at v5.8 58 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/fs/block_dev.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 7 */ 8 9#include <linux/init.h> 10#include <linux/mm.h> 11#include <linux/fcntl.h> 12#include <linux/slab.h> 13#include <linux/kmod.h> 14#include <linux/major.h> 15#include <linux/device_cgroup.h> 16#include <linux/highmem.h> 17#include <linux/blkdev.h> 18#include <linux/backing-dev.h> 19#include <linux/module.h> 20#include <linux/blkpg.h> 21#include <linux/magic.h> 22#include <linux/buffer_head.h> 23#include <linux/swap.h> 24#include <linux/pagevec.h> 25#include <linux/writeback.h> 26#include <linux/mpage.h> 27#include <linux/mount.h> 28#include <linux/pseudo_fs.h> 29#include <linux/uio.h> 30#include <linux/namei.h> 31#include <linux/log2.h> 32#include <linux/cleancache.h> 33#include <linux/task_io_accounting_ops.h> 34#include <linux/falloc.h> 35#include <linux/uaccess.h> 36#include <linux/suspend.h> 37#include "internal.h" 38 39struct bdev_inode { 40 struct block_device bdev; 41 struct inode vfs_inode; 42}; 43 44static const struct address_space_operations def_blk_aops; 45 46static inline struct bdev_inode *BDEV_I(struct inode *inode) 47{ 48 return container_of(inode, struct bdev_inode, vfs_inode); 49} 50 51struct block_device *I_BDEV(struct inode *inode) 52{ 53 return &BDEV_I(inode)->bdev; 54} 55EXPORT_SYMBOL(I_BDEV); 56 57static void bdev_write_inode(struct block_device *bdev) 58{ 59 struct inode *inode = bdev->bd_inode; 60 int ret; 61 62 spin_lock(&inode->i_lock); 63 while (inode->i_state & I_DIRTY) { 64 spin_unlock(&inode->i_lock); 65 ret = write_inode_now(inode, true); 66 if (ret) { 67 char name[BDEVNAME_SIZE]; 68 pr_warn_ratelimited("VFS: Dirty inode writeback failed " 69 "for block device %s (err=%d).\n", 70 bdevname(bdev, name), ret); 71 } 72 spin_lock(&inode->i_lock); 73 } 74 spin_unlock(&inode->i_lock); 75} 76 77/* Kill _all_ buffers and pagecache , dirty or not.. */ 78static void kill_bdev(struct block_device *bdev) 79{ 80 struct address_space *mapping = bdev->bd_inode->i_mapping; 81 82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0) 83 return; 84 85 invalidate_bh_lrus(); 86 truncate_inode_pages(mapping, 0); 87} 88 89/* Invalidate clean unused buffers and pagecache. */ 90void invalidate_bdev(struct block_device *bdev) 91{ 92 struct address_space *mapping = bdev->bd_inode->i_mapping; 93 94 if (mapping->nrpages) { 95 invalidate_bh_lrus(); 96 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 97 invalidate_mapping_pages(mapping, 0, -1); 98 } 99 /* 99% of the time, we don't need to flush the cleancache on the bdev. 100 * But, for the strange corners, lets be cautious 101 */ 102 cleancache_invalidate_inode(mapping); 103} 104EXPORT_SYMBOL(invalidate_bdev); 105 106static void set_init_blocksize(struct block_device *bdev) 107{ 108 unsigned bsize = bdev_logical_block_size(bdev); 109 loff_t size = i_size_read(bdev->bd_inode); 110 111 while (bsize < PAGE_SIZE) { 112 if (size & bsize) 113 break; 114 bsize <<= 1; 115 } 116 bdev->bd_block_size = bsize; 117 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 118} 119 120int set_blocksize(struct block_device *bdev, int size) 121{ 122 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 123 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 124 return -EINVAL; 125 126 /* Size cannot be smaller than the size supported by the device */ 127 if (size < bdev_logical_block_size(bdev)) 128 return -EINVAL; 129 130 /* Don't change the size if it is same as current */ 131 if (bdev->bd_block_size != size) { 132 sync_blockdev(bdev); 133 bdev->bd_block_size = size; 134 bdev->bd_inode->i_blkbits = blksize_bits(size); 135 kill_bdev(bdev); 136 } 137 return 0; 138} 139 140EXPORT_SYMBOL(set_blocksize); 141 142int sb_set_blocksize(struct super_block *sb, int size) 143{ 144 if (set_blocksize(sb->s_bdev, size)) 145 return 0; 146 /* If we get here, we know size is power of two 147 * and it's value is between 512 and PAGE_SIZE */ 148 sb->s_blocksize = size; 149 sb->s_blocksize_bits = blksize_bits(size); 150 return sb->s_blocksize; 151} 152 153EXPORT_SYMBOL(sb_set_blocksize); 154 155int sb_min_blocksize(struct super_block *sb, int size) 156{ 157 int minsize = bdev_logical_block_size(sb->s_bdev); 158 if (size < minsize) 159 size = minsize; 160 return sb_set_blocksize(sb, size); 161} 162 163EXPORT_SYMBOL(sb_min_blocksize); 164 165static int 166blkdev_get_block(struct inode *inode, sector_t iblock, 167 struct buffer_head *bh, int create) 168{ 169 bh->b_bdev = I_BDEV(inode); 170 bh->b_blocknr = iblock; 171 set_buffer_mapped(bh); 172 return 0; 173} 174 175static struct inode *bdev_file_inode(struct file *file) 176{ 177 return file->f_mapping->host; 178} 179 180static unsigned int dio_bio_write_op(struct kiocb *iocb) 181{ 182 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE; 183 184 /* avoid the need for a I/O completion work item */ 185 if (iocb->ki_flags & IOCB_DSYNC) 186 op |= REQ_FUA; 187 return op; 188} 189 190#define DIO_INLINE_BIO_VECS 4 191 192static void blkdev_bio_end_io_simple(struct bio *bio) 193{ 194 struct task_struct *waiter = bio->bi_private; 195 196 WRITE_ONCE(bio->bi_private, NULL); 197 blk_wake_io_task(waiter); 198} 199 200static ssize_t 201__blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter, 202 int nr_pages) 203{ 204 struct file *file = iocb->ki_filp; 205 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 206 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs; 207 loff_t pos = iocb->ki_pos; 208 bool should_dirty = false; 209 struct bio bio; 210 ssize_t ret; 211 blk_qc_t qc; 212 213 if ((pos | iov_iter_alignment(iter)) & 214 (bdev_logical_block_size(bdev) - 1)) 215 return -EINVAL; 216 217 if (nr_pages <= DIO_INLINE_BIO_VECS) 218 vecs = inline_vecs; 219 else { 220 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec), 221 GFP_KERNEL); 222 if (!vecs) 223 return -ENOMEM; 224 } 225 226 bio_init(&bio, vecs, nr_pages); 227 bio_set_dev(&bio, bdev); 228 bio.bi_iter.bi_sector = pos >> 9; 229 bio.bi_write_hint = iocb->ki_hint; 230 bio.bi_private = current; 231 bio.bi_end_io = blkdev_bio_end_io_simple; 232 bio.bi_ioprio = iocb->ki_ioprio; 233 234 ret = bio_iov_iter_get_pages(&bio, iter); 235 if (unlikely(ret)) 236 goto out; 237 ret = bio.bi_iter.bi_size; 238 239 if (iov_iter_rw(iter) == READ) { 240 bio.bi_opf = REQ_OP_READ; 241 if (iter_is_iovec(iter)) 242 should_dirty = true; 243 } else { 244 bio.bi_opf = dio_bio_write_op(iocb); 245 task_io_account_write(ret); 246 } 247 if (iocb->ki_flags & IOCB_HIPRI) 248 bio_set_polled(&bio, iocb); 249 250 qc = submit_bio(&bio); 251 for (;;) { 252 set_current_state(TASK_UNINTERRUPTIBLE); 253 if (!READ_ONCE(bio.bi_private)) 254 break; 255 if (!(iocb->ki_flags & IOCB_HIPRI) || 256 !blk_poll(bdev_get_queue(bdev), qc, true)) 257 blk_io_schedule(); 258 } 259 __set_current_state(TASK_RUNNING); 260 261 bio_release_pages(&bio, should_dirty); 262 if (unlikely(bio.bi_status)) 263 ret = blk_status_to_errno(bio.bi_status); 264 265out: 266 if (vecs != inline_vecs) 267 kfree(vecs); 268 269 bio_uninit(&bio); 270 271 return ret; 272} 273 274struct blkdev_dio { 275 union { 276 struct kiocb *iocb; 277 struct task_struct *waiter; 278 }; 279 size_t size; 280 atomic_t ref; 281 bool multi_bio : 1; 282 bool should_dirty : 1; 283 bool is_sync : 1; 284 struct bio bio; 285}; 286 287static struct bio_set blkdev_dio_pool; 288 289static int blkdev_iopoll(struct kiocb *kiocb, bool wait) 290{ 291 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host); 292 struct request_queue *q = bdev_get_queue(bdev); 293 294 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait); 295} 296 297static void blkdev_bio_end_io(struct bio *bio) 298{ 299 struct blkdev_dio *dio = bio->bi_private; 300 bool should_dirty = dio->should_dirty; 301 302 if (bio->bi_status && !dio->bio.bi_status) 303 dio->bio.bi_status = bio->bi_status; 304 305 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) { 306 if (!dio->is_sync) { 307 struct kiocb *iocb = dio->iocb; 308 ssize_t ret; 