Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/file.h>
57#include <linux/stat.h>
58#include <linux/errno.h>
59#include <linux/major.h>
60#include <linux/wait.h>
61#include <linux/blkdev.h>
62#include <linux/blkpg.h>
63#include <linux/init.h>
64#include <linux/swap.h>
65#include <linux/slab.h>
66#include <linux/compat.h>
67#include <linux/suspend.h>
68#include <linux/freezer.h>
69#include <linux/mutex.h>
70#include <linux/writeback.h>
71#include <linux/completion.h>
72#include <linux/highmem.h>
73#include <linux/kthread.h>
74#include <linux/splice.h>
75#include <linux/sysfs.h>
76#include <linux/miscdevice.h>
77#include <linux/falloc.h>
78#include <linux/uio.h>
79#include <linux/ioprio.h>
80#include <linux/blk-cgroup.h>
81
82#include "loop.h"
83
84#include <linux/uaccess.h>
85
86static DEFINE_IDR(loop_index_idr);
87static DEFINE_MUTEX(loop_ctl_mutex);
88
89static int max_part;
90static int part_shift;
91
92static int transfer_xor(struct loop_device *lo, int cmd,
93 struct page *raw_page, unsigned raw_off,
94 struct page *loop_page, unsigned loop_off,
95 int size, sector_t real_block)
96{
97 char *raw_buf = kmap_atomic(raw_page) + raw_off;
98 char *loop_buf = kmap_atomic(loop_page) + loop_off;
99 char *in, *out, *key;
100 int i, keysize;
101
102 if (cmd == READ) {
103 in = raw_buf;
104 out = loop_buf;
105 } else {
106 in = loop_buf;
107 out = raw_buf;
108 }
109
110 key = lo->lo_encrypt_key;
111 keysize = lo->lo_encrypt_key_size;
112 for (i = 0; i < size; i++)
113 *out++ = *in++ ^ key[(i & 511) % keysize];
114
115 kunmap_atomic(loop_buf);
116 kunmap_atomic(raw_buf);
117 cond_resched();
118 return 0;
119}
120
121static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
122{
123 if (unlikely(info->lo_encrypt_key_size <= 0))
124 return -EINVAL;
125 return 0;
126}
127
128static struct loop_func_table none_funcs = {
129 .number = LO_CRYPT_NONE,
130};
131
132static struct loop_func_table xor_funcs = {
133 .number = LO_CRYPT_XOR,
134 .transfer = transfer_xor,
135 .init = xor_init
136};
137
138/* xfer_funcs[0] is special - its release function is never called */
139static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
140 &none_funcs,
141 &xor_funcs
142};
143
144static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
145{
146 loff_t loopsize;
147
148 /* Compute loopsize in bytes */
149 loopsize = i_size_read(file->f_mapping->host);
150 if (offset > 0)
151 loopsize -= offset;
152 /* offset is beyond i_size, weird but possible */
153 if (loopsize < 0)
154 return 0;
155
156 if (sizelimit > 0 && sizelimit < loopsize)
157 loopsize = sizelimit;
158 /*
159 * Unfortunately, if we want to do I/O on the device,
160 * the number of 512-byte sectors has to fit into a sector_t.
161 */
162 return loopsize >> 9;
163}
164
165static loff_t get_loop_size(struct loop_device *lo, struct file *file)
166{
167 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
168}
169
170static void __loop_update_dio(struct loop_device *lo, bool dio)
171{
172 struct file *file = lo->lo_backing_file;
173 struct address_space *mapping = file->f_mapping;
174 struct inode *inode = mapping->host;
175 unsigned short sb_bsize = 0;
176 unsigned dio_align = 0;
177 bool use_dio;
178
179 if (inode->i_sb->s_bdev) {
180 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
181 dio_align = sb_bsize - 1;
182 }
183
184 /*
185 * We support direct I/O only if lo_offset is aligned with the
186 * logical I/O size of backing device, and the logical block
187 * size of loop is bigger than the backing device's and the loop
188 * needn't transform transfer.
189 *
190 * TODO: the above condition may be loosed in the future, and
191 * direct I/O may be switched runtime at that time because most
192 * of requests in sane applications should be PAGE_SIZE aligned
193 */
194 if (dio) {
195 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
196 !(lo->lo_offset & dio_align) &&
197 mapping->a_ops->direct_IO &&
198 !lo->transfer)
199 use_dio = true;
200 else
201 use_dio = false;
202 } else {
203 use_dio = false;
204 }
205
206 if (lo->use_dio == use_dio)
207 return;
208
209 /* flush dirty pages before changing direct IO */
210 vfs_fsync(file, 0);
211
212 /*
213 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
214 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
215 * will get updated by ioctl(LOOP_GET_STATUS)
216 */
217 if (lo->lo_state == Lo_bound)
218 blk_mq_freeze_queue(lo->lo_queue);
219 lo->use_dio = use_dio;
220 if (use_dio) {
221 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
222 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
223 } else {
224 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
226 }
227 if (lo->lo_state == Lo_bound)
228 blk_mq_unfreeze_queue(lo->lo_queue);
229}
230
231/**
232 * loop_validate_block_size() - validates the passed in block size
233 * @bsize: size to validate
234 */
235static int
236loop_validate_block_size(unsigned short bsize)
237{
238 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
239 return -EINVAL;
240
241 return 0;
242}
243
244/**
245 * loop_set_size() - sets device size and notifies userspace
246 * @lo: struct loop_device to set the size for
247 * @size: new size of the loop device
248 *
249 * Callers must validate that the size passed into this function fits into
250 * a sector_t, eg using loop_validate_size()
251 */
252static void loop_set_size(struct loop_device *lo, loff_t size)
253{
254 struct block_device *bdev = lo->lo_device;
255
256 bd_set_size(bdev, size << SECTOR_SHIFT);
257
258 set_capacity_revalidate_and_notify(lo->lo_disk, size, false);
259}
260
261static inline int
262lo_do_transfer(struct loop_device *lo, int cmd,
263 struct page *rpage, unsigned roffs,
264 struct page *lpage, unsigned loffs,
265 int size, sector_t rblock)
266{
267 int ret;
268
269 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
270 if (likely(!ret))
271 return 0;
272
273 printk_ratelimited(KERN_ERR
274 "loop: Transfer error at byte offset %llu, length %i.\n",
275 (unsigned long long)rblock << 9, size);
276 return ret;
277}
278
279static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
280{
281 struct iov_iter i;
282 ssize_t bw;
283
284 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
285
286 file_start_write(file);
287 bw = vfs_iter_write(file, &i, ppos, 0);
288 file_end_write(file);
289
290 if (likely(bw == bvec->bv_len))
291 return 0;
292
293 printk_ratelimited(KERN_ERR
294 "loop: Write error at byte offset %llu, length %i.\n",
295 (unsigned long long)*ppos, bvec->bv_len);
296 if (bw >= 0)
297 bw = -EIO;
298 return bw;
299}
300
301static int lo_write_simple(struct loop_device *lo, struct request *rq,
302 loff_t pos)
303{
304 struct bio_vec bvec;
305 struct req_iterator iter;
306 int ret = 0;
307
308 rq_for_each_segment(bvec, rq, iter) {
309 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
310 if (ret < 0)
311 break;
312 cond_resched();
313 }
314
315 return ret;
316}
317
318/*
319 * This is the slow, transforming version that needs to double buffer the
320 * data as it cannot do the transformations in place without having direct
321 * access to the destination pages of the backing file.
