at v5.8-rc7 40 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PGTABLE_H 3#define _LINUX_PGTABLE_H 4 5#include <linux/pfn.h> 6#include <asm/pgtable.h> 7 8#ifndef __ASSEMBLY__ 9#ifdef CONFIG_MMU 10 11#include <linux/mm_types.h> 12#include <linux/bug.h> 13#include <linux/errno.h> 14#include <asm-generic/pgtable_uffd.h> 15 16#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 18#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 19#endif 20 21/* 22 * On almost all architectures and configurations, 0 can be used as the 23 * upper ceiling to free_pgtables(): on many architectures it has the same 24 * effect as using TASK_SIZE. However, there is one configuration which 25 * must impose a more careful limit, to avoid freeing kernel pgtables. 26 */ 27#ifndef USER_PGTABLES_CEILING 28#define USER_PGTABLES_CEILING 0UL 29#endif 30 31/* 32 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD] 33 * 34 * The pXx_index() functions return the index of the entry in the page 35 * table page which would control the given virtual address 36 * 37 * As these functions may be used by the same code for different levels of 38 * the page table folding, they are always available, regardless of 39 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0 40 * because in such cases PTRS_PER_PxD equals 1. 41 */ 42 43static inline unsigned long pte_index(unsigned long address) 44{ 45 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 46} 47 48#ifndef pmd_index 49static inline unsigned long pmd_index(unsigned long address) 50{ 51 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); 52} 53#define pmd_index pmd_index 54#endif 55 56#ifndef pud_index 57static inline unsigned long pud_index(unsigned long address) 58{ 59 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); 60} 61#define pud_index pud_index 62#endif 63 64#ifndef pgd_index 65/* Must be a compile-time constant, so implement it as a macro */ 66#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) 67#endif 68 69#ifndef pte_offset_kernel 70static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) 71{ 72 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); 73} 74#define pte_offset_kernel pte_offset_kernel 75#endif 76 77#if defined(CONFIG_HIGHPTE) 78#define pte_offset_map(dir, address) \ 79 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \ 80 pte_index((address))) 81#define pte_unmap(pte) kunmap_atomic((pte)) 82#else 83#define pte_offset_map(dir, address) pte_offset_kernel((dir), (address)) 84#define pte_unmap(pte) ((void)(pte)) /* NOP */ 85#endif 86 87/* Find an entry in the second-level page table.. */ 88#ifndef pmd_offset 89static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address) 90{ 91 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address); 92} 93#define pmd_offset pmd_offset 94#endif 95 96#ifndef pud_offset 97static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address) 98{ 99 return (pud_t *)p4d_page_vaddr(*p4d) + pud_index(address); 100} 101#define pud_offset pud_offset 102#endif 103 104static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address) 105{ 106 return (pgd + pgd_index(address)); 107}; 108 109/* 110 * a shortcut to get a pgd_t in a given mm 111 */ 112#ifndef pgd_offset 113#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address)) 114#endif 115 116/* 117 * a shortcut which implies the use of the kernel's pgd, instead 118 * of a process's 119 */ 120#define pgd_offset_k(address) pgd_offset(&init_mm, (address)) 121 122/* 123 * In many cases it is known that a virtual address is mapped at PMD or PTE 124 * level, so instead of traversing all the page table levels, we can get a 125 * pointer to the PMD entry in user or kernel page table or translate a virtual 126 * address to the pointer in the PTE in the kernel page tables with simple 127 * helpers. 128 */ 129static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va) 130{ 131 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va); 132} 133 134static inline pmd_t *pmd_off_k(unsigned long va) 135{ 136 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va); 137} 138 139static inline pte_t *virt_to_kpte(unsigned long vaddr) 140{ 141 pmd_t *pmd = pmd_off_k(vaddr); 142 143 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr); 144} 145 146#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 147extern int ptep_set_access_flags(struct vm_area_struct *vma, 148 unsigned long address, pte_t *ptep, 149 pte_t entry, int dirty); 150#endif 151 152#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 153#ifdef CONFIG_TRANSPARENT_HUGEPAGE 154extern int pmdp_set_access_flags(struct vm_area_struct *vma, 155 unsigned long address, pmd_t *pmdp, 156 pmd_t entry, int dirty); 157extern int pudp_set_access_flags(struct vm_area_struct *vma, 158 unsigned long address, pud_t *pudp, 159 pud_t entry, int dirty); 160#else 161static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 162 unsigned long address, pmd_t *pmdp, 163 pmd_t entry, int dirty) 164{ 165 BUILD_BUG(); 166 return 0; 167} 168static inline int pudp_set_access_flags(struct vm_area_struct *vma, 169 unsigned long address, pud_t *pudp, 170 pud_t entry, int dirty) 171{ 172 BUILD_BUG(); 173 return 0; 174} 175#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 176#endif 177 178#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 179static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 180 unsigned long address, 181 pte_t *ptep) 182{ 183 pte_t pte = *ptep; 184 int r = 1; 185 if (!pte_young(pte)) 186 r = 0; 187 else 188 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 189 return r; 190} 191#endif 192 193#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 194#ifdef CONFIG_TRANSPARENT_HUGEPAGE 195static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 196 unsigned long address, 197 pmd_t *pmdp) 198{ 199 pmd_t pmd = *pmdp; 200 int r = 1; 201 if (!pmd_young(pmd)) 202 r = 0; 203 else 204 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 205 return r; 206} 207#else 208static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 209 unsigned long address, 210 pmd_t *pmdp) 211{ 212 BUILD_BUG(); 213 return 0; 214} 215#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 216#endif 217 218#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 219int ptep_clear_flush_young(struct vm_area_struct *vma, 220 unsigned long address, pte_t *ptep); 221#endif 222 223#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 224#ifdef CONFIG_TRANSPARENT_HUGEPAGE 225extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 226 unsigned long address, pmd_t *pmdp); 227#else 228/* 229 * Despite relevant to THP only, this API is called from generic rmap code 230 * under PageTransHuge(), hence needs a dummy implementation for !THP 231 */ 232static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 233 unsigned long address, pmd_t *pmdp) 234{ 235 BUILD_BUG(); 236 return 0; 237} 238#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 239#endif 240 241#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 242static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 243 unsigned long address, 244 pte_t *ptep) 245{ 246 pte_t pte = *ptep; 247 pte_clear(mm, address, ptep); 248 return pte; 249} 250#endif 251 252#ifndef __HAVE_ARCH_PTEP_GET 253static inline pte_t ptep_get(pte_t *ptep) 254{ 255 return READ_ONCE(*ptep); 256} 257#endif 258 259#ifdef CONFIG_TRANSPARENT_HUGEPAGE 260#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 261static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 262 unsigned long address, 263 pmd_t *pmdp) 264{ 265 pmd_t pmd = *pmdp; 266 pmd_clear(pmdp); 267 return pmd; 268} 269#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 270#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 271static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 272 unsigned long address, 273 pud_t *pudp) 274{ 275 pud_t pud = *pudp; 276 277 pud_clear(pudp); 278 return pud; 279} 280#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 281#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 282 283#ifdef CONFIG_TRANSPARENT_HUGEPAGE 284#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 285static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 286 unsigned long address, pmd_t *pmdp, 287 int full) 288{ 289 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 290} 291#endif 292 293#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 294static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 295 unsigned long address, pud_t *pudp, 296 int full) 297{ 298 return pudp_huge_get_and_clear(mm, address, pudp); 299} 300#endif 301#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 302 303#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 304static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 305 unsigned long address, pte_t *ptep, 306 int full) 307{ 308 pte_t pte; 309 pte = ptep_get_and_clear(mm, address, ptep); 310 return pte; 311} 312#endif 313 314 315/* 316 * If two threads concurrently fault at the same page, the thread that 317 * won the race updates the PTE and its local TLB/Cache. The other thread 318 * gives up, simply does nothing, and continues; on architectures where 319 * software can update TLB, local TLB can be updated here to avoid next page 320 * fault. This function updates TLB only, do nothing with cache or others. 321 * It is the difference with function update_mmu_cache. 322 */ 323#ifndef __HAVE_ARCH_UPDATE_MMU_TLB 324static inline void update_mmu_tlb(struct vm_area_struct *vma, 325 unsigned long address, pte_t *ptep) 326{ 327} 328#define __HAVE_ARCH_UPDATE_MMU_TLB 329#endif 330 331/* 332 * Some architectures may be able to avoid expensive synchronization 333 * primitives when modifications are made to PTE's which are already 334 * not present, or in the process of an address space destruction. 335 */ 336#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 337static inline void pte_clear_not_present_full(struct mm_struct *mm, 338 unsigned long address, 339 pte_t *ptep, 340 int full) 341{ 342 pte_clear(mm, address, ptep); 343} 344#endif 345 346#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 347extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 348 unsigned long address, 349 pte_t *ptep); 350#endif 351 352#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 353extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 354 unsigned long address, 355 pmd_t *pmdp); 356extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 357 unsigned long address, 358 pud_t *pudp); 359#endif 360 361#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 362struct mm_struct; 363static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 364{ 365 pte_t old_pte = *ptep; 366 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 367} 368#endif 369 370/* 371 * On some architectures hardware does not set page access bit when accessing 372 * memory page, it is responsibilty of software setting this bit. It brings 373 * out extra page fault penalty to track page access bit. For optimization page 374 * access bit can be set during all page fault flow on these arches. 