Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct io_bitmap;
11struct vm86;
12
13#include <asm/math_emu.h>
14#include <asm/segment.h>
15#include <asm/types.h>
16#include <uapi/asm/sigcontext.h>
17#include <asm/current.h>
18#include <asm/cpufeatures.h>
19#include <asm/page.h>
20#include <asm/pgtable_types.h>
21#include <asm/percpu.h>
22#include <asm/msr.h>
23#include <asm/desc_defs.h>
24#include <asm/nops.h>
25#include <asm/special_insns.h>
26#include <asm/fpu/types.h>
27#include <asm/unwind_hints.h>
28#include <asm/vmxfeatures.h>
29#include <asm/vdso/processor.h>
30
31#include <linux/personality.h>
32#include <linux/cache.h>
33#include <linux/threads.h>
34#include <linux/math64.h>
35#include <linux/err.h>
36#include <linux/irqflags.h>
37#include <linux/mem_encrypt.h>
38
39/*
40 * We handle most unaligned accesses in hardware. On the other hand
41 * unaligned DMA can be quite expensive on some Nehalem processors.
42 *
43 * Based on this we disable the IP header alignment in network drivers.
44 */
45#define NET_IP_ALIGN 0
46
47#define HBP_NUM 4
48
49/*
50 * These alignment constraints are for performance in the vSMP case,
51 * but in the task_struct case we must also meet hardware imposed
52 * alignment requirements of the FPU state:
53 */
54#ifdef CONFIG_X86_VSMP
55# define ARCH_MIN_TASKALIGN (1 << INTERNODE_CACHE_SHIFT)
56# define ARCH_MIN_MMSTRUCT_ALIGN (1 << INTERNODE_CACHE_SHIFT)
57#else
58# define ARCH_MIN_TASKALIGN __alignof__(union fpregs_state)
59# define ARCH_MIN_MMSTRUCT_ALIGN 0
60#endif
61
62enum tlb_infos {
63 ENTRIES,
64 NR_INFO
65};
66
67extern u16 __read_mostly tlb_lli_4k[NR_INFO];
68extern u16 __read_mostly tlb_lli_2m[NR_INFO];
69extern u16 __read_mostly tlb_lli_4m[NR_INFO];
70extern u16 __read_mostly tlb_lld_4k[NR_INFO];
71extern u16 __read_mostly tlb_lld_2m[NR_INFO];
72extern u16 __read_mostly tlb_lld_4m[NR_INFO];
73extern u16 __read_mostly tlb_lld_1g[NR_INFO];
74
75/*
76 * CPU type and hardware bug flags. Kept separately for each CPU.
77 * Members of this structure are referenced in head_32.S, so think twice
78 * before touching them. [mj]
79 */
80
81struct cpuinfo_x86 {
82 __u8 x86; /* CPU family */
83 __u8 x86_vendor; /* CPU vendor */
84 __u8 x86_model;
85 __u8 x86_stepping;
86#ifdef CONFIG_X86_64
87 /* Number of 4K pages in DTLB/ITLB combined(in pages): */
88 int x86_tlbsize;
89#endif
90#ifdef CONFIG_X86_VMX_FEATURE_NAMES
91 __u32 vmx_capability[NVMXINTS];
92#endif
93 __u8 x86_virt_bits;
94 __u8 x86_phys_bits;
95 /* CPUID returned core id bits: */
96 __u8 x86_coreid_bits;
97 __u8 cu_id;
98 /* Max extended CPUID function supported: */
99 __u32 extended_cpuid_level;
100 /* Maximum supported CPUID level, -1=no CPUID: */
101 int cpuid_level;
102 /*
103 * Align to size of unsigned long because the x86_capability array
104 * is passed to bitops which require the alignment. Use unnamed
105 * union to enforce the array is aligned to size of unsigned long.