322 */
323static int lo_write_transfer(struct loop_device *lo, struct request *rq,
324 loff_t pos)
325{
326 struct bio_vec bvec, b;
327 struct req_iterator iter;
328 struct page *page;
329 int ret = 0;
330
331 page = alloc_page(GFP_NOIO);
332 if (unlikely(!page))
333 return -ENOMEM;
334
335 rq_for_each_segment(bvec, rq, iter) {
336 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
337 bvec.bv_offset, bvec.bv_len, pos >> 9);
338 if (unlikely(ret))
339 break;
340
341 b.bv_page = page;
342 b.bv_offset = 0;
343 b.bv_len = bvec.bv_len;
344 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
345 if (ret < 0)
346 break;
347 }
348
349 __free_page(page);
350 return ret;
351}
352
353static int lo_read_simple(struct loop_device *lo, struct request *rq,
354 loff_t pos)
355{
356 struct bio_vec bvec;
357 struct req_iterator iter;
358 struct iov_iter i;
359 ssize_t len;
360
361 rq_for_each_segment(bvec, rq, iter) {
362 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
363 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
364 if (len < 0)
365 return len;
366
367 flush_dcache_page(bvec.bv_page);
368
369 if (len != bvec.bv_len) {
370 struct bio *bio;
371
372 __rq_for_each_bio(bio, rq)
373 zero_fill_bio(bio);
374 break;
375 }
376 cond_resched();
377 }
378
379 return 0;
380}
381
382static int lo_read_transfer(struct loop_device *lo, struct request *rq,
383 loff_t pos)
384{
385 struct bio_vec bvec, b;
386 struct req_iterator iter;
387 struct iov_iter i;
388 struct page *page;
389 ssize_t len;
390 int ret = 0;
391
392 page = alloc_page(GFP_NOIO);
393 if (unlikely(!page))
394 return -ENOMEM;
395
396 rq_for_each_segment(bvec, rq, iter) {
397 loff_t offset = pos;
398
399 b.bv_page = page;
400 b.bv_offset = 0;
401 b.bv_len = bvec.bv_len;
402
403 iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
404 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
405 if (len < 0) {
406 ret = len;
407 goto out_free_page;
408 }
409
410 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
411 bvec.bv_offset, len, offset >> 9);
412 if (ret)
413 goto out_free_page;
414
415 flush_dcache_page(bvec.bv_page);
416
417 if (len != bvec.bv_len) {
418 struct bio *bio;
419
420 __rq_for_each_bio(bio, rq)
421 zero_fill_bio(bio);
422 break;
423 }
424 }
425
426 ret = 0;
427out_free_page:
428 __free_page(page);
429 return ret;
430}
431
432static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
433 int mode)
434{
435 /*
436 * We use fallocate to manipulate the space mappings used by the image
437 * a.k.a. discard/zerorange. However we do not support this if
438 * encryption is enabled, because it may give an attacker useful
439 * information.
440 */
441 struct file *file = lo->lo_backing_file;
442 struct request_queue *q = lo->lo_queue;
443 int ret;
444
445 mode |= FALLOC_FL_KEEP_SIZE;
446
447 if (!blk_queue_discard(q)) {
448 ret = -EOPNOTSUPP;
449 goto out;
450 }
451
452 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
453 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
454 ret = -EIO;
455 out:
456 return ret;
457}
458
459static int lo_req_flush(struct loop_device *lo, struct request *rq)
460{
461 struct file *file = lo->lo_backing_file;
462 int ret = vfs_fsync(file, 0);
463 if (unlikely(ret && ret != -EINVAL))
464 ret = -EIO;
465
466 return ret;
467}
468
469static void lo_complete_rq(struct request *rq)
470{
471 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
472 blk_status_t ret = BLK_STS_OK;
473
474 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
475 req_op(rq) != REQ_OP_READ) {
476 if (cmd->ret < 0)
477 ret = errno_to_blk_status(cmd->ret);
478 goto end_io;
479 }
480
481 /*
482 * Short READ - if we got some data, advance our request and
483 * retry it. If we got no data, end the rest with EIO.
484 */
485 if (cmd->ret) {
486 blk_update_request(rq, BLK_STS_OK, cmd->ret);
487 cmd->ret = 0;
488 blk_mq_requeue_request(rq, true);
489 } else {
490 if (cmd->use_aio) {
491 struct bio *bio = rq->bio;
492
493 while (bio) {
494 zero_fill_bio(bio);
495 bio = bio->bi_next;
496 }
497 }
498 ret = BLK_STS_IOERR;
499end_io:
500 blk_mq_end_request(rq, ret);
501 }
502}
503
504static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
505{
506 struct request *rq = blk_mq_rq_from_pdu(cmd);
507
508 if (!atomic_dec_and_test(&cmd->ref))
509 return;
510 kfree(cmd->bvec);
511 cmd->bvec = NULL;
512 blk_mq_complete_request(rq);
513}
514
515static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
516{
517 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
518
519 if (cmd->css)
520 css_put(cmd->css);
521 cmd->ret = ret;
522 lo_rw_aio_do_completion(cmd);
523}
524
525static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
526 loff_t pos, bool rw)
527{
528 struct iov_iter iter;
529 struct req_iterator rq_iter;
530 struct bio_vec *bvec;
531 struct request *rq = blk_mq_rq_from_pdu(cmd);
532 struct bio *bio = rq->bio;
533 struct file *file = lo->lo_backing_file;
534 struct bio_vec tmp;
535 unsigned int offset;
536 int nr_bvec = 0;
537 int ret;
538
539 rq_for_each_bvec(tmp, rq, rq_iter)
540 nr_bvec++;
541
542 if (rq->bio != rq->biotail) {
543
544 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
545 GFP_NOIO);
546 if (!bvec)
547 return -EIO;
548 cmd->bvec = bvec;
549
550 /*
551 * The bios of the request may be started from the middle of
552 * the 'bvec' because of bio splitting, so we can't directly
553 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
554 * API will take care of all details for us.
555 */
556 rq_for_each_bvec(tmp, rq, rq_iter) {
557 *bvec = tmp;
558 bvec++;
559 }
560 bvec = cmd->bvec;
561 offset = 0;
562 } else {
563 /*
564 * Same here, this bio may be started from the middle of the
565 * 'bvec' because of bio splitting, so offset from the bvec
566 * must be passed to iov iterator
567 */
568 offset = bio->bi_iter.bi_bvec_done;
569 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
570 }
571 atomic_set(&cmd->ref, 2);
572
573 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
574 iter.iov_offset = offset;
575
576 cmd->iocb.ki_pos = pos;
577 cmd->iocb.ki_filp = file;
578 cmd->iocb.ki_complete = lo_rw_aio_complete;
579 cmd->iocb.ki_flags = IOCB_DIRECT;
580 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
581 if (cmd->css)
582 kthread_associate_blkcg(cmd->css);
583
584 if (rw == WRITE)
585 ret = call_write_iter(file, &cmd->iocb, &iter);
586 else
587 ret = call_read_iter(file, &cmd->iocb, &iter);
588
589 lo_rw_aio_do_completion(cmd);
590 kthread_associate_blkcg(NULL);
591
592 if (ret != -EIOCBQUEUED)
593 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
594 return 0;
595}
596
597static int do_req_filebacked(struct loop_device *lo, struct request *rq)
598{
599 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
600 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
601
602 /*
603 * lo_write_simple and lo_read_simple should have been covered
604 * by io submit style function like lo_rw_aio(), one blocker
605 * is that lo_read_simple() need to call flush_dcache_page after
606 * the page is written from kernel, and it isn't easy to handle
607 * this in io submit style function which submits all segments
608 * of the req at one time. And direct read IO doesn't need to
609 * run flush_dcache_page().
610 */
611 switch (req_op(rq)) {
612 case REQ_OP_FLUSH:
613 return lo_req_flush(lo, rq);
614 case REQ_OP_WRITE_ZEROES:
615 /*
616 * If the caller doesn't want deallocation, call zeroout to
617 * write zeroes the range. Otherwise, punch them out.
618 */
619 return lo_fallocate(lo, rq, pos,
620 (rq->cmd_flags & REQ_NOUNMAP) ?
621 FALLOC_FL_ZERO_RANGE :
622 FALLOC_FL_PUNCH_HOLE);
623 case REQ_OP_DISCARD:
624 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
625 case REQ_OP_WRITE:
626 if (lo->transfer)
627 return lo_write_transfer(lo, rq, pos);
628 else if (cmd->use_aio)
629 return lo_rw_aio(lo, cmd, pos, WRITE);
630 else
631 return lo_write_simple(lo, rq, pos);
632 case REQ_OP_READ:
633 if (lo->transfer)
634 return lo_read_transfer(lo, rq, pos);
635 else if (cmd->use_aio)
636 return lo_rw_aio(lo, cmd, pos, READ);
637 else
638 return lo_read_simple(lo, rq, pos);
639 default:
640 WARN_ON_ONCE(1);
641 return -EIO;
642 }
643}
644
645static inline void loop_update_dio(struct loop_device *lo)
646{
647 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
648 lo->use_dio);
649}
650
651static void loop_reread_partitions(struct loop_device *lo,
652 struct block_device *bdev)
653{
654 int rc;
655
656 mutex_lock(&bdev->bd_mutex);
657 rc = bdev_disk_changed(bdev, false);
658 mutex_unlock(&bdev->bd_mutex);
659 if (rc)
660 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
661 __func__, lo->lo_number, lo->lo_file_name, rc);
662}
663
664static inline int is_loop_device(struct file *file)
665{
666 struct inode *i = file->f_mapping->host;
667
668 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
669}
670
671static int loop_validate_file(struct file *file, struct block_device *bdev)
672{
673 struct inode *inode = file->f_mapping->host;
674 struct file *f = file;
675
676 /* Avoid recursion */
677 while (is_loop_device(f)) {
678 struct loop_device *l;
679
680 if (f->f_mapping->host->i_bdev == bdev)
681 return -EBADF;
682
683 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
684 if (l->lo_state != Lo_bound) {
685 return -EINVAL;
686 }
687 f = l->lo_backing_file;
688 }
689 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
690 return -EINVAL;
691 return 0;
692}
693
694/*
695 * loop_change_fd switched the backing store of a loopback device to
696 * a new file. This is useful for operating system installers to free up
697 * the original file and in High Availability environments to switch to
698 * an alternative location for the content in case of server meltdown.