375 * To be differentiate with macro pte_mkyoung, this macro is used on platforms 376 * where software maintains page access bit. 377 */ 378#ifndef pte_sw_mkyoung 379static inline pte_t pte_sw_mkyoung(pte_t pte) 380{ 381 return pte; 382} 383#define pte_sw_mkyoung pte_sw_mkyoung 384#endif 385 386#ifndef pte_savedwrite 387#define pte_savedwrite pte_write 388#endif 389 390#ifndef pte_mk_savedwrite 391#define pte_mk_savedwrite pte_mkwrite 392#endif 393 394#ifndef pte_clear_savedwrite 395#define pte_clear_savedwrite pte_wrprotect 396#endif 397 398#ifndef pmd_savedwrite 399#define pmd_savedwrite pmd_write 400#endif 401 402#ifndef pmd_mk_savedwrite 403#define pmd_mk_savedwrite pmd_mkwrite 404#endif 405 406#ifndef pmd_clear_savedwrite 407#define pmd_clear_savedwrite pmd_wrprotect 408#endif 409 410#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 411#ifdef CONFIG_TRANSPARENT_HUGEPAGE 412static inline void pmdp_set_wrprotect(struct mm_struct *mm, 413 unsigned long address, pmd_t *pmdp) 414{ 415 pmd_t old_pmd = *pmdp; 416 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 417} 418#else 419static inline void pmdp_set_wrprotect(struct mm_struct *mm, 420 unsigned long address, pmd_t *pmdp) 421{ 422 BUILD_BUG(); 423} 424#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 425#endif 426#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 427#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 428static inline void pudp_set_wrprotect(struct mm_struct *mm, 429 unsigned long address, pud_t *pudp) 430{ 431 pud_t old_pud = *pudp; 432 433 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 434} 435#else 436static inline void pudp_set_wrprotect(struct mm_struct *mm, 437 unsigned long address, pud_t *pudp) 438{ 439 BUILD_BUG(); 440} 441#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 442#endif 443 444#ifndef pmdp_collapse_flush 445#ifdef CONFIG_TRANSPARENT_HUGEPAGE 446extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 447 unsigned long address, pmd_t *pmdp); 448#else 449static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 450 unsigned long address, 451 pmd_t *pmdp) 452{ 453 BUILD_BUG(); 454 return *pmdp; 455} 456#define pmdp_collapse_flush pmdp_collapse_flush 457#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 458#endif 459 460#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 461extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 462 pgtable_t pgtable); 463#endif 464 465#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 466extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 467#endif 468 469#ifdef CONFIG_TRANSPARENT_HUGEPAGE 470/* 471 * This is an implementation of pmdp_establish() that is only suitable for an 472 * architecture that doesn't have hardware dirty/accessed bits. In this case we 473 * can't race with CPU which sets these bits and non-atomic aproach is fine. 474 */ 475static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 476 unsigned long address, pmd_t *pmdp, pmd_t pmd) 477{ 478 pmd_t old_pmd = *pmdp; 479 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 480 return old_pmd; 481} 482#endif 483 484#ifndef __HAVE_ARCH_PMDP_INVALIDATE 485extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 486 pmd_t *pmdp); 487#endif 488 489#ifndef __HAVE_ARCH_PTE_SAME 490static inline int pte_same(pte_t pte_a, pte_t pte_b) 491{ 492 return pte_val(pte_a) == pte_val(pte_b); 493} 494#endif 495 496#ifndef __HAVE_ARCH_PTE_UNUSED 497/* 498 * Some architectures provide facilities to virtualization guests 499 * so that they can flag allocated pages as unused. This allows the 500 * host to transparently reclaim unused pages. This function returns 501 * whether the pte's page is unused. 502 */ 503static inline int pte_unused(pte_t pte) 504{ 505 return 0; 506} 507#endif 508 509#ifndef pte_access_permitted 510#define pte_access_permitted(pte, write) \ 511 (pte_present(pte) && (!(write) || pte_write(pte))) 512#endif 513 514#ifndef pmd_access_permitted 515#define pmd_access_permitted(pmd, write) \ 516 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 517#endif 518 519#ifndef pud_access_permitted 520#define pud_access_permitted(pud, write) \ 521 (pud_present(pud) && (!(write) || pud_write(pud))) 522#endif 523 524#ifndef p4d_access_permitted 525#define p4d_access_permitted(p4d, write) \ 526 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 527#endif 528 529#ifndef pgd_access_permitted 530#define pgd_access_permitted(pgd, write) \ 531 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 532#endif 533 534#ifndef __HAVE_ARCH_PMD_SAME 535static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 536{ 537 return pmd_val(pmd_a) == pmd_val(pmd_b); 538} 539 540static inline int pud_same(pud_t pud_a, pud_t pud_b) 541{ 542 return pud_val(pud_a) == pud_val(pud_b); 543} 544#endif 545 546#ifndef __HAVE_ARCH_P4D_SAME 547static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 548{ 549 return p4d_val(p4d_a) == p4d_val(p4d_b); 550} 551#endif 552 553#ifndef __HAVE_ARCH_PGD_SAME 554static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 555{ 556 return pgd_val(pgd_a) == pgd_val(pgd_b); 557} 558#endif 559 560/* 561 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 