Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/backing-dev.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "trace.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 return -EFSCORRUPTED;
40 }
41 return 0;
42}
43
44bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
45{
46 struct f2fs_nm_info *nm_i = NM_I(sbi);
47 struct sysinfo val;
48 unsigned long avail_ram;
49 unsigned long mem_size = 0;
50 bool res = false;
51
52 si_meminfo(&val);
53
54 /* only uses low memory */
55 avail_ram = val.totalram - val.totalhigh;
56
57 /*
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
59 */
60 if (type == FREE_NIDS) {
61 mem_size = (nm_i->nid_cnt[FREE_NID] *
62 sizeof(struct free_nid)) >> PAGE_SHIFT;
63 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
64 } else if (type == NAT_ENTRIES) {
65 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
66 PAGE_SHIFT;
67 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
68 if (excess_cached_nats(sbi))
69 res = false;
70 } else if (type == DIRTY_DENTS) {
71 if (sbi->sb->s_bdi->wb.dirty_exceeded)
72 return false;
73 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else if (type == INO_ENTRIES) {
76 int i;
77
78 for (i = 0; i < MAX_INO_ENTRY; i++)
79 mem_size += sbi->im[i].ino_num *
80 sizeof(struct ino_entry);
81 mem_size >>= PAGE_SHIFT;
82 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
83 } else if (type == EXTENT_CACHE) {
84 mem_size = (atomic_read(&sbi->total_ext_tree) *
85 sizeof(struct extent_tree) +
86 atomic_read(&sbi->total_ext_node) *
87 sizeof(struct extent_node)) >> PAGE_SHIFT;
88 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
89 } else if (type == INMEM_PAGES) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
92 res = mem_size < (val.totalram / 5);
93 } else {
94 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
95 return true;
96 }
97 return res;
98}
99
100static void clear_node_page_dirty(struct page *page)
101{
102 if (PageDirty(page)) {
103 f2fs_clear_page_cache_dirty_tag(page);
104 clear_page_dirty_for_io(page);
105 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
106 }
107 ClearPageUptodate(page);
108}
109
110static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
111{
112 return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid));
113}
114
115static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
116{
117 struct page *src_page;
118 struct page *dst_page;
119 pgoff_t dst_off;
120 void *src_addr;
121 void *dst_addr;
122 struct f2fs_nm_info *nm_i = NM_I(sbi);
123
124 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
125
126 /* get current nat block page with lock */
127 src_page = get_current_nat_page(sbi, nid);
128 if (IS_ERR(src_page))
129 return src_page;
130 dst_page = f2fs_grab_meta_page(sbi, dst_off);
131 f2fs_bug_on(sbi, PageDirty(src_page));
132
133 src_addr = page_address(src_page);
134 dst_addr = page_address(dst_page);
135 memcpy(dst_addr, src_addr, PAGE_SIZE);
136 set_page_dirty(dst_page);
137 f2fs_put_page(src_page, 1);
138
139 set_to_next_nat(nm_i, nid);
140
141 return dst_page;
142}
143
144static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
145{
146 struct nat_entry *new;
147
148 if (no_fail)
149 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
150 else
151 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
152 if (new) {
153 nat_set_nid(new, nid);
154 nat_reset_flag(new);
155 }
156 return new;
157}
158
159static void __free_nat_entry(struct nat_entry *e)
160{
161 kmem_cache_free(nat_entry_slab, e);
162}
163
164/* must be locked by nat_tree_lock */
165static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
166 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
167{
168 if (no_fail)
169 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
170 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
171 return NULL;
172
173 if (raw_ne)
174 node_info_from_raw_nat(&ne->ni, raw_ne);
175
176 spin_lock(&nm_i->nat_list_lock);
177 list_add_tail(&ne->list, &nm_i->nat_entries);
178 spin_unlock(&nm_i->nat_list_lock);
179
180 nm_i->nat_cnt++;
181 return ne;
182}
183
184static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
185{
186 struct nat_entry *ne;
187
188 ne = radix_tree_lookup(&nm_i->nat_root, n);
189
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
192 spin_lock(&nm_i->nat_list_lock);
193 if (!list_empty(&ne->list))
194 list_move_tail(&ne->list, &nm_i->nat_entries);
195 spin_unlock(&nm_i->nat_list_lock);
196 }
197
198 return ne;
199}
200
201static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
202 nid_t start, unsigned int nr, struct nat_entry **ep)
203{
204 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
205}
206
207static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
208{
209 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
210 nm_i->nat_cnt--;
211 __free_nat_entry(e);
212}
213
214static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
215 struct nat_entry *ne)
216{
217 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
218 struct nat_entry_set *head;
219
220 head = radix_tree_lookup(&nm_i->nat_set_root, set);
221 if (!head) {
222 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
223
224 INIT_LIST_HEAD(&head->entry_list);
225 INIT_LIST_HEAD(&head->set_list);
226 head->set = set;
227 head->entry_cnt = 0;
228 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
229 }
230 return head;
231}
232
233static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
234 struct nat_entry *ne)
235{
236 struct nat_entry_set *head;
237 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
238
239 if (!new_ne)
240 head = __grab_nat_entry_set(nm_i, ne);
241
242 /*
243 * update entry_cnt in below condition:
244 * 1. update NEW_ADDR to valid block address;
245 * 2. update old block address to new one;
246 */
247 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
248 !get_nat_flag(ne, IS_DIRTY)))
249 head->entry_cnt++;
250
251 set_nat_flag(ne, IS_PREALLOC, new_ne);
252
253 if (get_nat_flag(ne, IS_DIRTY))
254 goto refresh_list;
255
256 nm_i->dirty_nat_cnt++;
257 set_nat_flag(ne, IS_DIRTY, true);
258refresh_list:
259 spin_lock(&nm_i->nat_list_lock);
260 if (new_ne)
261 list_del_init(&ne->list);
262 else
263 list_move_tail(&ne->list, &head->entry_list);
264 spin_unlock(&nm_i->nat_list_lock);
265}
266
267static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
268 struct nat_entry_set *set, struct nat_entry *ne)
269{
270 spin_lock(&nm_i->nat_list_lock);
271 list_move_tail(&ne->list, &nm_i->nat_entries);
272 spin_unlock(&nm_i->nat_list_lock);
273
274 set_nat_flag(ne, IS_DIRTY, false);
275 set->entry_cnt--;
276 nm_i->dirty_nat_cnt--;
277}
278
279static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
280 nid_t start, unsigned int nr, struct nat_entry_set **ep)
281{
282 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
283 start, nr);
284}
285
286bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
287{
288 return NODE_MAPPING(sbi) == page->mapping &&
289 IS_DNODE(page) && is_cold_node(page);
290}
291
292void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
293{
294 spin_lock_init(&sbi->fsync_node_lock);
295 INIT_LIST_HEAD(&sbi->fsync_node_list);
296 sbi->fsync_seg_id = 0;
297 sbi->fsync_node_num = 0;
298}
299
300static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
301 struct page *page)
302{
303 struct fsync_node_entry *fn;
304 unsigned long flags;
305 unsigned int seq_id;
306
307 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS);
308
309 get_page(page);
310 fn->page = page;
311 INIT_LIST_HEAD(&fn->list);
312
313 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
314 list_add_tail(&fn->list, &sbi->fsync_node_list);
315 fn->seq_id = sbi->fsync_seg_id++;
316 seq_id = fn->seq_id;
317 sbi->fsync_node_num++;
318 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
319
320 return seq_id;
321}
322
323void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
324{
325 struct fsync_node_entry *fn;
326 unsigned long flags;
327
328 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
329 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
330 if (fn->page == page) {
331 list_del(&fn->list);
332 sbi->fsync_node_num--;
333 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
334 kmem_cache_free(fsync_node_entry_slab, fn);
335 put_page(page);
336 return;
337 }
338 }
339 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
340 f2fs_bug_on(sbi, 1);
341}
342
343void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
344{
345 unsigned long flags;
346
347 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
348 sbi->fsync_seg_id = 0;
349 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
350}
351
352int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
353{
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
355 struct nat_entry *e;
356 bool need = false;
357
358 down_read(&nm_i->nat_tree_lock);
359 e = __lookup_nat_cache(nm_i, nid);
360 if (e) {
361 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
362 !get_nat_flag(e, HAS_FSYNCED_INODE))
363 need = true;
364 }
365 up_read(&nm_i->nat_tree_lock);
366 return need;
367}
368
369bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
370{
371 struct f2fs_nm_info *nm_i = NM_I(sbi);
372 struct nat_entry *e;
373 bool is_cp = true;
374
375 down_read(&nm_i->nat_tree_lock);
376 e = __lookup_nat_cache(nm_i, nid);
377 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
378 is_cp = false;
379 up_read(&nm_i->nat_tree_lock);
380 return is_cp;
381}
382
383bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
384{
385 struct f2fs_nm_info *nm_i = NM_I(sbi);
386 struct nat_entry *e;
387 bool need_update = true;
388
389 down_read(&nm_i->nat_tree_lock);
390 e = __lookup_nat_cache(nm_i, ino);
391 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
392 (get_nat_flag(e, IS_CHECKPOINTED) ||
393 get_nat_flag(e, HAS_FSYNCED_INODE)))
394 need_update = false;
395 up_read(&nm_i->nat_tree_lock);
396 return need_update;
397}
398
399/* must be locked by nat_tree_lock */
400static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
401 struct f2fs_nat_entry *ne)
402{
403 struct f2fs_nm_info *nm_i = NM_I(sbi);
404 struct nat_entry *new, *e;
405
406 new = __alloc_nat_entry(nid, false);
407 if (!new)
408 return;
409
410 down_write(&nm_i->nat_tree_lock);
411 e = __lookup_nat_cache(nm_i, nid);
412 if (!e)
413 e = __init_nat_entry(nm_i, new, ne, false);
414 else
415 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
416 nat_get_blkaddr(e) !=
417 le32_to_cpu(ne->block_addr) ||
418 nat_get_version(e) != ne->version);
419 up_write(&nm_i->nat_tree_lock);
420 if (e != new)
421 __free_nat_entry(new);
422}
423
424static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
425 block_t new_blkaddr, bool fsync_done)
426{
427 struct f2fs_nm_info *nm_i = NM_I(sbi);
428 struct nat_entry *e;
429 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
430
431 down_write(&nm_i->nat_tree_lock);
432 e = __lookup_nat_cache(nm_i, ni->nid);
433 if (!e) {
434 e = __init_nat_entry(nm_i, new, NULL, true);
435 copy_node_info(&e->ni, ni);
436 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
437 } else if (new_blkaddr == NEW_ADDR) {
438 /*
439 * when nid is reallocated,
440 * previous nat entry can be remained in nat cache.
441 * So, reinitialize it with new information.