699 * This can only work if the loop device is used read-only, and if the
700 * new backing store is the same size and type as the old backing store.
701 */
702static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
703 unsigned int arg)
704{
705 struct file *file = NULL, *old_file;
706 int error;
707 bool partscan;
708
709 error = mutex_lock_killable(&loop_ctl_mutex);
710 if (error)
711 return error;
712 error = -ENXIO;
713 if (lo->lo_state != Lo_bound)
714 goto out_err;
715
716 /* the loop device has to be read-only */
717 error = -EINVAL;
718 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
719 goto out_err;
720
721 error = -EBADF;
722 file = fget(arg);
723 if (!file)
724 goto out_err;
725
726 error = loop_validate_file(file, bdev);
727 if (error)
728 goto out_err;
729
730 old_file = lo->lo_backing_file;
731
732 error = -EINVAL;
733
734 /* size of the new backing store needs to be the same */
735 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
736 goto out_err;
737
738 /* and ... switch */
739 blk_mq_freeze_queue(lo->lo_queue);
740 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
741 lo->lo_backing_file = file;
742 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
743 mapping_set_gfp_mask(file->f_mapping,
744 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
745 loop_update_dio(lo);
746 blk_mq_unfreeze_queue(lo->lo_queue);
747 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
748 mutex_unlock(&loop_ctl_mutex);
749 /*
750 * We must drop file reference outside of loop_ctl_mutex as dropping
751 * the file ref can take bd_mutex which creates circular locking
752 * dependency.
753 */
754 fput(old_file);
755 if (partscan)
756 loop_reread_partitions(lo, bdev);
757 return 0;
758
759out_err:
760 mutex_unlock(&loop_ctl_mutex);
761 if (file)
762 fput(file);
763 return error;
764}
765
766/* loop sysfs attributes */
767
768static ssize_t loop_attr_show(struct device *dev, char *page,
769 ssize_t (*callback)(struct loop_device *, char *))
770{
771 struct gendisk *disk = dev_to_disk(dev);
772 struct loop_device *lo = disk->private_data;
773
774 return callback(lo, page);
775}
776
777#define LOOP_ATTR_RO(_name) \
778static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
779static ssize_t loop_attr_do_show_##_name(struct device *d, \
780 struct device_attribute *attr, char *b) \
781{ \
782 return loop_attr_show(d, b, loop_attr_##_name##_show); \
783} \
784static struct device_attribute loop_attr_##_name = \
785 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
786
787static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
788{
789 ssize_t ret;
790 char *p = NULL;
791
792 spin_lock_irq(&lo->lo_lock);
793 if (lo->lo_backing_file)
794 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
795 spin_unlock_irq(&lo->lo_lock);
796
797 if (IS_ERR_OR_NULL(p))
798 ret = PTR_ERR(p);
799 else {
800 ret = strlen(p);
801 memmove(buf, p, ret);
802 buf[ret++] = '\n';
803 buf[ret] = 0;
804 }
805
806 return ret;
807}
808
809static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
810{
811 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
812}
813
814static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
815{
816 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
817}
818
819static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
820{
821 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
822
823 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
824}
825
826static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
827{
828 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
829
830 return sprintf(buf, "%s\n", partscan ? "1" : "0");
831}
832
833static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
834{
835 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
836
837 return sprintf(buf, "%s\n", dio ? "1" : "0");
838}
839
840LOOP_ATTR_RO(backing_file);
841LOOP_ATTR_RO(offset);
842LOOP_ATTR_RO(sizelimit);
843LOOP_ATTR_RO(autoclear);
844LOOP_ATTR_RO(partscan);
845LOOP_ATTR_RO(dio);
846
847static struct attribute *loop_attrs[] = {
848 &loop_attr_backing_file.attr,
849 &loop_attr_offset.attr,
850 &loop_attr_sizelimit.attr,
851 &loop_attr_autoclear.attr,
852 &loop_attr_partscan.attr,
853 &loop_attr_dio.attr,
854 NULL,
855};
856
857static struct attribute_group loop_attribute_group = {
858 .name = "loop",
859 .attrs= loop_attrs,
860};
861
862static void loop_sysfs_init(struct loop_device *lo)
863{
864 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
865 &loop_attribute_group);
866}
867
868static void loop_sysfs_exit(struct loop_device *lo)
869{
870 if (lo->sysfs_inited)
871 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
872 &loop_attribute_group);
873}
874
875static void loop_config_discard(struct loop_device *lo)
876{
877 struct file *file = lo->lo_backing_file;
878 struct inode *inode = file->f_mapping->host;
879 struct request_queue *q = lo->lo_queue;
880
881 /*
882 * If the backing device is a block device, mirror its zeroing
883 * capability. Set the discard sectors to the block device's zeroing
884 * capabilities because loop discards result in blkdev_issue_zeroout(),
885 * not blkdev_issue_discard(). This maintains consistent behavior with
886 * file-backed loop devices: discarded regions read back as zero.
887 */
888 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
889 struct request_queue *backingq;
890
891 backingq = bdev_get_queue(inode->i_bdev);
892 blk_queue_max_discard_sectors(q,
893 backingq->limits.max_write_zeroes_sectors);
894
895 blk_queue_max_write_zeroes_sectors(q,
896 backingq->limits.max_write_zeroes_sectors);
897
898 /*
899 * We use punch hole to reclaim the free space used by the
900 * image a.k.a. discard. However we do not support discard if
901 * encryption is enabled, because it may give an attacker
902 * useful information.
903 */
904 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
905 q->limits.discard_granularity = 0;
906 q->limits.discard_alignment = 0;
907 blk_queue_max_discard_sectors(q, 0);
908 blk_queue_max_write_zeroes_sectors(q, 0);
909
910 } else {
911 q->limits.discard_granularity = inode->i_sb->s_blocksize;
912 q->limits.discard_alignment = 0;
913
914 blk_queue_max_discard_sectors(q, UINT_MAX >> 9);
915 blk_queue_max_write_zeroes_sectors(q, UINT_MAX >> 9);
916 }
917
918 if (q->limits.max_write_zeroes_sectors)
919 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
920 else
921 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
922}
923
924static void loop_unprepare_queue(struct loop_device *lo)
925{
926 kthread_flush_worker(&lo->worker);
927 kthread_stop(lo->worker_task);
928}
929
930static int loop_kthread_worker_fn(void *worker_ptr)
931{
932 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
933 return kthread_worker_fn(worker_ptr);
934}
935
936static int loop_prepare_queue(struct loop_device *lo)
937{
938 kthread_init_worker(&lo->worker);
939 lo->worker_task = kthread_run(loop_kthread_worker_fn,
940 &lo->worker, "loop%d", lo->lo_number);
941 if (IS_ERR(lo->worker_task))
942 return -ENOMEM;
943 set_user_nice(lo->worker_task, MIN_NICE);
944 return 0;
945}
946
947static void loop_update_rotational(struct loop_device *lo)
948{
949 struct file *file = lo->lo_backing_file;
950 struct inode *file_inode = file->f_mapping->host;
951 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
952 struct request_queue *q = lo->lo_queue;
953 bool nonrot = true;
954
955 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
956 if (file_bdev)
957 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
958
959 if (nonrot)
960 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
961 else
962 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
963}
964
965static int
966loop_release_xfer(struct loop_device *lo)
967{
968 int err = 0;
969 struct loop_func_table *xfer = lo->lo_encryption;
970
971 if (xfer) {
972 if (xfer->release)
973 err = xfer->release(lo);
974 lo->transfer = NULL;
975 lo->lo_encryption = NULL;
976 module_put(xfer->owner);
977 }
978 return err;
979}
980
981static int
982loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
983 const struct loop_info64 *i)
984{
985 int err = 0;
986
987 if (xfer) {
988 struct module *owner = xfer->owner;
989
990 if (!try_module_get(owner))
991 return -EINVAL;
992 if (xfer->init)
993 err = xfer->init(lo, i);
994 if (err)
995 module_put(owner);
996 else
997 lo->lo_encryption = xfer;
998 }
999 return err;
1000}
1001
1002/**
1003 * loop_set_status_from_info - configure device from loop_info
1004 * @lo: struct loop_device to configure
1005 * @info: struct loop_info64 to configure the device with
1006 *
1007 * Configures the loop device parameters according to the passed
1008 * in loop_info64 configuration.
