at v5.8 35 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* Copyright (C) 2005 Marc Kleine-Budde, Pengutronix 3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics 4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> 5 */ 6 7#include <linux/module.h> 8#include <linux/kernel.h> 9#include <linux/slab.h> 10#include <linux/netdevice.h> 11#include <linux/if_arp.h> 12#include <linux/workqueue.h> 13#include <linux/can.h> 14#include <linux/can/can-ml.h> 15#include <linux/can/dev.h> 16#include <linux/can/skb.h> 17#include <linux/can/netlink.h> 18#include <linux/can/led.h> 19#include <linux/of.h> 20#include <net/rtnetlink.h> 21 22#define MOD_DESC "CAN device driver interface" 23 24MODULE_DESCRIPTION(MOD_DESC); 25MODULE_LICENSE("GPL v2"); 26MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); 27 28/* CAN DLC to real data length conversion helpers */ 29 30static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, 31 8, 12, 16, 20, 24, 32, 48, 64}; 32 33/* get data length from can_dlc with sanitized can_dlc */ 34u8 can_dlc2len(u8 can_dlc) 35{ 36 return dlc2len[can_dlc & 0x0F]; 37} 38EXPORT_SYMBOL_GPL(can_dlc2len); 39 40static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ 41 9, 9, 9, 9, /* 9 - 12 */ 42 10, 10, 10, 10, /* 13 - 16 */ 43 11, 11, 11, 11, /* 17 - 20 */ 44 12, 12, 12, 12, /* 21 - 24 */ 45 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ 46 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ 47 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ 48 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ 49 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ 50 51/* map the sanitized data length to an appropriate data length code */ 52u8 can_len2dlc(u8 len) 53{ 54 if (unlikely(len > 64)) 55 return 0xF; 56 57 return len2dlc[len]; 58} 59EXPORT_SYMBOL_GPL(can_len2dlc); 60 61#ifdef CONFIG_CAN_CALC_BITTIMING 62#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ 63#define CAN_CALC_SYNC_SEG 1 64 65/* Bit-timing calculation derived from: 66 * 67 * Code based on LinCAN sources and H8S2638 project 68 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz 69 * Copyright 2005 Stanislav Marek 70 * email: pisa@cmp.felk.cvut.cz 71 * 72 * Calculates proper bit-timing parameters for a specified bit-rate 73 * and sample-point, which can then be used to set the bit-timing 74 * registers of the CAN controller. You can find more information 75 * in the header file linux/can/netlink.h. 76 */ 77static int 78can_update_sample_point(const struct can_bittiming_const *btc, 79 unsigned int sample_point_nominal, unsigned int tseg, 80 unsigned int *tseg1_ptr, unsigned int *tseg2_ptr, 81 unsigned int *sample_point_error_ptr) 82{ 83 unsigned int sample_point_error, best_sample_point_error = UINT_MAX; 84 unsigned int sample_point, best_sample_point = 0; 85 unsigned int tseg1, tseg2; 86 int i; 87 88 for (i = 0; i <= 1; i++) { 89 tseg2 = tseg + CAN_CALC_SYNC_SEG - 90 (sample_point_nominal * (tseg + CAN_CALC_SYNC_SEG)) / 91 1000 - i; 92 tseg2 = clamp(tseg2, btc->tseg2_min, btc->tseg2_max); 93 tseg1 = tseg - tseg2; 94 if (tseg1 > btc->tseg1_max) { 95 tseg1 = btc->tseg1_max; 96 tseg2 = tseg - tseg1; 97 } 98 99 sample_point = 1000 * (tseg + CAN_CALC_SYNC_SEG - tseg2) / 100 (tseg + CAN_CALC_SYNC_SEG); 101 sample_point_error = abs(sample_point_nominal - sample_point); 102 103 if (sample_point <= sample_point_nominal && 104 sample_point_error < best_sample_point_error) { 105 best_sample_point = sample_point; 106 best_sample_point_error = sample_point_error; 107 *tseg1_ptr = tseg1; 108 *tseg2_ptr = tseg2; 109 } 110 } 111 112 if (sample_point_error_ptr) 113 *sample_point_error_ptr = best_sample_point_error; 114 115 return best_sample_point; 116} 117 118static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 119 const struct can_bittiming_const *btc) 120{ 121 struct can_priv *priv = netdev_priv(dev); 122 unsigned int bitrate; /* current bitrate */ 123 unsigned int bitrate_error; /* difference between current and nominal value */ 124 unsigned int best_bitrate_error = UINT_MAX; 125 unsigned int sample_point_error; /* difference between current and nominal value */ 126 unsigned int best_sample_point_error = UINT_MAX; 127 unsigned int sample_point_nominal; /* nominal sample point */ 128 unsigned int best_tseg = 0; /* current best value for tseg */ 129 unsigned int best_brp = 0; /* current best value for brp */ 130 unsigned int brp, tsegall, tseg, tseg1 = 0, tseg2 = 0; 131 u64 v64; 132 133 /* Use CiA recommended sample points */ 134 if (bt->sample_point) { 135 sample_point_nominal = bt->sample_point; 136 } else { 137 if (bt->bitrate > 800000) 138 sample_point_nominal = 750; 139 else if (bt->bitrate > 500000) 140 sample_point_nominal = 800; 141 else 142 sample_point_nominal = 875; 143 } 144 