Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Block data types and constants. Directly include this file only to
4 * break include dependency loop.
5 */
6#ifndef __LINUX_BLK_TYPES_H
7#define __LINUX_BLK_TYPES_H
8
9#include <linux/types.h>
10#include <linux/bvec.h>
11#include <linux/ktime.h>
12
13struct bio_set;
14struct bio;
15struct bio_integrity_payload;
16struct page;
17struct block_device;
18struct io_context;
19struct cgroup_subsys_state;
20typedef void (bio_end_io_t) (struct bio *);
21struct bio_crypt_ctx;
22
23/*
24 * Block error status values. See block/blk-core:blk_errors for the details.
25 * Alpha cannot write a byte atomically, so we need to use 32-bit value.
26 */
27#if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
28typedef u32 __bitwise blk_status_t;
29#else
30typedef u8 __bitwise blk_status_t;
31#endif
32#define BLK_STS_OK 0
33#define BLK_STS_NOTSUPP ((__force blk_status_t)1)
34#define BLK_STS_TIMEOUT ((__force blk_status_t)2)
35#define BLK_STS_NOSPC ((__force blk_status_t)3)
36#define BLK_STS_TRANSPORT ((__force blk_status_t)4)
37#define BLK_STS_TARGET ((__force blk_status_t)5)
38#define BLK_STS_NEXUS ((__force blk_status_t)6)
39#define BLK_STS_MEDIUM ((__force blk_status_t)7)
40#define BLK_STS_PROTECTION ((__force blk_status_t)8)
41#define BLK_STS_RESOURCE ((__force blk_status_t)9)
42#define BLK_STS_IOERR ((__force blk_status_t)10)
43
44/* hack for device mapper, don't use elsewhere: */
45#define BLK_STS_DM_REQUEUE ((__force blk_status_t)11)
46
47#define BLK_STS_AGAIN ((__force blk_status_t)12)
48
49/*
50 * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
51 * device related resources are unavailable, but the driver can guarantee
52 * that the queue will be rerun in the future once resources become
53 * available again. This is typically the case for device specific
54 * resources that are consumed for IO. If the driver fails allocating these
55 * resources, we know that inflight (or pending) IO will free these
56 * resource upon completion.
57 *
58 * This is different from BLK_STS_RESOURCE in that it explicitly references
59 * a device specific resource. For resources of wider scope, allocation
60 * failure can happen without having pending IO. This means that we can't
61 * rely on request completions freeing these resources, as IO may not be in
62 * flight. Examples of that are kernel memory allocations, DMA mappings, or
63 * any other system wide resources.
64 */
65#define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13)
66
67/*
68 * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone
69 * related resources are unavailable, but the driver can guarantee the queue
70 * will be rerun in the future once the resources become available again.
71 *
72 * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references
73 * a zone specific resource and IO to a different zone on the same device could
74 * still be served. Examples of that are zones that are write-locked, but a read
75 * to the same zone could be served.
76 */
77#define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14)
78
79/**
80 * blk_path_error - returns true if error may be path related
81 * @error: status the request was completed with
82 *
83 * Description:
84 * This classifies block error status into non-retryable errors and ones
85 * that may be successful if retried on a failover path.
86 *
87 * Return:
88 * %false - retrying failover path will not help
89 * %true - may succeed if retried
90 */
91static inline bool blk_path_error(blk_status_t error)
92{
93 switch (error) {
94 case BLK_STS_NOTSUPP:
95 case BLK_STS_NOSPC:
96 case BLK_STS_TARGET:
97 case BLK_STS_NEXUS:
98 case BLK_STS_MEDIUM:
99 case BLK_STS_PROTECTION:
100 return false;
101 }
102
103 /* Anything else could be a path failure, so should be retried */
104 return true;
105}
106
107/*
108 * From most significant bit:
109 * 1 bit: reserved for other usage, see below
110 * 12 bits: original size of bio
111 * 51 bits: issue time of bio
112 */
113#define BIO_ISSUE_RES_BITS 1
114#define BIO_ISSUE_SIZE_BITS 12
115#define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
116#define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
117#define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
118#define BIO_ISSUE_SIZE_MASK \
119 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
120#define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
121
122/* Reserved bit for blk-throtl */
123#define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
124
125struct bio_issue {
126 u64 value;
127};
128
129static inline u64 __bio_issue_time(u64 time)
130{
131 return time & BIO_ISSUE_TIME_MASK;
132}
133
134static inline u64 bio_issue_time(struct bio_issue *issue)
135{
136 return __bio_issue_time(issue->value);
137}
138
139static inline sector_t bio_issue_size(struct bio_issue *issue)
140{
141 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
142}
143
144static inline void bio_issue_init(struct bio_issue *issue,
145 sector_t size)
146{
147 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
148 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
149 (ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
150 ((u64)size << BIO_ISSUE_SIZE_SHIFT));
151}
152
153/*
154 * main unit of I/O for the block layer and lower layers (ie drivers and
155 * stacking drivers)
156 */
157struct bio {
158 struct bio *bi_next; /* request queue link */
159 struct gendisk *bi_disk;
160 unsigned int bi_opf; /* bottom bits req flags,
161 * top bits REQ_OP. Use
162 * accessors.