1009 */
1010static int
1011loop_set_status_from_info(struct loop_device *lo,
1012 const struct loop_info64 *info)
1013{
1014 int err;
1015 struct loop_func_table *xfer;
1016 kuid_t uid = current_uid();
1017
1018 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1019 return -EINVAL;
1020
1021 err = loop_release_xfer(lo);
1022 if (err)
1023 return err;
1024
1025 if (info->lo_encrypt_type) {
1026 unsigned int type = info->lo_encrypt_type;
1027
1028 if (type >= MAX_LO_CRYPT)
1029 return -EINVAL;
1030 xfer = xfer_funcs[type];
1031 if (xfer == NULL)
1032 return -EINVAL;
1033 } else
1034 xfer = NULL;
1035
1036 err = loop_init_xfer(lo, xfer, info);
1037 if (err)
1038 return err;
1039
1040 lo->lo_offset = info->lo_offset;
1041 lo->lo_sizelimit = info->lo_sizelimit;
1042 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1043 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1044 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1045 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1046
1047 if (!xfer)
1048 xfer = &none_funcs;
1049 lo->transfer = xfer->transfer;
1050 lo->ioctl = xfer->ioctl;
1051
1052 lo->lo_flags = info->lo_flags;
1053
1054 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1055 lo->lo_init[0] = info->lo_init[0];
1056 lo->lo_init[1] = info->lo_init[1];
1057 if (info->lo_encrypt_key_size) {
1058 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1059 info->lo_encrypt_key_size);
1060 lo->lo_key_owner = uid;
1061 }
1062
1063 return 0;
1064}
1065
1066static int loop_configure(struct loop_device *lo, fmode_t mode,
1067 struct block_device *bdev,
1068 const struct loop_config *config)
1069{
1070 struct file *file;
1071 struct inode *inode;
1072 struct address_space *mapping;
1073 struct block_device *claimed_bdev = NULL;
1074 int error;
1075 loff_t size;
1076 bool partscan;
1077 unsigned short bsize;
1078
1079 /* This is safe, since we have a reference from open(). */
1080 __module_get(THIS_MODULE);
1081
1082 error = -EBADF;
1083 file = fget(config->fd);
1084 if (!file)
1085 goto out;
1086
1087 /*
1088 * If we don't hold exclusive handle for the device, upgrade to it
1089 * here to avoid changing device under exclusive owner.
1090 */
1091 if (!(mode & FMODE_EXCL)) {
1092 claimed_bdev = bd_start_claiming(bdev, loop_configure);
1093 if (IS_ERR(claimed_bdev)) {
1094 error = PTR_ERR(claimed_bdev);
1095 goto out_putf;
1096 }
1097 }
1098
1099 error = mutex_lock_killable(&loop_ctl_mutex);
1100 if (error)
1101 goto out_bdev;
1102
1103 error = -EBUSY;
1104 if (lo->lo_state != Lo_unbound)
1105 goto out_unlock;
1106
1107 error = loop_validate_file(file, bdev);
1108 if (error)
1109 goto out_unlock;
1110
1111 mapping = file->f_mapping;
1112 inode = mapping->host;
1113
1114 size = get_loop_size(lo, file);
1115
1116 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1117 error = -EINVAL;
1118 goto out_unlock;
1119 }
1120
1121 if (config->block_size) {
1122 error = loop_validate_block_size(config->block_size);
1123 if (error)
1124 goto out_unlock;
1125 }
1126
1127 error = loop_set_status_from_info(lo, &config->info);
1128 if (error)
1129 goto out_unlock;
1130
1131 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1132 !file->f_op->write_iter)
1133 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1134
1135 error = loop_prepare_queue(lo);
1136 if (error)
1137 goto out_unlock;
1138
1139 set_device_ro(bdev, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1140
1141 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1142 lo->lo_device = bdev;
1143 lo->lo_backing_file = file;
1144 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1145 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1146
1147 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1148 blk_queue_write_cache(lo->lo_queue, true, false);
1149
1150 if (config->block_size)
1151 bsize = config->block_size;
1152 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1153 /* In case of direct I/O, match underlying block size */
1154 bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1155 else
1156 bsize = 512;
1157
1158 blk_queue_logical_block_size(lo->lo_queue, bsize);
1159 blk_queue_physical_block_size(lo->lo_queue, bsize);
1160 blk_queue_io_min(lo->lo_queue, bsize);
1161
1162 loop_update_rotational(lo);
1163 loop_update_dio(lo);
1164 loop_sysfs_init(lo);
1165 loop_set_size(lo, size);
1166
1167 set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1168 block_size(inode->i_bdev) : PAGE_SIZE);
1169
1170 lo->lo_state = Lo_bound;
1171 if (part_shift)
1172 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1173 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1174
1175 /* Grab the block_device to prevent its destruction after we
1176 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1177 */
1178 bdgrab(bdev);
1179 mutex_unlock(&loop_ctl_mutex);
1180 if (partscan)
1181 loop_reread_partitions(lo, bdev);
1182 if (claimed_bdev)
1183 bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1184 return 0;
1185
1186out_unlock:
1187 mutex_unlock(&loop_ctl_mutex);
1188out_bdev:
1189 if (claimed_bdev)
1190 bd_abort_claiming(bdev, claimed_bdev, loop_configure);
1191out_putf:
1192 fput(file);
1193out:
1194 /* This is safe: open() is still holding a reference. */
1195 module_put(THIS_MODULE);
1196 return error;
1197}
1198
1199static int __loop_clr_fd(struct loop_device *lo, bool release)
1200{
1201 struct file *filp = NULL;
1202 gfp_t gfp = lo->old_gfp_mask;
1203 struct block_device *bdev = lo->lo_device;
1204 int err = 0;
1205 bool partscan = false;
1206 int lo_number;
1207
1208 mutex_lock(&loop_ctl_mutex);
1209 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1210 err = -ENXIO;
1211 goto out_unlock;
1212 }
1213
1214 filp = lo->lo_backing_file;
1215 if (filp == NULL) {
1216 err = -EINVAL;
1217 goto out_unlock;
1218 }
1219
1220 /* freeze request queue during the transition */
1221 blk_mq_freeze_queue(lo->lo_queue);
1222
1223 spin_lock_irq(&lo->lo_lock);
1224 lo->lo_backing_file = NULL;
1225 spin_unlock_irq(&lo->lo_lock);
1226
1227 loop_release_xfer(lo);
1228 lo->transfer = NULL;
1229 lo->ioctl = NULL;
1230 lo->lo_device = NULL;
1231 lo->lo_encryption = NULL;
1232 lo->lo_offset = 0;
1233 lo->lo_sizelimit = 0;
1234 lo->lo_encrypt_key_size = 0;
1235 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1236 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1237 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1238 blk_queue_logical_block_size(lo->lo_queue, 512);
1239 blk_queue_physical_block_size(lo->lo_queue, 512);
1240 blk_queue_io_min(lo->lo_queue, 512);
1241 if (bdev) {
1242 bdput(bdev);
1243 invalidate_bdev(bdev);
1244 bdev->bd_inode->i_mapping->wb_err = 0;
1245 }
1246 set_capacity(lo->lo_disk, 0);
1247 loop_sysfs_exit(lo);
1248 if (bdev) {
1249 bd_set_size(bdev, 0);
1250 /* let user-space know about this change */
1251 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1252 }
1253 mapping_set_gfp_mask(filp->f_mapping, gfp);
1254 /* This is safe: open() is still holding a reference. */
1255 module_put(THIS_MODULE);
1256 blk_mq_unfreeze_queue(lo->lo_queue);
1257
1258 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1259 lo_number = lo->lo_number;
1260 loop_unprepare_queue(lo);
1261out_unlock:
1262 mutex_unlock(&loop_ctl_mutex);
1263 if (partscan) {
1264 /*
1265 * bd_mutex has been held already in release path, so don't
1266 * acquire it if this function is called in such case.
1267 *
1268 * If the reread partition isn't from release path, lo_refcnt
1269 * must be at least one and it can only become zero when the
1270 * current holder is released.
1271 */
1272 if (!release)
1273 mutex_lock(&bdev->bd_mutex);
1274 err = bdev_disk_changed(bdev, false);
1275 if (!release)
1276 mutex_unlock(&bdev->bd_mutex);
1277 if (err)
1278 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1279 __func__, lo_number, err);
1280 /* Device is gone, no point in returning error */
1281 err = 0;
1282 }
1283
1284 /*
1285 * lo->lo_state is set to Lo_unbound here after above partscan has
1286 * finished.
1287 *
1288 * There cannot be anybody else entering __loop_clr_fd() as
1289 * lo->lo_backing_file is already cleared and Lo_rundown state
1290 * protects us from all the other places trying to change the 'lo'
1291 * device.