309 310 if (likely(!dio->bio.bi_status)) { 311 ret = dio->size; 312 iocb->ki_pos += ret; 313 } else { 314 ret = blk_status_to_errno(dio->bio.bi_status); 315 } 316 317 dio->iocb->ki_complete(iocb, ret, 0); 318 if (dio->multi_bio) 319 bio_put(&dio->bio); 320 } else { 321 struct task_struct *waiter = dio->waiter; 322 323 WRITE_ONCE(dio->waiter, NULL); 324 blk_wake_io_task(waiter); 325 } 326 } 327 328 if (should_dirty) { 329 bio_check_pages_dirty(bio); 330 } else { 331 bio_release_pages(bio, false); 332 bio_put(bio); 333 } 334} 335 336static ssize_t 337__blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages) 338{ 339 struct file *file = iocb->ki_filp; 340 struct inode *inode = bdev_file_inode(file); 341 struct block_device *bdev = I_BDEV(inode); 342 struct blk_plug plug; 343 struct blkdev_dio *dio; 344 struct bio *bio; 345 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0; 346 bool is_read = (iov_iter_rw(iter) == READ), is_sync; 347 loff_t pos = iocb->ki_pos; 348 blk_qc_t qc = BLK_QC_T_NONE; 349 int ret = 0; 350 351 if ((pos | iov_iter_alignment(iter)) & 352 (bdev_logical_block_size(bdev) - 1)) 353 return -EINVAL; 354 355 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool); 356 357 dio = container_of(bio, struct blkdev_dio, bio); 358 dio->is_sync = is_sync = is_sync_kiocb(iocb); 359 if (dio->is_sync) { 360 dio->waiter = current; 361 bio_get(bio); 362 } else { 363 dio->iocb = iocb; 364 } 365 366 dio->size = 0; 367 dio->multi_bio = false; 368 dio->should_dirty = is_read && iter_is_iovec(iter); 369 370 /* 371 * Don't plug for HIPRI/polled IO, as those should go straight 372 * to issue 373 */ 374 if (!is_poll) 375 blk_start_plug(&plug); 376 377 for (;;) { 378 bio_set_dev(bio, bdev); 379 bio->bi_iter.bi_sector = pos >> 9; 380 bio->bi_write_hint = iocb->ki_hint; 381 bio->bi_private = dio; 382 bio->bi_end_io = blkdev_bio_end_io; 383 bio->bi_ioprio = iocb->ki_ioprio; 384 385 ret = bio_iov_iter_get_pages(bio, iter); 386 if (unlikely(ret)) { 387 bio->bi_status = BLK_STS_IOERR; 388 bio_endio(bio); 389 break; 390 } 391 392 if (is_read) { 393 bio->bi_opf = REQ_OP_READ; 394 if (dio->should_dirty) 395 bio_set_pages_dirty(bio); 396 } else { 397 bio->bi_opf = dio_bio_write_op(iocb); 398 task_io_account_write(bio->bi_iter.bi_size); 399 } 400 401 dio->size += bio->bi_iter.bi_size; 402 pos += bio->bi_iter.bi_size; 403 404 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES); 405 if (!nr_pages) { 406 bool polled = false; 407 408 if (iocb->ki_flags & IOCB_HIPRI) { 409 bio_set_polled(bio, iocb); 410 polled = true; 411 } 412 413 qc = submit_bio(bio); 414 415 if (polled) 416 WRITE_ONCE(iocb->ki_cookie, qc); 417 break; 418 } 419 420 if (!dio->multi_bio) { 421 /* 422 * AIO needs an extra reference to ensure the dio 423 * structure which is embedded into the first bio 424 * stays around. 425 */ 426 if (!is_sync) 427 bio_get(bio); 428 dio->multi_bio = true; 429 atomic_set(&dio->ref, 2); 430 } else { 431 atomic_inc(&dio->ref); 432 } 433 434 submit_bio(bio); 435 bio = bio_alloc(GFP_KERNEL, nr_pages); 436 } 437 438 if (!is_poll) 439 blk_finish_plug(&plug); 440 441 if (!is_sync) 442 return -EIOCBQUEUED; 443 444 for (;;) { 445 set_current_state(TASK_UNINTERRUPTIBLE); 446 if (!READ_ONCE(dio->waiter)) 447 break; 448 449 if (!(iocb->ki_flags & IOCB_HIPRI) || 450 !blk_poll(bdev_get_queue(bdev), qc, true)) 451 blk_io_schedule(); 452 } 453 __set_current_state(TASK_RUNNING); 454 455 if (!ret) 456 ret = blk_status_to_errno(dio->bio.bi_status); 457 if (likely(!ret)) 458 ret = dio->size; 459 460 bio_put(&dio->bio); 461 return ret; 462} 463 464static ssize_t 465blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 466{ 467 int nr_pages; 468 469 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1); 470 if (!nr_pages) 471 return 0; 472 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES) 473 return __blkdev_direct_IO_simple(iocb, iter, nr_pages); 474 475 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES)); 476} 477 478static __init int blkdev_init(void) 479{ 480 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS); 481} 482module_init(blkdev_init); 483 484int __sync_blockdev(struct block_device *bdev, int wait) 485{ 486 if (!bdev) 487 return 0; 488 if (!wait) 489 return filemap_flush(bdev->bd_inode->i_mapping); 490 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 491} 492 493/* 494 * Write out and wait upon all the dirty data associated with a block 495 * device via its mapping. Does not take the superblock lock. 496 */ 497int sync_blockdev(struct block_device *bdev) 498{ 499 return __sync_blockdev(bdev, 1); 500} 501EXPORT_SYMBOL(sync_blockdev); 502 503/* 504 * Write out and wait upon all dirty data associated with this 505 * device. Filesystem data as well as the underlying block 506 * device. Takes the superblock lock. 507 */ 508int fsync_bdev(struct block_device *bdev) 509{ 510 struct super_block *sb = get_super(bdev); 511 if (sb) { 512 int res = sync_filesystem(sb); 513 drop_super(sb); 514 return res; 515 } 516 return sync_blockdev(bdev); 517} 518EXPORT_SYMBOL(fsync_bdev); 519 520/** 521 * freeze_bdev -- lock a filesystem and force it into a consistent state 522 * @bdev: blockdevice to lock 523 * 524 * If a superblock is found on this device, we take the s_umount semaphore 525 * on it to make sure nobody unmounts until the snapshot creation is done. 526 * The reference counter (bd_fsfreeze_count) guarantees that only the last 527 * unfreeze process can unfreeze the frozen filesystem actually when multiple 528 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 529 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 530 * actually. 531 */ 532struct super_block *freeze_bdev(struct block_device *bdev) 533{ 534 struct super_block *sb; 535 int error = 0; 536 537 mutex_lock(&bdev->bd_fsfreeze_mutex); 538 if (++bdev->bd_fsfreeze_count > 1) { 539 /* 540 * We don't even need to grab a reference - the first call 541 * to freeze_bdev grab an active reference and only the last 542 * thaw_bdev drops it. 543 */ 544 sb = get_super(bdev); 545 if (sb) 546 drop_super(sb); 547 mutex_unlock(&bdev->bd_fsfreeze_mutex); 548 return sb; 549 } 550 551 sb = get_active_super(bdev); 552 if (!sb) 553 goto out; 554 if (sb->s_op->freeze_super) 555 error = sb->s_op->freeze_super(sb); 556 else 557 error = freeze_super(sb); 558 if (error) { 559 deactivate_super(sb); 560 bdev->bd_fsfreeze_count--; 561 mutex_unlock(&bdev->bd_fsfreeze_mutex); 562 return ERR_PTR(error); 563 } 564 deactivate_super(sb); 565 out: 566 sync_blockdev(bdev); 567 mutex_unlock(&bdev->bd_fsfreeze_mutex); 568 return sb; /* thaw_bdev releases s->s_umount */ 569} 570EXPORT_SYMBOL(freeze_bdev); 571 572/** 573 * thaw_bdev -- unlock filesystem 574 * @bdev: blockdevice to unlock 575 * @sb: associated superblock 576 * 577 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 578 */ 579int thaw_bdev(struct block_device *bdev, struct super_block *sb) 580{ 581 int error = -EINVAL; 582 583 mutex_lock(&bdev->bd_fsfreeze_mutex); 584 if (!bdev->bd_fsfreeze_count) 585 goto out; 586 587 error = 0; 588 if (--bdev->bd_fsfreeze_count > 0) 589 goto out; 590 591 if (!sb) 592 goto out; 593 594 if (sb->s_op->thaw_super) 595 error = sb->s_op->thaw_super(sb); 596 else 597 error = thaw_super(sb); 598 if (error) 599 bdev->bd_fsfreeze_count++; 600out: 601 mutex_unlock(&bdev->bd_fsfreeze_mutex); 602 return error; 603} 604EXPORT_SYMBOL(thaw_bdev); 605 606static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 607{ 608 return block_write_full_page(page, blkdev_get_block, wbc); 609} 610 611static int blkdev_readpage(struct file * file, struct page * page) 612{ 613 return block_read_full_page(page, blkdev_get_block); 614} 615 616static void blkdev_readahead(struct readahead_control *rac) 617{ 618 mpage_readahead(rac, blkdev_get_block); 619} 620 621static int blkdev_write_begin(struct file *file, struct address_space *mapping, 622 loff_t pos, unsigned len, unsigned flags, 623 struct page **pagep, void **fsdata) 624{ 625 return