145 /* tseg even = round down, odd = round up */ 146 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; 147 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { 148 tsegall = CAN_CALC_SYNC_SEG + tseg / 2; 149 150 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ 151 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; 152 153 /* choose brp step which is possible in system */ 154 brp = (brp / btc->brp_inc) * btc->brp_inc; 155 if (brp < btc->brp_min || brp > btc->brp_max) 156 continue; 157 158 bitrate = priv->clock.freq / (brp * tsegall); 159 bitrate_error = abs(bt->bitrate - bitrate); 160 161 /* tseg brp biterror */ 162 if (bitrate_error > best_bitrate_error) 163 continue; 164 165 /* reset sample point error if we have a better bitrate */ 166 if (bitrate_error < best_bitrate_error) 167 best_sample_point_error = UINT_MAX; 168 169 can_update_sample_point(btc, sample_point_nominal, tseg / 2, 170 &tseg1, &tseg2, &sample_point_error); 171 if (sample_point_error > best_sample_point_error) 172 continue; 173 174 best_sample_point_error = sample_point_error; 175 best_bitrate_error = bitrate_error; 176 best_tseg = tseg / 2; 177 best_brp = brp; 178 179 if (bitrate_error == 0 && sample_point_error == 0) 180 break; 181 } 182 183 if (best_bitrate_error) { 184 /* Error in one-tenth of a percent */ 185 v64 = (u64)best_bitrate_error * 1000; 186 do_div(v64, bt->bitrate); 187 bitrate_error = (u32)v64; 188 if (bitrate_error > CAN_CALC_MAX_ERROR) { 189 netdev_err(dev, 190 "bitrate error %d.%d%% too high\n", 191 bitrate_error / 10, bitrate_error % 10); 192 return -EDOM; 193 } 194 netdev_warn(dev, "bitrate error %d.%d%%\n", 195 bitrate_error / 10, bitrate_error % 10); 196 } 197 198 /* real sample point */ 199 bt->sample_point = can_update_sample_point(btc, sample_point_nominal, 200 best_tseg, &tseg1, &tseg2, 201 NULL); 202 203 v64 = (u64)best_brp * 1000 * 1000 * 1000; 204 do_div(v64, priv->clock.freq); 205 bt->tq = (u32)v64; 206 bt->prop_seg = tseg1 / 2; 207 bt->phase_seg1 = tseg1 - bt->prop_seg; 208 bt->phase_seg2 = tseg2; 209 210 /* check for sjw user settings */ 211 if (!bt->sjw || !btc->sjw_max) { 212 bt->sjw = 1; 213 } else { 214 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ 215 if (bt->sjw > btc->sjw_max) 216 bt->sjw = btc->sjw_max; 217 /* bt->sjw must not be higher than tseg2 */ 218 if (tseg2 < bt->sjw) 219 bt->sjw = tseg2; 220 } 221 222 bt->brp = best_brp; 223 224 /* real bitrate */ 225 bt->bitrate = priv->clock.freq / 226 (bt->brp * (CAN_CALC_SYNC_SEG + tseg1 + tseg2)); 227 228 return 0; 229} 230#else /* !CONFIG_CAN_CALC_BITTIMING */ 231static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 232 const struct can_bittiming_const *btc) 233{ 234 netdev_err(dev, "bit-timing calculation not available\n"); 235 return -EINVAL; 236} 237#endif /* CONFIG_CAN_CALC_BITTIMING */ 238 239/* Checks the validity of the specified bit-timing parameters prop_seg, 240 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate 241 * prescaler value brp. You can find more information in the header 242 * file linux/can/netlink.h. 243 */ 244static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, 245 const struct can_bittiming_const *btc) 246{ 247 struct can_priv *priv = netdev_priv(dev); 248 int tseg1, alltseg; 249 u64 brp64; 250 251 tseg1 = bt->prop_seg + bt->phase_seg1; 252 if (!bt->sjw) 253 bt->sjw = 1; 254 if (bt->sjw > btc->sjw_max || 255 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || 256 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) 257 return -ERANGE; 258 259 brp64 = (u64)priv->clock.freq * (u64)bt->tq; 260 if (btc->brp_inc > 1) 261 do_div(brp64, btc->brp_inc); 262 brp64 += 500000000UL - 1; 263 do_div(brp64, 1000000000UL); /* the practicable BRP */ 264 if (btc->brp_inc > 1) 265 brp64 *= btc->brp_inc; 266 bt->brp = (u32)brp64; 267 268 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) 269 return -EINVAL; 270 271 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; 272 bt->bitrate = priv->clock.freq / (bt->brp * alltseg); 273 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; 274 275 return 0; 276} 277 278/* Checks the validity of predefined bitrate settings */ 279static int 280can_validate_bitrate(struct net_device *dev, struct can_bittiming *bt, 281 const u32 *bitrate_const, 282 const unsigned int bitrate_const_cnt) 283{ 284 struct can_priv *priv = netdev_priv(dev); 285 unsigned int i; 286 287 for (i = 0; i < bitrate_const_cnt; i++) { 288 if (bt->bitrate == bitrate_const[i]) 289 break; 290 } 291 292 if (i >= priv->bitrate_const_cnt) 293 return -EINVAL; 294 295 return 0; 296} 297 298static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt, 299 const struct can_bittiming_const *btc, 300 const u32 *bitrate_const, 301 const unsigned int bitrate_const_cnt) 