at v5.8 13 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_COMPILER_H 3#define __LINUX_COMPILER_H 4 5#include <linux/compiler_types.h> 6 7#ifndef __ASSEMBLY__ 8 9#ifdef __KERNEL__ 10 11/* 12 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code 13 * to disable branch tracing on a per file basis. 14 */ 15#if defined(CONFIG_TRACE_BRANCH_PROFILING) \ 16 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) 17void ftrace_likely_update(struct ftrace_likely_data *f, int val, 18 int expect, int is_constant); 19 20#define likely_notrace(x) __builtin_expect(!!(x), 1) 21#define unlikely_notrace(x) __builtin_expect(!!(x), 0) 22 23#define __branch_check__(x, expect, is_constant) ({ \ 24 long ______r; \ 25 static struct ftrace_likely_data \ 26 __aligned(4) \ 27 __section(_ftrace_annotated_branch) \ 28 ______f = { \ 29 .data.func = __func__, \ 30 .data.file = __FILE__, \ 31 .data.line = __LINE__, \ 32 }; \ 33 ______r = __builtin_expect(!!(x), expect); \ 34 ftrace_likely_update(&______f, ______r, \ 35 expect, is_constant); \ 36 ______r; \ 37 }) 38 39/* 40 * Using __builtin_constant_p(x) to ignore cases where the return 41 * value is always the same. This idea is taken from a similar patch 42 * written by Daniel Walker. 43 */ 44# ifndef likely 45# define likely(x) (__branch_check__(x, 1, __builtin_constant_p(x))) 46# endif 47# ifndef unlikely 48# define unlikely(x) (__branch_check__(x, 0, __builtin_constant_p(x))) 49# endif 50 51#ifdef CONFIG_PROFILE_ALL_BRANCHES 52/* 53 * "Define 'is'", Bill Clinton 54 * "Define 'if'", Steven Rostedt 55 */ 56#define if(cond, ...) if ( __trace_if_var( !!(cond , ## __VA_ARGS__) ) ) 57 58#define __trace_if_var(cond) (__builtin_constant_p(cond) ? (cond) : __trace_if_value(cond)) 59 60#define __trace_if_value(cond) ({ \ 61 static struct ftrace_branch_data \ 62 __aligned(4) \ 63 __section(_ftrace_branch) \ 64 __if_trace = { \ 65 .func = __func__, \ 66 .file = __FILE__, \ 67 .line = __LINE__, \ 68 }; \ 69 (cond) ? \ 70 (__if_trace.miss_hit[1]++,1) : \ 71 (__if_trace.miss_hit[0]++,0); \ 72}) 73 74#endif /* CONFIG_PROFILE_ALL_BRANCHES */ 75 76#else 77# define likely(x) __builtin_expect(!!(x), 1) 78# define unlikely(x) __builtin_expect(!!(x), 0) 79#endif 80 81/* Optimization barrier */ 82#ifndef barrier 83# define barrier() __memory_barrier() 84#endif 85 86#ifndef barrier_data 87# define barrier_data(ptr) barrier() 88#endif 89 90/* workaround for GCC PR82365 if needed */ 91#ifndef barrier_before_unreachable 92# define barrier_before_unreachable() do { } while (0) 93#endif 94 95/* Unreachable code */ 96#ifdef CONFIG_STACK_VALIDATION 97/* 98 * These macros help objtool understand GCC code flow for unreachable code. 99 * The __COUNTER__ based labels are a hack to make each instance of the macros 100 * unique, to convince GCC not to merge duplicate inline asm statements. 101 */ 102#define annotate_reachable() ({ \ 103 asm volatile("%c0:\n\t" \ 104 ".pushsection .discard.reachable\n\t" \ 105 ".long %c0b - .\n\t" \ 106 ".popsection\n\t" : : "i" (__COUNTER__)); \ 107}) 108#define annotate_unreachable() ({ \ 109 asm volatile("%c0:\n\t" \ 110 ".pushsection .discard.unreachable\n\t" \ 111 ".long %c0b - .\n\t" \ 112 ".popsection\n\t" : : "i" (__COUNTER__)); \ 113}) 114#define ASM_UNREACHABLE \ 115 "999:\n\t" \ 116 ".pushsection .discard.unreachable\n\t" \ 117 ".long 999b - .