1292 */
1293 mutex_lock(&loop_ctl_mutex);
1294 lo->lo_flags = 0;
1295 if (!part_shift)
1296 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1297 lo->lo_state = Lo_unbound;
1298 mutex_unlock(&loop_ctl_mutex);
1299
1300 /*
1301 * Need not hold loop_ctl_mutex to fput backing file.
1302 * Calling fput holding loop_ctl_mutex triggers a circular
1303 * lock dependency possibility warning as fput can take
1304 * bd_mutex which is usually taken before loop_ctl_mutex.
1305 */
1306 if (filp)
1307 fput(filp);
1308 return err;
1309}
1310
1311static int loop_clr_fd(struct loop_device *lo)
1312{
1313 int err;
1314
1315 err = mutex_lock_killable(&loop_ctl_mutex);
1316 if (err)
1317 return err;
1318 if (lo->lo_state != Lo_bound) {
1319 mutex_unlock(&loop_ctl_mutex);
1320 return -ENXIO;
1321 }
1322 /*
1323 * If we've explicitly asked to tear down the loop device,
1324 * and it has an elevated reference count, set it for auto-teardown when
1325 * the last reference goes away. This stops $!~#$@ udev from
1326 * preventing teardown because it decided that it needs to run blkid on
1327 * the loopback device whenever they appear. xfstests is notorious for
1328 * failing tests because blkid via udev races with a losetup
1329 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1330 * command to fail with EBUSY.
1331 */
1332 if (atomic_read(&lo->lo_refcnt) > 1) {
1333 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1334 mutex_unlock(&loop_ctl_mutex);
1335 return 0;
1336 }
1337 lo->lo_state = Lo_rundown;
1338 mutex_unlock(&loop_ctl_mutex);
1339
1340 return __loop_clr_fd(lo, false);
1341}
1342
1343static int
1344loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1345{
1346 int err;
1347 struct block_device *bdev;
1348 kuid_t uid = current_uid();
1349 int prev_lo_flags;
1350 bool partscan = false;
1351 bool size_changed = false;
1352
1353 err = mutex_lock_killable(&loop_ctl_mutex);
1354 if (err)
1355 return err;
1356 if (lo->lo_encrypt_key_size &&
1357 !uid_eq(lo->lo_key_owner, uid) &&
1358 !capable(CAP_SYS_ADMIN)) {
1359 err = -EPERM;
1360 goto out_unlock;
1361 }
1362 if (lo->lo_state != Lo_bound) {
1363 err = -ENXIO;
1364 goto out_unlock;
1365 }
1366
1367 if (lo->lo_offset != info->lo_offset ||
1368 lo->lo_sizelimit != info->lo_sizelimit) {
1369 size_changed = true;
1370 sync_blockdev(lo->lo_device);
1371 invalidate_bdev(lo->lo_device);
1372 }
1373
1374 /* I/O need to be drained during transfer transition */
1375 blk_mq_freeze_queue(lo->lo_queue);
1376
1377 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1378 /* If any pages were dirtied after invalidate_bdev(), try again */
1379 err = -EAGAIN;
1380 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1381 __func__, lo->lo_number, lo->lo_file_name,
1382 lo->lo_device->bd_inode->i_mapping->nrpages);
1383 goto out_unfreeze;
1384 }
1385
1386 prev_lo_flags = lo->lo_flags;
1387
1388 err = loop_set_status_from_info(lo, info);
1389 if (err)
1390 goto out_unfreeze;
1391
1392 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1393 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1394 /* For those flags, use the previous values instead */
1395 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1396 /* For flags that can't be cleared, use previous values too */
1397 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1398
1399 if (size_changed) {
1400 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1401 lo->lo_backing_file);
1402 loop_set_size(lo, new_size);
1403 }
1404
1405 loop_config_discard(lo);
1406
1407 /* update dio if lo_offset or transfer is changed */
1408 __loop_update_dio(lo, lo->use_dio);
1409
1410out_unfreeze:
1411 blk_mq_unfreeze_queue(lo->lo_queue);
1412
1413 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1414 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1415 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1416 bdev = lo->lo_device;
1417 partscan = true;
1418 }
1419out_unlock:
1420 mutex_unlock(&loop_ctl_mutex);
1421 if (partscan)
1422 loop_reread_partitions(lo, bdev);
1423
1424 return err;
1425}
1426
1427static int
1428loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1429{
1430 struct path path;
1431 struct kstat stat;
1432 int ret;
1433
1434 ret = mutex_lock_killable(&loop_ctl_mutex);
1435 if (ret)
1436 return ret;
1437 if (lo->lo_state != Lo_bound) {
1438 mutex_unlock(&loop_ctl_mutex);
1439 return -ENXIO;
1440 }
1441
1442 memset(info, 0, sizeof(*info));
1443 info->lo_number = lo->lo_number;
1444 info->lo_offset = lo->lo_offset;
1445 info->lo_sizelimit = lo->lo_sizelimit;
1446 info->lo_flags = lo->lo_flags;
1447 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1448 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1449 info->lo_encrypt_type =
1450 lo->lo_encryption ? lo->lo_encryption->number : 0;
1451 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1452 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1453 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1454 lo->lo_encrypt_key_size);
1455 }
1456
1457 /* Drop loop_ctl_mutex while we call into the filesystem. */
1458 path = lo->lo_backing_file->f_path;
1459 path_get(&path);
1460 mutex_unlock(&loop_ctl_mutex);
1461 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1462 if (!ret) {
1463 info->lo_device = huge_encode_dev(stat.dev);
1464 info->lo_inode = stat.ino;
1465 info->lo_rdevice = huge_encode_dev(stat.rdev);
1466 }
1467 path_put(&path);
1468 return ret;
1469}
1470
1471static void
1472loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1473{
1474 memset(info64, 0, sizeof(*info64));
1475 info64->lo_number = info->lo_number;
1476 info64->lo_device = info->lo_device;
1477 info64->lo_inode = info->lo_inode;
1478 info64->lo_rdevice = info->lo_rdevice;
1479 info64->lo_offset = info->lo_offset;
1480 info64->lo_sizelimit = 0;
1481 info64->lo_encrypt_type = info->lo_encrypt_type;
1482 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1483 info64->lo_flags = info->lo_flags;
1484 info64->lo_init[0] = info->lo_init[0];
1485 info64->lo_init[1] = info->lo_init[1];
1486 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1487 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1488 else
1489 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1490 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1491}
1492
1493static int
1494loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1495{
1496 memset(info, 0, sizeof(*info));
1497 info->lo_number = info64->lo_number;
1498 info->lo_device = info64->lo_device;
1499 info->lo_inode = info64->lo_inode;
1500 info->lo_rdevice = info64->lo_rdevice;
1501 info->lo_offset = info64->lo_offset;
1502 info->lo_encrypt_type = info64->lo_encrypt_type;
1503 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1504 info->lo_flags = info64->lo_flags;
1505 info->lo_init[0] = info64->lo_init[0];
1506 info->lo_init[1] = info64->lo_init[1];
1507 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1508 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1509 else
1510 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1511 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1512
1513 /* error in case values were truncated */
1514 if (info->lo_device != info64->lo_device ||
1515 info->lo_rdevice != info64->lo_rdevice ||
1516 info->lo_inode != info64->lo_inode ||
1517 info->lo_offset != info64->lo_offset)
1518 return -EOVERFLOW;
1519
1520 return 0;
1521}
1522
1523static int
1524loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1525{
1526 struct loop_info info;
1527 struct loop_info64 info64;
1528
1529 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1530 return -EFAULT;
1531 loop_info64_from_old(&info, &info64);
1532 return loop_set_status(lo, &info64);
1533}
1534
1535static int
1536loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1537{
1538 struct loop_info64 info64;
1539
1540 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1541 return -EFAULT;
1542 return loop_set_status(lo, &info64);
1543}
1544
1545static int
1546loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1547 struct loop_info info;
1548 struct loop_info64 info64;
1549 int err;
1550
1551 if (!arg)
1552 return -EINVAL;
1553 err = loop_get_status(lo, &info64);
1554 if (!err)
1555 err = loop_info64_to_old(&info64, &info);
1556 if (!err && copy_to_user(arg, &info, sizeof(info)))
1557 err = -EFAULT;
1558
1559 return err;
1560}
1561
1562static int
1563loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1564 struct loop_info64 info64;
1565 int err;
1566
1567 if (!arg)
1568 return -EINVAL;
1569 err = loop_get_status(lo, &info64);
1570 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1571 err = -EFAULT;
1572
1573 return err;
1574}
1575
1576static int loop_set_capacity(struct loop_device *lo)
1577{
1578 loff_t size;
1579
1580 if (unlikely(lo->lo_state != Lo_bound))
1581 return -ENXIO;
1582
1583 size = get_loop_size(lo, lo->lo_backing_file);
1584 loop_set_size(lo, size);
1585
1586 return 0;
1587}
1588
1589static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1590{
1591 int error = -ENXIO;
1592 if (lo->lo_state != Lo_bound)
1593 goto out;
1594
1595 __loop_update_dio(lo, !!arg);
1596 if (lo->use_dio == !!arg)
