Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe I/O command implementation.
4 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/blkdev.h>
8#include <linux/module.h>
9#include "nvmet.h"
10
11void nvmet_bdev_set_limits(struct block_device *bdev, struct nvme_id_ns *id)
12{
13 const struct queue_limits *ql = &bdev_get_queue(bdev)->limits;
14 /* Number of logical blocks per physical block. */
15 const u32 lpp = ql->physical_block_size / ql->logical_block_size;
16 /* Logical blocks per physical block, 0's based. */
17 const __le16 lpp0b = to0based(lpp);
18
19 /*
20 * For NVMe 1.2 and later, bit 1 indicates that the fields NAWUN,
21 * NAWUPF, and NACWU are defined for this namespace and should be
22 * used by the host for this namespace instead of the AWUN, AWUPF,
23 * and ACWU fields in the Identify Controller data structure. If
24 * any of these fields are zero that means that the corresponding
25 * field from the identify controller data structure should be used.
26 */
27 id->nsfeat |= 1 << 1;
28 id->nawun = lpp0b;
29 id->nawupf = lpp0b;
30 id->nacwu = lpp0b;
31
32 /*
33 * Bit 4 indicates that the fields NPWG, NPWA, NPDG, NPDA, and
34 * NOWS are defined for this namespace and should be used by
35 * the host for I/O optimization.
36 */
37 id->nsfeat |= 1 << 4;
38 /* NPWG = Namespace Preferred Write Granularity. 0's based */
39 id->npwg = lpp0b;
40 /* NPWA = Namespace Preferred Write Alignment. 0's based */
41 id->npwa = id->npwg;
42 /* NPDG = Namespace Preferred Deallocate Granularity. 0's based */
43 id->npdg = to0based(ql->discard_granularity / ql->logical_block_size);
44 /* NPDG = Namespace Preferred Deallocate Alignment */
45 id->npda = id->npdg;
46 /* NOWS = Namespace Optimal Write Size */
47 id->nows = to0based(ql->io_opt / ql->logical_block_size);
48}
49
50static void nvmet_bdev_ns_enable_integrity(struct nvmet_ns *ns)
51{
52 struct blk_integrity *bi = bdev_get_integrity(ns->bdev);
53
54 if (bi) {
55 ns->metadata_size = bi->tuple_size;
56 if (bi->profile == &t10_pi_type1_crc)
57 ns->pi_type = NVME_NS_DPS_PI_TYPE1;
58 else if (bi->profile == &t10_pi_type3_crc)
59 ns->pi_type = NVME_NS_DPS_PI_TYPE3;
60 else
61 /* Unsupported metadata type */
62 ns->metadata_size = 0;
63 }
64}
65
66int nvmet_bdev_ns_enable(struct nvmet_ns *ns)
67{
68 int ret;
69
70 ns->bdev = blkdev_get_by_path(ns->device_path,
71 FMODE_READ | FMODE_WRITE, NULL);
72 if (IS_ERR(ns->bdev)) {
73 ret = PTR_ERR(ns->bdev);
74 if (ret != -ENOTBLK) {
75 pr_err("failed to open block device %s: (%ld)\n",
76 ns->device_path, PTR_ERR(ns->bdev));
77 }
78 ns->bdev = NULL;
79 return ret;
80 }
81 ns->size = i_size_read(ns->bdev->bd_inode);
82 ns->blksize_shift = blksize_bits(bdev_logical_block_size(ns->bdev));
83
84 ns->pi_type = 0;
85 ns->metadata_size = 0;
86 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY_T10))
87 nvmet_bdev_ns_enable_integrity(ns);
88
89 return 0;
90}
91
92void nvmet_bdev_ns_disable(struct nvmet_ns *ns)
93{
94 if (ns->bdev) {
95 blkdev_put(ns->bdev, FMODE_WRITE | FMODE_READ);
96 ns->bdev = NULL;
97 }
98}
99
100void nvmet_bdev_ns_revalidate(struct nvmet_ns *ns)
101{
102 ns->size = i_size_read(ns->bdev->bd_inode);
103}
104
105static u16 blk_to_nvme_status(struct nvmet_req *req, blk_status_t blk_sts)
106{
107 u16 status = NVME_SC_SUCCESS;
108
109 if (likely(blk_sts == BLK_STS_OK))
110 return status;
111 /*
112 * Right now there exists M : 1 mapping between block layer error
113 * to the NVMe status code (see nvme_error_status()). For consistency,
114 * when we reverse map we use most appropriate NVMe Status code from
115 * the group of the NVMe staus codes used in the nvme_error_status().
