at v5.8 481 lines 12 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6#ifndef _ASM_RISCV_PGTABLE_H 7#define _ASM_RISCV_PGTABLE_H 8 9#include <linux/mmzone.h> 10#include <linux/sizes.h> 11 12#include <asm/pgtable-bits.h> 13 14#ifndef __ASSEMBLY__ 15 16/* Page Upper Directory not used in RISC-V */ 17#include <asm-generic/pgtable-nopud.h> 18#include <asm/page.h> 19#include <asm/tlbflush.h> 20#include <linux/mm_types.h> 21 22#ifdef CONFIG_MMU 23 24#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 25#define VMALLOC_END (PAGE_OFFSET - 1) 26#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 27 28#define BPF_JIT_REGION_SIZE (SZ_128M) 29#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 30#define BPF_JIT_REGION_END (VMALLOC_END) 31 32/* 33 * Roughly size the vmemmap space to be large enough to fit enough 34 * struct pages to map half the virtual address space. Then 35 * position vmemmap directly below the VMALLOC region. 36 */ 37#define VMEMMAP_SHIFT \ 38 (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 39#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 40#define VMEMMAP_END (VMALLOC_START - 1) 41#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 42 43/* 44 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 45 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 46 */ 47#define vmemmap ((struct page *)VMEMMAP_START) 48 49#define PCI_IO_SIZE SZ_16M 50#define PCI_IO_END VMEMMAP_START 51#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 52 53#define FIXADDR_TOP PCI_IO_START 54#ifdef CONFIG_64BIT 55#define FIXADDR_SIZE PMD_SIZE 56#else 57#define FIXADDR_SIZE PGDIR_SIZE 58#endif 59#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 60 61#endif 62 63#ifdef CONFIG_64BIT 64#include <asm/pgtable-64.h> 65#else 66#include <asm/pgtable-32.h> 67#endif /* CONFIG_64BIT */ 68 69#ifdef CONFIG_MMU 70/* Number of entries in the page global directory */ 71#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 72/* Number of entries in the page table */ 73#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 74 75/* Number of PGD entries that a user-mode program can use */ 76#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 77 78/* Page protection bits */ 79#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 80 81#define PAGE_NONE __pgprot(_PAGE_PROT_NONE) 82#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 83#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 84#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 85#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 86#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 87 _PAGE_EXEC | _PAGE_WRITE) 88 89#define PAGE_COPY PAGE_READ 90#define PAGE_COPY_EXEC PAGE_EXEC 91#define PAGE_COPY_READ_EXEC PAGE_READ_EXEC 92#define PAGE_SHARED PAGE_WRITE 93#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 94 95#define _PAGE_KERNEL (_PAGE_READ \ 96 | _PAGE_WRITE \ 97 | _PAGE_PRESENT \ 98 | _PAGE_ACCESSED \ 99 | _PAGE_DIRTY) 100 101#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 102#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 103 104#define PAGE_TABLE __pgprot(_PAGE_TABLE) 105 106/* 107 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't 108 * change the properties of memory regions. 109 */ 110#define _PAGE_IOREMAP _PAGE_KERNEL 111 112extern pgd_t swapper_pg_dir[]; 113 114/* MAP_PRIVATE permissions: xwr (copy-on-write) */ 115#define __P000 PAGE_NONE 116#define __P001 PAGE_READ 117#define __P010 PAGE_COPY 118#define __P011 PAGE_COPY 119#define __P100 PAGE_EXEC 120#define __P101 PAGE_READ_EXEC 121#define __P110 PAGE_COPY_EXEC 122#define __P111 PAGE_COPY_READ_EXEC 123 124/* MAP_SHARED permissions: xwr */ 125#define __S000 PAGE_NONE 126#define __S001 PAGE_READ 127#define __S010 PAGE_SHARED 128#define __S011 PAGE_SHARED 129#define __S100 PAGE_EXEC 130#define __S101 PAGE_READ_EXEC 131#define __S110 PAGE_SHARED_EXEC 132#define __S111 PAGE_SHARED_EXEC 133 134static inline int pmd_present(pmd_t pmd) 135{ 136 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 137} 138 139static inline int pmd_none(pmd_t pmd) 140{ 141 return (pmd_val(pmd) == 0); 142} 143 144static inline int pmd_bad(pmd_t pmd) 145{ 146 return !pmd_present(pmd); 147} 148 149#define pmd_leaf pmd_leaf 150static inline int pmd_leaf(pmd_t pmd) 151{ 152 return pmd_present(pmd) && 153 (pmd_val(pmd) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)); 154} 155 156static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 157{ 158 *pmdp = pmd; 159} 