block_write_begin(mapping, pos, len, flags, pagep, 626 blkdev_get_block); 627} 628 629static int blkdev_write_end(struct file *file, struct address_space *mapping, 630 loff_t pos, unsigned len, unsigned copied, 631 struct page *page, void *fsdata) 632{ 633 int ret; 634 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 635 636 unlock_page(page); 637 put_page(page); 638 639 return ret; 640} 641 642/* 643 * private llseek: 644 * for a block special file file_inode(file)->i_size is zero 645 * so we compute the size by hand (just as in block_read/write above) 646 */ 647static loff_t block_llseek(struct file *file, loff_t offset, int whence) 648{ 649 struct inode *bd_inode = bdev_file_inode(file); 650 loff_t retval; 651 652 inode_lock(bd_inode); 653 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 654 inode_unlock(bd_inode); 655 return retval; 656} 657 658int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 659{ 660 struct inode *bd_inode = bdev_file_inode(filp); 661 struct block_device *bdev = I_BDEV(bd_inode); 662 int error; 663 664 error = file_write_and_wait_range(filp, start, end); 665 if (error) 666 return error; 667 668 /* 669 * There is no need to serialise calls to blkdev_issue_flush with 670 * i_mutex and doing so causes performance issues with concurrent 671 * O_SYNC writers to a block device. 672 */ 673 error = blkdev_issue_flush(bdev, GFP_KERNEL); 674 if (error == -EOPNOTSUPP) 675 error = 0; 676 677 return error; 678} 679EXPORT_SYMBOL(blkdev_fsync); 680 681/** 682 * bdev_read_page() - Start reading a page from a block device 683 * @bdev: The device to read the page from 684 * @sector: The offset on the device to read the page to (need not be aligned) 685 * @page: The page to read 686 * 687 * On entry, the page should be locked. It will be unlocked when the page 688 * has been read. If the block driver implements rw_page synchronously, 689 * that will be true on exit from this function, but it need not be. 690 * 691 * Errors returned by this function are usually "soft", eg out of memory, or 692 * queue full; callers should try a different route to read this page rather 693 * than propagate an error back up the stack. 694 * 695 * Return: negative errno if an error occurs, 0 if submission was successful. 696 */ 697int bdev_read_page(struct block_device *bdev, sector_t sector, 698 struct page *page) 699{ 700 const struct block_device_operations *ops = bdev->bd_disk->fops; 701 int result = -EOPNOTSUPP; 702 703 if (!ops->rw_page || bdev_get_integrity(bdev)) 704 return result; 705 706 result = blk_queue_enter(bdev->bd_queue, 0); 707 if (result) 708 return result; 709 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 710 REQ_OP_READ); 711 blk_queue_exit(bdev->bd_queue); 712 return result; 713} 714 715/** 716 * bdev_write_page() - Start writing a page to a block device 717 * @bdev: The device to write the page to 718 * @sector: The offset on the device to write the page to (need not be aligned) 719 * @page: The page to write 720 * @wbc: The writeback_control for the write 721 * 722 * On entry, the page should be locked and not currently under writeback. 723 * On exit, if the write started successfully, the page will be unlocked and 724 * under writeback. If the write failed already (eg the driver failed to 725 * queue the page to the device), the page will still be locked. If the 726 * caller is a ->writepage implementation, it will need to unlock the page. 727 * 728 * Errors returned by this function are usually "soft", eg out of memory, or 729 * queue full; callers should try a different route to write this page rather 730 * than propagate an error back up the stack. 731 * 732 * Return: negative errno if an error occurs, 0 if submission was successful. 733 */ 734int bdev_write_page(struct block_device *bdev, sector_t sector, 735 struct page *page, struct writeback_control *wbc) 736{ 737 int result; 738 const struct block_device_operations *ops = bdev->bd_disk->fops; 739 740 if (!ops->rw_page || bdev_get_integrity(bdev)) 741 return -EOPNOTSUPP; 742 result = blk_queue_enter(bdev->bd_queue, 0); 743 if (result) 744 return result; 745 746 set_page_writeback(page); 747 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, 748 REQ_OP_WRITE); 749 if (result) { 750 end_page_writeback(page); 751 } else { 752 clean_page_buffers(page); 753 unlock_page(page); 754 } 755 blk_queue_exit(bdev->bd_queue); 756 return result; 757} 758 759/* 760 * pseudo-fs 761 */ 762 763static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 764static struct kmem_cache * bdev_cachep __read_mostly; 765 766static struct inode *bdev_alloc_inode(struct super_block *sb) 767{ 768 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 769 if (!ei) 770 return NULL; 771 return &ei->vfs_inode; 772} 773 774static void bdev_free_inode(struct inode *inode) 775{ 776 kmem_cache_free(bdev_cachep, BDEV_I(inode)); 777} 778 779static void init_once(void *foo) 780{ 781 struct bdev_inode *ei = (struct bdev_inode *) foo; 782 struct block_device *bdev = &ei->bdev; 783 784 memset(bdev, 0, sizeof(*bdev)); 785 mutex_init(&bdev->bd_mutex); 786 INIT_LIST_HEAD(&bdev->bd_list); 787#ifdef CONFIG_SYSFS 788 INIT_LIST_HEAD(&bdev->bd_holder_disks); 789#endif 790 bdev->bd_bdi = &noop_backing_dev_info; 791 inode_init_once(&ei->vfs_inode); 792 /* Initialize mutex for freeze. */ 793 mutex_init(&bdev->bd_fsfreeze_mutex); 794} 795 796static void bdev_evict_inode(struct inode *inode) 797{ 798 struct block_device *bdev = &BDEV_I(inode)->bdev; 799 truncate_inode_pages_final(&inode->i_data); 800 invalidate_inode_buffers(inode); /* is it needed here? */ 801 clear_inode(inode); 802 spin_lock(&bdev_lock); 803 list_del_init(&bdev->bd_list); 804 spin_unlock(&bdev_lock); 805 /* Detach inode from wb early as bdi_put() may free bdi->wb */ 806 inode_detach_wb(inode); 807 if (bdev->bd_bdi != &noop_backing_dev_info) { 808 bdi_put(bdev->bd_bdi); 809 bdev->bd_bdi = &noop_backing_dev_info; 810 } 811} 812 813static const struct super_operations bdev_sops = { 814 .statfs = simple_statfs, 815 .alloc_inode = bdev_alloc_inode, 816 .free_inode = bdev_free_inode, 817 .drop_inode = generic_delete_inode, 818 .evict_inode = bdev_evict_inode, 819}; 820 821static int bd_init_fs_context(struct fs_context *fc) 822{ 823 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC); 824 if (!ctx) 825 return -ENOMEM; 826 fc->s_iflags |= SB_I_CGROUPWB; 827 ctx->ops = &bdev_sops; 828 return 0; 829} 830 831static struct file_system_type bd_type = { 832 .name = "bdev", 833 .init_fs_context = bd_init_fs_context, 834 .kill_sb = kill_anon_super, 835}; 836 837struct super_block *blockdev_superblock __read_mostly; 838EXPORT_SYMBOL_GPL(blockdev_superblock); 839 840void __init bdev_cache_init(void) 841{ 842 int err; 843 static struct vfsmount *bd_mnt; 844 845 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 846 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 847 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC), 848 init_once); 849 err = register_filesystem(&bd_type); 850 if (err) 851 panic("Cannot register bdev pseudo-fs"); 852 bd_mnt = kern_mount(&bd_type); 853 if (IS_ERR(bd_mnt)) 854 panic("Cannot create bdev pseudo-fs"); 855 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 856} 857 858/* 859 * Most likely _very_ bad one - but then it's hardly critical for small 860 * /dev and can be fixed when somebody will need really large one. 861 * Keep in mind that it will be fed through icache hash function too. 862 */ 863static inline unsigned long hash(dev_t dev) 864{ 865 return MAJOR(dev)+MINOR(dev); 866} 867 868static int bdev_test(struct inode *inode, void *data) 869{ 870 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 871} 872 873static int bdev_set(struct inode *inode, void *data) 874{ 875 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 876 return 0; 877} 878 879static LIST_HEAD(all_bdevs); 880 881struct block_device *bdget(dev_t dev) 882{ 883 struct block_device *bdev; 884 struct inode *inode; 885 886 inode = iget5_locked(blockdev_superblock, hash(dev), 