116 */
117 switch (blk_sts) {
118 case BLK_STS_NOSPC:
119 status = NVME_SC_CAP_EXCEEDED | NVME_SC_DNR;
120 req->error_loc = offsetof(struct nvme_rw_command, length);
121 break;
122 case BLK_STS_TARGET:
123 status = NVME_SC_LBA_RANGE | NVME_SC_DNR;
124 req->error_loc = offsetof(struct nvme_rw_command, slba);
125 break;
126 case BLK_STS_NOTSUPP:
127 req->error_loc = offsetof(struct nvme_common_command, opcode);
128 switch (req->cmd->common.opcode) {
129 case nvme_cmd_dsm:
130 case nvme_cmd_write_zeroes:
131 status = NVME_SC_ONCS_NOT_SUPPORTED | NVME_SC_DNR;
132 break;
133 default:
134 status = NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
135 }
136 break;
137 case BLK_STS_MEDIUM:
138 status = NVME_SC_ACCESS_DENIED;
139 req->error_loc = offsetof(struct nvme_rw_command, nsid);
140 break;
141 case BLK_STS_IOERR:
142 /* fallthru */
143 default:
144 status = NVME_SC_INTERNAL | NVME_SC_DNR;
145 req->error_loc = offsetof(struct nvme_common_command, opcode);
146 }
147
148 switch (req->cmd->common.opcode) {
149 case nvme_cmd_read:
150 case nvme_cmd_write:
151 req->error_slba = le64_to_cpu(req->cmd->rw.slba);
152 break;
153 case nvme_cmd_write_zeroes:
154 req->error_slba =
155 le64_to_cpu(req->cmd->write_zeroes.slba);
156 break;
157 default:
158 req->error_slba = 0;
159 }
160 return status;
161}
162
163static void nvmet_bio_done(struct bio *bio)
164{
165 struct nvmet_req *req = bio->bi_private;
166
167 nvmet_req_complete(req, blk_to_nvme_status(req, bio->bi_status));
168 if (bio != &req->b.inline_bio)
169 bio_put(bio);
170}
171
172#ifdef CONFIG_BLK_DEV_INTEGRITY
173static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
174 struct sg_mapping_iter *miter)
175{
176 struct blk_integrity *bi;
177 struct bio_integrity_payload *bip;
178 struct block_device *bdev = req->ns->bdev;
179 int rc;
180 size_t resid, len;
181
182 bi = bdev_get_integrity(bdev);
183 if (unlikely(!bi)) {
184 pr_err("Unable to locate bio_integrity\n");
185 return -ENODEV;
186 }
187
188 bip = bio_integrity_alloc(bio, GFP_NOIO,
189 min_t(unsigned int, req->metadata_sg_cnt, BIO_MAX_PAGES));
190 if (IS_ERR(bip)) {
191 pr_err("Unable to allocate bio_integrity_payload\n");
192 return PTR_ERR(bip);
193 }
194
195 bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
196 /* virtual start sector must be in integrity interval units */
197 bip_set_seed(bip, bio->bi_iter.bi_sector >>
198 (bi->interval_exp - SECTOR_SHIFT));
199
200 resid = bip->bip_iter.bi_size;
201 while (resid > 0 && sg_miter_next(miter)) {
202 len = min_t(size_t, miter->length, resid);
203 rc = bio_integrity_add_page(bio, miter->page, len,
204 offset_in_page(miter->addr));
205 if (unlikely(rc != len)) {
206 pr_err("bio_integrity_add_page() failed; %d\n", rc);
207 sg_miter_stop(miter);
208 return -ENOMEM;
209 }
210
211 resid -= len;
212 if (len < miter->length)
213 miter->consumed -= miter->length - len;
214 }
215 sg_miter_stop(miter);
216
217 return 0;
218}
219#else
220static int nvmet_bdev_alloc_bip(struct nvmet_req *req, struct bio *bio,
221 struct sg_mapping_iter *miter)
222{
223 return -EINVAL;
224}