442 */
443 copy_node_info(&e->ni, ni);
444 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
445 }
446 /* let's free early to reduce memory consumption */
447 if (e != new)
448 __free_nat_entry(new);
449
450 /* sanity check */
451 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
452 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
453 new_blkaddr == NULL_ADDR);
454 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
455 new_blkaddr == NEW_ADDR);
456 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
457 new_blkaddr == NEW_ADDR);
458
459 /* increment version no as node is removed */
460 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
461 unsigned char version = nat_get_version(e);
462 nat_set_version(e, inc_node_version(version));
463 }
464
465 /* change address */
466 nat_set_blkaddr(e, new_blkaddr);
467 if (!__is_valid_data_blkaddr(new_blkaddr))
468 set_nat_flag(e, IS_CHECKPOINTED, false);
469 __set_nat_cache_dirty(nm_i, e);
470
471 /* update fsync_mark if its inode nat entry is still alive */
472 if (ni->nid != ni->ino)
473 e = __lookup_nat_cache(nm_i, ni->ino);
474 if (e) {
475 if (fsync_done && ni->nid == ni->ino)
476 set_nat_flag(e, HAS_FSYNCED_INODE, true);
477 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
478 }
479 up_write(&nm_i->nat_tree_lock);
480}
481
482int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
483{
484 struct f2fs_nm_info *nm_i = NM_I(sbi);
485 int nr = nr_shrink;
486
487 if (!down_write_trylock(&nm_i->nat_tree_lock))
488 return 0;
489
490 spin_lock(&nm_i->nat_list_lock);
491 while (nr_shrink) {
492 struct nat_entry *ne;
493
494 if (list_empty(&nm_i->nat_entries))
495 break;
496
497 ne = list_first_entry(&nm_i->nat_entries,
498 struct nat_entry, list);
499 list_del(&ne->list);
500 spin_unlock(&nm_i->nat_list_lock);
501
502 __del_from_nat_cache(nm_i, ne);
503 nr_shrink--;
504
505 spin_lock(&nm_i->nat_list_lock);
506 }
507 spin_unlock(&nm_i->nat_list_lock);
508
509 up_write(&nm_i->nat_tree_lock);
510 return nr - nr_shrink;
511}
512
513int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
514 struct node_info *ni)
515{
516 struct f2fs_nm_info *nm_i = NM_I(sbi);
517 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
518 struct f2fs_journal *journal = curseg->journal;
519 nid_t start_nid = START_NID(nid);
520 struct f2fs_nat_block *nat_blk;
521 struct page *page = NULL;
522 struct f2fs_nat_entry ne;
523 struct nat_entry *e;
524 pgoff_t index;
525 block_t blkaddr;
526 int i;
527
528 ni->nid = nid;
529
530 /* Check nat cache */
531 down_read(&nm_i->nat_tree_lock);
532 e = __lookup_nat_cache(nm_i, nid);
533 if (e) {
534 ni->ino = nat_get_ino(e);
535 ni->blk_addr = nat_get_blkaddr(e);
536 ni->version = nat_get_version(e);
537 up_read(&nm_i->nat_tree_lock);
538 return 0;
539 }
540
541 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
542
543 /* Check current segment summary */
544 down_read(&curseg->journal_rwsem);
545 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
546 if (i >= 0) {
547 ne = nat_in_journal(journal, i);
548 node_info_from_raw_nat(ni, &ne);
549 }
550 up_read(&curseg->journal_rwsem);
551 if (i >= 0) {
552 up_read(&nm_i->nat_tree_lock);
553 goto cache;
554 }
555
556 /* Fill node_info from nat page */
557 index = current_nat_addr(sbi, nid);
558 up_read(&nm_i->nat_tree_lock);
559
560 page = f2fs_get_meta_page(sbi, index);
561 if (IS_ERR(page))
562 return PTR_ERR(page);
563
564 nat_blk = (struct f2fs_nat_block *)page_address(page);
565 ne = nat_blk->entries[nid - start_nid];
566 node_info_from_raw_nat(ni, &ne);
567 f2fs_put_page(page, 1);
568cache:
569 blkaddr = le32_to_cpu(ne.block_addr);
570 if (__is_valid_data_blkaddr(blkaddr) &&
571 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
572 return -EFAULT;
573
574 /* cache nat entry */
575 cache_nat_entry(sbi, nid, &ne);
576 return 0;
577}
578
579/*
580 * readahead MAX_RA_NODE number of node pages.
581 */
582static void f2fs_ra_node_pages(struct page *parent, int start, int n)
583{
584 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
585 struct blk_plug plug;
586 int i, end;
587 nid_t nid;
588
589 blk_start_plug(&plug);
590
591 /* Then, try readahead for siblings of the desired node */
592 end = start + n;
593 end = min(end, NIDS_PER_BLOCK);
594 for (i = start; i < end; i++) {
595 nid = get_nid(parent, i, false);
596 f2fs_ra_node_page(sbi, nid);
597 }
598
599 blk_finish_plug(&plug);
600}
601
602pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
603{
604 const long direct_index = ADDRS_PER_INODE(dn->inode);
605 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
606 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
607 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
608 int cur_level = dn->cur_level;
609 int max_level = dn->max_level;
610 pgoff_t base = 0;
611
612 if (!dn->max_level)
613 return pgofs + 1;
614
615 while (max_level-- > cur_level)
616 skipped_unit *= NIDS_PER_BLOCK;
617
618 switch (dn->max_level) {
619 case 3:
620 base += 2 * indirect_blks;
621 /* fall through */
622 case 2:
623 base += 2 * direct_blks;
624 /* fall through */
625 case 1:
626 base += direct_index;
627 break;
628 default:
629 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
630 }
631
632 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
633}
634
635/*
636 * The maximum depth is four.
637 * Offset[0] will have raw inode offset.
638 */
639static int get_node_path(struct inode *inode, long block,
640 int offset[4], unsigned int noffset[4])
641{
642 const long direct_index = ADDRS_PER_INODE(inode);
643 const long direct_blks = ADDRS_PER_BLOCK(inode);
644 const long dptrs_per_blk = NIDS_PER_BLOCK;
645 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
646 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
647 int n = 0;
648 int level = 0;
649
650 noffset[0] = 0;
651
652 if (block < direct_index) {
653 offset[n] = block;
654 goto got;
655 }
656 block -= direct_index;
657 if (block < direct_blks) {
658 offset[n++] = NODE_DIR1_BLOCK;
659 noffset[n] = 1;
660 offset[n] = block;
661 level = 1;
662 goto got;
663 }
664 block -= direct_blks;
665 if (block < direct_blks) {
666 offset[n++] = NODE_DIR2_BLOCK;
667 noffset[n] = 2;
668 offset[n] = block;
669 level = 1;
670 goto got;
671 }
672 block -= direct_blks;
673 if (block < indirect_blks) {
674 offset[n++] = NODE_IND1_BLOCK;
675 noffset[n] = 3;
676 offset[n++] = block / direct_blks;
677 noffset[n] = 4 + offset[n - 1];
678 offset[n] = block % direct_blks;
679 level = 2;
680 goto got;
681 }
682 block -= indirect_blks;
683 if (block < indirect_blks) {
684 offset[n++] = NODE_IND2_BLOCK;
685 noffset[n] = 4 + dptrs_per_blk;
686 offset[n++] = block / direct_blks;
687 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
688 offset[n] = block % direct_blks;
689 level = 2;
690 goto got;
691 }
692 block -= indirect_blks;
693 if (block < dindirect_blks) {
694 offset[n++] = NODE_DIND_BLOCK;
695 noffset[n] = 5 + (dptrs_per_blk * 2);
696 offset[n++] = block / indirect_blks;
697 noffset[n] = 6 + (dptrs_per_blk * 2) +
698 offset[n - 1] * (dptrs_per_blk + 1);
699 offset[n++] = (block / direct_blks) % dptrs_per_blk;
700 noffset[n] = 7 + (dptrs_per_blk * 2) +
701 offset[n - 2] * (dptrs_per_blk + 1) +
702 offset[n - 1];
703 offset[n] = block % direct_blks;
704 level = 3;
705 goto got;
706 } else {
707 return -E2BIG;
708 }
709got:
710 return level;
711}
712
713/*
714 * Caller should call f2fs_put_dnode(dn).
715 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
716 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
717 */
718int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
719{
720 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721 struct page *npage[4];
722 struct page *parent = NULL;
723 int offset[4];
724 unsigned int noffset[4];
725 nid_t nids[4];
726 int level, i = 0;
727 int err = 0;
728
729 level = get_node_path(dn->inode, index, offset, noffset);
730 if (level < 0)
731 return level;
732
733 nids[0] = dn->inode->i_ino;
734 npage[0] = dn->inode_page;
735
736 if (!npage[0]) {
737 npage[0] = f2fs_get_node_page(sbi, nids[0]);
738 if (IS_ERR(npage[0]))
739 return PTR_ERR(npage[0]);
740 }
741
742 /* if inline_data is set, should not report any block indices */
743 if (f2fs_has_inline_data(dn->inode) && index) {
744 err = -ENOENT;
745 f2fs_put_page(npage[0], 1);
746 goto release_out;
747 }
748
749 parent = npage[0];
750 if (level != 0)
751 nids[1] = get_nid(parent, offset[0], true);
752 dn->inode_page = npage[0];
753 dn->inode_page_locked = true;
754
755 /* get indirect or direct nodes */
756 for (i = 1; i <= level; i++) {
757 bool done = false;
758
759 if (!nids[i] && mode == ALLOC_NODE) {
760 /* alloc new node */
761 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
762 err = -ENOSPC;
763 goto release_pages;
764 }
765
766 dn->nid = nids[i];
767 npage[i] = f2fs_new_node_page(dn, noffset[i]);
768 if (IS_ERR(npage[i])) {
769 f2fs_alloc_nid_failed(sbi, nids[i]);
770 err = PTR_ERR(npage[i]);
771 goto release_pages;
772 }
773
774 set_nid(parent, offset[i - 1], nids[i], i == 1);
775 f2fs_alloc_nid_done(sbi, nids[i]);
776 done = true;
777 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
778 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
779 if (IS_ERR(npage[i])) {
780 err = PTR_ERR(npage[i]);
781 goto release_pages;
782 }
783 done = true;
784 }
785 if (i == 1) {
786 dn->inode_page_locked = false;
787 unlock_page(parent);
788 } else {
789 f2fs_put_page(parent, 1);
790 }
791
792 if (!done) {
793 npage[i] = f2fs_get_node_page(sbi, nids[i]);
794 if (IS_ERR(npage[i])) {
795 err = PTR_ERR(npage[i]);
796 f2fs_put_page(npage[0], 0);
797 goto release_out;
798 }
799 }
800 if (i < level) {
801 parent = npage[i];
802 nids[i + 1] = get_nid(parent, offset[i], false);
803 }
804 }
805 dn->nid = nids[level];
806 dn->ofs_in_node = offset[level];
807 dn->node_page = npage[level];
808 dn->data_blkaddr = f2fs_data_blkaddr(dn);
809 return 0;
810
811release_pages:
812 f2fs_put_page(parent, 1);
813 if (i > 1)
814 f2fs_put_page(npage[0], 0);
815release_out:
816 dn->inode_page = NULL;
817 dn->node_page = NULL;
818 if (err == -ENOENT) {
819 dn->cur_level = i;
820 dn->max_level = level;
821 dn->ofs_in_node = offset[level];
822 }
823 return err;
824}
825
826static int truncate_node(struct dnode_of_data *dn)
827{
828 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
829 struct node_info ni;
830 int err;
831 pgoff_t index;
832
833 err = f2fs_get_node_info(sbi, dn->nid, &ni);
834 if (err)
835 return err;
836
837 /* Deallocate node address */
838 f2fs_invalidate_blocks(sbi, ni.blk_addr);
839 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
840 set_node_addr(sbi, &ni, NULL_ADDR, false);
841
842 if (dn->nid == dn->inode->i_ino) {
843 f2fs_remove_orphan_inode(sbi, dn->nid);