562 * TLB flush will be required as a result of the "set". For example, use 563 * in scenarios where it is known ahead of time that the routine is 564 * setting non-present entries, or re-setting an existing entry to the 565 * same value. Otherwise, use the typical "set" helpers and flush the 566 * TLB. 567 */ 568#define set_pte_safe(ptep, pte) \ 569({ \ 570 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 571 set_pte(ptep, pte); \ 572}) 573 574#define set_pmd_safe(pmdp, pmd) \ 575({ \ 576 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 577 set_pmd(pmdp, pmd); \ 578}) 579 580#define set_pud_safe(pudp, pud) \ 581({ \ 582 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 583 set_pud(pudp, pud); \ 584}) 585 586#define set_p4d_safe(p4dp, p4d) \ 587({ \ 588 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 589 set_p4d(p4dp, p4d); \ 590}) 591 592#define set_pgd_safe(pgdp, pgd) \ 593({ \ 594 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 595 set_pgd(pgdp, pgd); \ 596}) 597 598#ifndef __HAVE_ARCH_DO_SWAP_PAGE 599/* 600 * Some architectures support metadata associated with a page. When a 601 * page is being swapped out, this metadata must be saved so it can be 602 * restored when the page is swapped back in. SPARC M7 and newer 603 * processors support an ADI (Application Data Integrity) tag for the 604 * page as metadata for the page. arch_do_swap_page() can restore this 605 * metadata when a page is swapped back in. 606 */ 607static inline void arch_do_swap_page(struct mm_struct *mm, 608 struct vm_area_struct *vma, 609 unsigned long addr, 610 pte_t pte, pte_t oldpte) 611{ 612 613} 614#endif 615 616#ifndef __HAVE_ARCH_UNMAP_ONE 617/* 618 * Some architectures support metadata associated with a page. When a 619 * page is being swapped out, this metadata must be saved so it can be 620 * restored when the page is swapped back in. SPARC M7 and newer 621 * processors support an ADI (Application Data Integrity) tag for the 622 * page as metadata for the page. arch_unmap_one() can save this 623 * metadata on a swap-out of a page. 624 */ 625static inline int arch_unmap_one(struct mm_struct *mm, 626 struct vm_area_struct *vma, 627 unsigned long addr, 628 pte_t orig_pte) 629{ 630 return 0; 631} 632#endif 633 634#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 635#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 636#endif 637 638#ifndef __HAVE_ARCH_MOVE_PTE 639#define move_pte(pte, prot, old_addr, new_addr) (pte) 640#endif 641 642#ifndef pte_accessible 643# define pte_accessible(mm, pte) ((void)(pte), 1) 644#endif 645 646#ifndef flush_tlb_fix_spurious_fault 647#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 648#endif 649 650#ifndef pgprot_nx 651#define pgprot_nx(prot) (prot) 652#endif 653 654#ifndef pgprot_noncached 655#define pgprot_noncached(prot) (prot) 656#endif 657 658#ifndef pgprot_writecombine 659#define pgprot_writecombine pgprot_noncached 660#endif 661 662#ifndef pgprot_writethrough 663#define pgprot_writethrough pgprot_noncached 664#endif 665 666#ifndef pgprot_device 667#define pgprot_device pgprot_noncached 668#endif 669 670#ifndef pgprot_modify 671#define pgprot_modify pgprot_modify 672static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 673{ 674 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 675 newprot = pgprot_noncached(newprot); 676 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 677 newprot = pgprot_writecombine(newprot); 678 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 679 newprot = pgprot_device(newprot); 680 return newprot; 681} 682#endif 683 684/* 685 * When walking page tables, get the address of the next boundary, 686 * or the end address of the range if that comes earlier. Although no 687 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 688 */ 689 690#define pgd_addr_end(addr, end) \ 691({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 692 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 693}) 694 695#ifndef p4d_addr_end 696#define p4d_addr_end(addr, end) \ 697({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 698 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 699}) 700#endif 701 702#ifndef pud_addr_end 703#define pud_addr_end(addr, end) \ 704({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 705 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 706}) 707#endif 708 709#ifndef pmd_addr_end 710#define pmd_addr_end(addr, end) \ 711({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 712 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 713}) 714#endif 715 716/* 717 * When walking page tables, we usually want to skip any p?d_none entries; 718 * and any p?d_bad entries - reporting the error before resetting to none. 719 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 720 */ 721void pgd_clear_bad(pgd_t *); 722 723#ifndef __PAGETABLE_P4D_FOLDED 724void p4d_clear_bad(p4d_t *); 725#else 726#define p4d_clear_bad(p4d) do { } while (0) 727#endif 728 729#ifndef __PAGETABLE_PUD_FOLDED 730void pud_clear_bad(pud_t *); 731#else 732#define pud_clear_bad(p4d) do { } while (0) 733#endif 734 735void pmd_clear_bad(pmd_t *); 736 737static inline int pgd_none_or_clear_bad(pgd_t *pgd) 738{ 739 if (pgd_none(*pgd)) 740 return 1; 741 if (unlikely(pgd_bad(*pgd))) { 742 pgd_clear_bad(pgd); 743 return 1; 744 } 745 return 0; 746} 747 748static inline int p4d_none_or_clear_bad(p4d_t *p4d) 749{ 750 if (p4d_none(*p4d)) 