106 */
107 union {
108 __u32 x86_capability[NCAPINTS + NBUGINTS];
109 unsigned long x86_capability_alignment;
110 };
111 char x86_vendor_id[16];
112 char x86_model_id[64];
113 /* in KB - valid for CPUS which support this call: */
114 unsigned int x86_cache_size;
115 int x86_cache_alignment; /* In bytes */
116 /* Cache QoS architectural values, valid only on the BSP: */
117 int x86_cache_max_rmid; /* max index */
118 int x86_cache_occ_scale; /* scale to bytes */
119 int x86_cache_mbm_width_offset;
120 int x86_power;
121 unsigned long loops_per_jiffy;
122 /* cpuid returned max cores value: */
123 u16 x86_max_cores;
124 u16 apicid;
125 u16 initial_apicid;
126 u16 x86_clflush_size;
127 /* number of cores as seen by the OS: */
128 u16 booted_cores;
129 /* Physical processor id: */
130 u16 phys_proc_id;
131 /* Logical processor id: */
132 u16 logical_proc_id;
133 /* Core id: */
134 u16 cpu_core_id;
135 u16 cpu_die_id;
136 u16 logical_die_id;
137 /* Index into per_cpu list: */
138 u16 cpu_index;
139 u32 microcode;
140 /* Address space bits used by the cache internally */
141 u8 x86_cache_bits;
142 unsigned initialized : 1;
143} __randomize_layout;
144
145struct cpuid_regs {
146 u32 eax, ebx, ecx, edx;
147};
148
149enum cpuid_regs_idx {
150 CPUID_EAX = 0,
151 CPUID_EBX,
152 CPUID_ECX,
153 CPUID_EDX,
154};
155
156#define X86_VENDOR_INTEL 0
157#define X86_VENDOR_CYRIX 1
158#define X86_VENDOR_AMD 2
159#define X86_VENDOR_UMC 3
160#define X86_VENDOR_CENTAUR 5
161#define X86_VENDOR_TRANSMETA 7
162#define X86_VENDOR_NSC 8
163#define X86_VENDOR_HYGON 9
164#define X86_VENDOR_ZHAOXIN 10
165#define X86_VENDOR_NUM 11
166
167#define X86_VENDOR_UNKNOWN 0xff
168
169/*
170 * capabilities of CPUs
171 */
172extern struct cpuinfo_x86 boot_cpu_data;
173extern struct cpuinfo_x86 new_cpu_data;
174
175extern __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
176extern __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
177
178#ifdef CONFIG_SMP
179DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
180#define cpu_data(cpu) per_cpu(cpu_info, cpu)
181#else
182#define cpu_info boot_cpu_data
183#define cpu_data(cpu) boot_cpu_data
184#endif
185
186extern const struct seq_operations cpuinfo_op;
187
188#define cache_line_size() (boot_cpu_data.x86_cache_alignment)
189
190extern void cpu_detect(struct cpuinfo_x86 *c);
191
192static inline unsigned long long l1tf_pfn_limit(void)
193{
194 return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
195}
196
197extern void early_cpu_init(void);
198extern void identify_boot_cpu(void);
199extern void identify_secondary_cpu(struct cpuinfo_x86 *);
200extern void print_cpu_info(struct cpuinfo_x86 *);
201void print_cpu_msr(struct cpuinfo_x86 *);
202
203#ifdef CONFIG_X86_32
204extern int have_cpuid_p(void);
205#else
206static inline int have_cpuid_p(void)
207{
208 return 1;
209}
210#endif
211static inline void native_cpuid(unsigned int *eax, unsigned int *ebx,
212 unsigned int *ecx, unsigned int *edx)
213{
214 /* ecx is often an input as well as an output. */
215 asm volatile("cpuid"
216 : "=a" (*eax),
217 "=b" (*ebx),
218 "=c" (*ecx),
219 "=d" (*edx)
220 : "0" (*eax), "2" (*ecx)
221 : "memory");
222}
223
224#define native_cpuid_reg(reg) \
225static inline unsigned int native_cpuid_##reg(unsigned int op) \
226{ \
227 unsigned int eax = op, ebx, ecx = 0, edx; \
228 \
229 native_cpuid(&eax, &ebx, &ecx, &edx); \
230 \
231 return reg; \
232}
233
234/*
235 * Native CPUID functions returning a single datum.
236 */
237native_cpuid_reg(eax)
238native_cpuid_reg(ebx)
239native_cpuid_reg(ecx)
240native_cpuid_reg(edx)
241
242/*
243 * Friendlier CR3 helpers.
