Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Based on arch/arm/include/asm/memory.h
4 *
5 * Copyright (C) 2000-2002 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * Note: this file should not be included by non-asm/.h files
9 */
10#ifndef __ASM_MEMORY_H
11#define __ASM_MEMORY_H
12
13#include <linux/compiler.h>
14#include <linux/const.h>
15#include <linux/sizes.h>
16#include <linux/types.h>
17#include <asm/bug.h>
18#include <asm/page-def.h>
19
20/*
21 * Size of the PCI I/O space. This must remain a power of two so that
22 * IO_SPACE_LIMIT acts as a mask for the low bits of I/O addresses.
23 */
24#define PCI_IO_SIZE SZ_16M
25
26/*
27 * VMEMMAP_SIZE - allows the whole linear region to be covered by
28 * a struct page array
29 *
30 * If we are configured with a 52-bit kernel VA then our VMEMMAP_SIZE
31 * needs to cover the memory region from the beginning of the 52-bit
32 * PAGE_OFFSET all the way to PAGE_END for 48-bit. This allows us to
33 * keep a constant PAGE_OFFSET and "fallback" to using the higher end
34 * of the VMEMMAP where 52-bit support is not available in hardware.
35 */
36#define VMEMMAP_SIZE ((_PAGE_END(VA_BITS_MIN) - PAGE_OFFSET) \
37 >> (PAGE_SHIFT - STRUCT_PAGE_MAX_SHIFT))
38
39/*
40 * PAGE_OFFSET - the virtual address of the start of the linear map, at the
41 * start of the TTBR1 address space.
42 * PAGE_END - the end of the linear map, where all other kernel mappings begin.
43 * KIMAGE_VADDR - the virtual address of the start of the kernel image.
44 * VA_BITS - the maximum number of bits for virtual addresses.
45 */
46#define VA_BITS (CONFIG_ARM64_VA_BITS)
47#define _PAGE_OFFSET(va) (-(UL(1) << (va)))
48#define PAGE_OFFSET (_PAGE_OFFSET(VA_BITS))
49#define KIMAGE_VADDR (MODULES_END)
50#define BPF_JIT_REGION_START (KASAN_SHADOW_END)
51#define BPF_JIT_REGION_SIZE (SZ_128M)
52#define BPF_JIT_REGION_END (BPF_JIT_REGION_START + BPF_JIT_REGION_SIZE)
53#define MODULES_END (MODULES_VADDR + MODULES_VSIZE)
54#define MODULES_VADDR (BPF_JIT_REGION_END)
55#define MODULES_VSIZE (SZ_128M)
56#define VMEMMAP_START (-VMEMMAP_SIZE - SZ_2M)
57#define VMEMMAP_END (VMEMMAP_START + VMEMMAP_SIZE)
58#define PCI_IO_END (VMEMMAP_START - SZ_2M)
59#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
60#define FIXADDR_TOP (PCI_IO_START - SZ_2M)
61
62#if VA_BITS > 48
63#define VA_BITS_MIN (48)
64#else
65#define VA_BITS_MIN (VA_BITS)
66#endif
67
68#define _PAGE_END(va) (-(UL(1) << ((va) - 1)))
69
70#define KERNEL_START _text
71#define KERNEL_END _end
72
73/*
74 * Generic and tag-based KASAN require 1/8th and 1/16th of the kernel virtual
75 * address space for the shadow region respectively. They can bloat the stack
76 * significantly, so double the (minimum) stack size when they are in use.
77 */
78#ifdef CONFIG_KASAN
79#define KASAN_SHADOW_OFFSET _AC(CONFIG_KASAN_SHADOW_OFFSET, UL)
80#define KASAN_SHADOW_END ((UL(1) << (64 - KASAN_SHADOW_SCALE_SHIFT)) \
81 + KASAN_SHADOW_OFFSET)
82#define KASAN_THREAD_SHIFT 1
83#else
84#define KASAN_THREAD_SHIFT 0
85#define KASAN_SHADOW_END (_PAGE_END(VA_BITS_MIN))
86#endif /* CONFIG_KASAN */
87
88#define MIN_THREAD_SHIFT (14 + KASAN_THREAD_SHIFT)
89
90/*
91 * VMAP'd stacks are allocated at page granularity, so we must ensure that such
92 * stacks are a multiple of page size.
93 */
94#if defined(CONFIG_VMAP_STACK) && (MIN_THREAD_SHIFT < PAGE_SHIFT)
95#define THREAD_SHIFT PAGE_SHIFT
96#else
97#define THREAD_SHIFT MIN_THREAD_SHIFT
98#endif
99
100#if THREAD_SHIFT >= PAGE_SHIFT
101#define THREAD_SIZE_ORDER (THREAD_SHIFT - PAGE_SHIFT)
102#endif
103
104#define THREAD_SIZE (UL(1) << THREAD_SHIFT)
105
106/*
107 * By aligning VMAP'd stacks to 2 * THREAD_SIZE, we can detect overflow by
108 * checking sp & (1 << THREAD_SHIFT), which we can do cheaply in the entry
109 * assembly.