302{ 303 int err; 304 305 /* Depending on the given can_bittiming parameter structure the CAN 306 * timing parameters are calculated based on the provided bitrate OR 307 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are 308 * provided directly which are then checked and fixed up. 309 */ 310 if (!bt->tq && bt->bitrate && btc) 311 err = can_calc_bittiming(dev, bt, btc); 312 else if (bt->tq && !bt->bitrate && btc) 313 err = can_fixup_bittiming(dev, bt, btc); 314 else if (!bt->tq && bt->bitrate && bitrate_const) 315 err = can_validate_bitrate(dev, bt, bitrate_const, 316 bitrate_const_cnt); 317 else 318 err = -EINVAL; 319 320 return err; 321} 322 323static void can_update_state_error_stats(struct net_device *dev, 324 enum can_state new_state) 325{ 326 struct can_priv *priv = netdev_priv(dev); 327 328 if (new_state <= priv->state) 329 return; 330 331 switch (new_state) { 332 case CAN_STATE_ERROR_WARNING: 333 priv->can_stats.error_warning++; 334 break; 335 case CAN_STATE_ERROR_PASSIVE: 336 priv->can_stats.error_passive++; 337 break; 338 case CAN_STATE_BUS_OFF: 339 priv->can_stats.bus_off++; 340 break; 341 default: 342 break; 343 } 344} 345 346static int can_tx_state_to_frame(struct net_device *dev, enum can_state state) 347{ 348 switch (state) { 349 case CAN_STATE_ERROR_ACTIVE: 350 return CAN_ERR_CRTL_ACTIVE; 351 case CAN_STATE_ERROR_WARNING: 352 return CAN_ERR_CRTL_TX_WARNING; 353 case CAN_STATE_ERROR_PASSIVE: 354 return CAN_ERR_CRTL_TX_PASSIVE; 355 default: 356 return 0; 357 } 358} 359 360static int can_rx_state_to_frame(struct net_device *dev, enum can_state state) 361{ 362 switch (state) { 363 case CAN_STATE_ERROR_ACTIVE: 364 return CAN_ERR_CRTL_ACTIVE; 365 case CAN_STATE_ERROR_WARNING: 366 return CAN_ERR_CRTL_RX_WARNING; 367 case CAN_STATE_ERROR_PASSIVE: 368 return CAN_ERR_CRTL_RX_PASSIVE; 369 default: 370 return 0; 371 } 372} 373 374void can_change_state(struct net_device *dev, struct can_frame *cf, 375 enum can_state tx_state, enum can_state rx_state) 376{ 377 struct can_priv *priv = netdev_priv(dev); 378 enum can_state new_state = max(tx_state, rx_state); 379 380 if (unlikely(new_state == priv->state)) { 381 netdev_warn(dev, "%s: oops, state did not change", __func__); 382 return; 383 } 384 385 netdev_dbg(dev, "New error state: %d\n", new_state); 386 387 can_update_state_error_stats(dev, new_state); 388 priv->state = new_state; 389 390 if (!cf) 391 return; 392 393 if (unlikely(new_state == CAN_STATE_BUS_OFF)) { 394 cf->can_id |= CAN_ERR_BUSOFF; 395 return; 396 } 397 398 cf->can_id |= CAN_ERR_CRTL; 399 cf->data[1] |= tx_state >= rx_state ? 400 can_tx_state_to_frame(dev, tx_state) : 0; 401 cf->data[1] |= tx_state <= rx_state ? 402 can_rx_state_to_frame(dev, rx_state) : 0; 403} 404EXPORT_SYMBOL_GPL(can_change_state); 405 406/* Local echo of CAN messages 407 * 408 * CAN network devices *should* support a local echo functionality 409 * (see Documentation/networking/can.rst). To test the handling of CAN 410 * interfaces that do not support the local echo both driver types are 411 * implemented. In the case that the driver does not support the echo 412 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core 413 * to perform the echo as a fallback solution. 414 */ 415static void can_flush_echo_skb(struct net_device *dev) 416{ 417 struct can_priv *priv = netdev_priv(dev); 418 struct net_device_stats *stats = &dev->stats; 419 int i; 420 421 for (i = 0; i < priv->echo_skb_max; i++) { 422 if (priv->echo_skb[i]) { 423 kfree_skb(priv->echo_skb[i]); 424 priv->echo_skb[i] = NULL; 425 stats->tx_dropped++; 426 stats->tx_aborted_errors++; 427 } 428 } 429} 430 431/* Put the skb on the stack to be looped backed locally lateron 432 * 433 * The function is typically called in the start_xmit function 434 * of the device driver. The driver must protect access to 435 * priv->echo_skb, if necessary. 436 */ 437void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, 438 unsigned int idx) 439{ 440 struct can_priv *priv = netdev_priv(dev); 441 442 BUG_ON(idx >= priv->echo_skb_max); 443 444 /* check flag whether this packet has to be looped back */ 445 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK || 446 (skb->protocol != htons(ETH_P_CAN) && 447 skb->protocol != htons(ETH_P_CANFD))) { 448 kfree_skb(skb); 449 return; 450 } 451 452 if (!priv->echo_skb[idx]) { 453 skb = can_create_echo_skb(skb); 454 if (!skb) 455 return; 456 457 /* make settings for echo to reduce code in irq context */ 458 skb->pkt_type = PACKET_BROADCAST; 459 skb->ip_summed = CHECKSUM_UNNECESSARY; 460 skb->dev = dev; 461 462 /* save this skb for tx interrupt echo handling */ 463 priv->echo_skb[idx] = skb; 464 } else { 465 /* locking problem with netif_stop_queue() ?? */ 466 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__); 467 kfree_skb(skb); 468 } 469} 470EXPORT_SYMBOL_GPL(can_put_echo_skb); 471 472struct sk_buff * 473__can_get_echo_skb(struct net_device *dev, unsigned int idx, u8 *len_ptr) 474{ 475 struct can_priv *priv = netdev_priv(dev); 476 477 if (idx >= priv->echo_skb_max) { 478 netdev_err(dev, "%s: BUG! Trying to access can_priv::echo_skb out of bounds (%u/max %u)\n", 479 __func__, idx, priv->echo_skb_max); 480 return NULL; 481 } 482 483 if (priv->echo_skb[idx]) { 484 /* Using "struct canfd_frame::len" for the frame 485 * length is supported on both CAN and CANFD frames. 