
782static inline u8
783bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
784{
785 u8 access_off = off & (size_default - 1);
786
787#ifdef __LITTLE_ENDIAN
788 return access_off;
789#else
790 return size_default - (access_off + size);
791#endif
792}
793
794#define bpf_ctx_wide_access_ok(off, size, type, field) \
795 (size == sizeof(__u64) && \
796 off >= offsetof(type, field) && \
797 off + sizeof(__u64) <= offsetofend(type, field) && \
798 off % sizeof(__u64) == 0)
799
800#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
801
802static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
803{
804#ifndef CONFIG_BPF_JIT_ALWAYS_ON
805 if (!fp->jited) {
806 set_vm_flush_reset_perms(fp);
807 set_memory_ro((unsigned long)fp, fp->pages);
808 }
809#endif
810}
811
812static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
813{
814 set_vm_flush_reset_perms(hdr);
815 set_memory_ro((unsigned long)hdr, hdr->pages);
816 set_memory_x((unsigned long)hdr, hdr->pages);
817}
818
819static inline struct bpf_binary_header *
820bpf_jit_binary_hdr(const struct bpf_prog *fp)
821{
822 unsigned long real_start = (unsigned long)fp->bpf_func;
823 unsigned long addr = real_start & PAGE_MASK;
824
825 return (void *)addr;
826}
827
828int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
829static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
830{
831 return sk_filter_trim_cap(sk, skb, 1);
832}
833
834struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
835void bpf_prog_free(struct bpf_prog *fp);
836
837bool bpf_opcode_in_insntable(u8 code);
838
839void bpf_prog_free_linfo(struct bpf_prog *prog);
840void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
841 const u32 *insn_to_jit_off);
842int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
843void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
844void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
845
846struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
847struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
848struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
849 gfp_t gfp_extra_flags);
850void __bpf_prog_free(struct bpf_prog *fp);
851
852static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
853{
854 __bpf_prog_free(fp);
855}
856
857typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
858 unsigned int flen);
859
860int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
861int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
862 bpf_aux_classic_check_t trans, bool save_orig);
863void bpf_prog_destroy(struct bpf_prog *fp);
864
865int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
866int sk_attach_bpf(u32 ufd, struct sock *sk);
867int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
868int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
869void sk_reuseport_prog_free(struct bpf_prog *prog);
870int sk_detach_filter(struct sock *sk);
871int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
872 unsigned int len);
873
874bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
875void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
876
877u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
878#define __bpf_call_base_args \
879 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
880 __bpf_call_base)
881
882struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
883void bpf_jit_compile(struct bpf_prog *prog);
884bool bpf_jit_needs_zext(void);
885bool bpf_helper_changes_pkt_data(void *func);
886
887static inline bool bpf_dump_raw_ok(const struct cred *cred)
888{
889 /* Reconstruction of call-sites is dependent on kallsyms,
890 * thus make dump the same restriction.
891 */
892 return kallsyms_show_value(cred);
893}
894
895struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
896 const struct bpf_insn *patch, u32 len);
897int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
898
899void bpf_clear_redirect_map(struct bpf_map *map);
900
901static inline bool xdp_return_frame_no_direct(void)
902{
903 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
904
905 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
906}
907
908static inline void xdp_set_return_frame_no_direct(void)
909{
910 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
911
912 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
913}
914
915static inline void xdp_clear_return_frame_no_direct(void)
916{
917 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
918
919 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
920}
921
922static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
923 unsigned int pktlen)
924{
925 unsigned int len;
926
927 if (unlikely(!(fwd->flags & IFF_UP)))
928 return -ENETDOWN;
929
930 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
931 if (pktlen > len)
932 return -EMSGSIZE;
933
934 return 0;
935}
936
937/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
938 * same cpu context. Further for best results no more than a single map
939 * for the do_redirect/do_flush pair should be used. This limitation is
940 * because we only track one map and force a flush when the map changes.
941 * This does not appear to be a real limitation for existing software.
942 */
943int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
944 struct xdp_buff *xdp, struct bpf_prog *prog);
945int xdp_do_redirect(struct net_device *dev,
946 struct xdp_buff *xdp,
947 struct bpf_prog *prog);
948void xdp_do_flush(void);
949
950/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
951 * it is no longer only flushing maps. Keep this define for compatibility
952 * until all drivers are updated - do not use xdp_do_flush_map() in new code!