1597 return 0;
1598 error = -EINVAL;
1599 out:
1600 return error;
1601}
1602
1603static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1604{
1605 int err = 0;
1606
1607 if (lo->lo_state != Lo_bound)
1608 return -ENXIO;
1609
1610 err = loop_validate_block_size(arg);
1611 if (err)
1612 return err;
1613
1614 if (lo->lo_queue->limits.logical_block_size == arg)
1615 return 0;
1616
1617 sync_blockdev(lo->lo_device);
1618 invalidate_bdev(lo->lo_device);
1619
1620 blk_mq_freeze_queue(lo->lo_queue);
1621
1622 /* invalidate_bdev should have truncated all the pages */
1623 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1624 err = -EAGAIN;
1625 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1626 __func__, lo->lo_number, lo->lo_file_name,
1627 lo->lo_device->bd_inode->i_mapping->nrpages);
1628 goto out_unfreeze;
1629 }
1630
1631 blk_queue_logical_block_size(lo->lo_queue, arg);
1632 blk_queue_physical_block_size(lo->lo_queue, arg);
1633 blk_queue_io_min(lo->lo_queue, arg);
1634 loop_update_dio(lo);
1635out_unfreeze:
1636 blk_mq_unfreeze_queue(lo->lo_queue);
1637
1638 return err;
1639}
1640
1641static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1642 unsigned long arg)
1643{
1644 int err;
1645
1646 err = mutex_lock_killable(&loop_ctl_mutex);
1647 if (err)
1648 return err;
1649 switch (cmd) {
1650 case LOOP_SET_CAPACITY:
1651 err = loop_set_capacity(lo);
1652 break;
1653 case LOOP_SET_DIRECT_IO:
1654 err = loop_set_dio(lo, arg);
1655 break;
1656 case LOOP_SET_BLOCK_SIZE:
1657 err = loop_set_block_size(lo, arg);
1658 break;
1659 default:
1660 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1661 }
1662 mutex_unlock(&loop_ctl_mutex);
1663 return err;
1664}
1665
1666static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1667 unsigned int cmd, unsigned long arg)
1668{
1669 struct loop_device *lo = bdev->bd_disk->private_data;
1670 void __user *argp = (void __user *) arg;
1671 int err;
1672
1673 switch (cmd) {
1674 case LOOP_SET_FD: {
1675 /*
1676 * Legacy case - pass in a zeroed out struct loop_config with
1677 * only the file descriptor set , which corresponds with the
1678 * default parameters we'd have used otherwise.
1679 */
1680 struct loop_config config;
1681
1682 memset(&config, 0, sizeof(config));
1683 config.fd = arg;
1684
1685 return loop_configure(lo, mode, bdev, &config);
1686 }
1687 case LOOP_CONFIGURE: {
1688 struct loop_config config;
1689
1690 if (copy_from_user(&config, argp, sizeof(config)))
1691 return -EFAULT;
1692
1693 return loop_configure(lo, mode, bdev, &config);
1694 }
1695 case LOOP_CHANGE_FD:
1696 return loop_change_fd(lo, bdev, arg);
1697 case LOOP_CLR_FD:
1698 return loop_clr_fd(lo);
1699 case LOOP_SET_STATUS:
1700 err = -EPERM;
1701 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1702 err = loop_set_status_old(lo, argp);
1703 }
1704 break;
1705 case LOOP_GET_STATUS:
1706 return loop_get_status_old(lo, argp);
1707 case LOOP_SET_STATUS64:
1708 err = -EPERM;
1709 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1710 err = loop_set_status64(lo, argp);
1711 }
1712 break;
1713 case LOOP_GET_STATUS64:
1714 return loop_get_status64(lo, argp);
1715 case LOOP_SET_CAPACITY:
1716 case LOOP_SET_DIRECT_IO:
1717 case LOOP_SET_BLOCK_SIZE:
1718 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1719 return -EPERM;
1720 /* Fall through */
1721 default:
1722 err = lo_simple_ioctl(lo, cmd, arg);
1723 break;
1724 }
1725
1726 return err;
1727}
1728
1729#ifdef CONFIG_COMPAT
1730struct compat_loop_info {
1731 compat_int_t lo_number; /* ioctl r/o */
1732 compat_dev_t lo_device; /* ioctl r/o */
1733 compat_ulong_t lo_inode; /* ioctl r/o */
1734 compat_dev_t lo_rdevice; /* ioctl r/o */
1735 compat_int_t lo_offset;
1736 compat_int_t lo_encrypt_type;
1737 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1738 compat_int_t lo_flags; /* ioctl r/o */
1739 char lo_name[LO_NAME_SIZE];
1740 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1741 compat_ulong_t lo_init[2];
1742 char reserved[4];
1743};
1744
1745/*
1746 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1747 * - noinlined to reduce stack space usage in main part of driver
1748 */
1749static noinline int
1750loop_info64_from_compat(const struct compat_loop_info __user *arg,
1751 struct loop_info64 *info64)
1752{
1753 struct compat_loop_info info;
1754
1755 if (copy_from_user(&info, arg, sizeof(info)))
1756 return -EFAULT;
1757
1758 memset(info64, 0, sizeof(*info64));
1759 info64->lo_number = info.lo_number;
1760 info64->lo_device = info.lo_device;
1761 info64->lo_inode = info.lo_inode;
1762 info64->lo_rdevice = info.lo_rdevice;
1763 info64->lo_offset = info.lo_offset;
1764 info64->lo_sizelimit = 0;
1765 info64->lo_encrypt_type = info.lo_encrypt_type;
1766 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1767 info64->lo_flags = info.lo_flags;
1768 info64->lo_init[0] = info.lo_init[0];
1769 info64->lo_init[1] = info.lo_init[1];
1770 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1771 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1772 else
1773 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1774 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1775 return 0;
1776}
1777
1778/*
1779 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1780 * - noinlined to reduce stack space usage in main part of driver
1781 */
1782static noinline int
1783loop_info64_to_compat(const struct loop_info64 *info64,
1784 struct compat_loop_info __user *arg)
1785{
1786 struct compat_loop_info info;
1787
1788 memset(&info, 0, sizeof(info));
1789 info.lo_number = info64->lo_number;
1790 info.lo_device = info64->lo_device;
1791 info.lo_inode = info64->lo_inode;
1792 info.lo_rdevice = info64->lo_rdevice;
1793 info.lo_offset = info64->lo_offset;
1794 info.lo_encrypt_type = info64->lo_encrypt_type;
1795 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1796 info.lo_flags = info64->lo_flags;
1797 info.lo_init[0] = info64->lo_init[0];
1798 info.lo_init[1] = info64->lo_init[1];
1799 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1800 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1801 else
1802 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1803 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1804
1805 /* error in case values were truncated */
1806 if (info.lo_device != info64->lo_device ||
1807 info.lo_rdevice != info64->lo_rdevice ||
1808 info.lo_inode != info64->lo_inode ||
1809 info.lo_offset != info64->lo_offset ||
1810 info.lo_init[0] != info64->lo_init[0] ||
1811 info.lo_init[1] != info64->lo_init[1])
1812 return -EOVERFLOW;
1813
1814 if (copy_to_user(arg, &info, sizeof(info)))
1815 return -EFAULT;
1816 return 0;
1817}
1818
1819static int
1820loop_set_status_compat(struct loop_device *lo,
1821 const struct compat_loop_info __user *arg)
1822{
1823 struct loop_info64 info64;
1824 int ret;
1825
1826 ret = loop_info64_from_compat(arg, &info64);
1827 if (ret < 0)
1828 return ret;
1829 return loop_set_status(lo, &info64);
1830}
1831
1832static int
1833loop_get_status_compat(struct loop_device *lo,
1834 struct compat_loop_info __user *arg)
1835{
1836 struct loop_info64 info64;
1837 int err;
1838
1839 if (!arg)
1840 return -EINVAL;
1841 err = loop_get_status(lo, &info64);
1842 if (!err)
1843 err = loop_info64_to_compat(&info64, arg);
1844 return err;
1845}
1846
1847static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1848 unsigned int cmd, unsigned long arg)
1849{
1850 struct loop_device *lo = bdev->bd_disk->private_data;
1851 int err;
1852
1853 switch(cmd) {
1854 case LOOP_SET_STATUS:
1855 err = loop_set_status_compat(lo,
1856 (const struct compat_loop_info __user *)arg);
1857 break;
1858 case LOOP_GET_STATUS:
1859 err = loop_get_status_compat(lo,
1860 (struct compat_loop_info __user *)arg);
1861 break;
1862 case LOOP_SET_CAPACITY:
1863 case LOOP_CLR_FD:
1864 case LOOP_GET_STATUS64:
1865 case LOOP_SET_STATUS64:
1866 case LOOP_CONFIGURE:
1867 arg = (unsigned long) compat_ptr(arg);
1868 /* fall through */
1869 case LOOP_SET_FD:
1870 case LOOP_CHANGE_FD:
1871 case LOOP_SET_BLOCK_SIZE:
1872 case LOOP_SET_DIRECT_IO:
1873 err = lo_ioctl(bdev, mode, cmd, arg);
1874 break;
1875 default:
1876 err = -ENOIOCTLCMD;
1877 break;
1878 }
1879 return err;
1880}
1881#endif
1882
1883static int lo_open(struct block_device *bdev, fmode_t mode)
1884{
1885 struct loop_device *lo;
1886 int err;
1887
1888 err = mutex_lock_killable(&loop_ctl_mutex);
1889 if (err)
1890 return err;
1891 lo = bdev->bd_disk->private_data;
1892 if (!lo) {
1893 err = -ENXIO;
1894 goto out;
1895 }
1896
1897 atomic_inc(&lo->lo_refcnt);
1898out:
1899 mutex_unlock(&loop_ctl_mutex);
1900 return err;
1901}
1902
1903static void lo_release(struct gendisk *disk, fmode_t mode)
1904{
1905 struct loop_device *lo;
1906
1907 mutex_lock(&loop_ctl_mutex);
1908 lo = disk->private_data;
1909 if (atomic_dec_return(&lo->lo_refcnt))
1910 goto out_unlock;
1911
1912 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1913 if (lo->lo_state != Lo_bound)
1914 goto out_unlock;
1915 lo->lo_state = Lo_rundown;
1916 mutex_unlock(&loop_ctl_mutex);
1917 /*
1918 * In autoclear mode, stop the loop thread
1919 * and remove configuration after last close.