225#endif /* CONFIG_BLK_DEV_INTEGRITY */
226
227static void nvmet_bdev_execute_rw(struct nvmet_req *req)
228{
229 int sg_cnt = req->sg_cnt;
230 struct bio *bio;
231 struct scatterlist *sg;
232 struct blk_plug plug;
233 sector_t sector;
234 int op, i, rc;
235 struct sg_mapping_iter prot_miter;
236 unsigned int iter_flags;
237 unsigned int total_len = nvmet_rw_data_len(req) + req->metadata_len;
238
239 if (!nvmet_check_transfer_len(req, total_len))
240 return;
241
242 if (!req->sg_cnt) {
243 nvmet_req_complete(req, 0);
244 return;
245 }
246
247 if (req->cmd->rw.opcode == nvme_cmd_write) {
248 op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
249 if (req->cmd->rw.control & cpu_to_le16(NVME_RW_FUA))
250 op |= REQ_FUA;
251 iter_flags = SG_MITER_TO_SG;
252 } else {
253 op = REQ_OP_READ;
254 iter_flags = SG_MITER_FROM_SG;
255 }
256
257 if (is_pci_p2pdma_page(sg_page(req->sg)))
258 op |= REQ_NOMERGE;
259
260 sector = le64_to_cpu(req->cmd->rw.slba);
261 sector <<= (req->ns->blksize_shift - 9);
262
263 if (req->transfer_len <= NVMET_MAX_INLINE_DATA_LEN) {
264 bio = &req->b.inline_bio;
265 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
266 } else {
267 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
268 }
269 bio_set_dev(bio, req->ns->bdev);
270 bio->bi_iter.bi_sector = sector;
271 bio->bi_private = req;
272 bio->bi_end_io = nvmet_bio_done;
273 bio->bi_opf = op;
274
275 blk_start_plug(&plug);
276 if (req->metadata_len)
277 sg_miter_start(&prot_miter, req->metadata_sg,
278 req->metadata_sg_cnt, iter_flags);
279
280 for_each_sg(req->sg, sg, req->sg_cnt, i) {
281 while (bio_add_page(bio, sg_page(sg), sg->length, sg->offset)
282 != sg->length) {
283 struct bio *prev = bio;
284
285 if (req->metadata_len) {
286 rc = nvmet_bdev_alloc_bip(req, bio,
287 &prot_miter);
288 if (unlikely(rc)) {
289 bio_io_error(bio);
290 return;
291 }
292 }
293
294 bio = bio_alloc(GFP_KERNEL, min(sg_cnt, BIO_MAX_PAGES));
295 bio_set_dev(bio, req->ns->bdev);
296 bio->bi_iter.bi_sector = sector;
297 bio->bi_opf = op;
298
299 bio_chain(bio, prev);
300 submit_bio(prev);
301 }
302
303 sector += sg->length >> 9;
304 sg_cnt--;
305 }
306
307 if (req->metadata_len) {
308 rc = nvmet_bdev_alloc_bip(req, bio, &prot_miter);
309 if (unlikely(rc)) {
310 bio_io_error(bio);
311 return;
312 }
313 }
314
315 submit_bio(bio);
316 blk_finish_plug(&plug);
317}
318
319static void nvmet_bdev_execute_flush(struct nvmet_req *req)
320{
321 struct bio *bio = &req->b.inline_bio;
322
323 if (!nvmet_check_transfer_len(req, 0))
324 return;
325
326 bio_init(bio, req->inline_bvec, ARRAY_SIZE(req->inline_bvec));
327 bio_set_dev(bio, req->ns->bdev);
328 bio->bi_private = req;
329 bio->bi_end_io = nvmet_bio_done;
330 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
331
332 submit_bio(bio);
333}
334
335u16 nvmet_bdev_flush(struct nvmet_req *req)
336{
337 if (blkdev_issue_flush(req->ns->bdev, GFP_KERNEL))
338 return NVME_SC_INTERNAL | NVME_SC_DNR;
339 return 0;
340}
341
342static u16 nvmet_bdev_discard_range(struct nvmet_req *req,
343 struct nvme_dsm_range *range, struct bio **bio)
