Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6#ifndef _ASM_RISCV_PGTABLE_H
7#define _ASM_RISCV_PGTABLE_H
8
9#include <linux/mmzone.h>
10#include <linux/sizes.h>
11
12#include <asm/pgtable-bits.h>
13
14#ifndef __ASSEMBLY__
15
16/* Page Upper Directory not used in RISC-V */
17#include <asm-generic/pgtable-nopud.h>
18#include <asm/page.h>
19#include <asm/tlbflush.h>
20#include <linux/mm_types.h>
21
22#ifdef CONFIG_MMU
23
24#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
25#define VMALLOC_END (PAGE_OFFSET - 1)
26#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
27
28#define BPF_JIT_REGION_SIZE (SZ_128M)
29#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
30#define BPF_JIT_REGION_END (VMALLOC_END)
31
32/*
33 * Roughly size the vmemmap space to be large enough to fit enough
34 * struct pages to map half the virtual address space. Then
35 * position vmemmap directly below the VMALLOC region.
36 */
37#define VMEMMAP_SHIFT \
38 (CONFIG_VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
39#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
40#define VMEMMAP_END (VMALLOC_START - 1)
41#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
42
43/*
44 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
45 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
46 */
47#define vmemmap ((struct page *)VMEMMAP_START)
48
49#define PCI_IO_SIZE SZ_16M
50#define PCI_IO_END VMEMMAP_START
51#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
52
53#define FIXADDR_TOP PCI_IO_START
54#ifdef CONFIG_64BIT
55#define FIXADDR_SIZE PMD_SIZE
56#else
57#define FIXADDR_SIZE PGDIR_SIZE
58#endif
59#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
60
61#endif
62
63#ifdef CONFIG_64BIT
64#include <asm/pgtable-64.h>
65#else
66#include <asm/pgtable-32.h>
67#endif /* CONFIG_64BIT */
68
69#ifdef CONFIG_MMU
70/* Number of entries in the page global directory */
71#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
72/* Number of entries in the page table */
73#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
74
75/* Number of PGD entries that a user-mode program can use */
76#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
77
78/* Page protection bits */
79#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
80
81#define PAGE_NONE __pgprot(_PAGE_PROT_NONE)
82#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
83#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
84#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
85#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
86#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
87 _PAGE_EXEC | _PAGE_WRITE)
88
89#define PAGE_COPY PAGE_READ
90#define PAGE_COPY_EXEC PAGE_EXEC
91#define PAGE_COPY_READ_EXEC PAGE_READ_EXEC
92#define PAGE_SHARED PAGE_WRITE
93#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
94
95#define _PAGE_KERNEL (_PAGE_READ \
96 | _PAGE_WRITE \
97 | _PAGE_PRESENT \
98 | _PAGE_ACCESSED \
99 | _PAGE_DIRTY)
100
101#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
102#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
103
104#define PAGE_TABLE __pgprot(_PAGE_TABLE)
105
106/*
107 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
108 * change the properties of memory regions.
109 */
110#define _PAGE_IOREMAP _PAGE_KERNEL
111
112extern pgd_t swapper_pg_dir[];
113
114/* MAP_PRIVATE permissions: xwr (copy-on-write) */
115#define __P000 PAGE_NONE
116#define __P001 PAGE_READ
117#define __P010 PAGE_COPY
118#define __P011 PAGE_COPY
119#define __P100 PAGE_EXEC
120#define __P101 PAGE_READ_EXEC
121#define __P110 PAGE_COPY_EXEC
122#define __P111 PAGE_COPY_READ_EXEC
123
124/* MAP_SHARED permissions: xwr */
125#define __S000 PAGE_NONE
126#define __S001 PAGE_READ
127#define __S010 PAGE_SHARED
128#define __S011 PAGE_SHARED
129#define __S100 PAGE_EXEC
130#define __S101 PAGE_READ_EXEC
131#define __S110 PAGE_SHARED_EXEC
132#define __S111 PAGE_SHARED_EXEC
133
134static inline int pmd_present(pmd_t pmd)
135{
136 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
137}
138
139static inline int pmd_none(pmd_t pmd)
140{
141 return (pmd_val(pmd) == 0);
142}
143
144static inline int pmd_bad(pmd_t pmd)
145{
146 return !pmd_present(pmd);
147}
148
149#define pmd_leaf pmd_leaf
150static inline int pmd_leaf(pmd_t pmd)
151{