1920 */
1921 __loop_clr_fd(lo, true);
1922 return;
1923 } else if (lo->lo_state == Lo_bound) {
1924 /*
1925 * Otherwise keep thread (if running) and config,
1926 * but flush possible ongoing bios in thread.
1927 */
1928 blk_mq_freeze_queue(lo->lo_queue);
1929 blk_mq_unfreeze_queue(lo->lo_queue);
1930 }
1931
1932out_unlock:
1933 mutex_unlock(&loop_ctl_mutex);
1934}
1935
1936static const struct block_device_operations lo_fops = {
1937 .owner = THIS_MODULE,
1938 .open = lo_open,
1939 .release = lo_release,
1940 .ioctl = lo_ioctl,
1941#ifdef CONFIG_COMPAT
1942 .compat_ioctl = lo_compat_ioctl,
1943#endif
1944};
1945
1946/*
1947 * And now the modules code and kernel interface.
1948 */
1949static int max_loop;
1950module_param(max_loop, int, 0444);
1951MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1952module_param(max_part, int, 0444);
1953MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1954MODULE_LICENSE("GPL");
1955MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1956
1957int loop_register_transfer(struct loop_func_table *funcs)
1958{
1959 unsigned int n = funcs->number;
1960
1961 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1962 return -EINVAL;
1963 xfer_funcs[n] = funcs;
1964 return 0;
1965}
1966
1967static int unregister_transfer_cb(int id, void *ptr, void *data)
1968{
1969 struct loop_device *lo = ptr;
1970 struct loop_func_table *xfer = data;
1971
1972 mutex_lock(&loop_ctl_mutex);
1973 if (lo->lo_encryption == xfer)
1974 loop_release_xfer(lo);
1975 mutex_unlock(&loop_ctl_mutex);
1976 return 0;
1977}
1978
1979int loop_unregister_transfer(int number)
1980{
1981 unsigned int n = number;
1982 struct loop_func_table *xfer;
1983
1984 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1985 return -EINVAL;
1986
1987 xfer_funcs[n] = NULL;
1988 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1989 return 0;
1990}
1991
1992EXPORT_SYMBOL(loop_register_transfer);
1993EXPORT_SYMBOL(loop_unregister_transfer);
1994
1995static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1996 const struct blk_mq_queue_data *bd)
1997{
1998 struct request *rq = bd->rq;
1999 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2000 struct loop_device *lo = rq->q->queuedata;
2001
2002 blk_mq_start_request(rq);
2003
2004 if (lo->lo_state != Lo_bound)
2005 return BLK_STS_IOERR;
2006
2007 switch (req_op(rq)) {
2008 case REQ_OP_FLUSH:
2009 case REQ_OP_DISCARD:
2010 case REQ_OP_WRITE_ZEROES:
2011 cmd->use_aio = false;
2012 break;
2013 default:
2014 cmd->use_aio = lo->use_dio;
2015 break;
2016 }
2017
2018 /* always use the first bio's css */
2019#ifdef CONFIG_BLK_CGROUP
2020 if (cmd->use_aio && rq->bio && rq->bio->bi_blkg) {
2021 cmd->css = &bio_blkcg(rq->bio)->css;
2022 css_get(cmd->css);
2023 } else
2024#endif
2025 cmd->css = NULL;
2026 kthread_queue_work(&lo->worker, &cmd->work);
2027
2028 return BLK_STS_OK;
2029}
2030
2031static void loop_handle_cmd(struct loop_cmd *cmd)
2032{
2033 struct request *rq = blk_mq_rq_from_pdu(cmd);
2034 const bool write = op_is_write(req_op(rq));
2035 struct loop_device *lo = rq->q->queuedata;
2036 int ret = 0;
2037
2038 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2039 ret = -EIO;
2040 goto failed;
2041 }
2042
2043 ret = do_req_filebacked(lo, rq);
2044 failed:
2045 /* complete non-aio request */
2046 if (!cmd->use_aio || ret) {
2047 if (ret == -EOPNOTSUPP)
2048 cmd->ret = ret;
2049 else
2050 cmd->ret = ret ? -EIO : 0;
2051 blk_mq_complete_request(rq);
2052 }
2053}
2054
2055static void loop_queue_work(struct kthread_work *work)
2056{
2057 struct loop_cmd *cmd =
2058 container_of(work, struct loop_cmd, work);
2059
2060 loop_handle_cmd(cmd);
2061}
2062
2063static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
2064 unsigned int hctx_idx, unsigned int numa_node)
2065{
2066 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2067
2068 kthread_init_work(&cmd->work, loop_queue_work);
2069 return 0;
2070}
2071
2072static const struct blk_mq_ops loop_mq_ops = {
2073 .queue_rq = loop_queue_rq,
2074 .init_request = loop_init_request,
2075 .complete = lo_complete_rq,
2076};
2077
2078static int loop_add(struct loop_device **l, int i)
2079{
2080 struct loop_device *lo;
2081 struct gendisk *disk;
2082 int err;
2083
2084 err = -ENOMEM;
2085 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2086 if (!lo)
2087 goto out;
2088
2089 lo->lo_state = Lo_unbound;
2090
2091 /* allocate id, if @id >= 0, we're requesting that specific id */
2092 if (i >= 0) {
2093 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2094 if (err == -ENOSPC)
2095 err = -EEXIST;
2096 } else {
2097 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2098 }
2099 if (err < 0)
2100 goto out_free_dev;
2101 i = err;
2102
2103 err = -ENOMEM;
2104 lo->tag_set.ops = &loop_mq_ops;
2105 lo->tag_set.nr_hw_queues = 1;
2106 lo->tag_set.queue_depth = 128;
2107 lo->tag_set.numa_node = NUMA_NO_NODE;
2108 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2109 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2110 lo->tag_set.driver_data = lo;
2111
2112 err = blk_mq_alloc_tag_set(&lo->tag_set);
2113 if (err)
2114 goto out_free_idr;
2115
2116 lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
2117 if (IS_ERR(lo->lo_queue)) {
2118 err = PTR_ERR(lo->lo_queue);
2119 goto out_cleanup_tags;
2120 }
2121 lo->lo_queue->queuedata = lo;
2122
2123 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2124
2125 /*
2126 * By default, we do buffer IO, so it doesn't make sense to enable
2127 * merge because the I/O submitted to backing file is handled page by
2128 * page. For directio mode, merge does help to dispatch bigger request
2129 * to underlayer disk. We will enable merge once directio is enabled.