844 dec_valid_inode_count(sbi);
845 f2fs_inode_synced(dn->inode);
846 }
847
848 clear_node_page_dirty(dn->node_page);
849 set_sbi_flag(sbi, SBI_IS_DIRTY);
850
851 index = dn->node_page->index;
852 f2fs_put_page(dn->node_page, 1);
853
854 invalidate_mapping_pages(NODE_MAPPING(sbi),
855 index, index);
856
857 dn->node_page = NULL;
858 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
859
860 return 0;
861}
862
863static int truncate_dnode(struct dnode_of_data *dn)
864{
865 struct page *page;
866 int err;
867
868 if (dn->nid == 0)
869 return 1;
870
871 /* get direct node */
872 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
873 if (PTR_ERR(page) == -ENOENT)
874 return 1;
875 else if (IS_ERR(page))
876 return PTR_ERR(page);
877
878 /* Make dnode_of_data for parameter */
879 dn->node_page = page;
880 dn->ofs_in_node = 0;
881 f2fs_truncate_data_blocks(dn);
882 err = truncate_node(dn);
883 if (err)
884 return err;
885
886 return 1;
887}
888
889static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
890 int ofs, int depth)
891{
892 struct dnode_of_data rdn = *dn;
893 struct page *page;
894 struct f2fs_node *rn;
895 nid_t child_nid;
896 unsigned int child_nofs;
897 int freed = 0;
898 int i, ret;
899
900 if (dn->nid == 0)
901 return NIDS_PER_BLOCK + 1;
902
903 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
904
905 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
906 if (IS_ERR(page)) {
907 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
908 return PTR_ERR(page);
909 }
910
911 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
912
913 rn = F2FS_NODE(page);
914 if (depth < 3) {
915 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
916 child_nid = le32_to_cpu(rn->in.nid[i]);
917 if (child_nid == 0)
918 continue;
919 rdn.nid = child_nid;
920 ret = truncate_dnode(&rdn);
921 if (ret < 0)
922 goto out_err;
923 if (set_nid(page, i, 0, false))
924 dn->node_changed = true;
925 }
926 } else {
927 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
928 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
929 child_nid = le32_to_cpu(rn->in.nid[i]);
930 if (child_nid == 0) {
931 child_nofs += NIDS_PER_BLOCK + 1;
932 continue;
933 }
934 rdn.nid = child_nid;
935 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
936 if (ret == (NIDS_PER_BLOCK + 1)) {
937 if (set_nid(page, i, 0, false))
938 dn->node_changed = true;
939 child_nofs += ret;
940 } else if (ret < 0 && ret != -ENOENT) {
941 goto out_err;
942 }
943 }
944 freed = child_nofs;
945 }
946
947 if (!ofs) {
948 /* remove current indirect node */
949 dn->node_page = page;
950 ret = truncate_node(dn);
951 if (ret)
952 goto out_err;
953 freed++;
954 } else {
955 f2fs_put_page(page, 1);
956 }
957 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
958 return freed;
959
960out_err:
961 f2fs_put_page(page, 1);
962 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
963 return ret;
964}
965
966static int truncate_partial_nodes(struct dnode_of_data *dn,
967 struct f2fs_inode *ri, int *offset, int depth)
968{
969 struct page *pages[2];
970 nid_t nid[3];
971 nid_t child_nid;
972 int err = 0;
973 int i;
974 int idx = depth - 2;
975
976 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
977 if (!nid[0])
978 return 0;
979
980 /* get indirect nodes in the path */
981 for (i = 0; i < idx + 1; i++) {
982 /* reference count'll be increased */
983 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
984 if (IS_ERR(pages[i])) {
985 err = PTR_ERR(pages[i]);
986 idx = i - 1;
987 goto fail;
988 }
989 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
990 }
991
992 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
993
994 /* free direct nodes linked to a partial indirect node */
995 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
996 child_nid = get_nid(pages[idx], i, false);
997 if (!child_nid)
998 continue;
999 dn->nid = child_nid;
1000 err = truncate_dnode(dn);
1001 if (err < 0)
1002 goto fail;
1003 if (set_nid(pages[idx], i, 0, false))
1004 dn->node_changed = true;
1005 }
1006
1007 if (offset[idx + 1] == 0) {
1008 dn->node_page = pages[idx];
1009 dn->nid = nid[idx];
1010 err = truncate_node(dn);
1011 if (err)
1012 goto fail;
1013 } else {
1014 f2fs_put_page(pages[idx], 1);
1015 }
1016 offset[idx]++;
1017 offset[idx + 1] = 0;
1018 idx--;
1019fail:
1020 for (i = idx; i >= 0; i--)
1021 f2fs_put_page(pages[i], 1);
1022
1023 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1024
1025 return err;
1026}
1027
1028/*
1029 * All the block addresses of data and nodes should be nullified.
1030 */
1031int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1032{
1033 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034 int err = 0, cont = 1;
1035 int level, offset[4], noffset[4];
1036 unsigned int nofs = 0;
1037 struct f2fs_inode *ri;
1038 struct dnode_of_data dn;
1039 struct page *page;
1040
1041 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1042
1043 level = get_node_path(inode, from, offset, noffset);
1044 if (level < 0)
1045 return level;
1046
1047 page = f2fs_get_node_page(sbi, inode->i_ino);
1048 if (IS_ERR(page)) {
1049 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1050 return PTR_ERR(page);
1051 }
1052
1053 set_new_dnode(&dn, inode, page, NULL, 0);
1054 unlock_page(page);
1055
1056 ri = F2FS_INODE(page);
1057 switch (level) {
1058 case 0:
1059 case 1:
1060 nofs = noffset[1];
1061 break;
1062 case 2:
1063 nofs = noffset[1];
1064 if (!offset[level - 1])
1065 goto skip_partial;
1066 err = truncate_partial_nodes(&dn, ri, offset, level);
1067 if (err < 0 && err != -ENOENT)
1068 goto fail;
1069 nofs += 1 + NIDS_PER_BLOCK;
1070 break;
1071 case 3:
1072 nofs = 5 + 2 * NIDS_PER_BLOCK;
1073 if (!offset[level - 1])
1074 goto skip_partial;
1075 err = truncate_partial_nodes(&dn, ri, offset, level);
1076 if (err < 0 && err != -ENOENT)
1077 goto fail;
1078 break;
1079 default:
1080 BUG();
1081 }
1082
1083skip_partial:
1084 while (cont) {
1085 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1086 switch (offset[0]) {
1087 case NODE_DIR1_BLOCK:
1088 case NODE_DIR2_BLOCK:
1089 err = truncate_dnode(&dn);
1090 break;
1091
1092 case NODE_IND1_BLOCK:
1093 case NODE_IND2_BLOCK:
1094 err = truncate_nodes(&dn, nofs, offset[1], 2);
1095 break;
1096
1097 case NODE_DIND_BLOCK:
1098 err = truncate_nodes(&dn, nofs, offset[1], 3);
1099 cont = 0;
1100 break;
1101
1102 default:
1103 BUG();
1104 }
1105 if (err < 0 && err != -ENOENT)
1106 goto fail;
1107 if (offset[1] == 0 &&
1108 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1109 lock_page(page);
1110 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1111 f2fs_wait_on_page_writeback(page, NODE, true, true);
1112 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1113 set_page_dirty(page);
1114 unlock_page(page);
1115 }
1116 offset[1] = 0;
1117 offset[0]++;
1118 nofs += err;
1119 }
1120fail:
1121 f2fs_put_page(page, 0);
1122 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1123 return err > 0 ? 0 : err;
1124}
1125
1126/* caller must lock inode page */
1127int f2fs_truncate_xattr_node(struct inode *inode)
1128{
1129 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1130 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1131 struct dnode_of_data dn;
1132 struct page *npage;
1133 int err;
1134
1135 if (!nid)
1136 return 0;
1137
1138 npage = f2fs_get_node_page(sbi, nid);
1139 if (IS_ERR(npage))
1140 return PTR_ERR(npage);
1141
1142 set_new_dnode(&dn, inode, NULL, npage, nid);
1143 err = truncate_node(&dn);
1144 if (err) {
1145 f2fs_put_page(npage, 1);
1146 return err;
1147 }
1148
1149 f2fs_i_xnid_write(inode, 0);
1150
1151 return 0;
1152}
1153
1154/*
1155 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1156 * f2fs_unlock_op().
1157 */
1158int f2fs_remove_inode_page(struct inode *inode)
1159{
1160 struct dnode_of_data dn;
1161 int err;
1162
1163 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1164 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1165 if (err)
1166 return err;
1167
1168 err = f2fs_truncate_xattr_node(inode);
1169 if (err) {
1170 f2fs_put_dnode(&dn);
1171 return err;
1172 }
1173
1174 /* remove potential inline_data blocks */
1175 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1176 S_ISLNK(inode->i_mode))
1177 f2fs_truncate_data_blocks_range(&dn, 1);
1178
1179 /* 0 is possible, after f2fs_new_inode() has failed */
1180 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1181 f2fs_put_dnode(&dn);
1182 return -EIO;
1183 }
1184
1185 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1186 f2fs_warn(F2FS_I_SB(inode),
1187 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1188 inode->i_ino, (unsigned long long)inode->i_blocks);
1189 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1190 }
1191
1192 /* will put inode & node pages */
1193 err = truncate_node(&dn);
1194 if (err) {
1195 f2fs_put_dnode(&dn);
1196 return err;
1197 }
1198 return 0;
1199}
1200
1201struct page *f2fs_new_inode_page(struct inode *inode)
1202{
1203 struct dnode_of_data dn;
1204
1205 /* allocate inode page for new inode */
1206 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1207
1208 /* caller should f2fs_put_page(page, 1); */
1209 return f2fs_new_node_page(&dn, 0);
1210}
1211
1212struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1213{
1214 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1215 struct node_info new_ni;
1216 struct page *page;
1217 int err;
1218
1219 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1220 return ERR_PTR(-EPERM);
1221
1222 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1223 if (!page)
1224 return ERR_PTR(-ENOMEM);
1225
1226 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1227 goto fail;
1228
1229#ifdef CONFIG_F2FS_CHECK_FS
1230 err = f2fs_get_node_info(sbi, dn->nid, &new_ni);
1231 if (err) {
1232 dec_valid_node_count(sbi, dn->inode, !ofs);
1233 goto fail;
1234 }
1235 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1236#endif
1237 new_ni.nid = dn->nid;
1238 new_ni.ino = dn->inode->i_ino;
1239 new_ni.blk_addr = NULL_ADDR;
1240 new_ni.flag = 0;
1241 new_ni.version = 0;
1242 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1243
1244 f2fs_wait_on_page_writeback(page, NODE, true, true);
1245 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1246 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1247 if (!PageUptodate(page))
1248 SetPageUptodate(page);
1249 if (set_page_dirty(page))
1250 dn->node_changed = true;
1251
1252 if (f2fs_has_xattr_block(ofs))
1253 f2fs_i_xnid_write(dn->inode, dn->nid);
1254
1255 if (ofs == 0)
1256 inc_valid_inode_count(sbi);
1257 return page;
1258
1259fail:
1260 clear_node_page_dirty(page);
1261 f2fs_put_page(page, 1);
1262 return ERR_PTR(err);
1263}
1264
1265/*
1266 * Caller should do after getting the following values.