152 return pmd_present(pmd) &&
153 (pmd_val(pmd) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
154}
155
156static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
157{
158 *pmdp = pmd;
159}
160
161static inline void pmd_clear(pmd_t *pmdp)
162{
163 set_pmd(pmdp, __pmd(0));
164}
165
166static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
167{
168 return __pgd((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
169}
170
171static inline unsigned long _pgd_pfn(pgd_t pgd)
172{
173 return pgd_val(pgd) >> _PAGE_PFN_SHIFT;
174}
175
176static inline struct page *pmd_page(pmd_t pmd)
177{
178 return pfn_to_page(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
179}
180
181static inline unsigned long pmd_page_vaddr(pmd_t pmd)
182{
183 return (unsigned long)pfn_to_virt(pmd_val(pmd) >> _PAGE_PFN_SHIFT);
184}
185
186/* Yields the page frame number (PFN) of a page table entry */
187static inline unsigned long pte_pfn(pte_t pte)
188{
189 return (pte_val(pte) >> _PAGE_PFN_SHIFT);
190}
191
192#define pte_page(x) pfn_to_page(pte_pfn(x))
193
194/* Constructs a page table entry */
195static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
196{
197 return __pte((pfn << _PAGE_PFN_SHIFT) | pgprot_val(prot));
198}
199
200#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
201
202static inline int pte_present(pte_t pte)
203{
204 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
205}
206
207static inline int pte_none(pte_t pte)
208{
209 return (pte_val(pte) == 0);
210}
211
212static inline int pte_write(pte_t pte)
213{
214 return pte_val(pte) & _PAGE_WRITE;
215}
216
217static inline int pte_exec(pte_t pte)
218{
219 return pte_val(pte) & _PAGE_EXEC;
220}
221
222static inline int pte_huge(pte_t pte)
223{
224 return pte_present(pte)
225 && (pte_val(pte) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC));
226}
227
228static inline int pte_dirty(pte_t pte)
229{
230 return pte_val(pte) & _PAGE_DIRTY;
231}
232
233static inline int pte_young(pte_t pte)
234{
235 return pte_val(pte) & _PAGE_ACCESSED;
236}
237
238static inline int pte_special(pte_t pte)
239{
240 return pte_val(pte) & _PAGE_SPECIAL;
241}
242
243/* static inline pte_t pte_rdprotect(pte_t pte) */
244
245static inline pte_t pte_wrprotect(pte_t pte)
246{
247 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
248}
249
250/* static inline pte_t pte_mkread(pte_t pte) */
251
252static inline pte_t pte_mkwrite(pte_t pte)
253{
254 return __pte(pte_val(pte) | _PAGE_WRITE);
255}
256
257/* static inline pte_t pte_mkexec(pte_t pte) */
258
259static inline pte_t pte_mkdirty(pte_t pte)
260{
261 return __pte(pte_val(pte) | _PAGE_DIRTY);
262}
263
264static inline pte_t pte_mkclean(pte_t pte)
265{
266 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
267}
268
269static inline pte_t pte_mkyoung(pte_t pte)
270{
271 return __pte(pte_val(pte) | _PAGE_ACCESSED);
272}
273
274static inline pte_t pte_mkold(pte_t pte)
275{
276 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
277}
278
279static inline pte_t pte_mkspecial(pte_t pte)
280{
281 return __pte(pte_val(pte) | _PAGE_SPECIAL);
282}
283
284static inline pte_t pte_mkhuge(pte_t pte)
285{
286 return pte;
287}
288
289/* Modify page protection bits */
290static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
291{
292 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
293}
294
295#define pgd_ERROR(e) \
296 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
297
298
299/* Commit new configuration to MMU hardware */
300static inline void update_mmu_cache(struct vm_area_struct *vma,
301 unsigned long address, pte_t *ptep)
302{
303 /*
304 * The kernel assumes that TLBs don't cache invalid entries, but
305 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
306 * cache flush; it is necessary even after writing invalid entries.
307 * Relying on flush_tlb_fix_spurious_fault would suffice, but
308 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
309 */
310 local_flush_tlb_page(address);
311}
312
313#define __HAVE_ARCH_PTE_SAME
314static inline int pte_same(pte_t pte_a, pte_t pte_b)
315{
316 return pte_val(pte_a) == pte_val(pte_b);
317}
318
319/*
320 * Certain architectures need to do special things when PTEs within
321 * a page table are directly modified. Thus, the following hook is
322 * made available.