2130 */
2131 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2132
2133 err = -ENOMEM;
2134 disk = lo->lo_disk = alloc_disk(1 << part_shift);
2135 if (!disk)
2136 goto out_free_queue;
2137
2138 /*
2139 * Disable partition scanning by default. The in-kernel partition
2140 * scanning can be requested individually per-device during its
2141 * setup. Userspace can always add and remove partitions from all
2142 * devices. The needed partition minors are allocated from the
2143 * extended minor space, the main loop device numbers will continue
2144 * to match the loop minors, regardless of the number of partitions
2145 * used.
2146 *
2147 * If max_part is given, partition scanning is globally enabled for
2148 * all loop devices. The minors for the main loop devices will be
2149 * multiples of max_part.
2150 *
2151 * Note: Global-for-all-devices, set-only-at-init, read-only module
2152 * parameteters like 'max_loop' and 'max_part' make things needlessly
2153 * complicated, are too static, inflexible and may surprise
2154 * userspace tools. Parameters like this in general should be avoided.
2155 */
2156 if (!part_shift)
2157 disk->flags |= GENHD_FL_NO_PART_SCAN;
2158 disk->flags |= GENHD_FL_EXT_DEVT;
2159 atomic_set(&lo->lo_refcnt, 0);
2160 lo->lo_number = i;
2161 spin_lock_init(&lo->lo_lock);
2162 disk->major = LOOP_MAJOR;
2163 disk->first_minor = i << part_shift;
2164 disk->fops = &lo_fops;
2165 disk->private_data = lo;
2166 disk->queue = lo->lo_queue;
2167 sprintf(disk->disk_name, "loop%d", i);
2168 add_disk(disk);
2169 *l = lo;
2170 return lo->lo_number;
2171
2172out_free_queue:
2173 blk_cleanup_queue(lo->lo_queue);
2174out_cleanup_tags:
2175 blk_mq_free_tag_set(&lo->tag_set);
2176out_free_idr:
2177 idr_remove(&loop_index_idr, i);
2178out_free_dev:
2179 kfree(lo);
2180out:
2181 return err;
2182}
2183
2184static void loop_remove(struct loop_device *lo)
2185{
2186 del_gendisk(lo->lo_disk);
2187 blk_cleanup_queue(lo->lo_queue);
2188 blk_mq_free_tag_set(&lo->tag_set);
2189 put_disk(lo->lo_disk);
2190 kfree(lo);
2191}
2192
2193static int find_free_cb(int id, void *ptr, void *data)
2194{
2195 struct loop_device *lo = ptr;
2196 struct loop_device **l = data;
2197
2198 if (lo->lo_state == Lo_unbound) {
2199 *l = lo;
2200 return 1;
2201 }
2202 return 0;
2203}
2204
2205static int loop_lookup(struct loop_device **l, int i)
2206{
2207 struct loop_device *lo;
2208 int ret = -ENODEV;
2209
2210 if (i < 0) {
2211 int err;
2212
2213 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2214 if (err == 1) {
2215 *l = lo;
2216 ret = lo->lo_number;
2217 }
2218 goto out;
2219 }
2220
2221 /* lookup and return a specific i */
2222 lo = idr_find(&loop_index_idr, i);
2223 if (lo) {
2224 *l = lo;
2225 ret = lo->lo_number;
2226 }
2227out:
2228 return ret;
2229}
2230
2231static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2232{
2233 struct loop_device *lo;
2234 struct kobject *kobj;
2235 int err;
2236
2237 mutex_lock(&loop_ctl_mutex);
2238 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2239 if (err < 0)
2240 err = loop_add(&lo, MINOR(dev) >> part_shift);
2241 if (err < 0)
2242 kobj = NULL;
2243 else
2244 kobj = get_disk_and_module(lo->lo_disk);
2245 mutex_unlock(&loop_ctl_mutex);
2246
2247 *part = 0;
2248 return kobj;
2249}
2250
2251static long loop_control_ioctl(struct file *file, unsigned int cmd,
2252 unsigned long parm)
2253{
2254 struct loop_device *lo;
2255 int ret;
2256
2257 ret = mutex_lock_killable(&loop_ctl_mutex);
2258 if (ret)
2259 return ret;
2260
2261 ret = -ENOSYS;
2262 switch (cmd) {
2263 case LOOP_CTL_ADD:
2264 ret = loop_lookup(&lo, parm);
2265 if (ret >= 0) {
2266 ret = -EEXIST;
2267 break;
2268 }
2269 ret = loop_add(&lo, parm);
2270 break;
2271 case LOOP_CTL_REMOVE:
2272 ret = loop_lookup(&lo, parm);
2273 if (ret < 0)
2274 break;
2275 if (lo->lo_state != Lo_unbound) {
2276 ret = -EBUSY;
2277 break;
2278 }
2279 if (atomic_read(&lo->lo_refcnt) > 0) {
2280 ret = -EBUSY;
2281 break;
2282 }
2283 lo->lo_disk->private_data = NULL;
2284 idr_remove(&loop_index_idr, lo->lo_number);
2285 loop_remove(lo);
2286 break;
2287 case LOOP_CTL_GET_FREE:
2288 ret = loop_lookup(&lo, -1);
2289 if (ret >= 0)
2290 break;
2291 ret = loop_add(&lo, -1);
2292 }
2293 mutex_unlock(&loop_ctl_mutex);
2294
2295 return ret;
2296}
2297
2298static const struct file_operations loop_ctl_fops = {
2299 .open = nonseekable_open,
2300 .unlocked_ioctl = loop_control_ioctl,
2301 .compat_ioctl = loop_control_ioctl,
2302 .owner = THIS_MODULE,
2303 .llseek = noop_llseek,
2304};
2305
2306static struct miscdevice loop_misc = {
2307 .minor = LOOP_CTRL_MINOR,
2308 .name = "loop-control",
2309 .fops = &loop_ctl_fops,
2310};
2311
2312MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2313MODULE_ALIAS("devname:loop-control");
2314
2315static int __init loop_init(void)
2316{
2317 int i, nr;
2318 unsigned long range;
2319 struct loop_device *lo;
2320 int err;
2321
2322 part_shift = 0;
2323 if (max_part > 0) {
2324 part_shift = fls(max_part);
2325
2326 /*
2327 * Adjust max_part according to part_shift as it is exported
2328 * to user space so that user can decide correct minor number
2329 * if [s]he want to create more devices.
2330 *
2331 * Note that -1 is required because partition 0 is reserved
2332 * for the whole disk.
2333 */
2334 max_part = (1UL << part_shift) - 1;
2335 }
2336
2337 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2338 err = -EINVAL;
2339 goto err_out;
2340 }
2341
2342 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2343 err = -EINVAL;
2344 goto err_out;
2345 }
2346
2347 /*
2348 * If max_loop is specified, create that many devices upfront.
2349 * This also becomes a hard limit. If max_loop is not specified,
2350 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2351 * init time. Loop devices can be requested on-demand with the
2352 * /dev/loop-control interface, or be instantiated by accessing
2353 * a 'dead' device node.
2354 */
2355 if (max_loop) {
2356 nr = max_loop;
2357 range = max_loop << part_shift;
2358 } else {
2359 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2360 range = 1UL << MINORBITS;
2361 }
2362
2363 err = misc_register(&loop_misc);
2364 if (err < 0)
2365 goto err_out;
2366
2367
2368 if (register_blkdev(LOOP_MAJOR, "loop")) {
2369 err = -EIO;
2370 goto misc_out;
2371 }
2372
2373 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2374 THIS_MODULE, loop_probe, NULL, NULL);
2375
2376 /* pre-create number of devices given by config or max_loop */
2377 mutex_lock(&loop_ctl_mutex);
2378 for (i = 0; i < nr; i++)
2379 loop_add(&lo, i);
2380 mutex_unlock(&loop_ctl_mutex);
2381
2382 printk(KERN_INFO "loop: module loaded\n");
2383 return 0;
2384
2385misc_out:
2386 misc_deregister(&loop_misc);
2387err_out:
2388 return err;
2389}
2390
2391static int loop_exit_cb(int id, void *ptr, void *data)
2392{
2393 struct loop_device *lo = ptr;
2394
2395 loop_remove(lo);
2396 return 0;
2397}
2398
2399static void __exit loop_exit(void)
2400{
2401 unsigned long range;
2402
2403 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2404
2405 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2406 idr_destroy(&loop_index_idr);
2407
2408 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2409 unregister_blkdev(LOOP_MAJOR, "loop");
2410
2411 misc_deregister(&loop_misc);
2412}
2413
2414module_init(loop_init);
2415module_exit(loop_exit);
2416
2417#ifndef MODULE
2418static int __init max_loop_setup(char *str)
2419{
2420 max_loop = simple_strtol(str, NULL, 0);
2421 return 1;
2422}
2423
2424__setup("max_loop=", max_loop_setup);
2425#endif