887 bdev_test, bdev_set, &dev); 888 889 if (!inode) 890 return NULL; 891 892 bdev = &BDEV_I(inode)->bdev; 893 894 if (inode->i_state & I_NEW) { 895 bdev->bd_contains = NULL; 896 bdev->bd_super = NULL; 897 bdev->bd_inode = inode; 898 bdev->bd_block_size = i_blocksize(inode); 899 bdev->bd_part_count = 0; 900 bdev->bd_invalidated = 0; 901 inode->i_mode = S_IFBLK; 902 inode->i_rdev = dev; 903 inode->i_bdev = bdev; 904 inode->i_data.a_ops = &def_blk_aops; 905 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 906 spin_lock(&bdev_lock); 907 list_add(&bdev->bd_list, &all_bdevs); 908 spin_unlock(&bdev_lock); 909 unlock_new_inode(inode); 910 } 911 return bdev; 912} 913 914EXPORT_SYMBOL(bdget); 915 916/** 917 * bdgrab -- Grab a reference to an already referenced block device 918 * @bdev: Block device to grab a reference to. 919 */ 920struct block_device *bdgrab(struct block_device *bdev) 921{ 922 ihold(bdev->bd_inode); 923 return bdev; 924} 925EXPORT_SYMBOL(bdgrab); 926 927long nr_blockdev_pages(void) 928{ 929 struct block_device *bdev; 930 long ret = 0; 931 spin_lock(&bdev_lock); 932 list_for_each_entry(bdev, &all_bdevs, bd_list) { 933 ret += bdev->bd_inode->i_mapping->nrpages; 934 } 935 spin_unlock(&bdev_lock); 936 return ret; 937} 938 939void bdput(struct block_device *bdev) 940{ 941 iput(bdev->bd_inode); 942} 943 944EXPORT_SYMBOL(bdput); 945 946static struct block_device *bd_acquire(struct inode *inode) 947{ 948 struct block_device *bdev; 949 950 spin_lock(&bdev_lock); 951 bdev = inode->i_bdev; 952 if (bdev && !inode_unhashed(bdev->bd_inode)) { 953 bdgrab(bdev); 954 spin_unlock(&bdev_lock); 955 return bdev; 956 } 957 spin_unlock(&bdev_lock); 958 959 /* 960 * i_bdev references block device inode that was already shut down 961 * (corresponding device got removed). Remove the reference and look 962 * up block device inode again just in case new device got 963 * reestablished under the same device number. 964 */ 965 if (bdev) 966 bd_forget(inode); 967 968 bdev = bdget(inode->i_rdev); 969 if (bdev) { 970 spin_lock(&bdev_lock); 971 if (!inode->i_bdev) { 972 /* 973 * We take an additional reference to bd_inode, 974 * and it's released in clear_inode() of inode. 975 * So, we can access it via ->i_mapping always 976 * without igrab(). 977 */ 978 bdgrab(bdev); 979 inode->i_bdev = bdev; 980 inode->i_mapping = bdev->bd_inode->i_mapping; 981 } 982 spin_unlock(&bdev_lock); 983 } 984 return bdev; 985} 986 987/* Call when you free inode */ 988 989void bd_forget(struct inode *inode) 990{ 991 struct block_device *bdev = NULL; 992 993 spin_lock(&bdev_lock); 994 if (!sb_is_blkdev_sb(inode->i_sb)) 995 bdev = inode->i_bdev; 996 inode->i_bdev = NULL; 997 inode->i_mapping = &inode->i_data; 998 spin_unlock(&bdev_lock); 999 1000 if (bdev) 1001 bdput(bdev); 1002} 1003 1004/** 1005 * bd_may_claim - test whether a block device can be claimed 1006 * @bdev: block device of interest 1007 * @whole: whole block device containing @bdev, may equal @bdev 1008 * @holder: holder trying to claim @bdev 1009 * 1010 * Test whether @bdev can be claimed by @holder. 1011 * 1012 * CONTEXT: 1013 * spin_lock(&bdev_lock). 1014 * 1015 * RETURNS: 1016 * %true if @bdev can be claimed, %false otherwise. 1017 */ 1018static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 1019 void *holder) 1020{ 1021 if (bdev->bd_holder == holder) 1022 return true; /* already a holder */ 1023 else if (bdev->bd_holder != NULL) 1024 return false; /* held by someone else */ 1025 else if (whole == bdev) 1026 return true; /* is a whole device which isn't held */ 1027 1028 else if (whole->bd_holder == bd_may_claim) 1029 return true; /* is a partition of a device that is being partitioned */ 1030 else if (whole->bd_holder != NULL) 1031 return false; /* is a partition of a held device */ 1032 else 1033 return true; /* is a partition of an un-held device */ 1034} 1035 1036/** 1037 * bd_prepare_to_claim - prepare to claim a block device 1038 * @bdev: block device of interest 1039 * @whole: the whole device containing @bdev, may equal @bdev 1040 * @holder: holder trying to claim @bdev 1041 * 1042 * Prepare to claim @bdev. This function fails if @bdev is already 1043 * claimed by another holder and waits if another claiming is in 1044 * progress. This function doesn't actually claim. On successful 1045 * return, the caller has ownership of bd_claiming and bd_holder[s]. 1046 * 1047 * CONTEXT: 1048 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 1049 * it multiple times. 1050 * 1051 * RETURNS: 1052 * 0 if @bdev can be claimed, -EBUSY otherwise. 1053 */ 1054static int bd_prepare_to_claim(struct block_device *bdev, 1055 struct block_device *whole, void *holder) 1056{ 1057retry: 1058 /* if someone else claimed, fail */ 1059 if (!bd_may_claim(bdev, whole, holder)) 1060 return -EBUSY; 1061 1062 /* if claiming is already in progress, wait for it to finish */ 1063 if (whole->bd_claiming) { 1064 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 1065 DEFINE_WAIT(wait); 1066 1067 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 1068 spin_unlock(&bdev_lock); 1069 schedule(); 1070 finish_wait(wq, &wait); 1071 spin_lock(&bdev_lock); 1072 goto retry; 1073 } 1074 1075 /* yay, all mine */ 1076 return 0; 1077} 1078 1079static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno) 1080{ 1081 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno); 1082 1083 if (!disk) 1084 return NULL; 1085 /* 1086 * Now that we hold gendisk reference we make sure bdev we looked up is 1087 * not stale. If it is, it means device got removed and created before 1088 * we looked up gendisk and we fail open in such case. Associating 1089 * unhashed bdev with newly created gendisk could lead to two bdevs 1090 * (and thus two independent caches) being associated with one device 1091 * which is bad. 1092 */ 1093 if (inode_unhashed(bdev->bd_inode)) { 1094 put_disk_and_module(disk); 1095 return NULL; 1096 } 1097 return disk; 1098} 1099 1100/** 1101 * bd_start_claiming - start claiming a block device 1102 * @bdev: block device of interest 1103 * @holder: holder trying to claim @bdev 1104 * 1105 * @bdev is about to be opened exclusively. Check @bdev can be opened 1106 * exclusively and mark that an exclusive open is in progress. Each 1107 * successful call to this function must be matched with a call to 1108 * either bd_finish_claiming() or bd_abort_claiming() (which do not 1109 * fail). 1110 * 1111 * This function is used to gain exclusive access to the block device 1112 * without actually causing other exclusive open attempts to fail. It 1113 * should be used when the open sequence itself requires exclusive 1114 * access but may subsequently fail. 1115 * 1116 * CONTEXT: 1117 * Might sleep. 1118 * 1119 * RETURNS: 1120 * Pointer to the block device containing @bdev on success, ERR_PTR() 1121 * value on failure. 1122 */ 1123struct block_device *bd_start_claiming(struct block_device *bdev, void *holder) 1124{ 1125 struct gendisk *disk; 1126 struct block_device *whole; 1127 int partno, err; 1128 1129 might_sleep(); 1130 1131 /* 1132 * @bdev might not have been initialized properly yet, look up 1133 * and grab the outer block device the hard way. 1134 */ 1135 disk = bdev_get_gendisk(bdev, &partno); 1136 if (!disk) 1137 return ERR_PTR(-ENXIO); 1138 1139 /* 1140 * Normally, @bdev should equal what's returned from bdget_disk() 1141 * if partno is 0; however, some drivers (floppy) use multiple 1142 * bdev's for the same physical device and @bdev may be one of the 1143 * aliases. Keep @bdev if partno is 0. This means claimer 1144 * tracking is broken for those devices but it has always been that 1145 * way. 1146 */ 1147 if (partno) 1148 whole = bdget_disk(disk, 0); 1149 else 1150 whole = bdgrab(bdev); 1151 1152 put_disk_and_module(disk); 1153 if (!whole) 1154 return ERR_PTR(-ENOMEM); 1155 1156 /* prepare to claim, if successful, mark claiming in progress */ 1157 spin_lock(&bdev_lock); 1158 1159 err = bd_prepare_to_claim(bdev, whole, holder); 1160 if (err == 0) { 1161 whole->bd_claiming = holder; 1162 spin_unlock(&bdev_lock); 1163 return whole; 1164 } else { 1165 spin_unlock(&bdev_lock); 1166 bdput(whole); 1167 return ERR_PTR(err); 1168 } 1169} 1170EXPORT_SYMBOL(bd_start_claiming); 1171 1172static void bd_clear_claiming(struct block_device *whole, void *holder) 1173{ 1174 lockdep_assert_held(&bdev_lock); 1175 /* tell others that we're done */ 1176 BUG_ON(whole->bd_claiming != holder); 1177 whole->bd_claiming = NULL; 1178 wake_up_bit(&whole->bd_claiming, 0); 1179} 1180 1181/** 1182 * bd_finish_claiming - finish claiming of a block device 1183 * @bdev: block device of interest 1184 * @whole: whole block device (returned from bd_start_claiming()) 1185 * @holder: holder that has claimed @bdev 1186 * 1187 * Finish exclusive open of a block device. Mark the device as exlusively 1188 * open by the holder and wake up all waiters for exclusive open to finish. 