244 */
245static inline unsigned long read_cr3_pa(void)
246{
247 return __read_cr3() & CR3_ADDR_MASK;
248}
249
250static inline unsigned long native_read_cr3_pa(void)
251{
252 return __native_read_cr3() & CR3_ADDR_MASK;
253}
254
255static inline void load_cr3(pgd_t *pgdir)
256{
257 write_cr3(__sme_pa(pgdir));
258}
259
260/*
261 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
262 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
263 * unrelated to the task-switch mechanism:
264 */
265#ifdef CONFIG_X86_32
266/* This is the TSS defined by the hardware. */
267struct x86_hw_tss {
268 unsigned short back_link, __blh;
269 unsigned long sp0;
270 unsigned short ss0, __ss0h;
271 unsigned long sp1;
272
273 /*
274 * We don't use ring 1, so ss1 is a convenient scratch space in
275 * the same cacheline as sp0. We use ss1 to cache the value in
276 * MSR_IA32_SYSENTER_CS. When we context switch
277 * MSR_IA32_SYSENTER_CS, we first check if the new value being
278 * written matches ss1, and, if it's not, then we wrmsr the new
279 * value and update ss1.
280 *
281 * The only reason we context switch MSR_IA32_SYSENTER_CS is
282 * that we set it to zero in vm86 tasks to avoid corrupting the
283 * stack if we were to go through the sysenter path from vm86
284 * mode.
285 */
286 unsigned short ss1; /* MSR_IA32_SYSENTER_CS */
287
288 unsigned short __ss1h;
289 unsigned long sp2;
290 unsigned short ss2, __ss2h;
291 unsigned long __cr3;
292 unsigned long ip;
293 unsigned long flags;
294 unsigned long ax;
295 unsigned long cx;
296 unsigned long dx;
297 unsigned long bx;
298 unsigned long sp;
299 unsigned long bp;
300 unsigned long si;
301 unsigned long di;
302 unsigned short es, __esh;
303 unsigned short cs, __csh;
304 unsigned short ss, __ssh;
305 unsigned short ds, __dsh;
306 unsigned short fs, __fsh;
307 unsigned short gs, __gsh;
308 unsigned short ldt, __ldth;
309 unsigned short trace;
310 unsigned short io_bitmap_base;
311
312} __attribute__((packed));
313#else
314struct x86_hw_tss {
315 u32 reserved1;
316 u64 sp0;
317
318 /*
319 * We store cpu_current_top_of_stack in sp1 so it's always accessible.
320 * Linux does not use ring 1, so sp1 is not otherwise needed.
321 */
322 u64 sp1;
323
324 /*
325 * Since Linux does not use ring 2, the 'sp2' slot is unused by
326 * hardware. entry_SYSCALL_64 uses it as scratch space to stash
327 * the user RSP value.
328 */
329 u64 sp2;
330
331 u64 reserved2;
332 u64 ist[7];
333 u32 reserved3;
334 u32 reserved4;
335 u16 reserved5;
336 u16 io_bitmap_base;
337
338} __attribute__((packed));
339#endif
340
341/*
342 * IO-bitmap sizes:
343 */
344#define IO_BITMAP_BITS 65536
345#define IO_BITMAP_BYTES (IO_BITMAP_BITS / BITS_PER_BYTE)
346#define IO_BITMAP_LONGS (IO_BITMAP_BYTES / sizeof(long))
347
348#define IO_BITMAP_OFFSET_VALID_MAP \
349 (offsetof(struct tss_struct, io_bitmap.bitmap) - \
350 offsetof(struct tss_struct, x86_tss))
351
352#define IO_BITMAP_OFFSET_VALID_ALL \
353 (offsetof(struct tss_struct, io_bitmap.mapall) - \
354 offsetof(struct tss_struct, x86_tss))
355
356#ifdef CONFIG_X86_IOPL_IOPERM
357/*
358 * sizeof(unsigned long) coming from an extra "long" at the end of the
359 * iobitmap. The limit is inclusive, i.e. the last valid byte.