751 return 1; 752 if (unlikely(p4d_bad(*p4d))) { 753 p4d_clear_bad(p4d); 754 return 1; 755 } 756 return 0; 757} 758 759static inline int pud_none_or_clear_bad(pud_t *pud) 760{ 761 if (pud_none(*pud)) 762 return 1; 763 if (unlikely(pud_bad(*pud))) { 764 pud_clear_bad(pud); 765 return 1; 766 } 767 return 0; 768} 769 770static inline int pmd_none_or_clear_bad(pmd_t *pmd) 771{ 772 if (pmd_none(*pmd)) 773 return 1; 774 if (unlikely(pmd_bad(*pmd))) { 775 pmd_clear_bad(pmd); 776 return 1; 777 } 778 return 0; 779} 780 781static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 782 unsigned long addr, 783 pte_t *ptep) 784{ 785 /* 786 * Get the current pte state, but zero it out to make it 787 * non-present, preventing the hardware from asynchronously 788 * updating it. 789 */ 790 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 791} 792 793static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 794 unsigned long addr, 795 pte_t *ptep, pte_t pte) 796{ 797 /* 798 * The pte is non-present, so there's no hardware state to 799 * preserve. 800 */ 801 set_pte_at(vma->vm_mm, addr, ptep, pte); 802} 803 804#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 805/* 806 * Start a pte protection read-modify-write transaction, which 807 * protects against asynchronous hardware modifications to the pte. 808 * The intention is not to prevent the hardware from making pte 809 * updates, but to prevent any updates it may make from being lost. 810 * 811 * This does not protect against other software modifications of the 812 * pte; the appropriate pte lock must be held over the transation. 813 * 814 * Note that this interface is intended to be batchable, meaning that 815 * ptep_modify_prot_commit may not actually update the pte, but merely 816 * queue the update to be done at some later time. The update must be 817 * actually committed before the pte lock is released, however. 818 */ 819static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 820 unsigned long addr, 821 pte_t *ptep) 822{ 823 return __ptep_modify_prot_start(vma, addr, ptep); 824} 825 826/* 827 * Commit an update to a pte, leaving any hardware-controlled bits in 828 * the PTE unmodified. 829 */ 830static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 831 unsigned long addr, 832 pte_t *ptep, pte_t old_pte, pte_t pte) 833{ 834 __ptep_modify_prot_commit(vma, addr, ptep, pte); 835} 836#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 837#endif /* CONFIG_MMU */ 838 839/* 840 * No-op macros that just return the current protection value. Defined here 841 * because these macros can be used used even if CONFIG_MMU is not defined. 842 */ 843#ifndef pgprot_encrypted 844#define pgprot_encrypted(prot) (prot) 845#endif 846 847#ifndef pgprot_decrypted 848#define pgprot_decrypted(prot) (prot) 849#endif 850 851/* 852 * A facility to provide lazy MMU batching. This allows PTE updates and 853 * page invalidations to be delayed until a call to leave lazy MMU mode 854 * is issued. Some architectures may benefit from doing this, and it is 855 * beneficial for both shadow and direct mode hypervisors, which may batch 856 * the PTE updates which happen during this window. Note that using this 857 * interface requires that read hazards be removed from the code. A read 858 * hazard could result in the direct mode hypervisor case, since the actual 859 * write to the page tables may not yet have taken place, so reads though 860 * a raw PTE pointer after it has been modified are not guaranteed to be 861 * up to date. This mode can only be entered and left under the protection of 862 * the page table locks for all page tables which may be modified. In the UP 863 * case, this is required so that preemption is disabled, and in the SMP case, 864 * it must synchronize the delayed page table writes properly on other CPUs. 865 */ 866#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 867#define arch_enter_lazy_mmu_mode() do {} while (0) 868#define arch_leave_lazy_mmu_mode() do {} while (0) 869#define arch_flush_lazy_mmu_mode() do {} while (0) 870#endif 871 872/* 873 * A facility to provide batching of the reload of page tables and 874 * other process state with the actual context switch code for 875 * paravirtualized guests. By convention, only one of the batched 876 * update (lazy) modes (CPU, MMU) should be active at any given time, 877 * entry should never be nested, and entry and exits should always be 878 * paired. This is for sanity of maintaining and reasoning about the 879 * kernel code. In this case, the exit (end of the context switch) is 880 * in architecture-specific code, and so doesn't need a generic 881 * definition. 