\n\t" \ 118 ".popsection\n\t" 119 120/* Annotate a C jump table to allow objtool to follow the code flow */ 121#define __annotate_jump_table __section(.rodata..c_jump_table) 122 123#ifdef CONFIG_DEBUG_ENTRY 124/* Begin/end of an instrumentation safe region */ 125#define instrumentation_begin() ({ \ 126 asm volatile("%c0: nop\n\t" \ 127 ".pushsection .discard.instr_begin\n\t" \ 128 ".long %c0b - .\n\t" \ 129 ".popsection\n\t" : : "i" (__COUNTER__)); \ 130}) 131 132/* 133 * Because instrumentation_{begin,end}() can nest, objtool validation considers 134 * _begin() a +1 and _end() a -1 and computes a sum over the instructions. 135 * When the value is greater than 0, we consider instrumentation allowed. 136 * 137 * There is a problem with code like: 138 * 139 * noinstr void foo() 140 * { 141 * instrumentation_begin(); 142 * ... 143 * if (cond) { 144 * instrumentation_begin(); 145 * ... 146 * instrumentation_end(); 147 * } 148 * bar(); 149 * instrumentation_end(); 150 * } 151 * 152 * If instrumentation_end() would be an empty label, like all the other 153 * annotations, the inner _end(), which is at the end of a conditional block, 154 * would land on the instruction after the block. 155 * 156 * If we then consider the sum of the !cond path, we'll see that the call to 157 * bar() is with a 0-value, even though, we meant it to happen with a positive 158 * value. 159 * 160 * To avoid this, have _end() be a NOP instruction, this ensures it will be 161 * part of the condition block and does not escape. 162 */ 163#define instrumentation_end() ({ \ 164 asm volatile("%c0: nop\n\t" \ 165 ".pushsection .discard.instr_end\n\t" \ 166 ".long %c0b - .\n\t" \ 167 ".popsection\n\t" : : "i" (__COUNTER__)); \ 168}) 169#endif /* CONFIG_DEBUG_ENTRY */ 170 171#else 172#define annotate_reachable() 173#define annotate_unreachable() 174#define __annotate_jump_table 175#endif 176 177#ifndef instrumentation_begin 178#define instrumentation_begin() do { } while(0) 179#define instrumentation_end() do { } while(0) 180#endif 181 182#ifndef ASM_UNREACHABLE 183# define ASM_UNREACHABLE 184#endif 185#ifndef unreachable 186# define unreachable() do { \ 187 annotate_unreachable(); \ 188 __builtin_unreachable(); \ 189} while (0) 190#endif 191 192/* 193 * KENTRY - kernel entry point 194 * This can be used to annotate symbols (functions or data) that are used 195 * without their linker symbol being referenced explicitly. For example, 196 * interrupt vector handlers, or functions in the kernel image that are found 197 * programatically. 198 * 199 * Not required for symbols exported with EXPORT_SYMBOL, or initcalls. Those 200 * are handled in their own way (with KEEP() in linker scripts). 201 * 202 * KENTRY can be avoided if the symbols in question are marked as KEEP() in the 203 * linker script. For example an architecture could KEEP() its entire 204 * boot/exception vector code rather than annotate each function and data. 205 */ 206#ifndef KENTRY 207# define KENTRY(sym) \ 208 extern typeof(sym) sym; \ 209 static const unsigned long __kentry_##sym \ 210 __used \ 211 __section("___kentry" "+" #sym ) \ 212 = (unsigned long)&sym; 213#endif 214 215#ifndef RELOC_HIDE 216# define RELOC_HIDE(ptr, off) \ 217 ({ unsigned long __ptr; \ 218 __ptr = (unsigned long) (ptr); \ 219 (typeof(ptr)) (__ptr + (off)); }) 220#endif 221 222#ifndef