160 161static inline void pmd_clear(pmd_t *pmdp) 162{ 163 set_pmd(pmdp, __pmd(0)); 164} 165 166static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 167{ 168 return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot)); 169} 170 171static inline unsigned long _pgd_pfn(pgd_t pgd) 172{ 173 return pgd_val(pgd) >> _PAGE_PFN_SHIFT; 174} 175 176static inline struct page *pmd_page(pmd_t pmd) 177{ 178 return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT); 179} 180 181static inline unsigned long pmd_page_vaddr(pmd_t pmd) 182{ 183 return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT); 184} 185 186/* Yields the page frame number (PFN) of a page table entry */ 187static inline unsigned long pte_pfn(pte_t pte) 188{ 189 return (pte_val(pte) >> _PAGE_PFN_SHIFT); 190} 191 192#define pte_page(x) pfn_to_page(pte_pfn(x)) 193 194/* Constructs a page table entry */ 195static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 196{ 197 return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot)); 198} 199 200#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 201 202static inline int pte_present(pte_t pte) 203{ 204 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 205} 206 207static inline int pte_none(pte_t pte) 208{ 209 return (pte_val(pte) == 0); 210} 211 212static inline int pte_write(pte_t pte) 213{ 214 return pte_val(pte) & _PAGE_WRITE; 215} 216 217static inline int pte_exec(pte_t pte) 218{ 219 return pte_val(pte) & _PAGE_EXEC; 220} 221 222static inline int pte_huge(pte_t pte) 223{ 224 return pte_present(pte) 225 && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)); 226} 227 228static inline int pte_dirty(pte_t pte) 229{ 230 return pte_val(pte) & _PAGE_DIRTY; 231} 232 233static inline int pte_young(pte_t pte) 234{ 235 return pte_val(pte) & _PAGE_ACCESSED; 236} 237 238static inline int pte_special(pte_t pte) 239{ 240 return pte_val(pte) & _PAGE_SPECIAL; 241} 242 243/* static inline pte_t pte_rdprotect(pte_t pte) */ 244 245static inline pte_t pte_wrprotect(pte_t pte) 246{ 247 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 248} 249 250/* static inline pte_t pte_mkread(pte_t pte) */ 251 252static inline pte_t pte_mkwrite(pte_t pte) 253{ 254 return __pte(pte_val(pte) | _PAGE_WRITE); 255} 256 257/* static inline pte_t pte_mkexec(pte_t pte) */ 258 259static inline pte_t pte_mkdirty(pte_t pte) 260{ 261 return __pte(pte_val(pte) | _PAGE_DIRTY); 262} 263 264static inline pte_t pte_mkclean(pte_t pte) 265{ 266 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 267} 268 269static inline pte_t pte_mkyoung(pte_t pte) 270{ 271 return __pte(pte_val(pte) | _PAGE_ACCESSED); 272} 273 274static inline pte_t pte_mkold(pte_t pte) 275{ 276 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 277} 278 279static inline pte_t pte_mkspecial(pte_t pte) 280{ 281 return __pte(pte_val(pte) | _PAGE_SPECIAL); 282} 283 284static inline pte_t pte_mkhuge(pte_t pte) 285{ 286 return pte; 287} 288 289/* Modify page protection bits */ 290static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 291{ 292 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); 293} 294 295#define pgd_ERROR(e) \ 296 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 297 298 299/* Commit new configuration to MMU hardware */ 300static inline void update_mmu_cache(struct vm_area_struct *vma, 301 unsigned long address, pte_t *ptep) 302{ 303 /* 304 * The kernel assumes that TLBs don't cache invalid entries, but 305 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 306 * cache flush; it is necessary even after writing invalid entries. 307 * Relying on flush_tlb_fix_spurious_fault would suffice, but 308 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 309 */ 310 local_flush_tlb_page(address); 311} 312 313#define __HAVE_ARCH_PTE_SAME 314static inline int pte_same(pte_t pte_a, pte_t pte_b) 315{ 316 return pte_val(pte_a) == pte_val(pte_b); 317} 318 319/* 320 * Certain architectures need to do special things when PTEs within 321 * a page table are directly modified. Thus, the following hook is 322 * made available. 