163 */
164 unsigned short bi_flags; /* status, etc and bvec pool number */
165 unsigned short bi_ioprio;
166 unsigned short bi_write_hint;
167 blk_status_t bi_status;
168 u8 bi_partno;
169 atomic_t __bi_remaining;
170
171 struct bvec_iter bi_iter;
172
173 bio_end_io_t *bi_end_io;
174
175 void *bi_private;
176#ifdef CONFIG_BLK_CGROUP
177 /*
178 * Represents the association of the css and request_queue for the bio.
179 * If a bio goes direct to device, it will not have a blkg as it will
180 * not have a request_queue associated with it. The reference is put
181 * on release of the bio.
182 */
183 struct blkcg_gq *bi_blkg;
184 struct bio_issue bi_issue;
185#ifdef CONFIG_BLK_CGROUP_IOCOST
186 u64 bi_iocost_cost;
187#endif
188#endif
189
190#ifdef CONFIG_BLK_INLINE_ENCRYPTION
191 struct bio_crypt_ctx *bi_crypt_context;
192#endif
193
194 union {
195#if defined(CONFIG_BLK_DEV_INTEGRITY)
196 struct bio_integrity_payload *bi_integrity; /* data integrity */
197#endif
198 };
199
200 unsigned short bi_vcnt; /* how many bio_vec's */
201
202 /*
203 * Everything starting with bi_max_vecs will be preserved by bio_reset()
204 */
205
206 unsigned short bi_max_vecs; /* max bvl_vecs we can hold */
207
208 atomic_t __bi_cnt; /* pin count */
209
210 struct bio_vec *bi_io_vec; /* the actual vec list */
211
212 struct bio_set *bi_pool;
213
214 /*
215 * We can inline a number of vecs at the end of the bio, to avoid
216 * double allocations for a small number of bio_vecs. This member
217 * MUST obviously be kept at the very end of the bio.
218 */
219 struct bio_vec bi_inline_vecs[];
220};
221
222#define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs)
223
224/*
225 * bio flags
226 */
227enum {
228 BIO_NO_PAGE_REF, /* don't put release vec pages */
229 BIO_CLONED, /* doesn't own data */
230 BIO_BOUNCED, /* bio is a bounce bio */
231 BIO_USER_MAPPED, /* contains user pages */
232 BIO_NULL_MAPPED, /* contains invalid user pages */
233 BIO_WORKINGSET, /* contains userspace workingset pages */
234 BIO_QUIET, /* Make BIO Quiet */
235 BIO_CHAIN, /* chained bio, ->bi_remaining in effect */
236 BIO_REFFED, /* bio has elevated ->bi_cnt */
237 BIO_THROTTLED, /* This bio has already been subjected to
238 * throttling rules. Don't do it again. */
239 BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion
240 * of this bio. */
241 BIO_CGROUP_ACCT, /* has been accounted to a cgroup */
242 BIO_TRACKED, /* set if bio goes through the rq_qos path */
243 BIO_FLAG_LAST
244};
245
246/* See BVEC_POOL_OFFSET below before adding new flags */
247
248/*
249 * We support 6 different bvec pools, the last one is magic in that it
250 * is backed by a mempool.
251 */
252#define BVEC_POOL_NR 6
253#define BVEC_POOL_MAX (BVEC_POOL_NR - 1)
254
255/*
256 * Top 3 bits of bio flags indicate the pool the bvecs came from. We add
257 * 1 to the actual index so that 0 indicates that there are no bvecs to be
258 * freed.
