Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30/* Lock to allow exclusive modification to the device and opp lists */
31DEFINE_MUTEX(opp_table_lock);
32
33static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35{
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43}
44
45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46{
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63}
64
65/**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76struct opp_table *_find_opp_table(struct device *dev)
77{
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90}
91
92/**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102{
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109}
110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112/**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120{
121 if (IS_ERR_OR_NULL(opp) || !opp->available) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127}
128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130/**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148/**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159{
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166}
167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169/**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176{
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189}
190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192/**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199{
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259}
260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262/**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271{
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274}
275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277/**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285{
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299}
300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
302int _get_opp_count(struct opp_table *opp_table)
303{
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317}
318
319/**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
326int dev_pm_opp_get_opp_count(struct device *dev)
327{
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343}
344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346/**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372{
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401}
402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404/**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421{
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449}
450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454{
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473}
474
475/**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495{
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513}
514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516/**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571}
572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574/**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593{
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625}
626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630{
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651}
652
653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655{
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665}
666
667static int _generic_set_opp_regulator(struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673{
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 /*
703 * Enable the regulator after setting its voltages, otherwise it breaks
704 * some boot-enabled regulators.
705 */
706 if (unlikely(!opp_table->regulator_enabled)) {
707 ret = regulator_enable(reg);
708 if (ret < 0)
709 dev_warn(dev, "Failed to enable regulator: %d", ret);
710 else
711 opp_table->regulator_enabled = true;
712 }
713
714 return 0;
715
716restore_freq:
717 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
718 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
719 __func__, old_freq);
720restore_voltage:
721 /* This shouldn't harm even if the voltages weren't updated earlier */
722 if (old_supply)
723 _set_opp_voltage(dev, reg, old_supply);
724
725 return ret;
726}
727
728static int _set_opp_bw(const struct opp_table *opp_table,
729 struct dev_pm_opp *opp, struct device *dev, bool remove)
730{
731 u32 avg, peak;
732 int i, ret;
733
734 if (!opp_table->paths)
735 return 0;
736
737 for (i = 0; i < opp_table->path_count; i++) {
738 if (remove) {
739 avg = 0;
740 peak = 0;
741 } else {
742 avg = opp->bandwidth[i].avg;
743 peak = opp->bandwidth[i].peak;
744 }
745 ret = icc_set_bw(opp_table->paths[i], avg, peak);
746 if (ret) {
747 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
748 remove ? "remove" : "set", i, ret);
749 return ret;
750 }
751 }
752
753 return 0;
754}
755
756static int _set_opp_custom(const struct opp_table *opp_table,
757 struct device *dev, unsigned long old_freq,
758 unsigned long freq,
759 struct dev_pm_opp_supply *old_supply,
760 struct dev_pm_opp_supply *new_supply)
761{
762 struct dev_pm_set_opp_data *data;
763 int size;
764
765 data = opp_table->set_opp_data;
766 data->regulators = opp_table->regulators;
767 data->regulator_count = opp_table->regulator_count;
768 data->clk = opp_table->clk;
769 data->dev = dev;
770
771 data->old_opp.rate = old_freq;
772 size = sizeof(*old_supply) * opp_table->regulator_count;
773 if (!old_supply)
774 memset(data->old_opp.supplies, 0, size);
775 else
776 memcpy(data->old_opp.supplies, old_supply, size);
777
778 data->new_opp.rate = freq;
779 memcpy(data->new_opp.supplies, new_supply, size);
780
781 return opp_table->set_opp(data);
782}
783
784/* This is only called for PM domain for now */
785static int _set_required_opps(struct device *dev,
786 struct opp_table *opp_table,
787 struct dev_pm_opp *opp)
788{
789 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
790 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
791 unsigned int pstate;
792 int i, ret = 0;
793
794 if (!required_opp_tables)
795 return 0;
796
797 /* Single genpd case */
798 if (!genpd_virt_devs) {
799 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
800 ret = dev_pm_genpd_set_performance_state(dev, pstate);
801 if (ret) {
802 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
803 dev_name(dev), pstate, ret);
804 }
805 return ret;
806 }
807
808 /* Multiple genpd case */
809
810 /*
811 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
812 * after it is freed from another thread.
813 */
814 mutex_lock(&opp_table->genpd_virt_dev_lock);
815
816 for (i = 0; i < opp_table->required_opp_count; i++) {
817 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
818
819 if (!genpd_virt_devs[i])
820 continue;
821
822 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
823 if (ret) {
824 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
825 dev_name(genpd_virt_devs[i]), pstate, ret);
826 break;
827 }
828 }
829 mutex_unlock(&opp_table->genpd_virt_dev_lock);
830
831 return ret;
832}
833
834/**
835 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
836 * @dev: device for which we do this operation
837 * @target_freq: frequency to achieve
838 *
839 * This configures the power-supplies to the levels specified by the OPP
840 * corresponding to the target_freq, and programs the clock to a value <=
841 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
842 * provided by the opp, should have already rounded to the target OPP's
843 * frequency.