323 */ 324static inline void set_pte(pte_t *ptep, pte_t pteval) 325{ 326 *ptep = pteval; 327} 328 329void flush_icache_pte(pte_t pte); 330 331static inline void set_pte_at(struct mm_struct *mm, 332 unsigned long addr, pte_t *ptep, pte_t pteval) 333{ 334 if (pte_present(pteval) && pte_exec(pteval)) 335 flush_icache_pte(pteval); 336 337 set_pte(ptep, pteval); 338} 339 340static inline void pte_clear(struct mm_struct *mm, 341 unsigned long addr, pte_t *ptep) 342{ 343 set_pte_at(mm, addr, ptep, __pte(0)); 344} 345 346#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 347static inline int ptep_set_access_flags(struct vm_area_struct *vma, 348 unsigned long address, pte_t *ptep, 349 pte_t entry, int dirty) 350{ 351 if (!pte_same(*ptep, entry)) 352 set_pte_at(vma->vm_mm, address, ptep, entry); 353 /* 354 * update_mmu_cache will unconditionally execute, handling both 355 * the case that the PTE changed and the spurious fault case. 356 */ 357 return true; 358} 359 360#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 361static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 362 unsigned long address, pte_t *ptep) 363{ 364 return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 365} 366 367#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 368static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 369 unsigned long address, 370 pte_t *ptep) 371{ 372 if (!pte_young(*ptep)) 373 return 0; 374 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep)); 375} 376 377#define __HAVE_ARCH_PTEP_SET_WRPROTECT 378static inline void ptep_set_wrprotect(struct mm_struct *mm, 379 unsigned long address, pte_t *ptep) 380{ 381 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 382} 383 384#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 385static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 386 unsigned long address, pte_t *ptep) 387{ 388 /* 389 * This comment is borrowed from x86, but applies equally to RISC-V: 390 * 391 * Clearing the accessed bit without a TLB flush 392 * doesn't cause data corruption. [ It could cause incorrect 393 * page aging and the (mistaken) reclaim of hot pages, but the 394 * chance of that should be relatively low. ] 395 * 396 * So as a performance optimization don't flush the TLB when 397 * clearing the accessed bit, it will eventually be flushed by 398 * a context switch or a VM operation anyway. [ In the rare 399 * event of it not getting flushed for a long time the delay 400 * shouldn't really matter because there's no real memory 401 * pressure for swapout to react to. ] 402 */ 403 return ptep_test_and_clear_young(vma, address, ptep); 404} 405 406/* 407 * Encode and decode a swap entry 408 * 409 * Format of swap PTE: 410 * bit 0: _PAGE_PRESENT (zero) 411 * bit 1: _PAGE_PROT_NONE (zero) 412 * bits 2 to 6: swap type 413 * bits 7 to XLEN-1: swap offset 414 */ 415#define __SWP_TYPE_SHIFT 2 416#define __SWP_TYPE_BITS 5 417#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 418#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 419 420#define MAX_SWAPFILES_CHECK() \ 421 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 422 423#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 424#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 425#define __swp_entry(type, offset) ((swp_entry_t) \ 426 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 427 428#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 429#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 430 431/* 432 * In the RV64 Linux scheme, we give the user half of the virtual-address space 433 * and give the kernel the other (upper) half. 434 */ 435#ifdef CONFIG_64BIT 436#define KERN_VIRT_START (-(BIT(CONFIG_VA_BITS)) + TASK_SIZE) 437#else 438#define KERN_VIRT_START FIXADDR_START 439#endif 440 441/* 442 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 443 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 444 */ 445#ifdef CONFIG_64BIT 446#define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2) 447#else 448#define TASK_SIZE FIXADDR_START 449#endif 450 451#else /* CONFIG_MMU */ 452 453#define PAGE_SHARED __pgprot(0) 454#define PAGE_KERNEL __pgprot(0) 455#define swapper_pg_dir NULL 456#define TASK_SIZE 0xffffffffUL 457#define VMALLOC_START 0 458#define VMALLOC_END TASK_SIZE 459 460static inline void __kernel_map_pages(struct page *page, int numpages, int enable) {} 461 462#endif /* !CONFIG_MMU */ 463 464#define kern_addr_valid(addr) (1) /* FIXME */ 465 466extern void *dtb_early_va; 467void setup_bootmem(void); 468void paging_init(void); 469 470#define FIRST_USER_ADDRESS 0 471 472/* 473 * ZERO_PAGE is a global shared page that is always zero, 474 * used for zero-mapped memory areas, etc. 475 */ 476extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 477#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 478 479#endif /* !__ASSEMBLY__ */ 480 481#endif /* _ASM_RISCV_PGTABLE_H */