1267 * 0: f2fs_put_page(page, 0)
1268 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1269 */
1270static int read_node_page(struct page *page, int op_flags)
1271{
1272 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1273 struct node_info ni;
1274 struct f2fs_io_info fio = {
1275 .sbi = sbi,
1276 .type = NODE,
1277 .op = REQ_OP_READ,
1278 .op_flags = op_flags,
1279 .page = page,
1280 .encrypted_page = NULL,
1281 };
1282 int err;
1283
1284 if (PageUptodate(page)) {
1285 if (!f2fs_inode_chksum_verify(sbi, page)) {
1286 ClearPageUptodate(page);
1287 return -EFSBADCRC;
1288 }
1289 return LOCKED_PAGE;
1290 }
1291
1292 err = f2fs_get_node_info(sbi, page->index, &ni);
1293 if (err)
1294 return err;
1295
1296 if (unlikely(ni.blk_addr == NULL_ADDR) ||
1297 is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) {
1298 ClearPageUptodate(page);
1299 return -ENOENT;
1300 }
1301
1302 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1303
1304 err = f2fs_submit_page_bio(&fio);
1305
1306 if (!err)
1307 f2fs_update_iostat(sbi, FS_NODE_READ_IO, F2FS_BLKSIZE);
1308
1309 return err;
1310}
1311
1312/*
1313 * Readahead a node page
1314 */
1315void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1316{
1317 struct page *apage;
1318 int err;
1319
1320 if (!nid)
1321 return;
1322 if (f2fs_check_nid_range(sbi, nid))
1323 return;
1324
1325 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1326 if (apage)
1327 return;
1328
1329 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1330 if (!apage)
1331 return;
1332
1333 err = read_node_page(apage, REQ_RAHEAD);
1334 f2fs_put_page(apage, err ? 1 : 0);
1335}
1336
1337static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1338 struct page *parent, int start)
1339{
1340 struct page *page;
1341 int err;
1342
1343 if (!nid)
1344 return ERR_PTR(-ENOENT);
1345 if (f2fs_check_nid_range(sbi, nid))
1346 return ERR_PTR(-EINVAL);
1347repeat:
1348 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1349 if (!page)
1350 return ERR_PTR(-ENOMEM);
1351
1352 err = read_node_page(page, 0);
1353 if (err < 0) {
1354 f2fs_put_page(page, 1);
1355 return ERR_PTR(err);
1356 } else if (err == LOCKED_PAGE) {
1357 err = 0;
1358 goto page_hit;
1359 }
1360
1361 if (parent)
1362 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1363
1364 lock_page(page);
1365
1366 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1367 f2fs_put_page(page, 1);
1368 goto repeat;
1369 }
1370
1371 if (unlikely(!PageUptodate(page))) {
1372 err = -EIO;
1373 goto out_err;
1374 }
1375
1376 if (!f2fs_inode_chksum_verify(sbi, page)) {
1377 err = -EFSBADCRC;
1378 goto out_err;
1379 }
1380page_hit:
1381 if(unlikely(nid != nid_of_node(page))) {
1382 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1383 nid, nid_of_node(page), ino_of_node(page),
1384 ofs_of_node(page), cpver_of_node(page),
1385 next_blkaddr_of_node(page));
1386 err = -EINVAL;
1387out_err:
1388 ClearPageUptodate(page);
1389 f2fs_put_page(page, 1);
1390 return ERR_PTR(err);
1391 }
1392 return page;
1393}
1394
1395struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1396{
1397 return __get_node_page(sbi, nid, NULL, 0);
1398}
1399
1400struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1401{
1402 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1403 nid_t nid = get_nid(parent, start, false);
1404
1405 return __get_node_page(sbi, nid, parent, start);
1406}
1407
1408static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1409{
1410 struct inode *inode;
1411 struct page *page;
1412 int ret;
1413
1414 /* should flush inline_data before evict_inode */
1415 inode = ilookup(sbi->sb, ino);
1416 if (!inode)
1417 return;
1418
1419 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1420 FGP_LOCK|FGP_NOWAIT, 0);
1421 if (!page)
1422 goto iput_out;
1423
1424 if (!PageUptodate(page))
1425 goto page_out;
1426
1427 if (!PageDirty(page))
1428 goto page_out;
1429
1430 if (!clear_page_dirty_for_io(page))
1431 goto page_out;
1432
1433 ret = f2fs_write_inline_data(inode, page);
1434 inode_dec_dirty_pages(inode);
1435 f2fs_remove_dirty_inode(inode);
1436 if (ret)
1437 set_page_dirty(page);
1438page_out:
1439 f2fs_put_page(page, 1);
1440iput_out:
1441 iput(inode);
1442}
1443
1444static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1445{
1446 pgoff_t index;
1447 struct pagevec pvec;
1448 struct page *last_page = NULL;
1449 int nr_pages;
1450
1451 pagevec_init(&pvec);
1452 index = 0;
1453
1454 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1455 PAGECACHE_TAG_DIRTY))) {
1456 int i;
1457
1458 for (i = 0; i < nr_pages; i++) {
1459 struct page *page = pvec.pages[i];
1460
1461 if (unlikely(f2fs_cp_error(sbi))) {
1462 f2fs_put_page(last_page, 0);
1463 pagevec_release(&pvec);
1464 return ERR_PTR(-EIO);
1465 }
1466
1467 if (!IS_DNODE(page) || !is_cold_node(page))
1468 continue;
1469 if (ino_of_node(page) != ino)
1470 continue;
1471
1472 lock_page(page);
1473
1474 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1475continue_unlock:
1476 unlock_page(page);
1477 continue;
1478 }
1479 if (ino_of_node(page) != ino)
1480 goto continue_unlock;
1481
1482 if (!PageDirty(page)) {
1483 /* someone wrote it for us */
1484 goto continue_unlock;
1485 }
1486
1487 if (last_page)
1488 f2fs_put_page(last_page, 0);
1489
1490 get_page(page);
1491 last_page = page;
1492 unlock_page(page);
1493 }
1494 pagevec_release(&pvec);
1495 cond_resched();
1496 }
1497 return last_page;
1498}
1499
1500static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1501 struct writeback_control *wbc, bool do_balance,
1502 enum iostat_type io_type, unsigned int *seq_id)
1503{
1504 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1505 nid_t nid;
1506 struct node_info ni;
1507 struct f2fs_io_info fio = {
1508 .sbi = sbi,
1509 .ino = ino_of_node(page),
1510 .type = NODE,
1511 .op = REQ_OP_WRITE,
1512 .op_flags = wbc_to_write_flags(wbc),
1513 .page = page,
1514 .encrypted_page = NULL,
1515 .submitted = false,
1516 .io_type = io_type,
1517 .io_wbc = wbc,
1518 };
1519 unsigned int seq;
1520
1521 trace_f2fs_writepage(page, NODE);
1522
1523 if (unlikely(f2fs_cp_error(sbi))) {
1524 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
1525 ClearPageUptodate(page);
1526 dec_page_count(sbi, F2FS_DIRTY_NODES);
1527 unlock_page(page);
1528 return 0;
1529 }
1530 goto redirty_out;
1531 }
1532
1533 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1534 goto redirty_out;
1535
1536 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1537 wbc->sync_mode == WB_SYNC_NONE &&
1538 IS_DNODE(page) && is_cold_node(page))
1539 goto redirty_out;
1540
1541 /* get old block addr of this node page */
1542 nid = nid_of_node(page);
1543 f2fs_bug_on(sbi, page->index != nid);
1544
1545 if (f2fs_get_node_info(sbi, nid, &ni))
1546 goto redirty_out;
1547
1548 if (wbc->for_reclaim) {
1549 if (!down_read_trylock(&sbi->node_write))
1550 goto redirty_out;
1551 } else {
1552 down_read(&sbi->node_write);
1553 }
1554
1555 /* This page is already truncated */
1556 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1557 ClearPageUptodate(page);
1558 dec_page_count(sbi, F2FS_DIRTY_NODES);
1559 up_read(&sbi->node_write);
1560 unlock_page(page);
1561 return 0;
1562 }
1563
1564 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1565 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1566 DATA_GENERIC_ENHANCE)) {
1567 up_read(&sbi->node_write);
1568 goto redirty_out;
1569 }
1570
1571 if (atomic && !test_opt(sbi, NOBARRIER))
1572 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1573
1574 /* should add to global list before clearing PAGECACHE status */
1575 if (f2fs_in_warm_node_list(sbi, page)) {
1576 seq = f2fs_add_fsync_node_entry(sbi, page);
1577 if (seq_id)
1578 *seq_id = seq;
1579 }
1580
1581 set_page_writeback(page);
1582 ClearPageError(page);
1583
1584 fio.old_blkaddr = ni.blk_addr;
1585 f2fs_do_write_node_page(nid, &fio);
1586 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1587 dec_page_count(sbi, F2FS_DIRTY_NODES);
1588 up_read(&sbi->node_write);
1589
1590 if (wbc->for_reclaim) {
1591 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1592 submitted = NULL;
1593 }
1594
1595 unlock_page(page);
1596
1597 if (unlikely(f2fs_cp_error(sbi))) {
1598 f2fs_submit_merged_write(sbi, NODE);
1599 submitted = NULL;
1600 }
1601 if (submitted)
1602 *submitted = fio.submitted;
1603
1604 if (do_balance)
1605 f2fs_balance_fs(sbi, false);
1606 return 0;
1607
1608redirty_out:
1609 redirty_page_for_writepage(wbc, page);
1610 return AOP_WRITEPAGE_ACTIVATE;
1611}
1612
1613int f2fs_move_node_page(struct page *node_page, int gc_type)
1614{
1615 int err = 0;
1616
1617 if (gc_type == FG_GC) {
1618 struct writeback_control wbc = {
1619 .sync_mode = WB_SYNC_ALL,
1620 .nr_to_write = 1,
1621 .for_reclaim = 0,
1622 };
1623
1624 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1625
1626 set_page_dirty(node_page);
1627
1628 if (!clear_page_dirty_for_io(node_page)) {
1629 err = -EAGAIN;
1630 goto out_page;
1631 }
1632
1633 if (__write_node_page(node_page, false, NULL,
1634 &wbc, false, FS_GC_NODE_IO, NULL)) {
1635 err = -EAGAIN;
1636 unlock_page(node_page);
1637 }
1638 goto release_page;
1639 } else {
1640 /* set page dirty and write it */
1641 if (!PageWriteback(node_page))
1642 set_page_dirty(node_page);
1643 }
1644out_page:
1645 unlock_page(node_page);
1646release_page:
1647 f2fs_put_page(node_page, 0);
1648 return err;
1649}
1650
1651static int f2fs_write_node_page(struct page *page,
1652 struct writeback_control *wbc)
1653{
1654 return __write_node_page(page, false, NULL, wbc, false,
1655 FS_NODE_IO, NULL);
1656}
1657
1658int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1659 struct writeback_control *wbc, bool atomic,
1660 unsigned int *seq_id)
1661{
1662 pgoff_t index;
1663 struct pagevec pvec;
1664 int ret = 0;
1665 struct page *last_page = NULL;
1666 bool marked = false;
1667 nid_t ino = inode->i_ino;
1668 int nr_pages;
1669 int nwritten = 0;
1670
1671 if (atomic) {
1672 last_page = last_fsync_dnode(sbi, ino);
1673 if (IS_ERR_OR_NULL(last_page))
1674 return PTR_ERR_OR_ZERO(last_page);
1675 }
1676retry:
1677 pagevec_init(&pvec);
1678 index = 0;
1679
1680 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1681 PAGECACHE_TAG_DIRTY))) {
1682 int i;
1683
1684 for (i = 0; i < nr_pages; i++) {
1685 struct page *page = pvec.pages[i];
1686 bool submitted = false;
1687
1688 if (unlikely(f2fs_cp_error(sbi))) {
1689 f2fs_put_page(last_page, 0);
1690 pagevec_release(&pvec);
1691 ret = -EIO;
1692 goto out;
1693 }
1694
1695 if (!IS_DNODE(page) || !is_cold_node(page))
1696 continue;