323 */
324static inline void set_pte(pte_t *ptep, pte_t pteval)
325{
326 *ptep = pteval;
327}
328
329void flush_icache_pte(pte_t pte);
330
331static inline void set_pte_at(struct mm_struct *mm,
332 unsigned long addr, pte_t *ptep, pte_t pteval)
333{
334 if (pte_present(pteval) && pte_exec(pteval))
335 flush_icache_pte(pteval);
336
337 set_pte(ptep, pteval);
338}
339
340static inline void pte_clear(struct mm_struct *mm,
341 unsigned long addr, pte_t *ptep)
342{
343 set_pte_at(mm, addr, ptep, __pte(0));
344}
345
346#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
347static inline int ptep_set_access_flags(struct vm_area_struct *vma,
348 unsigned long address, pte_t *ptep,
349 pte_t entry, int dirty)
350{
351 if (!pte_same(*ptep, entry))
352 set_pte_at(vma->vm_mm, address, ptep, entry);
353 /*
354 * update_mmu_cache will unconditionally execute, handling both
355 * the case that the PTE changed and the spurious fault case.
356 */
357 return true;
358}
359
360#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
361static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
362 unsigned long address, pte_t *ptep)
363{
364 return __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
365}
366
367#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
368static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
369 unsigned long address,
370 pte_t *ptep)
371{
372 if (!pte_young(*ptep))
373 return 0;
374 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
375}
376
377#define __HAVE_ARCH_PTEP_SET_WRPROTECT
378static inline void ptep_set_wrprotect(struct mm_struct *mm,
379 unsigned long address, pte_t *ptep)
380{
381 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
382}
383
384#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
385static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
386 unsigned long address, pte_t *ptep)
387{
388 /*
389 * This comment is borrowed from x86, but applies equally to RISC-V:
390 *
391 * Clearing the accessed bit without a TLB flush
392 * doesn't cause data corruption. [ It could cause incorrect
393 * page aging and the (mistaken) reclaim of hot pages, but the
394 * chance of that should be relatively low. ]
395 *
396 * So as a performance optimization don't flush the TLB when
397 * clearing the accessed bit, it will eventually be flushed by
398 * a context switch or a VM operation anyway. [ In the rare
399 * event of it not getting flushed for a long time the delay
400 * shouldn't really matter because there's no real memory
401 * pressure for swapout to react to. ]
402 */
403 return ptep_test_and_clear_young(vma, address, ptep);
404}
405
406/*
407 * Encode and decode a swap entry
408 *
409 * Format of swap PTE:
410 * bit 0: _PAGE_PRESENT (zero)
411 * bit 1: _PAGE_PROT_NONE (zero)
412 * bits 2 to 6: swap type
413 * bits 7 to XLEN-1: swap offset
414 */
415#define __SWP_TYPE_SHIFT 2
416#define __SWP_TYPE_BITS 5
417#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
418#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
419
420#define MAX_SWAPFILES_CHECK() \
421 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
422
423#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
424#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
425#define __swp_entry(type, offset) ((swp_entry_t) \
426 { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
427
428#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
429#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
430
431/*
432 * In the RV64 Linux scheme, we give the user half of the virtual-address space
433 * and give the kernel the other (upper) half.
434 */
435#ifdef CONFIG_64BIT
436#define KERN_VIRT_START (-(BIT(CONFIG_VA_BITS)) + TASK_SIZE)
437#else
438#define KERN_VIRT_START FIXADDR_START
439#endif
440
441/*
442 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
443 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
444 */
445#ifdef CONFIG_64BIT
446#define TASK_SIZE (PGDIR_SIZE * PTRS_PER_PGD / 2)
447#else
448#define TASK_SIZE FIXADDR_START
449#endif
450
451#else /* CONFIG_MMU */
452
453#define PAGE_SHARED __pgprot(0)
454#define PAGE_KERNEL __pgprot(0)
455#define swapper_pg_dir NULL
456#define TASK_SIZE 0xffffffffUL
457#define VMALLOC_START 0
458#define VMALLOC_END TASK_SIZE
459
460static inline void __kernel_map_pages(struct page *page, int numpages, int enable) {}
461
462#endif /* !CONFIG_MMU */
463
464#define kern_addr_valid(addr) (1) /* FIXME */
465
466extern void *dtb_early_va;
467void setup_bootmem(void);
468void paging_init(void);
469
470#define FIRST_USER_ADDRESS 0
471
472/*
473 * ZERO_PAGE is a global shared page that is always zero,
474 * used for zero-mapped memory areas, etc.
475 */
476extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
477#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
478
479#endif /* !__ASSEMBLY__ */
480
481#endif /* _ASM_RISCV_PGTABLE_H */