486 */ 487 struct sk_buff *skb = priv->echo_skb[idx]; 488 struct canfd_frame *cf = (struct canfd_frame *)skb->data; 489 u8 len = cf->len; 490 491 *len_ptr = len; 492 priv->echo_skb[idx] = NULL; 493 494 return skb; 495 } 496 497 return NULL; 498} 499 500/* Get the skb from the stack and loop it back locally 501 * 502 * The function is typically called when the TX done interrupt 503 * is handled in the device driver. The driver must protect 504 * access to priv->echo_skb, if necessary. 505 */ 506unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) 507{ 508 struct sk_buff *skb; 509 u8 len; 510 511 skb = __can_get_echo_skb(dev, idx, &len); 512 if (!skb) 513 return 0; 514 515 netif_rx(skb); 516 517 return len; 518} 519EXPORT_SYMBOL_GPL(can_get_echo_skb); 520 521/* Remove the skb from the stack and free it. 522 * 523 * The function is typically called when TX failed. 524 */ 525void can_free_echo_skb(struct net_device *dev, unsigned int idx) 526{ 527 struct can_priv *priv = netdev_priv(dev); 528 529 BUG_ON(idx >= priv->echo_skb_max); 530 531 if (priv->echo_skb[idx]) { 532 dev_kfree_skb_any(priv->echo_skb[idx]); 533 priv->echo_skb[idx] = NULL; 534 } 535} 536EXPORT_SYMBOL_GPL(can_free_echo_skb); 537 538/* CAN device restart for bus-off recovery */ 539static void can_restart(struct net_device *dev) 540{ 541 struct can_priv *priv = netdev_priv(dev); 542 struct net_device_stats *stats = &dev->stats; 543 struct sk_buff *skb; 544 struct can_frame *cf; 545 int err; 546 547 BUG_ON(netif_carrier_ok(dev)); 548 549 /* No synchronization needed because the device is bus-off and 550 * no messages can come in or go out. 551 */ 552 can_flush_echo_skb(dev); 553 554 /* send restart message upstream */ 555 skb = alloc_can_err_skb(dev, &cf); 556 if (!skb) 557 goto restart; 558 559 cf->can_id |= CAN_ERR_RESTARTED; 560 561 netif_rx(skb); 562 563 stats->rx_packets++; 564 stats->rx_bytes += cf->can_dlc; 565 566restart: 567 netdev_dbg(dev, "restarted\n"); 568 priv->can_stats.restarts++; 569 570 /* Now restart the device */ 571 err = priv->do_set_mode(dev, CAN_MODE_START); 572 573 netif_carrier_on(dev); 574 if (err) 575 netdev_err(dev, "Error %d during restart", err); 576} 577 578static void can_restart_work(struct work_struct *work) 579{ 580 struct delayed_work *dwork = to_delayed_work(work); 581 struct can_priv *priv = container_of(dwork, struct can_priv, 582 restart_work); 583 584 can_restart(priv->dev); 585} 586 587int can_restart_now(struct net_device *dev) 588{ 589 struct can_priv *priv = netdev_priv(dev); 590 591 /* A manual restart is only permitted if automatic restart is 592 * disabled and the device is in the bus-off state 593 */ 594 if (priv->restart_ms) 595 return -EINVAL; 596 if (priv->state != CAN_STATE_BUS_OFF) 597 return -EBUSY; 598 599 cancel_delayed_work_sync(&priv->restart_work); 600 can_restart(dev); 601 602 return 0; 603} 604 605/* CAN bus-off 606 * 607 * This functions should be called when the device goes bus-off to 608 * tell the netif layer that no more packets can be sent or received. 609 * If enabled, a timer is started to trigger bus-off recovery. 610 */ 611void can_bus_off(struct net_device *dev) 612{ 613 struct can_priv *priv = netdev_priv(dev); 614 615 netdev_info(dev, "bus-off\n"); 616 617 netif_carrier_off(dev); 618 619 if (priv->restart_ms) 620 schedule_delayed_work(&priv->restart_work, 621 msecs_to_jiffies(priv->restart_ms)); 622} 623EXPORT_SYMBOL_GPL(can_bus_off); 624 625static void can_setup(struct net_device *dev) 626{ 627 dev->type = ARPHRD_CAN; 628 dev->mtu = CAN_MTU; 629 dev->hard_header_len = 0; 630 dev->addr_len = 0; 631 dev->tx_queue_len = 10; 632 633 /* New-style flags. */ 634 dev->flags = IFF_NOARP; 635 dev->features = NETIF_F_HW_CSUM; 636} 637 638struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) 639{ 640 struct sk_buff *skb; 641 642 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 643 sizeof(struct can_frame)); 644 if (unlikely(!skb)) 645 return NULL; 646 647 skb->protocol = htons(ETH_P_CAN); 648 skb->pkt_type = PACKET_BROADCAST; 649 skb->ip_summed = CHECKSUM_UNNECESSARY; 650 651 skb_reset_mac_header(skb); 652 skb_reset_network_header(skb); 653 skb_reset_transport_header(skb); 