1697 if (ino_of_node(page) != ino)
1698 continue;
1699
1700 lock_page(page);
1701
1702 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1703continue_unlock:
1704 unlock_page(page);
1705 continue;
1706 }
1707 if (ino_of_node(page) != ino)
1708 goto continue_unlock;
1709
1710 if (!PageDirty(page) && page != last_page) {
1711 /* someone wrote it for us */
1712 goto continue_unlock;
1713 }
1714
1715 f2fs_wait_on_page_writeback(page, NODE, true, true);
1716
1717 set_fsync_mark(page, 0);
1718 set_dentry_mark(page, 0);
1719
1720 if (!atomic || page == last_page) {
1721 set_fsync_mark(page, 1);
1722 if (IS_INODE(page)) {
1723 if (is_inode_flag_set(inode,
1724 FI_DIRTY_INODE))
1725 f2fs_update_inode(inode, page);
1726 set_dentry_mark(page,
1727 f2fs_need_dentry_mark(sbi, ino));
1728 }
1729 /* may be written by other thread */
1730 if (!PageDirty(page))
1731 set_page_dirty(page);
1732 }
1733
1734 if (!clear_page_dirty_for_io(page))
1735 goto continue_unlock;
1736
1737 ret = __write_node_page(page, atomic &&
1738 page == last_page,
1739 &submitted, wbc, true,
1740 FS_NODE_IO, seq_id);
1741 if (ret) {
1742 unlock_page(page);
1743 f2fs_put_page(last_page, 0);
1744 break;
1745 } else if (submitted) {
1746 nwritten++;
1747 }
1748
1749 if (page == last_page) {
1750 f2fs_put_page(page, 0);
1751 marked = true;
1752 break;
1753 }
1754 }
1755 pagevec_release(&pvec);
1756 cond_resched();
1757
1758 if (ret || marked)
1759 break;
1760 }
1761 if (!ret && atomic && !marked) {
1762 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1763 ino, last_page->index);
1764 lock_page(last_page);
1765 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1766 set_page_dirty(last_page);
1767 unlock_page(last_page);
1768 goto retry;
1769 }
1770out:
1771 if (nwritten)
1772 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1773 return ret ? -EIO: 0;
1774}
1775
1776static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1777{
1778 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1779 bool clean;
1780
1781 if (inode->i_ino != ino)
1782 return 0;
1783
1784 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1785 return 0;
1786
1787 spin_lock(&sbi->inode_lock[DIRTY_META]);
1788 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1789 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1790
1791 if (clean)
1792 return 0;
1793
1794 inode = igrab(inode);
1795 if (!inode)
1796 return 0;
1797 return 1;
1798}
1799
1800static bool flush_dirty_inode(struct page *page)
1801{
1802 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1803 struct inode *inode;
1804 nid_t ino = ino_of_node(page);
1805
1806 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1807 if (!inode)
1808 return false;
1809
1810 f2fs_update_inode(inode, page);
1811 unlock_page(page);
1812
1813 iput(inode);
1814 return true;
1815}
1816
1817int f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1818{
1819 pgoff_t index = 0;
1820 struct pagevec pvec;
1821 int nr_pages;
1822 int ret = 0;
1823
1824 pagevec_init(&pvec);
1825
1826 while ((nr_pages = pagevec_lookup_tag(&pvec,
1827 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1828 int i;
1829
1830 for (i = 0; i < nr_pages; i++) {
1831 struct page *page = pvec.pages[i];
1832
1833 if (!IS_DNODE(page))
1834 continue;
1835
1836 lock_page(page);
1837
1838 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1839continue_unlock:
1840 unlock_page(page);
1841 continue;
1842 }
1843
1844 if (!PageDirty(page)) {
1845 /* someone wrote it for us */
1846 goto continue_unlock;
1847 }
1848
1849 /* flush inline_data, if it's async context. */
1850 if (is_inline_node(page)) {
1851 clear_inline_node(page);
1852 unlock_page(page);
1853 flush_inline_data(sbi, ino_of_node(page));
1854 continue;
1855 }
1856 unlock_page(page);
1857 }
1858 pagevec_release(&pvec);
1859 cond_resched();
1860 }
1861 return ret;
1862}
1863
1864int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1865 struct writeback_control *wbc,
1866 bool do_balance, enum iostat_type io_type)
1867{
1868 pgoff_t index;
1869 struct pagevec pvec;
1870 int step = 0;
1871 int nwritten = 0;
1872 int ret = 0;
1873 int nr_pages, done = 0;
1874
1875 pagevec_init(&pvec);
1876
1877next_step:
1878 index = 0;
1879
1880 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1881 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1882 int i;
1883
1884 for (i = 0; i < nr_pages; i++) {
1885 struct page *page = pvec.pages[i];
1886 bool submitted = false;
1887 bool may_dirty = true;
1888
1889 /* give a priority to WB_SYNC threads */
1890 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1891 wbc->sync_mode == WB_SYNC_NONE) {
1892 done = 1;
1893 break;
1894 }
1895
1896 /*
1897 * flushing sequence with step:
1898 * 0. indirect nodes
1899 * 1. dentry dnodes
1900 * 2. file dnodes
1901 */
1902 if (step == 0 && IS_DNODE(page))
1903 continue;
1904 if (step == 1 && (!IS_DNODE(page) ||
1905 is_cold_node(page)))
1906 continue;
1907 if (step == 2 && (!IS_DNODE(page) ||
1908 !is_cold_node(page)))
1909 continue;
1910lock_node:
1911 if (wbc->sync_mode == WB_SYNC_ALL)
1912 lock_page(page);
1913 else if (!trylock_page(page))
1914 continue;
1915
1916 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1917continue_unlock:
1918 unlock_page(page);
1919 continue;
1920 }
1921
1922 if (!PageDirty(page)) {
1923 /* someone wrote it for us */
1924 goto continue_unlock;
1925 }
1926
1927 /* flush inline_data, if it's async context. */
1928 if (do_balance && is_inline_node(page)) {
1929 clear_inline_node(page);
1930 unlock_page(page);
1931 flush_inline_data(sbi, ino_of_node(page));
1932 goto lock_node;
1933 }
1934
1935 /* flush dirty inode */
1936 if (IS_INODE(page) && may_dirty) {
1937 may_dirty = false;
1938 if (flush_dirty_inode(page))
1939 goto lock_node;
1940 }
1941
1942 f2fs_wait_on_page_writeback(page, NODE, true, true);
1943
1944 if (!clear_page_dirty_for_io(page))
1945 goto continue_unlock;
1946
1947 set_fsync_mark(page, 0);
1948 set_dentry_mark(page, 0);
1949
1950 ret = __write_node_page(page, false, &submitted,
1951 wbc, do_balance, io_type, NULL);
1952 if (ret)
1953 unlock_page(page);
1954 else if (submitted)
1955 nwritten++;
1956
1957 if (--wbc->nr_to_write == 0)
1958 break;
1959 }
1960 pagevec_release(&pvec);
1961 cond_resched();
1962
1963 if (wbc->nr_to_write == 0) {
1964 step = 2;
1965 break;
1966 }
1967 }
1968
1969 if (step < 2) {
1970 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1971 wbc->sync_mode == WB_SYNC_NONE && step == 1)
1972 goto out;
1973 step++;
1974 goto next_step;
1975 }
1976out:
1977 if (nwritten)
1978 f2fs_submit_merged_write(sbi, NODE);
1979
1980 if (unlikely(f2fs_cp_error(sbi)))
1981 return -EIO;
1982 return ret;
1983}
1984
1985int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
1986 unsigned int seq_id)
1987{
1988 struct fsync_node_entry *fn;
1989 struct page *page;
1990 struct list_head *head = &sbi->fsync_node_list;
1991 unsigned long flags;
1992 unsigned int cur_seq_id = 0;
1993 int ret2, ret = 0;
1994
1995 while (seq_id && cur_seq_id < seq_id) {
1996 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
1997 if (list_empty(head)) {
1998 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
1999 break;
2000 }
2001 fn = list_first_entry(head, struct fsync_node_entry, list);
2002 if (fn->seq_id > seq_id) {
2003 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2004 break;
2005 }
2006 cur_seq_id = fn->seq_id;
2007 page = fn->page;
2008 get_page(page);
2009 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2010
2011 f2fs_wait_on_page_writeback(page, NODE, true, false);
2012 if (TestClearPageError(page))
2013 ret = -EIO;
2014
2015 put_page(page);
2016
2017 if (ret)
2018 break;
2019 }
2020
2021 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2022 if (!ret)
2023 ret = ret2;
2024
2025 return ret;
2026}
2027
2028static int f2fs_write_node_pages(struct address_space *mapping,
2029 struct writeback_control *wbc)
2030{
2031 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2032 struct blk_plug plug;
2033 long diff;
2034
2035 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2036 goto skip_write;
2037
2038 /* balancing f2fs's metadata in background */
2039 f2fs_balance_fs_bg(sbi, true);
2040
2041 /* collect a number of dirty node pages and write together */
2042 if (wbc->sync_mode != WB_SYNC_ALL &&
2043 get_pages(sbi, F2FS_DIRTY_NODES) <
2044 nr_pages_to_skip(sbi, NODE))
2045 goto skip_write;
2046
2047 if (wbc->sync_mode == WB_SYNC_ALL)
2048 atomic_inc(&sbi->wb_sync_req[NODE]);
2049 else if (atomic_read(&sbi->wb_sync_req[NODE]))
2050 goto skip_write;
2051
2052 trace_f2fs_writepages(mapping->host, wbc, NODE);
2053
2054 diff = nr_pages_to_write(sbi, NODE, wbc);
2055 blk_start_plug(&plug);
2056 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2057 blk_finish_plug(&plug);
2058 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2059
2060 if (wbc->sync_mode == WB_SYNC_ALL)
2061 atomic_dec(&sbi->wb_sync_req[NODE]);
2062 return 0;
2063
2064skip_write:
2065 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2066 trace_f2fs_writepages(mapping->host, wbc, NODE);
2067 return 0;
2068}
2069
2070static int f2fs_set_node_page_dirty(struct page *page)
2071{
2072 trace_f2fs_set_page_dirty(page, NODE);
2073
2074 if (!PageUptodate(page))
2075 SetPageUptodate(page);
2076#ifdef CONFIG_F2FS_CHECK_FS
2077 if (IS_INODE(page))
2078 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
2079#endif
2080 if (!PageDirty(page)) {
2081 __set_page_dirty_nobuffers(page);
2082 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
2083 f2fs_set_page_private(page, 0);
2084 f2fs_trace_pid(page);
2085 return 1;
2086 }
2087 return 0;
2088}
2089
2090/*
2091 * Structure of the f2fs node operations
2092 */
2093const struct address_space_operations f2fs_node_aops = {
2094 .writepage = f2fs_write_node_page,
2095 .writepages = f2fs_write_node_pages,
2096 .set_page_dirty = f2fs_set_node_page_dirty,
2097 .invalidatepage = f2fs_invalidate_page,
2098 .releasepage = f2fs_release_page,
2099#ifdef CONFIG_MIGRATION
2100 .migratepage = f2fs_migrate_page,
2101#endif
2102};
2103
2104static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2105 nid_t n)
2106{
2107 return radix_tree_lookup(&nm_i->free_nid_root, n);
2108}
2109
2110static int __insert_free_nid(struct f2fs_sb_info *sbi,
2111 struct free_nid *i, enum nid_state state)
2112{
2113 struct f2fs_nm_info *nm_i = NM_I(sbi);
2114
2115 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2116 if (err)
2117 return err;
2118
2119 f2fs_bug_on(sbi, state != i->state);
2120 nm_i->nid_cnt[state]++;