344{
345 struct nvmet_ns *ns = req->ns;
346 int ret;
347
348 ret = __blkdev_issue_discard(ns->bdev,
349 le64_to_cpu(range->slba) << (ns->blksize_shift - 9),
350 le32_to_cpu(range->nlb) << (ns->blksize_shift - 9),
351 GFP_KERNEL, 0, bio);
352 if (ret && ret != -EOPNOTSUPP) {
353 req->error_slba = le64_to_cpu(range->slba);
354 return errno_to_nvme_status(req, ret);
355 }
356 return NVME_SC_SUCCESS;
357}
358
359static void nvmet_bdev_execute_discard(struct nvmet_req *req)
360{
361 struct nvme_dsm_range range;
362 struct bio *bio = NULL;
363 int i;
364 u16 status;
365
366 for (i = 0; i <= le32_to_cpu(req->cmd->dsm.nr); i++) {
367 status = nvmet_copy_from_sgl(req, i * sizeof(range), &range,
368 sizeof(range));
369 if (status)
370 break;
371
372 status = nvmet_bdev_discard_range(req, &range, &bio);
373 if (status)
374 break;
375 }
376
377 if (bio) {
378 bio->bi_private = req;
379 bio->bi_end_io = nvmet_bio_done;
380 if (status)
381 bio_io_error(bio);
382 else
383 submit_bio(bio);
384 } else {
385 nvmet_req_complete(req, status);
386 }
387}
388
389static void nvmet_bdev_execute_dsm(struct nvmet_req *req)
390{
391 if (!nvmet_check_data_len_lte(req, nvmet_dsm_len(req)))
392 return;
393
394 switch (le32_to_cpu(req->cmd->dsm.attributes)) {
395 case NVME_DSMGMT_AD:
396 nvmet_bdev_execute_discard(req);
397 return;
398 case NVME_DSMGMT_IDR:
399 case NVME_DSMGMT_IDW:
400 default:
401 /* Not supported yet */
402 nvmet_req_complete(req, 0);
403 return;
404 }
405}
406
407static void nvmet_bdev_execute_write_zeroes(struct nvmet_req *req)
408{
409 struct nvme_write_zeroes_cmd *write_zeroes = &req->cmd->write_zeroes;
410 struct bio *bio = NULL;
411 sector_t sector;
412 sector_t nr_sector;
413 int ret;
414
415 if (!nvmet_check_transfer_len(req, 0))
416 return;
417
418 sector = le64_to_cpu(write_zeroes->slba) <<
419 (req->ns->blksize_shift - 9);
420 nr_sector = (((sector_t)le16_to_cpu(write_zeroes->length) + 1) <<
421 (req->ns->blksize_shift - 9));
422
423 ret = __blkdev_issue_zeroout(req->ns->bdev, sector, nr_sector,
424 GFP_KERNEL, &bio, 0);
425 if (bio) {
426 bio->bi_private = req;
427 bio->bi_end_io = nvmet_bio_done;
428 submit_bio(bio);
429 } else {
430 nvmet_req_complete(req, errno_to_nvme_status(req, ret));
431 }
432}
433
434u16 nvmet_bdev_parse_io_cmd(struct nvmet_req *req)
435{
436 struct nvme_command *cmd = req->cmd;
437
438 switch (cmd->common.opcode) {
439 case nvme_cmd_read:
440 case nvme_cmd_write:
441 req->execute = nvmet_bdev_execute_rw;
442 if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
443 req->metadata_len = nvmet_rw_metadata_len(req);
444 return 0;
445 case nvme_cmd_flush:
446 req->execute = nvmet_bdev_execute_flush;
447 return 0;
448 case nvme_cmd_dsm:
449 req->execute = nvmet_bdev_execute_dsm;
450 return 0;
451 case nvme_cmd_write_zeroes:
452 req->execute = nvmet_bdev_execute_write_zeroes;
453 return 0;
454 default:
455 pr_err("unhandled cmd %d on qid %d\n", cmd->common.opcode,
456 req->sq->qid);
457 req->error_loc = offsetof(struct nvme_common_command, opcode);
458 return NVME_SC_INVALID_OPCODE | NVME_SC_DNR;
459 }
460}