654 655 can_skb_reserve(skb); 656 can_skb_prv(skb)->ifindex = dev->ifindex; 657 can_skb_prv(skb)->skbcnt = 0; 658 659 *cf = skb_put_zero(skb, sizeof(struct can_frame)); 660 661 return skb; 662} 663EXPORT_SYMBOL_GPL(alloc_can_skb); 664 665struct sk_buff *alloc_canfd_skb(struct net_device *dev, 666 struct canfd_frame **cfd) 667{ 668 struct sk_buff *skb; 669 670 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 671 sizeof(struct canfd_frame)); 672 if (unlikely(!skb)) 673 return NULL; 674 675 skb->protocol = htons(ETH_P_CANFD); 676 skb->pkt_type = PACKET_BROADCAST; 677 skb->ip_summed = CHECKSUM_UNNECESSARY; 678 679 skb_reset_mac_header(skb); 680 skb_reset_network_header(skb); 681 skb_reset_transport_header(skb); 682 683 can_skb_reserve(skb); 684 can_skb_prv(skb)->ifindex = dev->ifindex; 685 can_skb_prv(skb)->skbcnt = 0; 686 687 *cfd = skb_put_zero(skb, sizeof(struct canfd_frame)); 688 689 return skb; 690} 691EXPORT_SYMBOL_GPL(alloc_canfd_skb); 692 693struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) 694{ 695 struct sk_buff *skb; 696 697 skb = alloc_can_skb(dev, cf); 698 if (unlikely(!skb)) 699 return NULL; 700 701 (*cf)->can_id = CAN_ERR_FLAG; 702 (*cf)->can_dlc = CAN_ERR_DLC; 703 704 return skb; 705} 706EXPORT_SYMBOL_GPL(alloc_can_err_skb); 707 708/* Allocate and setup space for the CAN network device */ 709struct net_device *alloc_candev_mqs(int sizeof_priv, unsigned int echo_skb_max, 710 unsigned int txqs, unsigned int rxqs) 711{ 712 struct net_device *dev; 713 struct can_priv *priv; 714 int size; 715 716 /* We put the driver's priv, the CAN mid layer priv and the 717 * echo skb into the netdevice's priv. The memory layout for 718 * the netdev_priv is like this: 719 * 720 * +-------------------------+ 721 * | driver's priv | 722 * +-------------------------+ 723 * | struct can_ml_priv | 724 * +-------------------------+ 725 * | array of struct sk_buff | 726 * +-------------------------+ 727 */ 728 729 size = ALIGN(sizeof_priv, NETDEV_ALIGN) + sizeof(struct can_ml_priv); 730 731 if (echo_skb_max) 732 size = ALIGN(size, sizeof(struct sk_buff *)) + 733 echo_skb_max * sizeof(struct sk_buff *); 734 735 dev = alloc_netdev_mqs(size, "can%d", NET_NAME_UNKNOWN, can_setup, 736 txqs, rxqs); 737 if (!dev) 738 return NULL; 739 740 priv = netdev_priv(dev); 741 priv->dev = dev; 742 743 dev->ml_priv = (void *)priv + ALIGN(sizeof_priv, NETDEV_ALIGN); 744 745 if (echo_skb_max) { 746 priv->echo_skb_max = echo_skb_max; 747 priv->echo_skb = (void *)priv + 748 (size - echo_skb_max * sizeof(struct sk_buff *)); 749 } 750 751 priv->state = CAN_STATE_STOPPED; 752 753 INIT_DELAYED_WORK(&priv->restart_work, can_restart_work); 754 755 return dev; 756} 757EXPORT_SYMBOL_GPL(alloc_candev_mqs); 758 759/* Free space of the CAN network device */ 760void free_candev(struct net_device *dev) 761{ 762 free_netdev(dev); 763} 764EXPORT_SYMBOL_GPL(free_candev); 765 766/* changing MTU and control mode for CAN/CANFD devices */ 767int can_change_mtu(struct net_device *dev, int new_mtu) 768{ 769 struct can_priv *priv = netdev_priv(dev); 770 771 /* Do not allow changing the MTU while running */ 772 if (dev->flags & IFF_UP) 773 return -EBUSY; 774 775 /* allow change of MTU according to the CANFD ability of the device */ 776 switch (new_mtu) { 777 case CAN_MTU: 778 /* 'CANFD-only' controllers can not switch to CAN_MTU */ 779 if (priv->ctrlmode_static & CAN_CTRLMODE_FD) 780 return -EINVAL; 781 782 priv->ctrlmode &= ~CAN_CTRLMODE_FD; 783 break; 784 785 case CANFD_MTU: 786 /* check for potential CANFD ability */ 787 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) && 788 !(priv->ctrlmode_static & CAN_CTRLMODE_FD)) 789 return -EINVAL; 790 791 priv->ctrlmode |= CAN_CTRLMODE_FD; 792 break; 793 794 default: 795 return -EINVAL; 796 } 797 798 dev->mtu = new_mtu; 799 return 0; 800} 801EXPORT_SYMBOL_GPL(can_change_mtu); 802 803/* Common open function when the device gets opened. 804 * 805 * This function should be called in the open function of the device 806 * driver. 807 */ 808int open_candev(struct net_device *dev) 809{ 810 struct can_priv *priv = netdev_priv(dev); 811 812 if (!priv->bittiming.bitrate) { 813 netdev_err(dev, "bit-timing not yet defined\n"); 814 return -EINVAL; 815 } 816 817 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */ 818 if ((priv->ctrlmode & CAN_CTRLMODE_FD) && 819 (!priv->data_bittiming.bitrate || 820 priv->data_bittiming.bitrate < priv->bittiming.bitrate)) { 821 netdev_err(dev, "incorrect/missing data bit-timing\n"); 822 return -EINVAL; 823 } 824 825 /* Switch carrier on if device was stopped while in bus-off state */ 826 if (!netif_carrier_ok(dev)) 827 netif_carrier_on(dev); 828 829 return 0; 830} 831EXPORT_SYMBOL_GPL(open_candev); 832 833#ifdef CONFIG_OF 834/* Common function that can be used to understand the limitation of 835 * a transceiver when it provides no means to determine these limitations 836 * at runtime. 