2121 if (state == FREE_NID)
2122 list_add_tail(&i->list, &nm_i->free_nid_list);
2123 return 0;
2124}
2125
2126static void __remove_free_nid(struct f2fs_sb_info *sbi,
2127 struct free_nid *i, enum nid_state state)
2128{
2129 struct f2fs_nm_info *nm_i = NM_I(sbi);
2130
2131 f2fs_bug_on(sbi, state != i->state);
2132 nm_i->nid_cnt[state]--;
2133 if (state == FREE_NID)
2134 list_del(&i->list);
2135 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2136}
2137
2138static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2139 enum nid_state org_state, enum nid_state dst_state)
2140{
2141 struct f2fs_nm_info *nm_i = NM_I(sbi);
2142
2143 f2fs_bug_on(sbi, org_state != i->state);
2144 i->state = dst_state;
2145 nm_i->nid_cnt[org_state]--;
2146 nm_i->nid_cnt[dst_state]++;
2147
2148 switch (dst_state) {
2149 case PREALLOC_NID:
2150 list_del(&i->list);
2151 break;
2152 case FREE_NID:
2153 list_add_tail(&i->list, &nm_i->free_nid_list);
2154 break;
2155 default:
2156 BUG_ON(1);
2157 }
2158}
2159
2160static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2161 bool set, bool build)
2162{
2163 struct f2fs_nm_info *nm_i = NM_I(sbi);
2164 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2165 unsigned int nid_ofs = nid - START_NID(nid);
2166
2167 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2168 return;
2169
2170 if (set) {
2171 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2172 return;
2173 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2174 nm_i->free_nid_count[nat_ofs]++;
2175 } else {
2176 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2177 return;
2178 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2179 if (!build)
2180 nm_i->free_nid_count[nat_ofs]--;
2181 }
2182}
2183
2184/* return if the nid is recognized as free */
2185static bool add_free_nid(struct f2fs_sb_info *sbi,
2186 nid_t nid, bool build, bool update)
2187{
2188 struct f2fs_nm_info *nm_i = NM_I(sbi);
2189 struct free_nid *i, *e;
2190 struct nat_entry *ne;
2191 int err = -EINVAL;
2192 bool ret = false;
2193
2194 /* 0 nid should not be used */
2195 if (unlikely(nid == 0))
2196 return false;
2197
2198 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2199 return false;
2200
2201 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
2202 i->nid = nid;
2203 i->state = FREE_NID;
2204
2205 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2206
2207 spin_lock(&nm_i->nid_list_lock);
2208
2209 if (build) {
2210 /*
2211 * Thread A Thread B
2212 * - f2fs_create
2213 * - f2fs_new_inode
2214 * - f2fs_alloc_nid
2215 * - __insert_nid_to_list(PREALLOC_NID)
2216 * - f2fs_balance_fs_bg
2217 * - f2fs_build_free_nids
2218 * - __f2fs_build_free_nids
2219 * - scan_nat_page
2220 * - add_free_nid
2221 * - __lookup_nat_cache
2222 * - f2fs_add_link
2223 * - f2fs_init_inode_metadata
2224 * - f2fs_new_inode_page
2225 * - f2fs_new_node_page
2226 * - set_node_addr
2227 * - f2fs_alloc_nid_done
2228 * - __remove_nid_from_list(PREALLOC_NID)
2229 * - __insert_nid_to_list(FREE_NID)
2230 */
2231 ne = __lookup_nat_cache(nm_i, nid);
2232 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2233 nat_get_blkaddr(ne) != NULL_ADDR))
2234 goto err_out;
2235
2236 e = __lookup_free_nid_list(nm_i, nid);
2237 if (e) {
2238 if (e->state == FREE_NID)
2239 ret = true;
2240 goto err_out;
2241 }
2242 }
2243 ret = true;
2244 err = __insert_free_nid(sbi, i, FREE_NID);
2245err_out:
2246 if (update) {
2247 update_free_nid_bitmap(sbi, nid, ret, build);
2248 if (!build)
2249 nm_i->available_nids++;
2250 }
2251 spin_unlock(&nm_i->nid_list_lock);
2252 radix_tree_preload_end();
2253
2254 if (err)
2255 kmem_cache_free(free_nid_slab, i);
2256 return ret;
2257}
2258
2259static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2260{
2261 struct f2fs_nm_info *nm_i = NM_I(sbi);
2262 struct free_nid *i;
2263 bool need_free = false;
2264
2265 spin_lock(&nm_i->nid_list_lock);
2266 i = __lookup_free_nid_list(nm_i, nid);
2267 if (i && i->state == FREE_NID) {
2268 __remove_free_nid(sbi, i, FREE_NID);
2269 need_free = true;
2270 }
2271 spin_unlock(&nm_i->nid_list_lock);
2272
2273 if (need_free)
2274 kmem_cache_free(free_nid_slab, i);
2275}
2276
2277static int scan_nat_page(struct f2fs_sb_info *sbi,
2278 struct page *nat_page, nid_t start_nid)
2279{
2280 struct f2fs_nm_info *nm_i = NM_I(sbi);
2281 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2282 block_t blk_addr;
2283 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2284 int i;
2285
2286 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2287
2288 i = start_nid % NAT_ENTRY_PER_BLOCK;
2289
2290 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2291 if (unlikely(start_nid >= nm_i->max_nid))
2292 break;
2293
2294 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2295
2296 if (blk_addr == NEW_ADDR)
2297 return -EINVAL;
2298
2299 if (blk_addr == NULL_ADDR) {
2300 add_free_nid(sbi, start_nid, true, true);
2301 } else {
2302 spin_lock(&NM_I(sbi)->nid_list_lock);
2303 update_free_nid_bitmap(sbi, start_nid, false, true);
2304 spin_unlock(&NM_I(sbi)->nid_list_lock);
2305 }
2306 }
2307
2308 return 0;
2309}
2310
2311static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2312{
2313 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2314 struct f2fs_journal *journal = curseg->journal;
2315 int i;
2316
2317 down_read(&curseg->journal_rwsem);
2318 for (i = 0; i < nats_in_cursum(journal); i++) {
2319 block_t addr;
2320 nid_t nid;
2321
2322 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2323 nid = le32_to_cpu(nid_in_journal(journal, i));
2324 if (addr == NULL_ADDR)
2325 add_free_nid(sbi, nid, true, false);
2326 else
2327 remove_free_nid(sbi, nid);
2328 }
2329 up_read(&curseg->journal_rwsem);
2330}
2331
2332static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2333{
2334 struct f2fs_nm_info *nm_i = NM_I(sbi);
2335 unsigned int i, idx;
2336 nid_t nid;
2337
2338 down_read(&nm_i->nat_tree_lock);
2339
2340 for (i = 0; i < nm_i->nat_blocks; i++) {
2341 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2342 continue;
2343 if (!nm_i->free_nid_count[i])
2344 continue;
2345 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2346 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2347 NAT_ENTRY_PER_BLOCK, idx);
2348 if (idx >= NAT_ENTRY_PER_BLOCK)
2349 break;
2350
2351 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2352 add_free_nid(sbi, nid, true, false);
2353
2354 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2355 goto out;
2356 }
2357 }
2358out:
2359 scan_curseg_cache(sbi);
2360
2361 up_read(&nm_i->nat_tree_lock);
2362}
2363
2364static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2365 bool sync, bool mount)
2366{
2367 struct f2fs_nm_info *nm_i = NM_I(sbi);
2368 int i = 0, ret;
2369 nid_t nid = nm_i->next_scan_nid;
2370
2371 if (unlikely(nid >= nm_i->max_nid))
2372 nid = 0;
2373
2374 /* Enough entries */
2375 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2376 return 0;
2377
2378 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2379 return 0;
2380
2381 if (!mount) {
2382 /* try to find free nids in free_nid_bitmap */
2383 scan_free_nid_bits(sbi);
2384
2385 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2386 return 0;
2387 }
2388
2389 /* readahead nat pages to be scanned */
2390 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2391 META_NAT, true);
2392
2393 down_read(&nm_i->nat_tree_lock);
2394
2395 while (1) {
2396 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2397 nm_i->nat_block_bitmap)) {
2398 struct page *page = get_current_nat_page(sbi, nid);
2399
2400 if (IS_ERR(page)) {
2401 ret = PTR_ERR(page);
2402 } else {
2403 ret = scan_nat_page(sbi, page, nid);
2404 f2fs_put_page(page, 1);
2405 }
2406
2407 if (ret) {
2408 up_read(&nm_i->nat_tree_lock);
2409 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2410 return ret;
2411 }
2412 }
2413
2414 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2415 if (unlikely(nid >= nm_i->max_nid))
2416 nid = 0;
2417
2418 if (++i >= FREE_NID_PAGES)
2419 break;
2420 }
2421
2422 /* go to the next free nat pages to find free nids abundantly */
2423 nm_i->next_scan_nid = nid;
2424
2425 /* find free nids from current sum_pages */
2426 scan_curseg_cache(sbi);
2427
2428 up_read(&nm_i->nat_tree_lock);
2429
2430 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2431 nm_i->ra_nid_pages, META_NAT, false);
2432
2433 return 0;
2434}
2435
2436int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2437{
2438 int ret;
2439
2440 mutex_lock(&NM_I(sbi)->build_lock);
2441 ret = __f2fs_build_free_nids(sbi, sync, mount);
2442 mutex_unlock(&NM_I(sbi)->build_lock);
2443
2444 return ret;
2445}
2446
2447/*
2448 * If this function returns success, caller can obtain a new nid
2449 * from second parameter of this function.
2450 * The returned nid could be used ino as well as nid when inode is created.
2451 */
2452bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2453{
2454 struct f2fs_nm_info *nm_i = NM_I(sbi);
2455 struct free_nid *i = NULL;
2456retry:
2457 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2458 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2459 return false;
2460 }
2461
2462 spin_lock(&nm_i->nid_list_lock);
2463
2464 if (unlikely(nm_i->available_nids == 0)) {
2465 spin_unlock(&nm_i->nid_list_lock);
2466 return false;
2467 }
2468
2469 /* We should not use stale free nids created by f2fs_build_free_nids */
2470 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2471 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2472 i = list_first_entry(&nm_i->free_nid_list,
2473 struct free_nid, list);
2474 *nid = i->nid;
2475
2476 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2477 nm_i->available_nids--;
2478
2479 update_free_nid_bitmap(sbi, *nid, false, false);
2480
2481 spin_unlock(&nm_i->nid_list_lock);
2482 return true;
2483 }
2484 spin_unlock(&nm_i->nid_list_lock);
2485
2486 /* Let's scan nat pages and its caches to get free nids */
2487 if (!f2fs_build_free_nids(sbi, true, false))
2488 goto retry;
2489 return false;
2490}
2491
2492/*
2493 * f2fs_alloc_nid() should be called prior to this function.
2494 */
2495void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2496{
2497 struct f2fs_nm_info *nm_i = NM_I(sbi);
2498 struct free_nid *i;
2499
2500 spin_lock(&nm_i->nid_list_lock);
2501 i = __lookup_free_nid_list(nm_i, nid);
2502 f2fs_bug_on(sbi, !i);
2503 __remove_free_nid(sbi, i, PREALLOC_NID);
2504 spin_unlock(&nm_i->nid_list_lock);
2505
2506 kmem_cache_free(free_nid_slab, i);
2507}
2508
2509/*
2510 * f2fs_alloc_nid() should be called prior to this function.