953 */
954#define xdp_do_flush_map xdp_do_flush
955
956void bpf_warn_invalid_xdp_action(u32 act);
957
958#ifdef CONFIG_INET
959struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
960 struct bpf_prog *prog, struct sk_buff *skb,
961 u32 hash);
962#else
963static inline struct sock *
964bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
965 struct bpf_prog *prog, struct sk_buff *skb,
966 u32 hash)
967{
968 return NULL;
969}
970#endif
971
972#ifdef CONFIG_BPF_JIT
973extern int bpf_jit_enable;
974extern int bpf_jit_harden;
975extern int bpf_jit_kallsyms;
976extern long bpf_jit_limit;
977
978typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
979
980struct bpf_binary_header *
981bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
982 unsigned int alignment,
983 bpf_jit_fill_hole_t bpf_fill_ill_insns);
984void bpf_jit_binary_free(struct bpf_binary_header *hdr);
985u64 bpf_jit_alloc_exec_limit(void);
986void *bpf_jit_alloc_exec(unsigned long size);
987void bpf_jit_free_exec(void *addr);
988void bpf_jit_free(struct bpf_prog *fp);
989
990int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
991 struct bpf_jit_poke_descriptor *poke);
992
993int bpf_jit_get_func_addr(const struct bpf_prog *prog,
994 const struct bpf_insn *insn, bool extra_pass,
995 u64 *func_addr, bool *func_addr_fixed);
996
997struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
998void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
999
1000static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1001 u32 pass, void *image)
1002{
1003 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1004 proglen, pass, image, current->comm, task_pid_nr(current));
1005
1006 if (image)
1007 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1008 16, 1, image, proglen, false);
1009}
1010
1011static inline bool bpf_jit_is_ebpf(void)
1012{
1013# ifdef CONFIG_HAVE_EBPF_JIT
1014 return true;
1015# else
1016 return false;
1017# endif
1018}
1019
1020static inline bool ebpf_jit_enabled(void)
1021{
1022 return bpf_jit_enable && bpf_jit_is_ebpf();
1023}
1024
1025static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1026{
1027 return fp->jited && bpf_jit_is_ebpf();
1028}
1029
1030static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1031{
1032 /* These are the prerequisites, should someone ever have the
1033 * idea to call blinding outside of them, we make sure to
1034 * bail out.
1035 */
1036 if (!bpf_jit_is_ebpf())
1037 return false;
1038 if (!prog->jit_requested)
1039 return false;
1040 if (!bpf_jit_harden)
1041 return false;
1042 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1043 return false;
1044
1045 return true;
1046}
1047
1048static inline bool bpf_jit_kallsyms_enabled(void)
1049{
1050 /* There are a couple of corner cases where kallsyms should
1051 * not be enabled f.e. on hardening.
1052 */
1053 if (bpf_jit_harden)
1054 return false;
1055 if (!bpf_jit_kallsyms)
1056 return false;
1057 if (bpf_jit_kallsyms == 1)
1058 return true;
1059
1060 return false;
1061}
1062
1063const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1064 unsigned long *off, char *sym);
1065bool is_bpf_text_address(unsigned long addr);
1066int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1067 char *sym);
1068
1069static inline const char *
1070bpf_address_lookup(unsigned long addr, unsigned long *size,
1071 unsigned long *off, char **modname, char *sym)
1072{
1073 const char *ret = __bpf_address_lookup(addr, size, off, sym);
1074
1075 if (ret && modname)
1076 *modname = NULL;
1077 return ret;
1078}
1079
1080void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1081void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1082
1083#else /* CONFIG_BPF_JIT */
1084
1085static inline bool ebpf_jit_enabled(void)
1086{
1087 return false;
1088}
1089
1090static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1091{
1092 return false;
1093}
1094
1095static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1096{
1097 return false;
1098}
1099
1100static inline int
1101bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1102 struct bpf_jit_poke_descriptor *poke)
1103{
1104 return -ENOTSUPP;
1105}
1106
1107static inline void bpf_jit_free(struct bpf_prog *fp)
1108{
1109 bpf_prog_unlock_free(fp);