259 */
260#define BVEC_POOL_BITS (3)
261#define BVEC_POOL_OFFSET (16 - BVEC_POOL_BITS)
262#define BVEC_POOL_IDX(bio) ((bio)->bi_flags >> BVEC_POOL_OFFSET)
263#if (1<< BVEC_POOL_BITS) < (BVEC_POOL_NR+1)
264# error "BVEC_POOL_BITS is too small"
265#endif
266
267/*
268 * Flags starting here get preserved by bio_reset() - this includes
269 * only BVEC_POOL_IDX()
270 */
271#define BIO_RESET_BITS BVEC_POOL_OFFSET
272
273typedef __u32 __bitwise blk_mq_req_flags_t;
274
275/*
276 * Operations and flags common to the bio and request structures.
277 * We use 8 bits for encoding the operation, and the remaining 24 for flags.
278 *
279 * The least significant bit of the operation number indicates the data
280 * transfer direction:
281 *
282 * - if the least significant bit is set transfers are TO the device
283 * - if the least significant bit is not set transfers are FROM the device
284 *
285 * If a operation does not transfer data the least significant bit has no
286 * meaning.
287 */
288#define REQ_OP_BITS 8
289#define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1)
290#define REQ_FLAG_BITS 24
291
292enum req_opf {
293 /* read sectors from the device */
294 REQ_OP_READ = 0,
295 /* write sectors to the device */
296 REQ_OP_WRITE = 1,
297 /* flush the volatile write cache */
298 REQ_OP_FLUSH = 2,
299 /* discard sectors */
300 REQ_OP_DISCARD = 3,
301 /* securely erase sectors */
302 REQ_OP_SECURE_ERASE = 5,
303 /* reset a zone write pointer */
304 REQ_OP_ZONE_RESET = 6,
305 /* write the same sector many times */
306 REQ_OP_WRITE_SAME = 7,
307 /* reset all the zone present on the device */
308 REQ_OP_ZONE_RESET_ALL = 8,
309 /* write the zero filled sector many times */
310 REQ_OP_WRITE_ZEROES = 9,
311 /* Open a zone */
312 REQ_OP_ZONE_OPEN = 10,
313 /* Close a zone */
314 REQ_OP_ZONE_CLOSE = 11,
315 /* Transition a zone to full */
316 REQ_OP_ZONE_FINISH = 12,
317 /* write data at the current zone write pointer */
318 REQ_OP_ZONE_APPEND = 13,
319
320 /* SCSI passthrough using struct scsi_request */
321 REQ_OP_SCSI_IN = 32,
322 REQ_OP_SCSI_OUT = 33,
323 /* Driver private requests */
324 REQ_OP_DRV_IN = 34,
325 REQ_OP_DRV_OUT = 35,
326
327 REQ_OP_LAST,
328};
329
330enum req_flag_bits {
331 __REQ_FAILFAST_DEV = /* no driver retries of device errors */
332 REQ_OP_BITS,
333 __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
334 __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */
335 __REQ_SYNC, /* request is sync (sync write or read) */
336 __REQ_META, /* metadata io request */
337 __REQ_PRIO, /* boost priority in cfq */
338 __REQ_NOMERGE, /* don't touch this for merging */
339 __REQ_IDLE, /* anticipate more IO after this one */
340 __REQ_INTEGRITY, /* I/O includes block integrity payload */
341 __REQ_FUA, /* forced unit access */
342 __REQ_PREFLUSH, /* request for cache flush */
343 __REQ_RAHEAD, /* read ahead, can fail anytime */
344 __REQ_BACKGROUND, /* background IO */
345 __REQ_NOWAIT, /* Don't wait if request will block */
346 /*
347 * When a shared kthread needs to issue a bio for a cgroup, doing
348 * so synchronously can lead to priority inversions as the kthread
349 * can be trapped waiting for that cgroup. CGROUP_PUNT flag makes
350 * submit_bio() punt the actual issuing to a dedicated per-blkcg
351 * work item to avoid such priority inversions.