2511 */
2512void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2513{
2514 struct f2fs_nm_info *nm_i = NM_I(sbi);
2515 struct free_nid *i;
2516 bool need_free = false;
2517
2518 if (!nid)
2519 return;
2520
2521 spin_lock(&nm_i->nid_list_lock);
2522 i = __lookup_free_nid_list(nm_i, nid);
2523 f2fs_bug_on(sbi, !i);
2524
2525 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2526 __remove_free_nid(sbi, i, PREALLOC_NID);
2527 need_free = true;
2528 } else {
2529 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2530 }
2531
2532 nm_i->available_nids++;
2533
2534 update_free_nid_bitmap(sbi, nid, true, false);
2535
2536 spin_unlock(&nm_i->nid_list_lock);
2537
2538 if (need_free)
2539 kmem_cache_free(free_nid_slab, i);
2540}
2541
2542int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2543{
2544 struct f2fs_nm_info *nm_i = NM_I(sbi);
2545 int nr = nr_shrink;
2546
2547 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2548 return 0;
2549
2550 if (!mutex_trylock(&nm_i->build_lock))
2551 return 0;
2552
2553 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2554 struct free_nid *i, *next;
2555 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2556
2557 spin_lock(&nm_i->nid_list_lock);
2558 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2559 if (!nr_shrink || !batch ||
2560 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2561 break;
2562 __remove_free_nid(sbi, i, FREE_NID);
2563 kmem_cache_free(free_nid_slab, i);
2564 nr_shrink--;
2565 batch--;
2566 }
2567 spin_unlock(&nm_i->nid_list_lock);
2568 }
2569
2570 mutex_unlock(&nm_i->build_lock);
2571
2572 return nr - nr_shrink;
2573}
2574
2575void f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2576{
2577 void *src_addr, *dst_addr;
2578 size_t inline_size;
2579 struct page *ipage;
2580 struct f2fs_inode *ri;
2581
2582 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2583 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2584
2585 ri = F2FS_INODE(page);
2586 if (ri->i_inline & F2FS_INLINE_XATTR) {
2587 set_inode_flag(inode, FI_INLINE_XATTR);
2588 } else {
2589 clear_inode_flag(inode, FI_INLINE_XATTR);
2590 goto update_inode;
2591 }
2592
2593 dst_addr = inline_xattr_addr(inode, ipage);
2594 src_addr = inline_xattr_addr(inode, page);
2595 inline_size = inline_xattr_size(inode);
2596
2597 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2598 memcpy(dst_addr, src_addr, inline_size);
2599update_inode:
2600 f2fs_update_inode(inode, ipage);
2601 f2fs_put_page(ipage, 1);
2602}
2603
2604int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2605{
2606 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2607 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2608 nid_t new_xnid;
2609 struct dnode_of_data dn;
2610 struct node_info ni;
2611 struct page *xpage;
2612 int err;
2613
2614 if (!prev_xnid)
2615 goto recover_xnid;
2616
2617 /* 1: invalidate the previous xattr nid */
2618 err = f2fs_get_node_info(sbi, prev_xnid, &ni);
2619 if (err)
2620 return err;
2621
2622 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2623 dec_valid_node_count(sbi, inode, false);
2624 set_node_addr(sbi, &ni, NULL_ADDR, false);
2625
2626recover_xnid:
2627 /* 2: update xattr nid in inode */
2628 if (!f2fs_alloc_nid(sbi, &new_xnid))
2629 return -ENOSPC;
2630
2631 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2632 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2633 if (IS_ERR(xpage)) {
2634 f2fs_alloc_nid_failed(sbi, new_xnid);
2635 return PTR_ERR(xpage);
2636 }
2637
2638 f2fs_alloc_nid_done(sbi, new_xnid);
2639 f2fs_update_inode_page(inode);
2640
2641 /* 3: update and set xattr node page dirty */
2642 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2643
2644 set_page_dirty(xpage);
2645 f2fs_put_page(xpage, 1);
2646
2647 return 0;
2648}
2649
2650int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2651{
2652 struct f2fs_inode *src, *dst;
2653 nid_t ino = ino_of_node(page);
2654 struct node_info old_ni, new_ni;
2655 struct page *ipage;
2656 int err;
2657
2658 err = f2fs_get_node_info(sbi, ino, &old_ni);
2659 if (err)
2660 return err;
2661
2662 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2663 return -EINVAL;
2664retry:
2665 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2666 if (!ipage) {
2667 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2668 goto retry;
2669 }
2670
2671 /* Should not use this inode from free nid list */
2672 remove_free_nid(sbi, ino);
2673
2674 if (!PageUptodate(ipage))
2675 SetPageUptodate(ipage);
2676 fill_node_footer(ipage, ino, ino, 0, true);
2677 set_cold_node(ipage, false);
2678
2679 src = F2FS_INODE(page);
2680 dst = F2FS_INODE(ipage);
2681
2682 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2683 dst->i_size = 0;
2684 dst->i_blocks = cpu_to_le64(1);
2685 dst->i_links = cpu_to_le32(1);
2686 dst->i_xattr_nid = 0;
2687 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2688 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2689 dst->i_extra_isize = src->i_extra_isize;
2690
2691 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2692 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2693 i_inline_xattr_size))
2694 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2695
2696 if (f2fs_sb_has_project_quota(sbi) &&
2697 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2698 i_projid))
2699 dst->i_projid = src->i_projid;
2700
2701 if (f2fs_sb_has_inode_crtime(sbi) &&
2702 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2703 i_crtime_nsec)) {
2704 dst->i_crtime = src->i_crtime;
2705 dst->i_crtime_nsec = src->i_crtime_nsec;
2706 }
2707 }
2708
2709 new_ni = old_ni;
2710 new_ni.ino = ino;
2711
2712 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2713 WARN_ON(1);
2714 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2715 inc_valid_inode_count(sbi);
2716 set_page_dirty(ipage);
2717 f2fs_put_page(ipage, 1);
2718 return 0;
2719}
2720
2721int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2722 unsigned int segno, struct f2fs_summary_block *sum)
2723{
2724 struct f2fs_node *rn;
2725 struct f2fs_summary *sum_entry;
2726 block_t addr;
2727 int i, idx, last_offset, nrpages;
2728
2729 /* scan the node segment */
2730 last_offset = sbi->blocks_per_seg;
2731 addr = START_BLOCK(sbi, segno);
2732 sum_entry = &sum->entries[0];
2733
2734 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2735 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2736
2737 /* readahead node pages */
2738 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2739
2740 for (idx = addr; idx < addr + nrpages; idx++) {
2741 struct page *page = f2fs_get_tmp_page(sbi, idx);
2742
2743 if (IS_ERR(page))
2744 return PTR_ERR(page);
2745
2746 rn = F2FS_NODE(page);
2747 sum_entry->nid = rn->footer.nid;
2748 sum_entry->version = 0;
2749 sum_entry->ofs_in_node = 0;
2750 sum_entry++;
2751 f2fs_put_page(page, 1);
2752 }
2753
2754 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2755 addr + nrpages);
2756 }
2757 return 0;
2758}
2759
2760static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2761{
2762 struct f2fs_nm_info *nm_i = NM_I(sbi);
2763 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2764 struct f2fs_journal *journal = curseg->journal;
2765 int i;
2766
2767 down_write(&curseg->journal_rwsem);
2768 for (i = 0; i < nats_in_cursum(journal); i++) {
2769 struct nat_entry *ne;
2770 struct f2fs_nat_entry raw_ne;
2771 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2772
2773 raw_ne = nat_in_journal(journal, i);
2774
2775 ne = __lookup_nat_cache(nm_i, nid);
2776 if (!ne) {
2777 ne = __alloc_nat_entry(nid, true);
2778 __init_nat_entry(nm_i, ne, &raw_ne, true);
2779 }
2780
2781 /*
2782 * if a free nat in journal has not been used after last
2783 * checkpoint, we should remove it from available nids,
2784 * since later we will add it again.
2785 */
2786 if (!get_nat_flag(ne, IS_DIRTY) &&
2787 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2788 spin_lock(&nm_i->nid_list_lock);
2789 nm_i->available_nids--;
2790 spin_unlock(&nm_i->nid_list_lock);
2791 }
2792
2793 __set_nat_cache_dirty(nm_i, ne);
2794 }
2795 update_nats_in_cursum(journal, -i);
2796 up_write(&curseg->journal_rwsem);
2797}
2798
2799static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2800 struct list_head *head, int max)
2801{
2802 struct nat_entry_set *cur;
2803
2804 if (nes->entry_cnt >= max)
2805 goto add_out;
2806
2807 list_for_each_entry(cur, head, set_list) {
2808 if (cur->entry_cnt >= nes->entry_cnt) {
2809 list_add(&nes->set_list, cur->set_list.prev);
2810 return;
2811 }
2812 }
2813add_out:
2814 list_add_tail(&nes->set_list, head);
2815}
2816
2817static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2818 struct page *page)
2819{
2820 struct f2fs_nm_info *nm_i = NM_I(sbi);
2821 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2822 struct f2fs_nat_block *nat_blk = page_address(page);
2823 int valid = 0;
2824 int i = 0;
2825
2826 if (!enabled_nat_bits(sbi, NULL))
2827 return;
2828
2829 if (nat_index == 0) {
2830 valid = 1;
2831 i = 1;
2832 }
2833 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2834 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2835 valid++;
2836 }
2837 if (valid == 0) {
2838 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2839 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2840 return;
2841 }
2842
2843 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2844 if (valid == NAT_ENTRY_PER_BLOCK)
2845 __set_bit_le(nat_index, nm_i->full_nat_bits);
2846 else
2847 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2848}
2849
2850static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2851 struct nat_entry_set *set, struct cp_control *cpc)
2852{
2853 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2854 struct f2fs_journal *journal = curseg->journal;
2855 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2856 bool to_journal = true;
2857 struct f2fs_nat_block *nat_blk;
2858 struct nat_entry *ne, *cur;
2859 struct page *page = NULL;
2860
2861 /*
2862 * there are two steps to flush nat entries:
2863 * #1, flush nat entries to journal in current hot data summary block.
2864 * #2, flush nat entries to nat page.
2865 */
2866 if (enabled_nat_bits(sbi, cpc) ||
2867 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2868 to_journal = false;
2869
2870 if (to_journal) {
2871 down_write(&curseg->journal_rwsem);
2872 } else {
2873 page = get_next_nat_page(sbi, start_nid);
2874 if (IS_ERR(page))
2875 return PTR_ERR(page);
2876
2877 nat_blk = page_address(page);
2878 f2fs_bug_on(sbi, !nat_blk);
2879 }
2880
2881 /* flush dirty nats in nat entry set */
2882 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2883 struct f2fs_nat_entry *raw_ne;
2884 nid_t nid = nat_get_nid(ne);
2885 int offset;
2886
2887 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2888
2889 if (to_journal) {
2890 offset = f2fs_lookup_journal_in_cursum(journal,
2891 NAT_JOURNAL, nid, 1);
2892 f2fs_bug_on(sbi, offset < 0);
2893 raw_ne = &nat_in_journal(journal, offset);
2894 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2895 } else {
2896 raw_ne = &nat_blk->entries[nid - start_nid];
2897 }
2898 raw_nat_from_node_info(raw_ne, &ne->ni);
2899 nat_reset_flag(ne);
2900 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2901 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2902 add_free_nid(sbi, nid, false, true);
2903 } else {
2904 spin_lock(&NM_I(sbi)->nid_list_lock);
2905 update_free_nid_bitmap(sbi, nid, false, false);
2906 spin_unlock(&NM_I(sbi)->nid_list_lock);
2907 }
2908 }
2909
2910 if (to_journal) {
2911 up_write(&curseg->journal_rwsem);
2912 } else {
2913 __update_nat_bits(sbi, start_nid, page);
2914 f2fs_put_page(page, 1);
2915 }
2916
2917 /* Allow dirty nats by node block allocation in write_begin */
2918 if (!set->entry_cnt) {
2919 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2920 kmem_cache_free(nat_entry_set_slab, set);
2921 }
2922 return 0;
2923}
2924
2925/*
2926 * This function is called during the checkpointing process.