837 */ 838void of_can_transceiver(struct net_device *dev) 839{ 840 struct device_node *dn; 841 struct can_priv *priv = netdev_priv(dev); 842 struct device_node *np = dev->dev.parent->of_node; 843 int ret; 844 845 dn = of_get_child_by_name(np, "can-transceiver"); 846 if (!dn) 847 return; 848 849 ret = of_property_read_u32(dn, "max-bitrate", &priv->bitrate_max); 850 of_node_put(dn); 851 if ((ret && ret != -EINVAL) || (!ret && !priv->bitrate_max)) 852 netdev_warn(dev, "Invalid value for transceiver max bitrate. Ignoring bitrate limit.\n"); 853} 854EXPORT_SYMBOL_GPL(of_can_transceiver); 855#endif 856 857/* Common close function for cleanup before the device gets closed. 858 * 859 * This function should be called in the close function of the device 860 * driver. 861 */ 862void close_candev(struct net_device *dev) 863{ 864 struct can_priv *priv = netdev_priv(dev); 865 866 cancel_delayed_work_sync(&priv->restart_work); 867 can_flush_echo_skb(dev); 868} 869EXPORT_SYMBOL_GPL(close_candev); 870 871/* CAN netlink interface */ 872static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { 873 [IFLA_CAN_STATE] = { .type = NLA_U32 }, 874 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, 875 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, 876 [IFLA_CAN_RESTART] = { .type = NLA_U32 }, 877 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, 878 [IFLA_CAN_BITTIMING_CONST] 879 = { .len = sizeof(struct can_bittiming_const) }, 880 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, 881 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, 882 [IFLA_CAN_DATA_BITTIMING] 883 = { .len = sizeof(struct can_bittiming) }, 884 [IFLA_CAN_DATA_BITTIMING_CONST] 885 = { .len = sizeof(struct can_bittiming_const) }, 886 [IFLA_CAN_TERMINATION] = { .type = NLA_U16 }, 887}; 888 889static int can_validate(struct nlattr *tb[], struct nlattr *data[], 890 struct netlink_ext_ack *extack) 891{ 892 bool is_can_fd = false; 893 894 /* Make sure that valid CAN FD configurations always consist of 895 * - nominal/arbitration bittiming 896 * - data bittiming 897 * - control mode with CAN_CTRLMODE_FD set 898 */ 899 900 if (!data) 901 return 0; 902 903 if (data[IFLA_CAN_CTRLMODE]) { 904 struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]); 905 906 is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD; 907 } 908 909 if (is_can_fd) { 910 if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING]) 911 return -EOPNOTSUPP; 912 } 913 914 if (data[IFLA_CAN_DATA_BITTIMING]) { 915 if (!is_can_fd || !data[IFLA_CAN_BITTIMING]) 916 return -EOPNOTSUPP; 917 } 918 919 return 0; 920} 921 922static int can_changelink(struct net_device *dev, struct nlattr *tb[], 923 struct nlattr *data[], 924 struct netlink_ext_ack *extack) 925{ 926 struct can_priv *priv = netdev_priv(dev); 927 int err; 928 929 /* We need synchronization with dev->stop() */ 930 ASSERT_RTNL(); 931 932 if (data[IFLA_CAN_BITTIMING]) { 933 struct can_bittiming bt; 934 935 /* Do not allow changing bittiming while running */ 936 if (dev->flags & IFF_UP) 937 return -EBUSY; 938 939 /* Calculate bittiming parameters based on 940 * bittiming_const if set, otherwise pass bitrate 941 * directly via do_set_bitrate(). Bail out if neither 942 * is given. 943 */ 944 if (!priv->bittiming_const && !priv->do_set_bittiming) 945 return -EOPNOTSUPP; 946 947 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); 948 err = can_get_bittiming(dev, &bt, 949 priv->bittiming_const, 950 priv->bitrate_const, 951 priv->bitrate_const_cnt); 952 if (err) 953 return err; 954 955 if (priv->bitrate_max && bt.bitrate > priv->bitrate_max) { 956 netdev_err(dev, "arbitration bitrate surpasses transceiver capabilities of %d bps\n", 957 priv->bitrate_max); 958 return -EINVAL; 959 } 960 961 memcpy(&priv->bittiming, &bt, sizeof(bt)); 962 963 if (priv->do_set_bittiming) { 964 /* Finally, set the bit-timing registers */ 965 err = priv->do_set_bittiming(dev); 966 if (err) 967 return err; 968 } 969 } 970 971 if (data[IFLA_CAN_CTRLMODE]) { 972 struct can_ctrlmode *cm; 973 u32 ctrlstatic; 974 u32 maskedflags; 975 976 /* Do not allow changing controller mode while running */ 977 if (dev->flags & IFF_UP) 978 return -EBUSY; 979 cm = nla_data(data[IFLA_CAN_CTRLMODE]); 980 ctrlstatic = priv->ctrlmode_static; 981 maskedflags = cm->flags & cm->mask; 982 983 /* check whether provided bits are allowed to be passed */ 984 if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic)) 985 return -EOPNOTSUPP; 986 987 /* do not check for static fd-non-iso if 'fd' is disabled */ 988 if (!