360 */
361# define __KERNEL_TSS_LIMIT \
362 (IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
363 sizeof(unsigned long) - 1)
364#else
365# define __KERNEL_TSS_LIMIT \
366 (offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
367#endif
368
369/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
370#define IO_BITMAP_OFFSET_INVALID (__KERNEL_TSS_LIMIT + 1)
371
372struct entry_stack {
373 char stack[PAGE_SIZE];
374};
375
376struct entry_stack_page {
377 struct entry_stack stack;
378} __aligned(PAGE_SIZE);
379
380/*
381 * All IO bitmap related data stored in the TSS:
382 */
383struct x86_io_bitmap {
384 /* The sequence number of the last active bitmap. */
385 u64 prev_sequence;
386
387 /*
388 * Store the dirty size of the last io bitmap offender. The next
389 * one will have to do the cleanup as the switch out to a non io
390 * bitmap user will just set x86_tss.io_bitmap_base to a value
391 * outside of the TSS limit. So for sane tasks there is no need to
392 * actually touch the io_bitmap at all.
393 */
394 unsigned int prev_max;
395
396 /*
397 * The extra 1 is there because the CPU will access an
398 * additional byte beyond the end of the IO permission
399 * bitmap. The extra byte must be all 1 bits, and must
400 * be within the limit.
401 */
402 unsigned long bitmap[IO_BITMAP_LONGS + 1];
403
404 /*
405 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
406 * except the additional byte at the end.
407 */
408 unsigned long mapall[IO_BITMAP_LONGS + 1];
409};
410
411struct tss_struct {
412 /*
413 * The fixed hardware portion. This must not cross a page boundary
414 * at risk of violating the SDM's advice and potentially triggering
415 * errata.
416 */
417 struct x86_hw_tss x86_tss;
418
419 struct x86_io_bitmap io_bitmap;
420} __aligned(PAGE_SIZE);
421
422DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
423
424/* Per CPU interrupt stacks */
425struct irq_stack {
426 char stack[IRQ_STACK_SIZE];
427} __aligned(IRQ_STACK_SIZE);
428
429DECLARE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
430
431#ifdef CONFIG_X86_32
432DECLARE_PER_CPU(unsigned long, cpu_current_top_of_stack);
433#else
434/* The RO copy can't be accessed with this_cpu_xyz(), so use the RW copy. */
435#define cpu_current_top_of_stack cpu_tss_rw.x86_tss.sp1
436#endif
437
438#ifdef CONFIG_X86_64
439struct fixed_percpu_data {
440 /*
441 * GCC hardcodes the stack canary as %gs:40. Since the
442 * irq_stack is the object at %gs:0, we reserve the bottom
443 * 48 bytes of the irq stack for the canary.
444 */
445 char gs_base[40];
446 unsigned long stack_canary;
447};
448
449DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
450DECLARE_INIT_PER_CPU(fixed_percpu_data);
451
452static inline unsigned long cpu_kernelmode_gs_base(int cpu)
453{
454 return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
455}
456
457DECLARE_PER_CPU(unsigned int, irq_count);
458extern asmlinkage void ignore_sysret(void);
459
460#if IS_ENABLED(CONFIG_KVM)
461/* Save actual FS/GS selectors and bases to current->thread */
462void save_fsgs_for_kvm(void);
463#endif
464#else /* X86_64 */
465#ifdef CONFIG_STACKPROTECTOR
466/*
467 * Make sure stack canary segment base is cached-aligned:
468 * "For Intel Atom processors, avoid non zero segment base address
469 * that is not aligned to cache line boundary at all cost."
470 * (Optim Ref Manual Assembly/Compiler Coding Rule 15.)
471 */
472struct stack_canary {
473 char __pad[20]; /* canary at %gs:20 */
474 unsigned long canary;
475};
476DECLARE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
477#endif
478/* Per CPU softirq stack pointer */
479DECLARE_PER_CPU(struct irq_stack *, softirq_stack_ptr);
480#endif /* X86_64 */
481
482extern unsigned int fpu_kernel_xstate_size;
483extern unsigned int fpu_user_xstate_size;
484
485struct perf_event;
486
487typedef struct {
488 unsigned long seg;
489} mm_segment_t;
490
491struct thread_struct {
492 /* Cached TLS descriptors: */
493 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
494#ifdef CONFIG_X86_32
495 unsigned long sp0;
496#endif
497 unsigned long sp;
498#ifdef CONFIG_X86_32
499 unsigned long sysenter_cs;
500#else
501 unsigned short es;
502 unsigned short ds;
503 unsigned short fsindex;
504 unsigned short gsindex;
505#endif
506
507#ifdef CONFIG_X86_64
508 unsigned long fsbase;
509 unsigned long gsbase;
510#else
511 /*
512 * XXX: this could presumably be unsigned short. Alternatively,
513 * 32-bit kernels could be taught to use fsindex instead.