1189 */ 1190void bd_finish_claiming(struct block_device *bdev, struct block_device *whole, 1191 void *holder) 1192{ 1193 spin_lock(&bdev_lock); 1194 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1195 /* 1196 * Note that for a whole device bd_holders will be incremented twice, 1197 * and bd_holder will be set to bd_may_claim before being set to holder 1198 */ 1199 whole->bd_holders++; 1200 whole->bd_holder = bd_may_claim; 1201 bdev->bd_holders++; 1202 bdev->bd_holder = holder; 1203 bd_clear_claiming(whole, holder); 1204 spin_unlock(&bdev_lock); 1205} 1206EXPORT_SYMBOL(bd_finish_claiming); 1207 1208/** 1209 * bd_abort_claiming - abort claiming of a block device 1210 * @bdev: block device of interest 1211 * @whole: whole block device (returned from bd_start_claiming()) 1212 * @holder: holder that has claimed @bdev 1213 * 1214 * Abort claiming of a block device when the exclusive open failed. This can be 1215 * also used when exclusive open is not actually desired and we just needed 1216 * to block other exclusive openers for a while. 1217 */ 1218void bd_abort_claiming(struct block_device *bdev, struct block_device *whole, 1219 void *holder) 1220{ 1221 spin_lock(&bdev_lock); 1222 bd_clear_claiming(whole, holder); 1223 spin_unlock(&bdev_lock); 1224} 1225EXPORT_SYMBOL(bd_abort_claiming); 1226 1227#ifdef CONFIG_SYSFS 1228struct bd_holder_disk { 1229 struct list_head list; 1230 struct gendisk *disk; 1231 int refcnt; 1232}; 1233 1234static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 1235 struct gendisk *disk) 1236{ 1237 struct bd_holder_disk *holder; 1238 1239 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 1240 if (holder->disk == disk) 1241 return holder; 1242 return NULL; 1243} 1244 1245static int add_symlink(struct kobject *from, struct kobject *to) 1246{ 1247 return sysfs_create_link(from, to, kobject_name(to)); 1248} 1249 1250static void del_symlink(struct kobject *from, struct kobject *to) 1251{ 1252 sysfs_remove_link(from, kobject_name(to)); 1253} 1254 1255/** 1256 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 1257 * @bdev: the claimed slave bdev 1258 * @disk: the holding disk 1259 * 1260 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1261 * 1262 * This functions creates the following sysfs symlinks. 1263 * 1264 * - from "slaves" directory of the holder @disk to the claimed @bdev 1265 * - from "holders" directory of the @bdev to the holder @disk 1266 * 1267 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 1268 * passed to bd_link_disk_holder(), then: 1269 * 1270 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 1271 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 1272 * 1273 * The caller must have claimed @bdev before calling this function and 1274 * ensure that both @bdev and @disk are valid during the creation and 1275 * lifetime of these symlinks. 1276 * 1277 * CONTEXT: 1278 * Might sleep. 1279 * 1280 * RETURNS: 1281 * 0 on success, -errno on failure. 1282 */ 1283int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 1284{ 1285 struct bd_holder_disk *holder; 1286 int ret = 0; 1287 1288 mutex_lock(&bdev->bd_mutex); 1289 1290 WARN_ON_ONCE(!bdev->bd_holder); 1291 1292 /* FIXME: remove the following once add_disk() handles errors */ 1293 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 1294 goto out_unlock; 1295 1296 holder = bd_find_holder_disk(bdev, disk); 1297 if (holder) { 1298 holder->refcnt++; 1299 goto out_unlock; 1300 } 1301 1302 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 1303 if (!holder) { 1304 ret = -ENOMEM; 1305 goto out_unlock; 1306 } 1307 1308 INIT_LIST_HEAD(&holder->list); 1309 holder->disk = disk; 1310 holder->refcnt = 1; 1311 1312 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1313 if (ret) 1314 goto out_free; 1315 1316 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 1317 if (ret) 1318 goto out_del; 1319 /* 1320 * bdev could be deleted beneath us which would implicitly destroy 1321 * the holder directory. Hold on to it. 1322 */ 1323 kobject_get(bdev->bd_part->holder_dir); 1324 1325 list_add(&holder->list, &bdev->bd_holder_disks); 1326 goto out_unlock; 1327 1328out_del: 1329 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1330out_free: 1331 kfree(holder); 1332out_unlock: 1333 mutex_unlock(&bdev->bd_mutex); 1334 return ret; 1335} 1336EXPORT_SYMBOL_GPL(bd_link_disk_holder); 1337 1338/** 1339 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 1340 * @bdev: the calimed slave bdev 1341 * @disk: the holding disk 1342 * 1343 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 1344 * 1345 * CONTEXT: 1346 * Might sleep. 1347 */ 1348void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 1349{ 1350 struct bd_holder_disk *holder; 1351 1352 mutex_lock(&bdev->bd_mutex); 1353 1354 holder = bd_find_holder_disk(bdev, disk); 1355 1356 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 1357 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 1358 del_symlink(bdev->bd_part->holder_dir, 1359 &disk_to_dev(disk)->kobj); 1360 kobject_put(bdev->bd_part->holder_dir); 1361 list_del_init(&holder->list); 1362 kfree(holder); 1363 } 1364 1365 mutex_unlock(&bdev->bd_mutex); 1366} 1367EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 1368#endif 1369 1370/** 1371 * flush_disk - invalidates all buffer-cache entries on a disk 1372 * 1373 * @bdev: struct block device to be flushed 1374 * @kill_dirty: flag to guide handling of dirty inodes 1375 * 1376 * Invalidates all buffer-cache entries on a disk. It should be called 1377 * when a disk has been changed -- either by a media change or online 1378 * resize. 1379 */ 1380static void flush_disk(struct block_device *bdev, bool kill_dirty) 1381{ 1382 if (__invalidate_device(bdev, kill_dirty)) { 1383 printk(KERN_WARNING "VFS: busy inodes on changed media or " 1384 "resized disk %s\n", 1385 bdev->bd_disk ? bdev->bd_disk->disk_name : ""); 1386 } 1387 bdev->bd_invalidated = 1; 1388} 1389 1390/** 1391 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1392 * @disk: struct gendisk to check 1393 * @bdev: struct bdev to adjust. 1394 * @verbose: if %true log a message about a size change if there is any 1395 * 1396 * This routine checks to see if the bdev size does not match the disk size 1397 * and adjusts it if it differs. When shrinking the bdev size, its all caches 1398 * are freed. 1399 */ 1400static void check_disk_size_change(struct gendisk *disk, 1401 struct block_device *bdev, bool verbose) 1402{ 1403 loff_t disk_size, bdev_size; 1404 1405 disk_size = (loff_t)get_capacity(disk) << 9; 1406 bdev_size = i_size_read(bdev->bd_inode); 1407 if (disk_size != bdev_size) { 1408 if (verbose) { 1409 printk(KERN_INFO 1410 "%s: detected capacity change from %lld to %lld\n", 1411 disk->disk_name, bdev_size, disk_size); 1412 } 1413 i_size_write(bdev->bd_inode, disk_size); 1414 if (bdev_size > disk_size) 1415 flush_disk(bdev, false); 1416 } 1417 bdev->bd_invalidated = 0; 1418} 1419 1420/** 1421 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1422 * @disk: struct gendisk to be revalidated 1423 * 1424 * This routine is a wrapper for lower-level driver's revalidate_disk 1425 * call-backs. It is used to do common pre and post operations needed 1426 * for all revalidate_disk operations. 