(maskedflags & CAN_CTRLMODE_FD)) 989 ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO; 990 991 /* make sure static options are provided by configuration */ 992 if ((maskedflags & ctrlstatic) != ctrlstatic) 993 return -EOPNOTSUPP; 994 995 /* clear bits to be modified and copy the flag values */ 996 priv->ctrlmode &= ~cm->mask; 997 priv->ctrlmode |= maskedflags; 998 999 /* CAN_CTRLMODE_FD can only be set when driver supports FD */ 1000 if (priv->ctrlmode & CAN_CTRLMODE_FD) 1001 dev->mtu = CANFD_MTU; 1002 else 1003 dev->mtu = CAN_MTU; 1004 } 1005 1006 if (data[IFLA_CAN_RESTART_MS]) { 1007 /* Do not allow changing restart delay while running */ 1008 if (dev->flags & IFF_UP) 1009 return -EBUSY; 1010 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); 1011 } 1012 1013 if (data[IFLA_CAN_RESTART]) { 1014 /* Do not allow a restart while not running */ 1015 if (!(dev->flags & IFF_UP)) 1016 return -EINVAL; 1017 err = can_restart_now(dev); 1018 if (err) 1019 return err; 1020 } 1021 1022 if (data[IFLA_CAN_DATA_BITTIMING]) { 1023 struct can_bittiming dbt; 1024 1025 /* Do not allow changing bittiming while running */ 1026 if (dev->flags & IFF_UP) 1027 return -EBUSY; 1028 1029 /* Calculate bittiming parameters based on 1030 * data_bittiming_const if set, otherwise pass bitrate 1031 * directly via do_set_bitrate(). Bail out if neither 1032 * is given. 1033 */ 1034 if (!priv->data_bittiming_const && !priv->do_set_data_bittiming) 1035 return -EOPNOTSUPP; 1036 1037 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]), 1038 sizeof(dbt)); 1039 err = can_get_bittiming(dev, &dbt, 1040 priv->data_bittiming_const, 1041 priv->data_bitrate_const, 1042 priv->data_bitrate_const_cnt); 1043 if (err) 1044 return err; 1045 1046 if (priv->bitrate_max && dbt.bitrate > priv->bitrate_max) { 1047 netdev_err(dev, "canfd data bitrate surpasses transceiver capabilities of %d bps\n", 1048 priv->bitrate_max); 1049 return -EINVAL; 1050 } 1051 1052 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt)); 1053 1054 if (priv->do_set_data_bittiming) { 1055 /* Finally, set the bit-timing registers */ 1056 err = priv->do_set_data_bittiming(dev); 1057 if (err) 1058 return err; 1059 } 1060 } 1061 1062 if (data[IFLA_CAN_TERMINATION]) { 1063 const u16 termval = nla_get_u16(data[IFLA_CAN_TERMINATION]); 1064 const unsigned int num_term = priv->termination_const_cnt; 1065 unsigned int i; 1066 1067 if (!priv->do_set_termination) 1068 return -EOPNOTSUPP; 1069 1070 /* check whether given value is supported by the interface */ 1071 for (i = 0; i < num_term; i++) { 1072 if (termval == priv->termination_const[i]) 1073 break; 1074 } 1075 if (i >= num_term) 1076 return -EINVAL; 1077 1078 /* Finally, set the termination value */ 1079 err = priv->do_set_termination(dev, termval); 1080 if (err) 1081 return err; 1082 1083 priv->termination = termval; 1084 } 1085 1086 return 0; 1087} 1088 1089static size_t can_get_size(const struct net_device *dev) 1090{ 1091 struct can_priv *priv = netdev_priv(dev); 1092 size_t size = 0; 1093 1094 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */ 1095 size += nla_total_size(sizeof(struct can_bittiming)); 1096 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ 1097 size += nla_total_size(sizeof(struct can_bittiming_const)); 1098 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ 1099 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ 1100 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ 1101 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ 1102 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ 1103 size += nla_total_size(sizeof(struct can_berr_counter)); 1104 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */ 1105 size += nla_total_size(sizeof(struct can_bittiming)); 1106 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */ 1107 size += nla_total_size(sizeof(struct can_bittiming_const)); 1108 if (priv->termination_const) { 1109 size += nla_total_size(sizeof(priv->termination)); /* IFLA_CAN_TERMINATION */ 1110 size += nla_total_size(sizeof(*priv->termination_const) * /* IFLA_CAN_TERMINATION_CONST */ 1111 priv->termination_const_cnt); 1112 } 1113 if (priv->bitrate_const) /* IFLA_CAN_BITRATE_CONST */ 1114 size += nla_total_size(sizeof(*priv->bitrate_const) * 1115 priv->bitrate_const_cnt); 1116 if (priv->data_bitrate_const) /* IFLA_CAN_DATA_BITRATE_CONST */ 1117 size += nla_total_size(sizeof(*priv->data_bitrate_const) * 1118 priv->data_bitrate_const_cnt); 1119 size += sizeof(priv->bitrate_max); /* IFLA_CAN_BITRATE_MAX */ 1120 1121 return size; 1122} 1123 1124static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) 1125{ 1126 struct can_priv *priv = netdev_priv(dev); 1127 struct can_ctrlmode cm = {.flags = priv->ctrlmode}; 1128 struct can_berr_counter bec; 1129 enum can_state state = priv->state; 1130 1131 if (priv->do_get_state) 1132 priv->do_get_state(dev, &state); 