882 */ 883#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 884#define arch_start_context_switch(prev) do {} while (0) 885#endif 886 887#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 888#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 889static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 890{ 891 return pmd; 892} 893 894static inline int pmd_swp_soft_dirty(pmd_t pmd) 895{ 896 return 0; 897} 898 899static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 900{ 901 return pmd; 902} 903#endif 904#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 905static inline int pte_soft_dirty(pte_t pte) 906{ 907 return 0; 908} 909 910static inline int pmd_soft_dirty(pmd_t pmd) 911{ 912 return 0; 913} 914 915static inline pte_t pte_mksoft_dirty(pte_t pte) 916{ 917 return pte; 918} 919 920static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 921{ 922 return pmd; 923} 924 925static inline pte_t pte_clear_soft_dirty(pte_t pte) 926{ 927 return pte; 928} 929 930static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 931{ 932 return pmd; 933} 934 935static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 936{ 937 return pte; 938} 939 940static inline int pte_swp_soft_dirty(pte_t pte) 941{ 942 return 0; 943} 944 945static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 946{ 947 return pte; 948} 949 950static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 951{ 952 return pmd; 953} 954 955static inline int pmd_swp_soft_dirty(pmd_t pmd) 956{ 957 return 0; 958} 959 960static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 961{ 962 return pmd; 963} 964#endif 965 966#ifndef __HAVE_PFNMAP_TRACKING 967/* 968 * Interfaces that can be used by architecture code to keep track of 969 * memory type of pfn mappings specified by the remap_pfn_range, 970 * vmf_insert_pfn. 971 */ 972 973/* 974 * track_pfn_remap is called when a _new_ pfn mapping is being established 975 * by remap_pfn_range() for physical range indicated by pfn and size. 976 */ 977static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 978 unsigned long pfn, unsigned long addr, 979 unsigned long size) 980{ 981 return 0; 982} 983 984/* 985 * track_pfn_insert is called when a _new_ single pfn is established 986 * by vmf_insert_pfn(). 987 */ 988static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 989 pfn_t pfn) 990{ 991} 992 993/* 994 * track_pfn_copy is called when vma that is covering the pfnmap gets 995 * copied through copy_page_range(). 996 */ 997static inline int track_pfn_copy(struct vm_area_struct *vma) 998{ 999 return 0; 1000} 1001 1002/* 1003 * untrack_pfn is called while unmapping a pfnmap for a region. 1004 * untrack can be called for a specific region indicated by pfn and size or 1005 * can be for the entire vma (in which case pfn, size are zero). 1006 */ 1007static inline void untrack_pfn(struct vm_area_struct *vma, 1008 unsigned long pfn, unsigned long size) 1009{ 1010} 1011 1012/* 1013 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 1014 */ 1015static inline void untrack_pfn_moved(struct vm_area_struct *vma) 1016{ 1017} 1018#else 1019extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 1020 unsigned long pfn, unsigned long addr, 1021 unsigned long size); 1022extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 1023 pfn_t pfn); 1024extern int track_pfn_copy(struct vm_area_struct *vma); 1025extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 1026 unsigned long size); 1027extern void untrack_pfn_moved(struct vm_area_struct *vma); 1028#endif 1029 1030#ifdef __HAVE_COLOR_ZERO_PAGE 1031static inline int is_zero_pfn(unsigned long pfn) 1032{ 1033 extern unsigned long zero_pfn; 1034 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 1035 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 1036} 1037 1038#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 1039 1040#else 1041static inline int is_zero_pfn(unsigned long pfn) 1042{ 1043 extern unsigned long zero_pfn; 1044 return pfn == zero_pfn; 1045} 1046 1047static inline unsigned long my_zero_pfn(unsigned long addr) 1048{ 1049 extern unsigned long zero_pfn; 1050 return zero_pfn; 1051} 1052#endif 1053 1054#ifdef CONFIG_MMU 1055 1056#ifndef CONFIG_TRANSPARENT_HUGEPAGE 1057static inline int pmd_trans_huge(pmd_t pmd) 1058{ 1059 return 0; 1060} 1061#ifndef pmd_write 1062static inline int pmd_write(pmd_t pmd) 1063{ 1064 BUG(); 1065 return 0; 1066} 1067#endif /* pmd_write */ 1068#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1069 1070#ifndef pud_write 1071static inline int pud_write(pud_t pud) 1072{ 1073 BUG(); 1074 return 0; 1075} 1076#endif /* pud_write */ 1077 1078#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 1079static inline int pmd_devmap(pmd_t pmd) 1080{ 1081 return 0; 1082} 1083static inline int pud_devmap(pud_t pud) 1084{ 1085 return 0; 1086} 1087static inline int pgd_devmap(pgd_t pgd) 1088{ 1089 return 0; 1090} 1091#endif 1092 1093#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 1094 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1095 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 1096static inline int pud_trans_huge(pud_t pud) 1097{ 1098 return 0; 1099} 1100#endif 1101 1102/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ 1103static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) 1104{ 1105 pud_t pudval = READ_ONCE(*pud); 1106 1107 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 1108 return 1; 1109 if (unlikely(pud_bad(pudval))) { 1110 pud_clear_bad(pud); 1111 return 1; 1112 } 1113 return 0; 1114} 1115 1116/* See pmd_trans_unstable for discussion. */ 1117static inline int pud_trans_unstable(pud_t *pud) 1118{ 1119#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 1120 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 1121 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); 1122#else 1123 return 0; 1124#endif 1125} 1126 1127#ifndef pmd_read_atomic 1128static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 1129{ 1130 /* 1131 * Depend on compiler for an atomic pmd read. NOTE: this is 1132 * only going to work, if the pmdval_t isn't larger than 1133 * an unsigned long. 1134 */ 1135 return *pmdp; 1136} 1137#endif 1138 1139#ifndef