OPTIMIZER_HIDE_VAR 223/* Make the optimizer believe the variable can be manipulated arbitrarily. */ 224#define OPTIMIZER_HIDE_VAR(var) \ 225 __asm__ ("" : "=r" (var) : "0" (var)) 226#endif 227 228/* Not-quite-unique ID. */ 229#ifndef __UNIQUE_ID 230# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) 231#endif 232 233/* 234 * Prevent the compiler from merging or refetching reads or writes. The 235 * compiler is also forbidden from reordering successive instances of 236 * READ_ONCE and WRITE_ONCE, but only when the compiler is aware of some 237 * particular ordering. One way to make the compiler aware of ordering is to 238 * put the two invocations of READ_ONCE or WRITE_ONCE in different C 239 * statements. 240 * 241 * These two macros will also work on aggregate data types like structs or 242 * unions. 243 * 244 * Their two major use cases are: (1) Mediating communication between 245 * process-level code and irq/NMI handlers, all running on the same CPU, 246 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise 247 * mutilate accesses that either do not require ordering or that interact 248 * with an explicit memory barrier or atomic instruction that provides the 249 * required ordering. 250 */ 251#include <asm/barrier.h> 252#include <linux/kasan-checks.h> 253#include <linux/kcsan-checks.h> 254 255/** 256 * data_race - mark an expression as containing intentional data races 257 * 258 * This data_race() macro is useful for situations in which data races 259 * should be forgiven. One example is diagnostic code that accesses 260 * shared variables but is not a part of the core synchronization design. 261 * 262 * This macro *does not* affect normal code generation, but is a hint 263 * to tooling that data races here are to be ignored. 264 */ 265#define data_race(expr) \ 266({ \ 267 __unqual_scalar_typeof(({ expr; })) __v = ({ \ 268 __kcsan_disable_current(); \ 269 expr; \ 270 }); \ 271 __kcsan_enable_current(); \ 272 __v; \ 273}) 274 275/* 276 * Use __READ_ONCE() instead of READ_ONCE() if you do not require any 277 * atomicity or dependency ordering guarantees. Note that this may result 278 * in tears! 279 */ 280#define __READ_ONCE(x) (*(const volatile __unqual_scalar_typeof(x) *)&(x)) 281 282#define __READ_ONCE_SCALAR(x) \ 283({ \ 284 __unqual_scalar_typeof(x) __x = __READ_ONCE(x); \ 285 smp_read_barrier_depends(); \ 286 (typeof(x))__x; \ 287}) 288 289#define READ_ONCE(x) \ 290({ \ 291 compiletime_assert_rwonce_type(x); \ 292 __READ_ONCE_SCALAR(x); \ 293}) 294 295#define __WRITE_ONCE(x, val) \ 296do { \ 297 *(volatile typeof(x) *)&(x) = (val); \ 298} while (0) 299 300#define WRITE_ONCE(x, val) \ 301do { \ 302 compiletime_assert_rwonce_type(x); \ 303 __WRITE_ONCE(x, val); \ 304} while (0) 305 306static __no_sanitize_or_inline 307unsigned long __read_once_word_nocheck(const void *addr) 308{ 309 return __READ_ONCE(*(unsigned long *)addr); 310} 311 312/* 313 * Use READ_ONCE_NOCHECK() instead of READ_ONCE() if you need to load a 314 * word from memory atomically but without telling KASAN/KCSAN. This is 315 * usually used by unwinding code when walking the stack of a running process. 