1110}
1111
1112static inline bool bpf_jit_kallsyms_enabled(void)
1113{
1114 return false;
1115}
1116
1117static inline const char *
1118__bpf_address_lookup(unsigned long addr, unsigned long *size,
1119 unsigned long *off, char *sym)
1120{
1121 return NULL;
1122}
1123
1124static inline bool is_bpf_text_address(unsigned long addr)
1125{
1126 return false;
1127}
1128
1129static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1130 char *type, char *sym)
1131{
1132 return -ERANGE;
1133}
1134
1135static inline const char *
1136bpf_address_lookup(unsigned long addr, unsigned long *size,
1137 unsigned long *off, char **modname, char *sym)
1138{
1139 return NULL;
1140}
1141
1142static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1143{
1144}
1145
1146static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1147{
1148}
1149
1150#endif /* CONFIG_BPF_JIT */
1151
1152void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1153
1154#define BPF_ANC BIT(15)
1155
1156static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1157{
1158 switch (first->code) {
1159 case BPF_RET | BPF_K:
1160 case BPF_LD | BPF_W | BPF_LEN:
1161 return false;
1162
1163 case BPF_LD | BPF_W | BPF_ABS:
1164 case BPF_LD | BPF_H | BPF_ABS:
1165 case BPF_LD | BPF_B | BPF_ABS:
1166 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1167 return true;
1168 return false;
1169
1170 default:
1171 return true;
1172 }
1173}
1174
1175static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1176{
1177 BUG_ON(ftest->code & BPF_ANC);
1178
1179 switch (ftest->code) {
1180 case BPF_LD | BPF_W | BPF_ABS:
1181 case BPF_LD | BPF_H | BPF_ABS:
1182 case BPF_LD | BPF_B | BPF_ABS:
1183#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1184 return BPF_ANC | SKF_AD_##CODE
1185 switch (ftest->k) {
1186 BPF_ANCILLARY(PROTOCOL);
1187 BPF_ANCILLARY(PKTTYPE);
1188 BPF_ANCILLARY(IFINDEX);
1189 BPF_ANCILLARY(NLATTR);
1190 BPF_ANCILLARY(NLATTR_NEST);
1191 BPF_ANCILLARY(MARK);
1192 BPF_ANCILLARY(QUEUE);
1193 BPF_ANCILLARY(HATYPE);
1194 BPF_ANCILLARY(RXHASH);
1195 BPF_ANCILLARY(CPU);
1196 BPF_ANCILLARY(ALU_XOR_X);
1197 BPF_ANCILLARY(VLAN_TAG);
1198 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1199 BPF_ANCILLARY(PAY_OFFSET);
1200 BPF_ANCILLARY(RANDOM);
1201 BPF_ANCILLARY(VLAN_TPID);
1202 }
1203 /* Fallthrough. */
1204 default:
1205 return ftest->code;
1206 }
1207}
1208
1209void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1210 int k, unsigned int size);
1211
1212static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
1213 unsigned int size, void *buffer)
1214{
1215 if (k >= 0)
1216 return skb_header_pointer(skb, k, size, buffer);
1217
1218 return bpf_internal_load_pointer_neg_helper(skb, k, size);
1219}
1220
1221static inline int bpf_tell_extensions(void)
1222{
1223 return SKF_AD_MAX;
1224}
1225
1226struct bpf_sock_addr_kern {
1227 struct sock *sk;
1228 struct sockaddr *uaddr;
1229 /* Temporary "register" to make indirect stores to nested structures
1230 * defined above. We need three registers to make such a store, but
1231 * only two (src and dst) are available at convert_ctx_access time
1232 */
1233 u64 tmp_reg;
1234 void *t_ctx; /* Attach type specific context. */
1235};
1236
1237struct bpf_sock_ops_kern {
1238 struct sock *sk;
1239 u32 op;
1240 union {
1241 u32 args[4];
1242 u32 reply;
1243 u32 replylong[4];
1244 };
1245 u32 is_fullsock;
1246 u64 temp; /* temp and everything after is not
1247 * initialized to 0 before calling
1248 * the BPF program. New fields that
1249 * should be initialized to 0 should
1250 * be inserted before temp.
1251 * temp is scratch storage used by
1252 * sock_ops_convert_ctx_access
1253 * as temporary storage of a register.
1254 */
1255};
1256
1257struct bpf_sysctl_kern {
1258 struct ctl_table_header *head;
1259 struct ctl_table *table;
1260 void *cur_val;
1261 size_t cur_len;
1262 void *new_val;
1263 size_t new_len;
1264 int new_updated;
1265 int write;
1266 loff_t *ppos;
1267 /* Temporary "register" for indirect stores to ppos. */
1268 u64 tmp_reg;
1269};
1270
1271struct bpf_sockopt_kern {
1272 struct sock *sk;
1273 u8 *optval;
1274 u8 *optval_end;
1275 s32 level;
1276 s32 optname;
1277 s32 optlen;
1278 s32 retval;
1279};
1280
1281#endif /* __LINUX_FILTER_H__ */