1427 */ 1428int revalidate_disk(struct gendisk *disk) 1429{ 1430 int ret = 0; 1431 1432 if (disk->fops->revalidate_disk) 1433 ret = disk->fops->revalidate_disk(disk); 1434 1435 /* 1436 * Hidden disks don't have associated bdev so there's no point in 1437 * revalidating it. 1438 */ 1439 if (!(disk->flags & GENHD_FL_HIDDEN)) { 1440 struct block_device *bdev = bdget_disk(disk, 0); 1441 1442 if (!bdev) 1443 return ret; 1444 1445 mutex_lock(&bdev->bd_mutex); 1446 check_disk_size_change(disk, bdev, ret == 0); 1447 mutex_unlock(&bdev->bd_mutex); 1448 bdput(bdev); 1449 } 1450 return ret; 1451} 1452EXPORT_SYMBOL(revalidate_disk); 1453 1454/* 1455 * This routine checks whether a removable media has been changed, 1456 * and invalidates all buffer-cache-entries in that case. This 1457 * is a relatively slow routine, so we have to try to minimize using 1458 * it. Thus it is called only upon a 'mount' or 'open'. This 1459 * is the best way of combining speed and utility, I think. 1460 * People changing diskettes in the middle of an operation deserve 1461 * to lose :-) 1462 */ 1463int check_disk_change(struct block_device *bdev) 1464{ 1465 struct gendisk *disk = bdev->bd_disk; 1466 const struct block_device_operations *bdops = disk->fops; 1467 unsigned int events; 1468 1469 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1470 DISK_EVENT_EJECT_REQUEST); 1471 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1472 return 0; 1473 1474 flush_disk(bdev, true); 1475 if (bdops->revalidate_disk) 1476 bdops->revalidate_disk(bdev->bd_disk); 1477 return 1; 1478} 1479 1480EXPORT_SYMBOL(check_disk_change); 1481 1482void bd_set_size(struct block_device *bdev, loff_t size) 1483{ 1484 inode_lock(bdev->bd_inode); 1485 i_size_write(bdev->bd_inode, size); 1486 inode_unlock(bdev->bd_inode); 1487} 1488EXPORT_SYMBOL(bd_set_size); 1489 1490static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1491 1492int bdev_disk_changed(struct block_device *bdev, bool invalidate) 1493{ 1494 struct gendisk *disk = bdev->bd_disk; 1495 int ret; 1496 1497 lockdep_assert_held(&bdev->bd_mutex); 1498 1499rescan: 1500 ret = blk_drop_partitions(bdev); 1501 if (ret) 1502 return ret; 1503 1504 /* 1505 * Historically we only set the capacity to zero for devices that 1506 * support partitions (independ of actually having partitions created). 1507 * Doing that is rather inconsistent, but changing it broke legacy 1508 * udisks polling for legacy ide-cdrom devices. Use the crude check 1509 * below to get the sane behavior for most device while not breaking 1510 * userspace for this particular setup. 1511 */ 1512 if (invalidate) { 1513 if (disk_part_scan_enabled(disk) || 1514 !(disk->flags & GENHD_FL_REMOVABLE)) 1515 set_capacity(disk, 0); 1516 } else { 1517 if (disk->fops->revalidate_disk) 1518 disk->fops->revalidate_disk(disk); 1519 } 1520 1521 check_disk_size_change(disk, bdev, !invalidate); 1522 1523 if (get_capacity(disk)) { 1524 ret = blk_add_partitions(disk, bdev); 1525 if (ret == -EAGAIN) 1526 goto rescan; 1527 } else if (invalidate) { 1528 /* 1529 * Tell userspace that the media / partition table may have 1530 * changed. 1531 */ 1532 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE); 1533 } 1534 1535 return ret; 1536} 1537/* 1538 * Only exported for for loop and dasd for historic reasons. Don't use in new 1539 * code! 1540 */ 1541EXPORT_SYMBOL_GPL(bdev_disk_changed); 1542 1543/* 1544 * bd_mutex locking: 1545 * 1546 * mutex_lock(part->bd_mutex) 1547 * mutex_lock_nested(whole->bd_mutex, 1) 1548 */ 1549 1550static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1551{ 1552 struct gendisk *disk; 1553 int ret; 1554 int partno; 1555 int perm = 0; 1556 bool first_open = false; 1557 1558 if (mode & FMODE_READ) 1559 perm |= MAY_READ; 1560 if (mode & FMODE_WRITE) 1561 perm |= MAY_WRITE; 1562 /* 1563 * hooks: /n/, see "layering violations". 1564 */ 1565 if (!for_part) { 1566 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1567 if (ret != 0) 1568 return ret; 1569 } 1570 1571 restart: 1572 1573 ret = -ENXIO; 1574 disk = bdev_get_gendisk(bdev, &partno); 1575 if (!disk) 1576 goto out; 1577 1578 disk_block_events(disk); 1579 mutex_lock_nested(&bdev->bd_mutex, for_part); 1580 if (!bdev->bd_openers) { 1581 first_open = true; 1582 bdev->bd_disk = disk; 1583 bdev->bd_queue = disk->queue; 1584 bdev->bd_contains = bdev; 1585 bdev->bd_partno = partno; 1586 1587 if (!partno) { 1588 ret = -ENXIO; 1589 bdev->bd_part = disk_get_part(disk, partno); 1590 if (!bdev->bd_part) 1591 goto out_clear; 1592 1593 ret = 0; 1594 if (disk->fops->open) { 1595 ret = disk->fops->open(bdev, mode); 1596 if (ret == -ERESTARTSYS) { 1597 /* Lost a race with 'disk' being 1598 * deleted, try again. 1599 * See md.c 1600 */ 1601 disk_put_part(bdev->bd_part); 1602 bdev->bd_part = NULL; 1603 bdev->bd_disk = NULL; 1604 bdev->bd_queue = NULL; 1605 mutex_unlock(&bdev->bd_mutex); 1606 disk_unblock_events(disk); 1607 put_disk_and_module(disk); 1608 goto restart; 1609 } 1610 } 1611 1612 if (!ret) { 1613 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1614 set_init_blocksize(bdev); 1615 } 1616 1617 /* 1618 * If the device is invalidated, rescan partition 1619 * if open succeeded or failed with -ENOMEDIUM. 1620 * The latter is necessary to prevent ghost 1621 * partitions on a removed medium. 1622 */ 1623 if (bdev->bd_invalidated && 1624 (!ret || ret == -ENOMEDIUM)) 1625 bdev_disk_changed(bdev, ret == -ENOMEDIUM); 1626 1627 if (ret) 1628 goto out_clear; 1629 } else { 1630 struct block_device *whole; 1631 whole = bdget_disk(disk, 0); 1632 ret = -ENOMEM; 1633 if (!whole) 1634 goto out_clear; 1635 BUG_ON(for_part); 1636 ret = __blkdev_get(whole, mode, 1); 1637 if (ret) { 1638 bdput(whole); 1639 goto out_clear; 1640 } 1641 bdev->bd_contains = whole; 1642 bdev->bd_part = disk_get_part(disk, partno); 1643 if (!(disk->flags & GENHD_FL_UP) || 1644 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1645 ret = -ENXIO; 1646 goto out_clear; 1647 } 1648 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1649 set_init_blocksize(bdev); 1650 } 1651 1652 if (bdev->bd_bdi == &noop_backing_dev_info) 1653 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info); 1654 } else { 1655 if (bdev->bd_contains == bdev) { 1656 ret = 0; 1657 if (bdev->bd_disk->fops->open) 1658 ret = bdev->bd_disk->fops->open(bdev, mode); 1659 /* the same as first opener case, read comment there */ 1660 if (bdev->bd_invalidated && 1661 (!ret || ret == -ENOMEDIUM)) 1662 bdev_disk_changed(bdev, ret == -ENOMEDIUM); 1663 if (ret) 1664 goto out_unlock_bdev; 1665 } 1666 } 1667 bdev->bd_openers++; 1668 if (for_part) 1669 bdev->bd_part_count++; 1670 mutex_unlock(&bdev->bd_mutex); 1671 disk_unblock_events(disk); 1672 /* only one opener holds refs to the module and disk */ 1673 if (!first_open) 1674 put_disk_and_module(disk); 1675 return 0; 1676 1677 out_clear: 1678 disk_put_part(bdev->bd_part); 1679 bdev->bd_disk = NULL; 1680 bdev->bd_part = NULL; 1681 bdev->bd_queue = NULL; 1682 if (bdev != bdev->bd_contains) 1683 __blkdev_put(bdev->bd_contains, mode, 1); 1684 bdev->bd_contains = NULL; 1685 out_unlock_bdev: 1686 mutex_unlock(&bdev->bd_mutex); 1687 disk_unblock_events(disk); 1688 put_disk_and_module(disk); 1689 out: 1690 1691 return ret; 1692} 1693 1694/** 1695 * blkdev_get - open a block device 1696 * @bdev: block_device to open 1697 * @mode: FMODE_* mask 1698 * @holder: exclusive holder identifier 1699 * 1700 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1701 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1702 * @holder is invalid. Exclusive opens may nest for the same @holder. 1703 * 1704 * On success, the reference count of @bdev is unchanged. On failure, 1705 * @bdev is put. 1706 * 1707 * CONTEXT: 1708 * Might sleep. 1709 * 1710 * RETURNS: 1711 * 0 on success, -errno on failure. 