316 */ 317#define READ_ONCE_NOCHECK(x) \ 318({ \ 319 unsigned long __x; \ 320 compiletime_assert(sizeof(x) == sizeof(__x), \ 321 "Unsupported access size for READ_ONCE_NOCHECK()."); \ 322 __x = __read_once_word_nocheck(&(x)); \ 323 smp_read_barrier_depends(); \ 324 (typeof(x))__x; \ 325}) 326 327static __no_kasan_or_inline 328unsigned long read_word_at_a_time(const void *addr) 329{ 330 kasan_check_read(addr, 1); 331 return *(unsigned long *)addr; 332} 333 334#endif /* __KERNEL__ */ 335 336/* 337 * Force the compiler to emit 'sym' as a symbol, so that we can reference 338 * it from inline assembler. Necessary in case 'sym' could be inlined 339 * otherwise, or eliminated entirely due to lack of references that are 340 * visible to the compiler. 341 */ 342#define __ADDRESSABLE(sym) \ 343 static void * __section(.discard.addressable) __used \ 344 __PASTE(__addressable_##sym, __LINE__) = (void *)&sym; 345 346/** 347 * offset_to_ptr - convert a relative memory offset to an absolute pointer 348 * @off: the address of the 32-bit offset value 349 */ 350static inline void *offset_to_ptr(const int *off) 351{ 352 return (void *)((unsigned long)off + *off); 353} 354 355#endif /* __ASSEMBLY__ */ 356 357/* Compile time object size, -1 for unknown */ 358#ifndef __compiletime_object_size 359# define __compiletime_object_size(obj) -1 360#endif 361#ifndef __compiletime_warning 362# define __compiletime_warning(message) 363#endif 364#ifndef __compiletime_error 365# define __compiletime_error(message) 366#endif 367 368#ifdef __OPTIMIZE__ 369# define __compiletime_assert(condition, msg, prefix, suffix) \ 370 do { \ 371 extern void prefix ## suffix(void) __compiletime_error(msg); \ 372 if (!(condition)) \ 373 prefix ## suffix(); \ 374 } while (0) 375#else 376# define __compiletime_assert(condition, msg, prefix, suffix) do { } while (0) 377#endif 378 379#define _compiletime_assert(condition, msg, prefix, suffix) \ 380 __compiletime_assert(condition, msg, prefix, suffix) 381 382/** 383 * compiletime_assert - break build and emit msg if condition is false 384 * @condition: a compile-time constant condition to check 385 * @msg: a message to emit if condition is false 386 * 387 * In tradition of POSIX assert, this macro will break the build if the 388 * supplied condition is *false*, emitting the supplied error message if the 389 * compiler has support to do so. 390 */ 391#define compiletime_assert(condition, msg) \ 392 _compiletime_assert(condition, msg, __compiletime_assert_, __COUNTER__) 393 394#define compiletime_assert_atomic_type(t) \ 395 compiletime_assert(__native_word(t), \ 396 "Need native word sized stores/loads for atomicity.") 397 398/* 399 * Yes, this permits 64-bit accesses on 32-bit architectures. These will 400 * actually be atomic in some cases (namely Armv7 + LPAE), but for others we 401 * rely on the access being split into 2x32-bit accesses for a 32-bit quantity 402 * (e.g. a virtual address) and a strong prevailing wind. 403 */ 404#define compiletime_assert_rwonce_type(t) \ 405 compiletime_assert(__native_word(t) || sizeof(t) == sizeof(long long), \ 406 "Unsupported access size for {READ,WRITE}_ONCE().") 407 408/* &a[0] degrades to a pointer: a different type from an array */ 409#define __must_be_array(a) BUILD_BUG_ON_ZERO(__same_type((a), &(a)[0])) 410 411/* 412 * This is needed in functions which generate the stack canary, see 413 * arch/x86/kernel/smpboot.c::start_secondary() for an example. 414 */ 415#define prevent_tail_call_optimization() mb() 416 417#endif /* __LINUX_COMPILER_H */