at v5.8 11 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Based on arch/arm/include/asm/memory.h 4 * 5 * Copyright (C) 2000-2002 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * Note: this file should not be included by non-asm/.h files 9 */ 10#ifndef __ASM_MEMORY_H 11#define __ASM_MEMORY_H 12 13#include <linux/compiler.h> 14#include <linux/const.h> 15#include <linux/sizes.h> 16#include <linux/types.h> 17#include <asm/bug.h> 18#include <asm/page-def.h> 19 20/* 21 * Size of the PCI I/O space. This must remain a power of two so that 22 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses. 23 */ 24#define PCI_IO_SIZE SZ_16M 25 26/* 27 * VMEMMAP_SIZE - allows the whole linear region to be covered by 28 * a struct page array 29 * 30 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE 31 * needs to cover the memory region from the beginning of the 52-bit 32 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to 33 * keep a constant PAGE_OFFSET and "fallback" to using the higher end 34 * of the VMEMMAP where 52-bit support is not available in hardware. 35 */ 36#define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \ 37 >> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT)) 38 39/* 40 * PAGE_OFFSET - the virtual address of the start of the linear map, at the 41 * start of the TTBR1 address space. 42 * PAGE_END - the end of the linear map, where all other kernel mappings begin. 43 * KIMAGE_VADDR - the virtual address of the start of the kernel image. 44 * VA_BITS - the maximum number of bits for virtual addresses. 45 */ 46#define VA_BITS (CONFIG_ARM64_VA_BITS) 47#define _PAGE_OFFSET(va) (-(UL(1) << (va))) 48#define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS)) 49#define KIMAGE_VADDR (MODULES_END) 50#define BPF_JIT_REGION_START (KASAN_SHADOW_END) 51#define BPF_JIT_REGION_SIZE (SZ_128M) 52#define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE) 53#define MODULES_END (MODULES_VADDR + MODULES_VSIZE) 54#define MODULES_VADDR (BPF_JIT_REGION_END) 55#define MODULES_VSIZE (SZ_128M) 56#define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M) 57#define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE) 58#define PCI_IO_END (VMEMMAP_START - SZ_2M) 59#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 60#define FIXADDR_TOP (PCI_IO_START - SZ_2M) 61 62#if VA_BITS > 48 63#define VA_BITS_MIN (48) 64#else 65#define VA_BITS_MIN (VA_BITS) 66#endif 67 68#define _PAGE_END(va) (-(UL(1) << ((va) - 1))) 69 70#define KERNEL_START _text 71#define KERNEL_END _end 72 73/* 74 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual 75 * address space for the shadow region respectively. They can bloat the stack 76 * significantly, so double the (minimum) stack size when they are in use. 77 */ 78#ifdef CONFIG_KASAN 79#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL) 80#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \ 81 + KASAN_SHADOW_OFFSET) 82#define KASAN_THREAD_SHIFT 1 83#else 84#define KASAN_THREAD_SHIFT 0 85#define KASAN_SHADOW_END (_PAGE_END(VA_BITS_MIN)) 86#endif /* CONFIG_KASAN */ 87 88#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT) 89 90/* 91 * VMAP'd stacks are allocated at page granularity, so we must ensure that such 92 * stacks are a multiple of page size. 93 */ 94#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT) 95#define THREAD_SHIFT PAGE_SHIFT 96#else 97#define THREAD_SHIFT MIN_THREAD_SHIFT 98#endif 99 100#if THREAD_SHIFT >= PAGE_SHIFT 101#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT) 102#endif 103 104#define THREAD_SIZE (UL(1) << THREAD_SHIFT) 105 106/* 107 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by 108 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry 109 * assembly. 110 */ 111#ifdef CONFIG_VMAP_STACK 112#define THREAD_ALIGN (2 * THREAD_SIZE) 113#else 114#define THREAD_ALIGN THREAD_SIZE 115#endif 116 117#define IRQ_STACK_SIZE THREAD_SIZE 118 119#define OVERFLOW_STACK_SIZE SZ_4K 120 121/* 122 * Alignment of kernel segments (e.g. .text, .data). 123 * 124 * 4 KB granule: 16 level 3 entries, with contiguous bit 125 * 16 KB granule: 4 level 3 entries, without contiguous bit 126 * 64 KB granule: 1 level 3 entry 127 */ 128#define SEGMENT_ALIGN SZ_64K 129 130/* 131 * Memory types available. 132 */ 133#define MT_DEVICE_nGnRnE 0 134#define MT_DEVICE_nGnRE 1 135#define MT_DEVICE_GRE 2 136#define MT_NORMAL_NC 3 137#define MT_NORMAL 4 138#define MT_NORMAL_WT 5 139 140/* 141 * Memory types for Stage-2 translation 142 */ 143#define MT_S2_NORMAL 0xf 144#define MT_S2_DEVICE_nGnRE 0x1 145 146/* 147 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001 148 * Stage-2 enforces Normal-WB and Device-nGnRE 149 */ 150#define MT_S2_FWB_NORMAL 6 151#define MT_S2_FWB_DEVICE_nGnRE 1 152 153#ifdef CONFIG_ARM64_4K_PAGES 154#define IOREMAP_MAX_ORDER (PUD_SHIFT) 155#else 156#define IOREMAP_MAX_ORDER (PMD_SHIFT) 157#endif 158 159#ifndef __ASSEMBLY__ 160extern u64 vabits_actual; 161#define PAGE_END (_PAGE_END(vabits_actual)) 162 163#include <linux/bitops.h> 164#include <linux/mmdebug.h> 165 166extern s64 physvirt_offset; 167extern s64 memstart_addr; 168/* PHYS_OFFSET - the physical address of the start of memory. */ 169#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; }) 170 171/* the virtual base of the kernel image (minus TEXT_OFFSET) */ 172extern u64 kimage_vaddr; 173 174/* the offset between the kernel virtual and physical mappings */ 175extern u64 kimage_voffset; 176 177static inline unsigned long kaslr_offset(void) 178{ 179 return kimage_vaddr - KIMAGE_VADDR; 180} 181 182/* 183 * Allow all memory at the discovery stage. We will clip it later. 