1133 1134 if ((priv->bittiming.bitrate && 1135 nla_put(skb, IFLA_CAN_BITTIMING, 1136 sizeof(priv->bittiming), &priv->bittiming)) || 1137 1138 (priv->bittiming_const && 1139 nla_put(skb, IFLA_CAN_BITTIMING_CONST, 1140 sizeof(*priv->bittiming_const), priv->bittiming_const)) || 1141 1142 nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) || 1143 nla_put_u32(skb, IFLA_CAN_STATE, state) || 1144 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || 1145 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || 1146 1147 (priv->do_get_berr_counter && 1148 !priv->do_get_berr_counter(dev, &bec) && 1149 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) || 1150 1151 (priv->data_bittiming.bitrate && 1152 nla_put(skb, IFLA_CAN_DATA_BITTIMING, 1153 sizeof(priv->data_bittiming), &priv->data_bittiming)) || 1154 1155 (priv->data_bittiming_const && 1156 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST, 1157 sizeof(*priv->data_bittiming_const), 1158 priv->data_bittiming_const)) || 1159 1160 (priv->termination_const && 1161 (nla_put_u16(skb, IFLA_CAN_TERMINATION, priv->termination) || 1162 nla_put(skb, IFLA_CAN_TERMINATION_CONST, 1163 sizeof(*priv->termination_const) * 1164 priv->termination_const_cnt, 1165 priv->termination_const))) || 1166 1167 (priv->bitrate_const && 1168 nla_put(skb, IFLA_CAN_BITRATE_CONST, 1169 sizeof(*priv->bitrate_const) * 1170 priv->bitrate_const_cnt, 1171 priv->bitrate_const)) || 1172 1173 (priv->data_bitrate_const && 1174 nla_put(skb, IFLA_CAN_DATA_BITRATE_CONST, 1175 sizeof(*priv->data_bitrate_const) * 1176 priv->data_bitrate_const_cnt, 1177 priv->data_bitrate_const)) || 1178 1179 (nla_put(skb, IFLA_CAN_BITRATE_MAX, 1180 sizeof(priv->bitrate_max), 1181 &priv->bitrate_max)) 1182 ) 1183 1184 return -EMSGSIZE; 1185 1186 return 0; 1187} 1188 1189static size_t can_get_xstats_size(const struct net_device *dev) 1190{ 1191 return sizeof(struct can_device_stats); 1192} 1193 1194static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) 1195{ 1196 struct can_priv *priv = netdev_priv(dev); 1197 1198 if (nla_put(skb, IFLA_INFO_XSTATS, 1199 sizeof(priv->can_stats), &priv->can_stats)) 1200 goto nla_put_failure; 1201 return 0; 1202 1203nla_put_failure: 1204 return -EMSGSIZE; 1205} 1206 1207static int can_newlink(struct net *src_net, struct net_device *dev, 1208 struct nlattr *tb[], struct nlattr *data[], 1209 struct netlink_ext_ack *extack) 1210{ 1211 return -EOPNOTSUPP; 1212} 1213 1214static void can_dellink(struct net_device *dev, struct list_head *head) 1215{ 1216} 1217 1218static struct rtnl_link_ops can_link_ops __read_mostly = { 1219 .kind = "can", 1220 .maxtype = IFLA_CAN_MAX, 1221 .policy = can_policy, 1222 .setup = can_setup, 1223 .validate = can_validate, 1224 .newlink = can_newlink, 1225 .changelink = can_changelink, 1226 .dellink = can_dellink, 1227 .get_size = can_get_size, 1228 .fill_info = can_fill_info, 1229 .get_xstats_size = can_get_xstats_size, 1230 .fill_xstats = can_fill_xstats, 1231}; 1232 1233/* Register the CAN network device */ 1234int register_candev(struct net_device *dev) 1235{ 1236 struct can_priv *priv = netdev_priv(dev); 1237 1238 /* Ensure termination_const, termination_const_cnt and 1239 * do_set_termination consistency. All must be either set or 1240 * unset. 1241 */ 1242 if ((!priv->termination_const != !priv->termination_const_cnt) || 1243 (!priv->termination_const != !priv->do_set_termination)) 1244 return -EINVAL; 1245 1246 if (!priv->bitrate_const != !priv->bitrate_const_cnt) 1247 return -EINVAL; 1248 1249 if (!priv->data_bitrate_const != !priv->data_bitrate_const_cnt) 1250 return -EINVAL; 1251 1252 dev->rtnl_link_ops = &can_link_ops; 1253 netif_carrier_off(dev); 1254 1255 return register_netdev(dev); 1256} 1257EXPORT_SYMBOL_GPL(register_candev); 1258 1259/* Unregister the CAN network device */ 1260void unregister_candev(struct net_device *dev) 1261{ 1262 unregister_netdev(dev); 1263} 1264EXPORT_SYMBOL_GPL(unregister_candev); 1265 1266/* Test if a network device is a candev based device 1267 * and return the can_priv* if so. 1268 */ 1269struct can_priv *safe_candev_priv(struct net_device *dev) 1270{ 1271 if (dev->type != ARPHRD_CAN || dev->rtnl_link_ops != &can_link_ops) 1272 return NULL; 1273 1274 return netdev_priv(dev); 1275} 1276EXPORT_SYMBOL_GPL(safe_candev_priv); 1277 1278static __init int can_dev_init(void) 1279{ 1280 int err; 1281 1282 can_led_notifier_init(); 1283 1284 err = rtnl_link_register(&can_link_ops); 1285 if (!err) 1286 pr_info(MOD_DESC "\n"); 1287 1288 return err; 1289} 1290module_init(can_dev_init); 1291 1292static __exit void can_dev_exit(void) 1293{ 1294 rtnl_link_unregister(&can_link_ops); 1295 1296 can_led_notifier_exit(); 1297} 1298module_exit(can_dev_exit); 1299 1300MODULE_ALIAS_RTNL_LINK("can");