1712 */ 1713int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1714{ 1715 struct block_device *whole = NULL; 1716 int res; 1717 1718 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1719 1720 if ((mode & FMODE_EXCL) && holder) { 1721 whole = bd_start_claiming(bdev, holder); 1722 if (IS_ERR(whole)) { 1723 bdput(bdev); 1724 return PTR_ERR(whole); 1725 } 1726 } 1727 1728 res = __blkdev_get(bdev, mode, 0); 1729 1730 if (whole) { 1731 struct gendisk *disk = whole->bd_disk; 1732 1733 /* finish claiming */ 1734 mutex_lock(&bdev->bd_mutex); 1735 if (!res) 1736 bd_finish_claiming(bdev, whole, holder); 1737 else 1738 bd_abort_claiming(bdev, whole, holder); 1739 /* 1740 * Block event polling for write claims if requested. Any 1741 * write holder makes the write_holder state stick until 1742 * all are released. This is good enough and tracking 1743 * individual writeable reference is too fragile given the 1744 * way @mode is used in blkdev_get/put(). 1745 */ 1746 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1747 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1748 bdev->bd_write_holder = true; 1749 disk_block_events(disk); 1750 } 1751 1752 mutex_unlock(&bdev->bd_mutex); 1753 bdput(whole); 1754 } 1755 1756 if (res) 1757 bdput(bdev); 1758 1759 return res; 1760} 1761EXPORT_SYMBOL(blkdev_get); 1762 1763/** 1764 * blkdev_get_by_path - open a block device by name 1765 * @path: path to the block device to open 1766 * @mode: FMODE_* mask 1767 * @holder: exclusive holder identifier 1768 * 1769 * Open the blockdevice described by the device file at @path. @mode 1770 * and @holder are identical to blkdev_get(). 1771 * 1772 * On success, the returned block_device has reference count of one. 1773 * 1774 * CONTEXT: 1775 * Might sleep. 1776 * 1777 * RETURNS: 1778 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1779 */ 1780struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1781 void *holder) 1782{ 1783 struct block_device *bdev; 1784 int err; 1785 1786 bdev = lookup_bdev(path); 1787 if (IS_ERR(bdev)) 1788 return bdev; 1789 1790 err = blkdev_get(bdev, mode, holder); 1791 if (err) 1792 return ERR_PTR(err); 1793 1794 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1795 blkdev_put(bdev, mode); 1796 return ERR_PTR(-EACCES); 1797 } 1798 1799 return bdev; 1800} 1801EXPORT_SYMBOL(blkdev_get_by_path); 1802 1803/** 1804 * blkdev_get_by_dev - open a block device by device number 1805 * @dev: device number of block device to open 1806 * @mode: FMODE_* mask 1807 * @holder: exclusive holder identifier 1808 * 1809 * Open the blockdevice described by device number @dev. @mode and 1810 * @holder are identical to blkdev_get(). 1811 * 1812 * Use it ONLY if you really do not have anything better - i.e. when 1813 * you are behind a truly sucky interface and all you are given is a 1814 * device number. _Never_ to be used for internal purposes. If you 1815 * ever need it - reconsider your API. 1816 * 1817 * On success, the returned block_device has reference count of one. 1818 * 1819 * CONTEXT: 1820 * Might sleep. 1821 * 1822 * RETURNS: 1823 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1824 */ 1825struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1826{ 1827 struct block_device *bdev; 1828 int err; 1829 1830 bdev = bdget(dev); 1831 if (!bdev) 1832 return ERR_PTR(-ENOMEM); 1833 1834 err = blkdev_get(bdev, mode, holder); 1835 if (err) 1836 return ERR_PTR(err); 1837 1838 return bdev; 1839} 1840EXPORT_SYMBOL(blkdev_get_by_dev); 1841 1842static int blkdev_open(struct inode * inode, struct file * filp) 1843{ 1844 struct block_device *bdev; 1845 1846 /* 1847 * Preserve backwards compatibility and allow large file access 1848 * even if userspace doesn't ask for it explicitly. Some mkfs 1849 * binary needs it. We might want to drop this workaround 1850 * during an unstable branch. 1851 */ 1852 filp->f_flags |= O_LARGEFILE; 1853 1854 filp->f_mode |= FMODE_NOWAIT; 1855 1856 if (filp->f_flags & O_NDELAY) 1857 filp->f_mode |= FMODE_NDELAY; 1858 if (filp->f_flags & O_EXCL) 1859 filp->f_mode |= FMODE_EXCL; 1860 if ((filp->f_flags & O_ACCMODE) == 3) 1861 filp->f_mode |= FMODE_WRITE_IOCTL; 1862 1863 bdev = bd_acquire(inode); 1864 if (bdev == NULL) 1865 return -ENOMEM; 1866 1867 filp->f_mapping = bdev->bd_inode->i_mapping; 1868 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping); 1869 1870 return blkdev_get(bdev, filp->f_mode, filp); 1871} 1872 1873static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1874{ 1875 struct gendisk *disk = bdev->bd_disk; 1876 struct block_device *victim = NULL; 1877 1878 /* 1879 * Sync early if it looks like we're the last one. If someone else 1880 * opens the block device between now and the decrement of bd_openers 1881 * then we did a sync that we didn't need to, but that's not the end 1882 * of the world and we want to avoid long (could be several minute) 1883 * syncs while holding the mutex. 1884 */ 1885 if (bdev->bd_openers == 1) 1886 sync_blockdev(bdev); 1887 1888 mutex_lock_nested(&bdev->bd_mutex, for_part); 1889 if (for_part) 1890 bdev->bd_part_count--; 1891 1892 if (!--bdev->bd_openers) { 1893 WARN_ON_ONCE(bdev->bd_holders); 1894 sync_blockdev(bdev); 1895 kill_bdev(bdev); 1896 1897 bdev_write_inode(bdev); 1898 } 1899 if (bdev->bd_contains == bdev) { 1900 if (disk->fops->release) 1901 disk->fops->release(disk, mode); 1902 } 1903 if (!bdev->bd_openers) { 1904 disk_put_part(bdev->bd_part); 1905 bdev->bd_part = NULL; 1906 bdev->bd_disk = NULL; 1907 if (bdev != bdev->bd_contains) 1908 victim = bdev->bd_contains; 1909 bdev->bd_contains = NULL; 1910 1911 put_disk_and_module(disk); 1912 } 1913 mutex_unlock(&bdev->bd_mutex); 1914 bdput(bdev); 1915 if (victim) 1916 __blkdev_put(victim, mode, 1); 1917} 1918 1919void blkdev_put(struct block_device *bdev, fmode_t mode) 1920{ 1921 mutex_lock(&bdev->bd_mutex); 1922 1923 if (mode & FMODE_EXCL) { 1924 bool bdev_free; 1925 1926 /* 1927 * Release a claim on the device. The holder fields 1928 * are protected with bdev_lock. bd_mutex is to 1929 * synchronize disk_holder unlinking. 1930 */ 1931 spin_lock(&bdev_lock); 1932 1933 WARN_ON_ONCE(--bdev->bd_holders < 0); 1934 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1935 1936 /* bd_contains might point to self, check in a separate step */ 1937 if ((bdev_free = !bdev->bd_holders)) 1938 bdev->bd_holder = NULL; 1939 if (!bdev->bd_contains->bd_holders) 1940 bdev->bd_contains->bd_holder = NULL; 1941 1942 spin_unlock(&bdev_lock); 1943 1944 /* 1945 * If this was the last claim, remove holder link and 1946 * unblock evpoll if it was a write holder. 1947 */ 1948 if (bdev_free && bdev->bd_write_holder) { 1949 disk_unblock_events(bdev->bd_disk); 1950 bdev->bd_write_holder = false; 1951 } 1952 } 1953 1954 /* 1955 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1956 * event. This is to ensure detection of media removal commanded 1957 * from userland - e.g. eject(1). 1958 */ 1959 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1960 1961 mutex_unlock(&bdev->bd_mutex); 1962 1963 __blkdev_put(bdev, mode, 0); 1964} 1965EXPORT_SYMBOL(blkdev_put); 1966 1967static int blkdev_close(struct inode * inode, struct file * filp) 1968{ 1969 struct block_device *bdev = I_BDEV(bdev_file_inode(filp)); 1970 blkdev_put(bdev, filp->f_mode); 1971 return 0; 1972} 1973 1974static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1975{ 1976 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 1977 fmode_t mode = file->f_mode; 1978 1979 /* 1980 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1981 * to updated it before every ioctl. 1982 */ 1983 if (file->f_flags & O_NDELAY) 1984 mode |= FMODE_NDELAY; 1985 else 1986 mode &= ~FMODE_NDELAY; 1987 1988 return blkdev_ioctl(bdev, mode, cmd, arg); 1989} 1990 1991/* 1992 * Write data to the block device. Only intended for the block device itself 1993 * and the raw driver which basically is a fake block device. 