110 */
111#ifdef CONFIG_VMAP_STACK
112#define THREAD_ALIGN (2 * THREAD_SIZE)
113#else
114#define THREAD_ALIGN THREAD_SIZE
115#endif
116
117#define IRQ_STACK_SIZE THREAD_SIZE
118
119#define OVERFLOW_STACK_SIZE SZ_4K
120
121/*
122 * Alignment of kernel segments (e.g. .text, .data).
123 *
124 * 4 KB granule: 16 level 3 entries, with contiguous bit
125 * 16 KB granule: 4 level 3 entries, without contiguous bit
126 * 64 KB granule: 1 level 3 entry
127 */
128#define SEGMENT_ALIGN SZ_64K
129
130/*
131 * Memory types available.
132 */
133#define MT_DEVICE_nGnRnE 0
134#define MT_DEVICE_nGnRE 1
135#define MT_DEVICE_GRE 2
136#define MT_NORMAL_NC 3
137#define MT_NORMAL 4
138#define MT_NORMAL_WT 5
139
140/*
141 * Memory types for Stage-2 translation
142 */
143#define MT_S2_NORMAL 0xf
144#define MT_S2_DEVICE_nGnRE 0x1
145
146/*
147 * Memory types for Stage-2 translation when ID_AA64MMFR2_EL1.FWB is 0001
148 * Stage-2 enforces Normal-WB and Device-nGnRE
149 */
150#define MT_S2_FWB_NORMAL 6
151#define MT_S2_FWB_DEVICE_nGnRE 1
152
153#ifdef CONFIG_ARM64_4K_PAGES
154#define IOREMAP_MAX_ORDER (PUD_SHIFT)
155#else
156#define IOREMAP_MAX_ORDER (PMD_SHIFT)
157#endif
158
159#ifndef __ASSEMBLY__
160extern u64 vabits_actual;
161#define PAGE_END (_PAGE_END(vabits_actual))
162
163#include <linux/bitops.h>
164#include <linux/mmdebug.h>
165
166extern s64 physvirt_offset;
167extern s64 memstart_addr;
168/* PHYS_OFFSET - the physical address of the start of memory. */
169#define PHYS_OFFSET ({ VM_BUG_ON(memstart_addr & 1); memstart_addr; })
170
171/* the virtual base of the kernel image (minus TEXT_OFFSET) */
172extern u64 kimage_vaddr;
173
174/* the offset between the kernel virtual and physical mappings */
175extern u64 kimage_voffset;
176
177static inline unsigned long kaslr_offset(void)
178{
179 return kimage_vaddr - KIMAGE_VADDR;
180}
181
182/*
183 * Allow all memory at the discovery stage. We will clip it later.
184 */
185#define MIN_MEMBLOCK_ADDR 0
186#define MAX_MEMBLOCK_ADDR U64_MAX
187
188/*
189 * PFNs are used to describe any physical page; this means
190 * PFN 0 == physical address 0.
191 *
192 * This is the PFN of the first RAM page in the kernel
193 * direct-mapped view. We assume this is the first page
194 * of RAM in the mem_map as well.
195 */
196#define PHYS_PFN_OFFSET (PHYS_OFFSET >> PAGE_SHIFT)
197
198/*
199 * When dealing with data aborts, watchpoints, or instruction traps we may end
200 * up with a tagged userland pointer. Clear the tag to get a sane pointer to
201 * pass on to access_ok(), for instance.
202 */
203#define __untagged_addr(addr) \
204 ((__force __typeof__(addr))sign_extend64((__force u64)(addr), 55))
205
206#define untagged_addr(addr) ({ \
207 u64 __addr = (__force u64)(addr); \
208 __addr &= __untagged_addr(__addr); \
209 (__force __typeof__(addr))__addr; \
210})
211
212#ifdef CONFIG_KASAN_SW_TAGS
213#define __tag_shifted(tag) ((u64)(tag) << 56)
214#define __tag_reset(addr) __untagged_addr(addr)
215#define __tag_get(addr) (__u8)((u64)(addr) >> 56)
216#else
217#define __tag_shifted(tag) 0UL
218#define __tag_reset(addr) (addr)
219#define __tag_get(addr) 0
220#endif /* CONFIG_KASAN_SW_TAGS */
221
222static inline const void *__tag_set(const void *addr, u8 tag)
223{
224 u64 __addr = (u64)addr & ~__tag_shifted(0xff);
225 return (const void *)(__addr | __tag_shifted(tag));
226}
227
228/*
229 * Physical vs virtual RAM address space conversion. These are
230 * private definitions which should NOT be used outside memory.h
231 * files. Use virt_to_phys/phys_to_virt/__pa/__va instead.
232 */
233
234
235/*
236 * The linear kernel range starts at the bottom of the virtual address
237 * space. Testing the top bit for the start of the region is a
238 * sufficient check and avoids having to worry about the tag.