514 */
515 unsigned long fs;
516 unsigned long gs;
517#endif
518
519 /* Save middle states of ptrace breakpoints */
520 struct perf_event *ptrace_bps[HBP_NUM];
521 /* Debug status used for traps, single steps, etc... */
522 unsigned long debugreg6;
523 /* Keep track of the exact dr7 value set by the user */
524 unsigned long ptrace_dr7;
525 /* Fault info: */
526 unsigned long cr2;
527 unsigned long trap_nr;
528 unsigned long error_code;
529#ifdef CONFIG_VM86
530 /* Virtual 86 mode info */
531 struct vm86 *vm86;
532#endif
533 /* IO permissions: */
534 struct io_bitmap *io_bitmap;
535
536 /*
537 * IOPL. Priviledge level dependent I/O permission which is
538 * emulated via the I/O bitmap to prevent user space from disabling
539 * interrupts.
540 */
541 unsigned long iopl_emul;
542
543 mm_segment_t addr_limit;
544
545 unsigned int sig_on_uaccess_err:1;
546
547 /* Floating point and extended processor state */
548 struct fpu fpu;
549 /*
550 * WARNING: 'fpu' is dynamically-sized. It *MUST* be at
551 * the end.
552 */
553};
554
555/* Whitelist the FPU state from the task_struct for hardened usercopy. */
556static inline void arch_thread_struct_whitelist(unsigned long *offset,
557 unsigned long *size)
558{
559 *offset = offsetof(struct thread_struct, fpu.state);
560 *size = fpu_kernel_xstate_size;
561}
562
563/*
564 * Thread-synchronous status.
565 *
566 * This is different from the flags in that nobody else
567 * ever touches our thread-synchronous status, so we don't
568 * have to worry about atomic accesses.
569 */
570#define TS_COMPAT 0x0002 /* 32bit syscall active (64BIT)*/
571
572static inline void
573native_load_sp0(unsigned long sp0)
574{
575 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
576}
577
578static inline void native_swapgs(void)
579{
580#ifdef CONFIG_X86_64
581 asm volatile("swapgs" ::: "memory");
582#endif
583}
584
585static inline unsigned long current_top_of_stack(void)
586{
587 /*
588 * We can't read directly from tss.sp0: sp0 on x86_32 is special in
589 * and around vm86 mode and sp0 on x86_64 is special because of the
590 * entry trampoline.
591 */
592 return this_cpu_read_stable(cpu_current_top_of_stack);
593}
594
595static inline bool on_thread_stack(void)
596{
597 return (unsigned long)(current_top_of_stack() -
598 current_stack_pointer) < THREAD_SIZE;
599}
600
601#ifdef CONFIG_PARAVIRT_XXL
602#include <asm/paravirt.h>
603#else
604#define __cpuid native_cpuid
605
606static inline void load_sp0(unsigned long sp0)
607{
608 native_load_sp0(sp0);
609}
610
611#endif /* CONFIG_PARAVIRT_XXL */
612
613/* Free all resources held by a thread. */
614extern void release_thread(struct task_struct *);
615
616unsigned long get_wchan(struct task_struct *p);
617
618/*
619 * Generic CPUID function
620 * clear %ecx since some cpus (Cyrix MII) do not set or clear %ecx
621 * resulting in stale register contents being returned.