2927 */
2928int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2929{
2930 struct f2fs_nm_info *nm_i = NM_I(sbi);
2931 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2932 struct f2fs_journal *journal = curseg->journal;
2933 struct nat_entry_set *setvec[SETVEC_SIZE];
2934 struct nat_entry_set *set, *tmp;
2935 unsigned int found;
2936 nid_t set_idx = 0;
2937 LIST_HEAD(sets);
2938 int err = 0;
2939
2940 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2941 if (enabled_nat_bits(sbi, cpc)) {
2942 down_write(&nm_i->nat_tree_lock);
2943 remove_nats_in_journal(sbi);
2944 up_write(&nm_i->nat_tree_lock);
2945 }
2946
2947 if (!nm_i->dirty_nat_cnt)
2948 return 0;
2949
2950 down_write(&nm_i->nat_tree_lock);
2951
2952 /*
2953 * if there are no enough space in journal to store dirty nat
2954 * entries, remove all entries from journal and merge them
2955 * into nat entry set.
2956 */
2957 if (enabled_nat_bits(sbi, cpc) ||
2958 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2959 remove_nats_in_journal(sbi);
2960
2961 while ((found = __gang_lookup_nat_set(nm_i,
2962 set_idx, SETVEC_SIZE, setvec))) {
2963 unsigned idx;
2964 set_idx = setvec[found - 1]->set + 1;
2965 for (idx = 0; idx < found; idx++)
2966 __adjust_nat_entry_set(setvec[idx], &sets,
2967 MAX_NAT_JENTRIES(journal));
2968 }
2969
2970 /* flush dirty nats in nat entry set */
2971 list_for_each_entry_safe(set, tmp, &sets, set_list) {
2972 err = __flush_nat_entry_set(sbi, set, cpc);
2973 if (err)
2974 break;
2975 }
2976
2977 up_write(&nm_i->nat_tree_lock);
2978 /* Allow dirty nats by node block allocation in write_begin */
2979
2980 return err;
2981}
2982
2983static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2984{
2985 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2986 struct f2fs_nm_info *nm_i = NM_I(sbi);
2987 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2988 unsigned int i;
2989 __u64 cp_ver = cur_cp_version(ckpt);
2990 block_t nat_bits_addr;
2991
2992 if (!enabled_nat_bits(sbi, NULL))
2993 return 0;
2994
2995 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2996 nm_i->nat_bits = f2fs_kvzalloc(sbi,
2997 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2998 if (!nm_i->nat_bits)
2999 return -ENOMEM;
3000
3001 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3002 nm_i->nat_bits_blocks;
3003 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3004 struct page *page;
3005
3006 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3007 if (IS_ERR(page))
3008 return PTR_ERR(page);
3009
3010 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3011 page_address(page), F2FS_BLKSIZE);
3012 f2fs_put_page(page, 1);
3013 }
3014
3015 cp_ver |= (cur_cp_crc(ckpt) << 32);
3016 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3017 disable_nat_bits(sbi, true);
3018 return 0;
3019 }
3020
3021 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3022 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3023
3024 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3025 return 0;
3026}
3027
3028static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3029{
3030 struct f2fs_nm_info *nm_i = NM_I(sbi);
3031 unsigned int i = 0;
3032 nid_t nid, last_nid;
3033
3034 if (!enabled_nat_bits(sbi, NULL))
3035 return;
3036
3037 for (i = 0; i < nm_i->nat_blocks; i++) {
3038 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3039 if (i >= nm_i->nat_blocks)
3040 break;
3041
3042 __set_bit_le(i, nm_i->nat_block_bitmap);
3043
3044 nid = i * NAT_ENTRY_PER_BLOCK;
3045 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3046
3047 spin_lock(&NM_I(sbi)->nid_list_lock);
3048 for (; nid < last_nid; nid++)
3049 update_free_nid_bitmap(sbi, nid, true, true);
3050 spin_unlock(&NM_I(sbi)->nid_list_lock);
3051 }
3052
3053 for (i = 0; i < nm_i->nat_blocks; i++) {
3054 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3055 if (i >= nm_i->nat_blocks)
3056 break;
3057
3058 __set_bit_le(i, nm_i->nat_block_bitmap);
3059 }
3060}
3061
3062static int init_node_manager(struct f2fs_sb_info *sbi)
3063{
3064 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3065 struct f2fs_nm_info *nm_i = NM_I(sbi);
3066 unsigned char *version_bitmap;
3067 unsigned int nat_segs;
3068 int err;
3069
3070 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3071
3072 /* segment_count_nat includes pair segment so divide to 2. */
3073 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3074 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3075 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3076
3077 /* not used nids: 0, node, meta, (and root counted as valid node) */
3078 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3079 F2FS_RESERVED_NODE_NUM;
3080 nm_i->nid_cnt[FREE_NID] = 0;
3081 nm_i->nid_cnt[PREALLOC_NID] = 0;
3082 nm_i->nat_cnt = 0;
3083 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3084 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3085 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3086
3087 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3088 INIT_LIST_HEAD(&nm_i->free_nid_list);
3089 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3090 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3091 INIT_LIST_HEAD(&nm_i->nat_entries);
3092 spin_lock_init(&nm_i->nat_list_lock);
3093
3094 mutex_init(&nm_i->build_lock);
3095 spin_lock_init(&nm_i->nid_list_lock);
3096 init_rwsem(&nm_i->nat_tree_lock);
3097
3098 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3099 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3100 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3101 if (!version_bitmap)
3102 return -EFAULT;
3103
3104 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3105 GFP_KERNEL);
3106 if (!nm_i->nat_bitmap)
3107 return -ENOMEM;
3108
3109 err = __get_nat_bitmaps(sbi);
3110 if (err)
3111 return err;
3112
3113#ifdef CONFIG_F2FS_CHECK_FS
3114 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3115 GFP_KERNEL);
3116 if (!nm_i->nat_bitmap_mir)
3117 return -ENOMEM;
3118#endif
3119
3120 return 0;
3121}
3122
3123static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3124{
3125 struct f2fs_nm_info *nm_i = NM_I(sbi);
3126 int i;
3127
3128 nm_i->free_nid_bitmap =
3129 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3130 nm_i->nat_blocks),
3131 GFP_KERNEL);
3132 if (!nm_i->free_nid_bitmap)
3133 return -ENOMEM;
3134
3135 for (i = 0; i < nm_i->nat_blocks; i++) {
3136 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3137 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3138 if (!nm_i->free_nid_bitmap[i])
3139 return -ENOMEM;
3140 }
3141
3142 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3143 GFP_KERNEL);
3144 if (!nm_i->nat_block_bitmap)
3145 return -ENOMEM;
3146
3147 nm_i->free_nid_count =
3148 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3149 nm_i->nat_blocks),
3150 GFP_KERNEL);
3151 if (!nm_i->free_nid_count)
3152 return -ENOMEM;
3153 return 0;
3154}
3155
3156int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3157{
3158 int err;
3159
3160 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3161 GFP_KERNEL);
3162 if (!sbi->nm_info)
3163 return -ENOMEM;
3164
3165 err = init_node_manager(sbi);
3166 if (err)
3167 return err;
3168
3169 err = init_free_nid_cache(sbi);
3170 if (err)
3171 return err;
3172
3173 /* load free nid status from nat_bits table */
3174 load_free_nid_bitmap(sbi);
3175
3176 return f2fs_build_free_nids(sbi, true, true);
3177}
3178
3179void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3180{
3181 struct f2fs_nm_info *nm_i = NM_I(sbi);
3182 struct free_nid *i, *next_i;
3183 struct nat_entry *natvec[NATVEC_SIZE];
3184 struct nat_entry_set *setvec[SETVEC_SIZE];
3185 nid_t nid = 0;
3186 unsigned int found;
3187
3188 if (!nm_i)
3189 return;
3190
3191 /* destroy free nid list */
3192 spin_lock(&nm_i->nid_list_lock);
3193 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3194 __remove_free_nid(sbi, i, FREE_NID);
3195 spin_unlock(&nm_i->nid_list_lock);
3196 kmem_cache_free(free_nid_slab, i);
3197 spin_lock(&nm_i->nid_list_lock);
3198 }
3199 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3200 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3201 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3202 spin_unlock(&nm_i->nid_list_lock);
3203
3204 /* destroy nat cache */
3205 down_write(&nm_i->nat_tree_lock);
3206 while ((found = __gang_lookup_nat_cache(nm_i,
3207 nid, NATVEC_SIZE, natvec))) {
3208 unsigned idx;
3209
3210 nid = nat_get_nid(natvec[found - 1]) + 1;
3211 for (idx = 0; idx < found; idx++) {
3212 spin_lock(&nm_i->nat_list_lock);
3213 list_del(&natvec[idx]->list);
3214 spin_unlock(&nm_i->nat_list_lock);
3215
3216 __del_from_nat_cache(nm_i, natvec[idx]);
3217 }
3218 }
3219 f2fs_bug_on(sbi, nm_i->nat_cnt);
3220
3221 /* destroy nat set cache */
3222 nid = 0;
3223 while ((found = __gang_lookup_nat_set(nm_i,
3224 nid, SETVEC_SIZE, setvec))) {
3225 unsigned idx;
3226
3227 nid = setvec[found - 1]->set + 1;
3228 for (idx = 0; idx < found; idx++) {
3229 /* entry_cnt is not zero, when cp_error was occurred */
3230 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3231 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3232 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3233 }
3234 }
3235 up_write(&nm_i->nat_tree_lock);
3236
3237 kvfree(nm_i->nat_block_bitmap);
3238 if (nm_i->free_nid_bitmap) {
3239 int i;
3240
3241 for (i = 0; i < nm_i->nat_blocks; i++)
3242 kvfree(nm_i->free_nid_bitmap[i]);
3243 kvfree(nm_i->free_nid_bitmap);
3244 }
3245 kvfree(nm_i->free_nid_count);
3246
3247 kvfree(nm_i->nat_bitmap);
3248 kvfree(nm_i->nat_bits);
3249#ifdef CONFIG_F2FS_CHECK_FS
3250 kvfree(nm_i->nat_bitmap_mir);
3251#endif
3252 sbi->nm_info = NULL;
3253 kvfree(nm_i);
3254}
3255
3256int __init f2fs_create_node_manager_caches(void)
3257{
3258 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3259 sizeof(struct nat_entry));
3260 if (!nat_entry_slab)
3261 goto fail;
3262
3263 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3264 sizeof(struct free_nid));
3265 if (!free_nid_slab)
3266 goto destroy_nat_entry;
3267
3268 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3269 sizeof(struct nat_entry_set));
3270 if (!nat_entry_set_slab)
3271 goto destroy_free_nid;
3272
3273 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3274 sizeof(struct fsync_node_entry));
3275 if (!fsync_node_entry_slab)
3276 goto destroy_nat_entry_set;
3277 return 0;
3278
3279destroy_nat_entry_set:
3280 kmem_cache_destroy(nat_entry_set_slab);
3281destroy_free_nid:
3282 kmem_cache_destroy(free_nid_slab);
3283destroy_nat_entry:
3284 kmem_cache_destroy(nat_entry_slab);
3285fail:
3286 return -ENOMEM;
3287}
3288
3289void f2fs_destroy_node_manager_caches(void)
3290{
3291 kmem_cache_destroy(fsync_node_entry_slab);
3292 kmem_cache_destroy(nat_entry_set_slab);
3293 kmem_cache_destroy(free_nid_slab);
3294 kmem_cache_destroy(nat_entry_slab);
3295}