arch_needs_pgtable_deposit 1140#define arch_needs_pgtable_deposit() (false) 1141#endif 1142/* 1143 * This function is meant to be used by sites walking pagetables with 1144 * the mmap_lock held in read mode to protect against MADV_DONTNEED and 1145 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 1146 * into a null pmd and the transhuge page fault can convert a null pmd 1147 * into an hugepmd or into a regular pmd (if the hugepage allocation 1148 * fails). While holding the mmap_lock in read mode the pmd becomes 1149 * stable and stops changing under us only if it's not null and not a 1150 * transhuge pmd. When those races occurs and this function makes a 1151 * difference vs the standard pmd_none_or_clear_bad, the result is 1152 * undefined so behaving like if the pmd was none is safe (because it 1153 * can return none anyway). The compiler level barrier() is critically 1154 * important to compute the two checks atomically on the same pmdval. 1155 * 1156 * For 32bit kernels with a 64bit large pmd_t this automatically takes 1157 * care of reading the pmd atomically to avoid SMP race conditions 1158 * against pmd_populate() when the mmap_lock is hold for reading by the 1159 * caller (a special atomic read not done by "gcc" as in the generic 1160 * version above, is also needed when THP is disabled because the page 1161 * fault can populate the pmd from under us). 1162 */ 1163static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 1164{ 1165 pmd_t pmdval = pmd_read_atomic(pmd); 1166 /* 1167 * The barrier will stabilize the pmdval in a register or on 1168 * the stack so that it will stop changing under the code. 1169 * 1170 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 1171 * pmd_read_atomic is allowed to return a not atomic pmdval 1172 * (for example pointing to an hugepage that has never been 1173 * mapped in the pmd). The below checks will only care about 1174 * the low part of the pmd with 32bit PAE x86 anyway, with the 1175 * exception of pmd_none(). So the important thing is that if 1176 * the low part of the pmd is found null, the high part will 1177 * be also null or the pmd_none() check below would be 1178 * confused. 1179 */ 1180#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1181 barrier(); 1182#endif 1183 /* 1184 * !pmd_present() checks for pmd migration entries 1185 * 1186 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 1187 * But using that requires moving current function and pmd_trans_unstable() 1188 * to linux/swapops.h to resovle dependency, which is too much code move. 1189 * 1190 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 1191 * because !pmd_present() pages can only be under migration not swapped 1192 * out. 1193 * 1194 * pmd_none() is preseved for future condition checks on pmd migration 1195 * entries and not confusing with this function name, although it is 1196 * redundant with !pmd_present(). 1197 */ 1198 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 1199 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 1200 return 1; 1201 if (unlikely(pmd_bad(pmdval))) { 1202 pmd_clear_bad(pmd); 1203 return 1; 1204 } 1205 return 0; 1206} 1207 1208/* 1209 * This is a noop if Transparent Hugepage Support is not built into 1210 * the kernel. Otherwise it is equivalent to 1211 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 1212 * places that already verified the pmd is not none and they want to 1213 * walk ptes while holding the mmap sem in read mode (write mode don't 1214 * need this). If THP is not enabled, the pmd can't go away under the 1215 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 1216 * run a pmd_trans_unstable before walking the ptes after 1217 * split_huge_pmd returns (because it may have run when the pmd become 1218 * null, but then a page fault can map in a THP and not a regular page). 1219 */ 1220static inline int pmd_trans_unstable(pmd_t *pmd) 1221{ 1222#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1223 return pmd_none_or_trans_huge_or_clear_bad(pmd); 1224#else 1225 return 0; 1226#endif 1227} 1228 1229#ifndef CONFIG_NUMA_BALANCING 1230/* 1231 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 1232 * the only case the kernel cares is for NUMA balancing and is only ever set 1233 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 1234 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It 1235 * is the responsibility of the caller to distinguish between PROT_NONE 1236 * protections and NUMA hinting fault protections. 1237 */ 1238static inline int pte_protnone(pte_t pte) 1239{ 1240 return 0; 1241} 1242 1243static inline int pmd_protnone(pmd_t pmd) 1244{ 1245 return 0; 1246} 1247#endif /* CONFIG_NUMA_BALANCING */ 1248 1249#endif /* CONFIG_MMU */ 1250 1251#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1252 1253#ifndef __PAGETABLE_P4D_FOLDED 1254int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1255int p4d_clear_huge(p4d_t *p4d); 1256#else 1257static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1258{ 1259 return 0; 1260} 1261static inline int p4d_clear_huge(p4d_t *p4d) 1262{ 1263 return 0; 1264} 1265#endif /* !