622 */
623static inline void cpuid(unsigned int op,
624 unsigned int *eax, unsigned int *ebx,
625 unsigned int *ecx, unsigned int *edx)
626{
627 *eax = op;
628 *ecx = 0;
629 __cpuid(eax, ebx, ecx, edx);
630}
631
632/* Some CPUID calls want 'count' to be placed in ecx */
633static inline void cpuid_count(unsigned int op, int count,
634 unsigned int *eax, unsigned int *ebx,
635 unsigned int *ecx, unsigned int *edx)
636{
637 *eax = op;
638 *ecx = count;
639 __cpuid(eax, ebx, ecx, edx);
640}
641
642/*
643 * CPUID functions returning a single datum
644 */
645static inline unsigned int cpuid_eax(unsigned int op)
646{
647 unsigned int eax, ebx, ecx, edx;
648
649 cpuid(op, &eax, &ebx, &ecx, &edx);
650
651 return eax;
652}
653
654static inline unsigned int cpuid_ebx(unsigned int op)
655{
656 unsigned int eax, ebx, ecx, edx;
657
658 cpuid(op, &eax, &ebx, &ecx, &edx);
659
660 return ebx;
661}
662
663static inline unsigned int cpuid_ecx(unsigned int op)
664{
665 unsigned int eax, ebx, ecx, edx;
666
667 cpuid(op, &eax, &ebx, &ecx, &edx);
668
669 return ecx;
670}
671
672static inline unsigned int cpuid_edx(unsigned int op)
673{
674 unsigned int eax, ebx, ecx, edx;
675
676 cpuid(op, &eax, &ebx, &ecx, &edx);
677
678 return edx;
679}
680
681/*
682 * This function forces the icache and prefetched instruction stream to
683 * catch up with reality in two very specific cases:
684 *
685 * a) Text was modified using one virtual address and is about to be executed
686 * from the same physical page at a different virtual address.
687 *
688 * b) Text was modified on a different CPU, may subsequently be
689 * executed on this CPU, and you want to make sure the new version
690 * gets executed. This generally means you're calling this in a IPI.
691 *
692 * If you're calling this for a different reason, you're probably doing
693 * it wrong.
694 */
695static inline void sync_core(void)
696{
697 /*
698 * There are quite a few ways to do this. IRET-to-self is nice
699 * because it works on every CPU, at any CPL (so it's compatible
700 * with paravirtualization), and it never exits to a hypervisor.
701 * The only down sides are that it's a bit slow (it seems to be
702 * a bit more than 2x slower than the fastest options) and that
703 * it unmasks NMIs. The "push %cs" is needed because, in
704 * paravirtual environments, __KERNEL_CS may not be a valid CS
705 * value when we do IRET directly.
706 *
707 * In case NMI unmasking or performance ever becomes a problem,
708 * the next best option appears to be MOV-to-CR2 and an
709 * unconditional jump. That sequence also works on all CPUs,
710 * but it will fault at CPL3 (i.e. Xen PV).
711 *
712 * CPUID is the conventional way, but it's nasty: it doesn't
713 * exist on some 486-like CPUs, and it usually exits to a
714 * hypervisor.
715 *
716 * Like all of Linux's memory ordering operations, this is a
717 * compiler barrier as well.
718 */
719#ifdef CONFIG_X86_32
720 asm volatile (
721 "pushfl\n\t"
722 "pushl %%cs\n\t"
723 "pushl $1f\n\t"
724 "iret\n\t"
725 "1:"
726 : ASM_CALL_CONSTRAINT : : "memory");
727#else
728 unsigned int tmp;
729
730 asm volatile (
731 "mov %%ss, %0\n\t"
732 "pushq %q0\n\t"
733 "pushq %%rsp\n\t"
734 "addq $8, (%%rsp)\n\t"
735 "pushfq\n\t"
736 "mov %%cs, %0\n\t"
737 "pushq %q0\n\t"
738 "pushq $1f\n\t"
739 "iretq\n\t"
740 "1:"
741 : "=&r" (tmp), ASM_CALL_CONSTRAINT : : "cc", "memory");
742#endif
743}
744
745extern void select_idle_routine(const struct cpuinfo_x86 *c);
746extern void amd_e400_c1e_apic_setup(void);
747
748extern unsigned long boot_option_idle_override;
749
750enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
751 IDLE_POLL};
752
753extern void enable_sep_cpu(void);
754extern int sysenter_setup(void);
755
756
757/* Defined in head.S */