352 */
353 __REQ_CGROUP_PUNT,
354
355 /* command specific flags for REQ_OP_WRITE_ZEROES: */
356 __REQ_NOUNMAP, /* do not free blocks when zeroing */
357
358 __REQ_HIPRI,
359
360 /* for driver use */
361 __REQ_DRV,
362 __REQ_SWAP, /* swapping request. */
363 __REQ_NR_BITS, /* stops here */
364};
365
366#define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV)
367#define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT)
368#define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER)
369#define REQ_SYNC (1ULL << __REQ_SYNC)
370#define REQ_META (1ULL << __REQ_META)
371#define REQ_PRIO (1ULL << __REQ_PRIO)
372#define REQ_NOMERGE (1ULL << __REQ_NOMERGE)
373#define REQ_IDLE (1ULL << __REQ_IDLE)
374#define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY)
375#define REQ_FUA (1ULL << __REQ_FUA)
376#define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH)
377#define REQ_RAHEAD (1ULL << __REQ_RAHEAD)
378#define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND)
379#define REQ_NOWAIT (1ULL << __REQ_NOWAIT)
380#define REQ_CGROUP_PUNT (1ULL << __REQ_CGROUP_PUNT)
381
382#define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP)
383#define REQ_HIPRI (1ULL << __REQ_HIPRI)
384
385#define REQ_DRV (1ULL << __REQ_DRV)
386#define REQ_SWAP (1ULL << __REQ_SWAP)
387
388#define REQ_FAILFAST_MASK \
389 (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
390
391#define REQ_NOMERGE_FLAGS \
392 (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
393
394enum stat_group {
395 STAT_READ,
396 STAT_WRITE,
397 STAT_DISCARD,
398 STAT_FLUSH,
399
400 NR_STAT_GROUPS
401};
402
403#define bio_op(bio) \
404 ((bio)->bi_opf & REQ_OP_MASK)
405#define req_op(req) \
406 ((req)->cmd_flags & REQ_OP_MASK)
407
408/* obsolete, don't use in new code */
409static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
410 unsigned op_flags)
411{
412 bio->bi_opf = op | op_flags;
413}
414
415static inline bool op_is_write(unsigned int op)
416{
417 return (op & 1);
418}
419
420/*
421 * Check if the bio or request is one that needs special treatment in the
422 * flush state machine.
423 */
424static inline bool op_is_flush(unsigned int op)
425{
426 return op & (REQ_FUA | REQ_PREFLUSH);
427}
428
429/*
430 * Reads are always treated as synchronous, as are requests with the FUA or
431 * PREFLUSH flag. Other operations may be marked as synchronous using the
432 * REQ_SYNC flag.
433 */
434static inline bool op_is_sync(unsigned int op)
435{
436 return (op & REQ_OP_MASK) == REQ_OP_READ ||
437 (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
438}
439
440static inline bool op_is_discard(unsigned int op)
441{
442 return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
443}
444
445/*
446 * Check if a bio or request operation is a zone management operation, with
447 * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
448 * due to its different handling in the block layer and device response in
449 * case of command failure.
450 */
451static inline bool op_is_zone_mgmt(enum req_opf op)
452{
453 switch (op & REQ_OP_MASK) {
454 case REQ_OP_ZONE_RESET:
455 case REQ_OP_ZONE_OPEN:
456 case REQ_OP_ZONE_CLOSE:
457 case REQ_OP_ZONE_FINISH:
458 return true;
459 default:
460 return false;
461 }
462}
463
464static inline int op_stat_group(unsigned int op)
465{
466 if (op_is_discard(op))
467 return STAT_DISCARD;
468 return op_is_write(op);
469}
470
471typedef unsigned int blk_qc_t;
472#define BLK_QC_T_NONE -1U
473#define BLK_QC_T_EAGAIN -2U
474#define BLK_QC_T_SHIFT 16
475#define BLK_QC_T_INTERNAL (1U << 31)
476
477static inline bool blk_qc_t_valid(blk_qc_t cookie)
478{
479 return cookie != BLK_QC_T_NONE && cookie != BLK_QC_T_EAGAIN;
480}
481
482static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie)
483{
484 return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT;
485}
486
487static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie)
488{
489 return cookie & ((1u << BLK_QC_T_SHIFT) - 1);
490}
491
492static inline bool blk_qc_t_is_internal(blk_qc_t cookie)
493{
494 return (cookie & BLK_QC_T_INTERNAL) != 0;
495}
496
497struct blk_rq_stat {
498 u64 mean;
499 u64 min;
500 u64 max;
501 u32 nr_samples;
502 u64 batch;
503};
504
505#endif /* __LINUX_BLK_TYPES_H */