184 */ 185#define MIN_MEMBLOCK_ADDR 0 186#define MAX_MEMBLOCK_ADDR U64_MAX 187 188/* 189 * PFNs are used to describe any physical page; this means 190 * PFN 0 == physical address 0. 191 * 192 * This is the PFN of the first RAM page in the kernel 193 * direct-mapped view. We assume this is the first page 194 * of RAM in the mem_map as well. 195 */ 196#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT) 197 198/* 199 * When dealing with data aborts, watchpoints, or instruction traps we may end 200 * up with a tagged userland pointer. Clear the tag to get a sane pointer to 201 * pass on to access_ok(), for instance. 202 */ 203#define __untagged_addr(addr) \ 204 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55)) 205 206#define untagged_addr(addr) ({ \ 207 u64 __addr = (__force u64)(addr); \ 208 __addr &= __untagged_addr(__addr); \ 209 (__force __typeof__(addr))__addr; \ 210}) 211 212#ifdef CONFIG_KASAN_SW_TAGS 213#define __tag_shifted(tag) ((u64)(tag) << 56) 214#define __tag_reset(addr) __untagged_addr(addr) 215#define __tag_get(addr) (__u8)((u64)(addr) >> 56) 216#else 217#define __tag_shifted(tag) 0UL 218#define __tag_reset(addr) (addr) 219#define __tag_get(addr) 0 220#endif /* CONFIG_KASAN_SW_TAGS */ 221 222static inline const void *__tag_set(const void *addr, u8 tag) 223{ 224 u64 __addr = (u64)addr & ~__tag_shifted(0xff); 225 return (const void *)(__addr | __tag_shifted(tag)); 226} 227 228/* 229 * Physical vs virtual RAM address space conversion. These are 230 * private definitions which should NOT be used outside memory.h 231 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead. 232 */ 233 234 235/* 236 * The linear kernel range starts at the bottom of the virtual address 237 * space. Testing the top bit for the start of the region is a 238 * sufficient check and avoids having to worry about the tag. 239 */ 240#define __is_lm_address(addr) (!(((u64)addr) & BIT(vabits_actual - 1))) 241 242#define __lm_to_phys(addr) (((addr) + physvirt_offset)) 243#define __kimg_to_phys(addr) ((addr) - kimage_voffset) 244 245#define __virt_to_phys_nodebug(x) ({ \ 246 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \ 247 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \ 248}) 249 250#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x)) 251 252#ifdef CONFIG_DEBUG_VIRTUAL 253extern phys_addr_t __virt_to_phys(unsigned long x); 254extern phys_addr_t __phys_addr_symbol(unsigned long x); 255#else 256#define __virt_to_phys(x) __virt_to_phys_nodebug(x) 257#define __phys_addr_symbol(x) __pa_symbol_nodebug(x) 258#endif /* CONFIG_DEBUG_VIRTUAL */ 259 260#define __phys_to_virt(x) ((unsigned long)((x) - physvirt_offset)) 261#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset)) 262 263/* 264 * Convert a page to/from a physical address 265 */ 266#define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page))) 267#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys))) 268 269/* 270 * Note: Drivers should NOT use these. They are the wrong 271 * translation for translating DMA addresses. Use the driver 272 * DMA support - see dma-mapping.h. 273 */ 274#define virt_to_phys virt_to_phys 275static inline phys_addr_t virt_to_phys(const volatile void *x) 276{ 277 return __virt_to_phys((unsigned long)(x)); 278} 279 280#define phys_to_virt phys_to_virt 281static inline void *phys_to_virt(phys_addr_t x) 282{ 283 return (void *)(__phys_to_virt(x)); 284} 285 286/* 287 * Drivers should NOT use these either. 288 */ 289#define __pa(x) __virt_to_phys((unsigned long)(x)) 290#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0)) 291#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x)) 292#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x))) 293#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) 294#define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x))) 295#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x)) 296 297/* 298 * virt_to_page(x) convert a _valid_ virtual address to struct page * 299 * virt_addr_valid(x) indicates whether a virtual address is valid 300 */ 301#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET) 302 303#if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL) 304#define virt_to_page(x) pfn_to_page(virt_to_pfn(x)) 305#else 306#define page_to_virt(x) ({ \ 307 __typeof__(x) __page = x; \ 308 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\ 309 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \ 310 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\ 311}) 312 313#define virt_to_page(x) ({ \ 314 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \ 315 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \ 316 (struct page *)__addr; \ 317}) 318#endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */ 319 320#define virt_addr_valid(addr) ({ \ 321 __typeof__(addr) __addr = addr; \ 322 __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \ 323}) 324 325#endif /* !ASSEMBLY */ 326 327/* 328 * Given that the GIC architecture permits ITS implementations that can only be 329 * configured with a LPI table address once, GICv3 systems with many CPUs may 330 * end up reserving a lot of different regions after a kexec for their LPI 331 * tables (one per CPU), as we are forced to reuse the same memory after kexec 332 * (and thus reserve it persistently with EFI beforehand) 333 */ 334#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS) 335# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1) 336#endif 337 338#include <asm-generic/memory_model.h> 339 340#endif /* __ASM_MEMORY_H */