758extern struct desc_ptr early_gdt_descr;
759
760extern void switch_to_new_gdt(int);
761extern void load_direct_gdt(int);
762extern void load_fixmap_gdt(int);
763extern void load_percpu_segment(int);
764extern void cpu_init(void);
765extern void cr4_init(void);
766
767static inline unsigned long get_debugctlmsr(void)
768{
769 unsigned long debugctlmsr = 0;
770
771#ifndef CONFIG_X86_DEBUGCTLMSR
772 if (boot_cpu_data.x86 < 6)
773 return 0;
774#endif
775 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
776
777 return debugctlmsr;
778}
779
780static inline void update_debugctlmsr(unsigned long debugctlmsr)
781{
782#ifndef CONFIG_X86_DEBUGCTLMSR
783 if (boot_cpu_data.x86 < 6)
784 return;
785#endif
786 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
787}
788
789extern void set_task_blockstep(struct task_struct *task, bool on);
790
791/* Boot loader type from the setup header: */
792extern int bootloader_type;
793extern int bootloader_version;
794
795extern char ignore_fpu_irq;
796
797#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
798#define ARCH_HAS_PREFETCHW
799#define ARCH_HAS_SPINLOCK_PREFETCH
800
801#ifdef CONFIG_X86_32
802# define BASE_PREFETCH ""
803# define ARCH_HAS_PREFETCH
804#else
805# define BASE_PREFETCH "prefetcht0 %P1"
806#endif
807
808/*
809 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
810 *
811 * It's not worth to care about 3dnow prefetches for the K6
812 * because they are microcoded there and very slow.
813 */
814static inline void prefetch(const void *x)
815{
816 alternative_input(BASE_PREFETCH, "prefetchnta %P1",
817 X86_FEATURE_XMM,
818 "m" (*(const char *)x));
819}
820
821/*
822 * 3dnow prefetch to get an exclusive cache line.
823 * Useful for spinlocks to avoid one state transition in the
824 * cache coherency protocol:
825 */
826static __always_inline void prefetchw(const void *x)
827{
828 alternative_input(BASE_PREFETCH, "prefetchw %P1",
829 X86_FEATURE_3DNOWPREFETCH,
830 "m" (*(const char *)x));
831}
832
833static inline void spin_lock_prefetch(const void *x)
834{
835 prefetchw(x);
836}
837
838#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
839 TOP_OF_KERNEL_STACK_PADDING)
840
841#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
842
843#define task_pt_regs(task) \
844({ \
845 unsigned long __ptr = (unsigned long)task_stack_page(task); \
846 __ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING; \
847 ((struct pt_regs *)__ptr) - 1; \
848})
849
850#ifdef CONFIG_X86_32
851/*
852 * User space process size: 3GB (default).
853 */
854#define IA32_PAGE_OFFSET PAGE_OFFSET
855#define TASK_SIZE PAGE_OFFSET
856#define TASK_SIZE_LOW TASK_SIZE
857#define TASK_SIZE_MAX TASK_SIZE
858#define DEFAULT_MAP_WINDOW TASK_SIZE
859#define STACK_TOP TASK_SIZE
860#define STACK_TOP_MAX STACK_TOP
861
862#define INIT_THREAD { \
863 .sp0 = TOP_OF_INIT_STACK, \
864 .sysenter_cs = __KERNEL_CS, \
865 .addr_limit = KERNEL_DS, \
866}
867
868#define KSTK_ESP(task) (task_pt_regs(task)->sp)
869
870#else
871/*
872 * User space process size. This is the first address outside the user range.
873 * There are a few constraints that determine this:
874 *
875 * On Intel CPUs, if a SYSCALL instruction is at the highest canonical
876 * address, then that syscall will enter the kernel with a
877 * non-canonical return address, and SYSRET will explode dangerously.
878 * We avoid this particular problem by preventing anything executable
879 * from being mapped at the maximum canonical address.
880 *
881 * On AMD CPUs in the Ryzen family, there's a nasty bug in which the
882 * CPUs malfunction if they execute code from the highest canonical page.
883 * They'll speculate right off the end of the canonical space, and
884 * bad things happen. This is worked around in the same way as the
885 * Intel problem.