239 */
240#define __is_lm_address(addr) (!(((u64)addr) & BIT(vabits_actual - 1)))
241
242#define __lm_to_phys(addr) (((addr) + physvirt_offset))
243#define __kimg_to_phys(addr) ((addr) - kimage_voffset)
244
245#define __virt_to_phys_nodebug(x) ({ \
246 phys_addr_t __x = (phys_addr_t)(__tag_reset(x)); \
247 __is_lm_address(__x) ? __lm_to_phys(__x) : __kimg_to_phys(__x); \
248})
249
250#define __pa_symbol_nodebug(x) __kimg_to_phys((phys_addr_t)(x))
251
252#ifdef CONFIG_DEBUG_VIRTUAL
253extern phys_addr_t __virt_to_phys(unsigned long x);
254extern phys_addr_t __phys_addr_symbol(unsigned long x);
255#else
256#define __virt_to_phys(x) __virt_to_phys_nodebug(x)
257#define __phys_addr_symbol(x) __pa_symbol_nodebug(x)
258#endif /* CONFIG_DEBUG_VIRTUAL */
259
260#define __phys_to_virt(x) ((unsigned long)((x) - physvirt_offset))
261#define __phys_to_kimg(x) ((unsigned long)((x) + kimage_voffset))
262
263/*
264 * Convert a page to/from a physical address
265 */
266#define page_to_phys(page) (__pfn_to_phys(page_to_pfn(page)))
267#define phys_to_page(phys) (pfn_to_page(__phys_to_pfn(phys)))
268
269/*
270 * Note: Drivers should NOT use these. They are the wrong
271 * translation for translating DMA addresses. Use the driver
272 * DMA support - see dma-mapping.h.
273 */
274#define virt_to_phys virt_to_phys
275static inline phys_addr_t virt_to_phys(const volatile void *x)
276{
277 return __virt_to_phys((unsigned long)(x));
278}
279
280#define phys_to_virt phys_to_virt
281static inline void *phys_to_virt(phys_addr_t x)
282{
283 return (void *)(__phys_to_virt(x));
284}
285
286/*
287 * Drivers should NOT use these either.
288 */
289#define __pa(x) __virt_to_phys((unsigned long)(x))
290#define __pa_symbol(x) __phys_addr_symbol(RELOC_HIDE((unsigned long)(x), 0))
291#define __pa_nodebug(x) __virt_to_phys_nodebug((unsigned long)(x))
292#define __va(x) ((void *)__phys_to_virt((phys_addr_t)(x)))
293#define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT)
294#define virt_to_pfn(x) __phys_to_pfn(__virt_to_phys((unsigned long)(x)))
295#define sym_to_pfn(x) __phys_to_pfn(__pa_symbol(x))
296
297/*
298 * virt_to_page(x) convert a _valid_ virtual address to struct page *
299 * virt_addr_valid(x) indicates whether a virtual address is valid
300 */
301#define ARCH_PFN_OFFSET ((unsigned long)PHYS_PFN_OFFSET)
302
303#if !defined(CONFIG_SPARSEMEM_VMEMMAP) || defined(CONFIG_DEBUG_VIRTUAL)
304#define virt_to_page(x) pfn_to_page(virt_to_pfn(x))
305#else
306#define page_to_virt(x) ({ \
307 __typeof__(x) __page = x; \
308 u64 __idx = ((u64)__page - VMEMMAP_START) / sizeof(struct page);\
309 u64 __addr = PAGE_OFFSET + (__idx * PAGE_SIZE); \
310 (void *)__tag_set((const void *)__addr, page_kasan_tag(__page));\
311})
312
313#define virt_to_page(x) ({ \
314 u64 __idx = (__tag_reset((u64)x) - PAGE_OFFSET) / PAGE_SIZE; \
315 u64 __addr = VMEMMAP_START + (__idx * sizeof(struct page)); \
316 (struct page *)__addr; \
317})
318#endif /* !CONFIG_SPARSEMEM_VMEMMAP || CONFIG_DEBUG_VIRTUAL */
319
320#define virt_addr_valid(addr) ({ \
321 __typeof__(addr) __addr = addr; \
322 __is_lm_address(__addr) && pfn_valid(virt_to_pfn(__addr)); \
323})
324
325#endif /* !ASSEMBLY */
326
327/*
328 * Given that the GIC architecture permits ITS implementations that can only be
329 * configured with a LPI table address once, GICv3 systems with many CPUs may
330 * end up reserving a lot of different regions after a kexec for their LPI
331 * tables (one per CPU), as we are forced to reuse the same memory after kexec
332 * (and thus reserve it persistently with EFI beforehand)
333 */
334#if defined(CONFIG_EFI) && defined(CONFIG_ARM_GIC_V3_ITS)
335# define INIT_MEMBLOCK_RESERVED_REGIONS (INIT_MEMBLOCK_REGIONS + NR_CPUS + 1)
336#endif
337
338#include <asm-generic/memory_model.h>
339
340#endif /* __ASM_MEMORY_H */