__PAGETABLE_P4D_FOLDED */ 1266 1267int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1268int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1269int pud_clear_huge(pud_t *pud); 1270int pmd_clear_huge(pmd_t *pmd); 1271int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1272int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1273int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1274#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1275static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1276{ 1277 return 0; 1278} 1279static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1280{ 1281 return 0; 1282} 1283static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1284{ 1285 return 0; 1286} 1287static inline int p4d_clear_huge(p4d_t *p4d) 1288{ 1289 return 0; 1290} 1291static inline int pud_clear_huge(pud_t *pud) 1292{ 1293 return 0; 1294} 1295static inline int pmd_clear_huge(pmd_t *pmd) 1296{ 1297 return 0; 1298} 1299static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1300{ 1301 return 0; 1302} 1303static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1304{ 1305 return 0; 1306} 1307static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1308{ 1309 return 0; 1310} 1311#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1312 1313#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1314#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1315/* 1316 * ARCHes with special requirements for evicting THP backing TLB entries can 1317 * implement this. Otherwise also, it can help optimize normal TLB flush in 1318 * THP regime. stock flush_tlb_range() typically has optimization to nuke the 1319 * entire TLB TLB if flush span is greater than a threshold, which will 1320 * likely be true for a single huge page. Thus a single thp flush will 1321 * invalidate the entire TLB which is not desitable. 1322 * e.g. see arch/arc: flush_pmd_tlb_range 1323 */ 1324#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1325#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1326#else 1327#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1328#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1329#endif 1330#endif 1331 1332struct file; 1333int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1334 unsigned long size, pgprot_t *vma_prot); 1335 1336#ifndef CONFIG_X86_ESPFIX64 1337static inline void init_espfix_bsp(void) { } 1338#endif 1339 1340extern void __init pgtable_cache_init(void); 1341 1342#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1343static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1344{ 1345 return true; 1346} 1347 1348static inline bool arch_has_pfn_modify_check(void) 1349{ 1350 return false; 1351} 1352#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1353 1354/* 1355 * Architecture PAGE_KERNEL_* fallbacks 1356 * 1357 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1358 * because they really don't support them, or the port needs to be updated to 1359 * reflect the required functionality. Below are a set of relatively safe 1360 * fallbacks, as best effort, which we can count on in lieu of the architectures 1361 * not defining them on their own yet. 1362 */ 1363 1364#ifndef PAGE_KERNEL_RO 1365# define PAGE_KERNEL_RO PAGE_KERNEL 1366#endif 1367 1368#ifndef PAGE_KERNEL_EXEC 1369# define PAGE_KERNEL_EXEC PAGE_KERNEL 1370#endif 1371 1372/* 1373 * Page Table Modification bits for pgtbl_mod_mask. 1374 * 1375 * These are used by the p?d_alloc_track*() set of functions an in the generic 1376 * vmalloc/ioremap code to track at which page-table levels entries have been 1377 * modified. Based on that the code can better decide when vmalloc and ioremap 1378 * mapping changes need to be synchronized to other page-tables in the system. 1379 */ 1380#define __PGTBL_PGD_MODIFIED 0 1381#define __PGTBL_P4D_MODIFIED 1 1382#define __PGTBL_PUD_MODIFIED 2 1383#define __PGTBL_PMD_MODIFIED 3 1384#define __PGTBL_PTE_MODIFIED 4 1385 1386#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED) 1387#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED) 1388#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED) 1389#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED) 1390#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED) 1391 1392/* Page-Table Modification Mask */ 1393typedef unsigned int pgtbl_mod_mask; 1394 1395#endif /* !__ASSEMBLY__ */ 1396 1397#ifndef io_remap_pfn_range 1398#define io_remap_pfn_range remap_pfn_range 1399#endif 1400 1401#ifndef has_transparent_hugepage 1402#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1403#define has_transparent_hugepage() 1 1404#else 1405#define has_transparent_hugepage() 0 1406#endif 1407#endif 1408 1409/* 1410 * On some architectures it depends on the mm if the p4d/pud or pmd 1411 * layer of the page table hierarchy is folded or not. 1412 */ 1413#ifndef mm_p4d_folded 1414#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1415#endif 1416 1417#ifndef mm_pud_folded 1418#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1419#endif 1420 1421#ifndef mm_pmd_folded 1422#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1423#endif 1424 1425/* 1426 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1427 * This differs from p?d_huge() by the fact that they are always available (if 1428 * the architecture supports large pages at the appropriate level) even 1429 * if CONFIG_HUGETLB_PAGE is not defined. 1430 * Only meaningful when called on a valid entry. 1431 */ 1432#ifndef pgd_leaf 1433#define pgd_leaf(x) 0 1434#endif 1435#ifndef p4d_leaf 1436#define p4d_leaf(x) 0 1437#endif 1438#ifndef pud_leaf 1439#define pud_leaf(x) 0 1440#endif 1441#ifndef pmd_leaf 1442#define pmd_leaf(x) 0 1443#endif 1444 1445#endif /* _LINUX_PGTABLE_H */