886 *
887 * With page table isolation enabled, we map the LDT in ... [stay tuned]
888 */
889#define TASK_SIZE_MAX ((1UL << __VIRTUAL_MASK_SHIFT) - PAGE_SIZE)
890
891#define DEFAULT_MAP_WINDOW ((1UL << 47) - PAGE_SIZE)
892
893/* This decides where the kernel will search for a free chunk of vm
894 * space during mmap's.
895 */
896#define IA32_PAGE_OFFSET ((current->personality & ADDR_LIMIT_3GB) ? \
897 0xc0000000 : 0xFFFFe000)
898
899#define TASK_SIZE_LOW (test_thread_flag(TIF_ADDR32) ? \
900 IA32_PAGE_OFFSET : DEFAULT_MAP_WINDOW)
901#define TASK_SIZE (test_thread_flag(TIF_ADDR32) ? \
902 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
903#define TASK_SIZE_OF(child) ((test_tsk_thread_flag(child, TIF_ADDR32)) ? \
904 IA32_PAGE_OFFSET : TASK_SIZE_MAX)
905
906#define STACK_TOP TASK_SIZE_LOW
907#define STACK_TOP_MAX TASK_SIZE_MAX
908
909#define INIT_THREAD { \
910 .addr_limit = KERNEL_DS, \
911}
912
913extern unsigned long KSTK_ESP(struct task_struct *task);
914
915#endif /* CONFIG_X86_64 */
916
917extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
918 unsigned long new_sp);
919
920/*
921 * This decides where the kernel will search for a free chunk of vm
922 * space during mmap's.
923 */
924#define __TASK_UNMAPPED_BASE(task_size) (PAGE_ALIGN(task_size / 3))
925#define TASK_UNMAPPED_BASE __TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
926
927#define KSTK_EIP(task) (task_pt_regs(task)->ip)
928
929/* Get/set a process' ability to use the timestamp counter instruction */
930#define GET_TSC_CTL(adr) get_tsc_mode((adr))
931#define SET_TSC_CTL(val) set_tsc_mode((val))
932
933extern int get_tsc_mode(unsigned long adr);
934extern int set_tsc_mode(unsigned int val);
935
936DECLARE_PER_CPU(u64, msr_misc_features_shadow);
937
938#ifdef CONFIG_CPU_SUP_AMD
939extern u16 amd_get_nb_id(int cpu);
940extern u32 amd_get_nodes_per_socket(void);
941#else
942static inline u16 amd_get_nb_id(int cpu) { return 0; }
943static inline u32 amd_get_nodes_per_socket(void) { return 0; }
944#endif
945
946static inline uint32_t hypervisor_cpuid_base(const char *sig, uint32_t leaves)
947{
948 uint32_t base, eax, signature[3];
949
950 for (base = 0x40000000; base < 0x40010000; base += 0x100) {
951 cpuid(base, &eax, &signature[0], &signature[1], &signature[2]);
952
953 if (!memcmp(sig, signature, 12) &&
954 (leaves == 0 || ((eax - base) >= leaves)))
955 return base;
956 }
957
958 return 0;
959}
960
961extern unsigned long arch_align_stack(unsigned long sp);
962void free_init_pages(const char *what, unsigned long begin, unsigned long end);
963extern void free_kernel_image_pages(const char *what, void *begin, void *end);
964
965void default_idle(void);
966#ifdef CONFIG_XEN
967bool xen_set_default_idle(void);
968#else
969#define xen_set_default_idle 0
970#endif
971
972void stop_this_cpu(void *dummy);
973void microcode_check(void);
974
975enum l1tf_mitigations {
976 L1TF_MITIGATION_OFF,
977 L1TF_MITIGATION_FLUSH_NOWARN,
978 L1TF_MITIGATION_FLUSH,
979 L1TF_MITIGATION_FLUSH_NOSMT,
980 L1TF_MITIGATION_FULL,
981 L1TF_MITIGATION_FULL_FORCE
982};
983
984extern enum l1tf_mitigations l1tf_mitigation;
985
986enum mds_mitigations {
987 MDS_MITIGATION_OFF,
988 MDS_MITIGATION_FULL,
989 MDS_MITIGATION_VMWERV,
990};
991
992#endif /* _ASM_X86_PROCESSOR_H */