1994 * 1995 * Does not take i_mutex for the write and thus is not for general purpose 1996 * use. 1997 */ 1998ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1999{ 2000 struct file *file = iocb->ki_filp; 2001 struct inode *bd_inode = bdev_file_inode(file); 2002 loff_t size = i_size_read(bd_inode); 2003 struct blk_plug plug; 2004 ssize_t ret; 2005 2006 if (bdev_read_only(I_BDEV(bd_inode))) 2007 return -EPERM; 2008 2009 if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode)) 2010 return -ETXTBSY; 2011 2012 if (!iov_iter_count(from)) 2013 return 0; 2014 2015 if (iocb->ki_pos >= size) 2016 return -ENOSPC; 2017 2018 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT) 2019 return -EOPNOTSUPP; 2020 2021 iov_iter_truncate(from, size - iocb->ki_pos); 2022 2023 blk_start_plug(&plug); 2024 ret = __generic_file_write_iter(iocb, from); 2025 if (ret > 0) 2026 ret = generic_write_sync(iocb, ret); 2027 blk_finish_plug(&plug); 2028 return ret; 2029} 2030EXPORT_SYMBOL_GPL(blkdev_write_iter); 2031 2032ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 2033{ 2034 struct file *file = iocb->ki_filp; 2035 struct inode *bd_inode = bdev_file_inode(file); 2036 loff_t size = i_size_read(bd_inode); 2037 loff_t pos = iocb->ki_pos; 2038 2039 if (pos >= size) 2040 return 0; 2041 2042 size -= pos; 2043 iov_iter_truncate(to, size); 2044 return generic_file_read_iter(iocb, to); 2045} 2046EXPORT_SYMBOL_GPL(blkdev_read_iter); 2047 2048/* 2049 * Try to release a page associated with block device when the system 2050 * is under memory pressure. 2051 */ 2052static int blkdev_releasepage(struct page *page, gfp_t wait) 2053{ 2054 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 2055 2056 if (super && super->s_op->bdev_try_to_free_page) 2057 return super->s_op->bdev_try_to_free_page(super, page, wait); 2058 2059 return try_to_free_buffers(page); 2060} 2061 2062static int blkdev_writepages(struct address_space *mapping, 2063 struct writeback_control *wbc) 2064{ 2065 return generic_writepages(mapping, wbc); 2066} 2067 2068static const struct address_space_operations def_blk_aops = { 2069 .readpage = blkdev_readpage, 2070 .readahead = blkdev_readahead, 2071 .writepage = blkdev_writepage, 2072 .write_begin = blkdev_write_begin, 2073 .write_end = blkdev_write_end, 2074 .writepages = blkdev_writepages, 2075 .releasepage = blkdev_releasepage, 2076 .direct_IO = blkdev_direct_IO, 2077 .migratepage = buffer_migrate_page_norefs, 2078 .is_dirty_writeback = buffer_check_dirty_writeback, 2079}; 2080 2081#define BLKDEV_FALLOC_FL_SUPPORTED \ 2082 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \ 2083 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE) 2084 2085static long blkdev_fallocate(struct file *file, int mode, loff_t start, 2086 loff_t len) 2087{ 2088 struct block_device *bdev = I_BDEV(bdev_file_inode(file)); 2089 struct address_space *mapping; 2090 loff_t end = start + len - 1; 2091 loff_t isize; 2092 int error; 2093 2094 /* Fail if we don't recognize the flags. */ 2095 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED) 2096 return -EOPNOTSUPP; 2097 2098 /* Don't go off the end of the device. */ 2099 isize = i_size_read(bdev->bd_inode); 2100 if (start >= isize) 2101 return -EINVAL; 2102 if (end >= isize) { 2103 if (mode & FALLOC_FL_KEEP_SIZE) { 2104 len = isize - start; 2105 end = start + len - 1; 2106 } else 2107 return -EINVAL; 2108 } 2109 2110 /* 2111 * Don't allow IO that isn't aligned to logical block size. 2112 */ 2113 if ((start | len) & (bdev_logical_block_size(bdev) - 1)) 2114 return -EINVAL; 2115 2116 /* Invalidate the page cache, including dirty pages. */ 2117 mapping = bdev->bd_inode->i_mapping; 2118 truncate_inode_pages_range(mapping, start, end); 2119 2120 switch (mode) { 2121 case FALLOC_FL_ZERO_RANGE: 2122 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE: 2123 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2124 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP); 2125 break; 2126 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE: 2127 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9, 2128 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK); 2129 break; 2130 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE: 2131 error = blkdev_issue_discard(bdev, start >> 9, len >> 9, 2132 GFP_KERNEL, 0); 2133 break; 2134 default: 2135 return -EOPNOTSUPP; 2136 } 2137 if (error) 2138 return error; 2139 2140 /* 2141 * Invalidate again; if someone wandered in and dirtied a page, 2142 * the caller will be given -EBUSY. The third argument is 2143 * inclusive, so the rounding here is safe. 2144 */ 2145 return invalidate_inode_pages2_range(mapping, 2146 start >> PAGE_SHIFT, 2147 end >> PAGE_SHIFT); 2148} 2149 2150const struct file_operations def_blk_fops = { 2151 .open = blkdev_open, 2152 .release = blkdev_close, 2153 .llseek = block_llseek, 2154 .read_iter = blkdev_read_iter, 2155 .write_iter = blkdev_write_iter, 2156 .iopoll = blkdev_iopoll, 2157 .mmap = generic_file_mmap, 2158 .fsync = blkdev_fsync, 2159 .unlocked_ioctl = block_ioctl, 2160#ifdef CONFIG_COMPAT 2161 .compat_ioctl = compat_blkdev_ioctl, 2162#endif 2163 .splice_read = generic_file_splice_read, 2164 .splice_write = iter_file_splice_write, 2165 .fallocate = blkdev_fallocate, 2166}; 2167 2168/** 2169 * lookup_bdev - lookup a struct block_device by name 2170 * @pathname: special file representing the block device 2171 * 2172 * Get a reference to the blockdevice at @pathname in the current 2173 * namespace if possible and return it. Return ERR_PTR(error) 2174 * otherwise. 2175 */ 2176struct block_device *lookup_bdev(const char *pathname) 2177{ 2178 struct block_device *bdev; 2179 struct inode *inode; 2180 struct path path; 2181 int error; 2182 2183 if (!pathname || !*pathname) 2184 return ERR_PTR(-EINVAL); 2185 2186 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 2187 if (error) 2188 return ERR_PTR(error); 2189 2190 inode = d_backing_inode(path.dentry); 2191 error = -ENOTBLK; 2192 if (!S_ISBLK(inode->i_mode)) 2193 goto fail; 2194 error = -EACCES; 2195 if (!may_open_dev(&path)) 2196 goto fail; 2197 error = -ENOMEM; 2198 bdev = bd_acquire(inode); 2199 if (!bdev) 2200 goto fail; 2201out: 2202 path_put(&path); 2203 return bdev; 2204fail: 2205 bdev = ERR_PTR(error); 2206 goto out; 2207} 2208EXPORT_SYMBOL(lookup_bdev); 2209 2210int __invalidate_device(struct block_device *bdev, bool kill_dirty) 2211{ 2212 struct super_block *sb = get_super(bdev); 2213 int res = 0; 2214 2215 if (sb) { 2216 /* 2217 * no need to lock the super, get_super holds the 2218 * read mutex so the filesystem cannot go away 2219 * under us (->put_super runs with the write lock 2220 * hold). 2221 */ 2222 shrink_dcache_sb(sb); 2223 res = invalidate_inodes(sb, kill_dirty); 2224 drop_super(sb); 2225 } 2226 invalidate_bdev(bdev); 2227 return res; 2228} 2229EXPORT_SYMBOL(__invalidate_device); 2230 2231void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 2232{ 2233 struct inode *inode, *old_inode = NULL; 2234 2235 spin_lock(&blockdev_superblock->s_inode_list_lock); 2236 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 2237 struct address_space *mapping = inode->i_mapping; 2238 struct block_device *bdev; 2239 2240 spin_lock(&inode->i_lock); 2241 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 2242 mapping->nrpages == 0) { 2243 spin_unlock(&inode->i_lock); 2244 continue; 2245 } 2246 __iget(inode); 2247 spin_unlock(&inode->i_lock); 2248 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2249 /* 2250 * We hold a reference to 'inode' so it couldn't have been 2251 * removed from s_inodes list while we dropped the 2252 * s_inode_list_lock We cannot iput the inode now as we can 2253 * be holding the last reference and we cannot iput it under 2254 * s_inode_list_lock. So we keep the reference and iput it 2255 * later. 2256 */ 2257 iput(old_inode); 2258 old_inode = inode; 2259 bdev = I_BDEV(inode); 2260 2261 mutex_lock(&bdev->bd_mutex); 2262 if (bdev->bd_openers) 2263 func(bdev, arg); 2264 mutex_unlock(&bdev->bd_mutex); 2265 2266 spin_lock(&blockdev_superblock->s_inode_list_lock); 2267 } 2268 spin_unlock(&blockdev_superblock->s_inode_list_lock); 2269 iput(old_inode); 2270}