844 */
845int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
846{
847 struct opp_table *opp_table;
848 unsigned long freq, old_freq, temp_freq;
849 struct dev_pm_opp *old_opp, *opp;
850 struct clk *clk;
851 int ret;
852
853 opp_table = _find_opp_table(dev);
854 if (IS_ERR(opp_table)) {
855 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
856 return PTR_ERR(opp_table);
857 }
858
859 if (unlikely(!target_freq)) {
860 /*
861 * Some drivers need to support cases where some platforms may
862 * have OPP table for the device, while others don't and
863 * opp_set_rate() just needs to behave like clk_set_rate().
864 */
865 if (!_get_opp_count(opp_table))
866 return 0;
867
868 if (!opp_table->required_opp_tables && !opp_table->regulators &&
869 !opp_table->paths) {
870 dev_err(dev, "target frequency can't be 0\n");
871 ret = -EINVAL;
872 goto put_opp_table;
873 }
874
875 ret = _set_opp_bw(opp_table, NULL, dev, true);
876 if (ret)
877 return ret;
878
879 if (opp_table->regulator_enabled) {
880 regulator_disable(opp_table->regulators[0]);
881 opp_table->regulator_enabled = false;
882 }
883
884 ret = _set_required_opps(dev, opp_table, NULL);
885 goto put_opp_table;
886 }
887
888 clk = opp_table->clk;
889 if (IS_ERR(clk)) {
890 dev_err(dev, "%s: No clock available for the device\n",
891 __func__);
892 ret = PTR_ERR(clk);
893 goto put_opp_table;
894 }
895
896 freq = clk_round_rate(clk, target_freq);
897 if ((long)freq <= 0)
898 freq = target_freq;
899
900 old_freq = clk_get_rate(clk);
901
902 /* Return early if nothing to do */
903 if (old_freq == freq) {
904 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
905 __func__, freq);
906 ret = 0;
907 goto put_opp_table;
908 }
909
910 /*
911 * For IO devices which require an OPP on some platforms/SoCs
912 * while just needing to scale the clock on some others
913 * we look for empty OPP tables with just a clock handle and
914 * scale only the clk. This makes dev_pm_opp_set_rate()
915 * equivalent to a clk_set_rate()
916 */
917 if (!_get_opp_count(opp_table)) {
918 ret = _generic_set_opp_clk_only(dev, clk, freq);
919 goto put_opp_table;
920 }
921
922 temp_freq = old_freq;
923 old_opp = _find_freq_ceil(opp_table, &temp_freq);
924 if (IS_ERR(old_opp)) {
925 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
926 __func__, old_freq, PTR_ERR(old_opp));
927 }
928
929 temp_freq = freq;
930 opp = _find_freq_ceil(opp_table, &temp_freq);
931 if (IS_ERR(opp)) {
932 ret = PTR_ERR(opp);
933 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
934 __func__, freq, ret);
935 goto put_old_opp;
936 }
937
938 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
939 old_freq, freq);
940
941 /* Scaling up? Configure required OPPs before frequency */
942 if (freq >= old_freq) {
943 ret = _set_required_opps(dev, opp_table, opp);
944 if (ret)
945 goto put_opp;
946 }
947
948 if (opp_table->set_opp) {
949 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
950 IS_ERR(old_opp) ? NULL : old_opp->supplies,
951 opp->supplies);
952 } else if (opp_table->regulators) {
953 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
954 IS_ERR(old_opp) ? NULL : old_opp->supplies,
955 opp->supplies);
956 } else {
957 /* Only frequency scaling */
958 ret = _generic_set_opp_clk_only(dev, clk, freq);
959 }
960
961 /* Scaling down? Configure required OPPs after frequency */
962 if (!ret && freq < old_freq) {
963 ret = _set_required_opps(dev, opp_table, opp);
964 if (ret)
965 dev_err(dev, "Failed to set required opps: %d\n", ret);
966 }
967
968 if (!ret)
969 ret = _set_opp_bw(opp_table, opp, dev, false);
970
971put_opp:
972 dev_pm_opp_put(opp);
973put_old_opp:
974 if (!IS_ERR(old_opp))
975 dev_pm_opp_put(old_opp);
976put_opp_table:
977 dev_pm_opp_put_opp_table(opp_table);
978 return ret;
979}
980EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
981
982/* OPP-dev Helpers */
983static void _remove_opp_dev(struct opp_device *opp_dev,
984 struct opp_table *opp_table)
985{
986 opp_debug_unregister(opp_dev, opp_table);
987 list_del(&opp_dev->node);
988 kfree(opp_dev);
989}
990
991static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
992 struct opp_table *opp_table)
993{
994 struct opp_device *opp_dev;
995
996 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
997 if (!opp_dev)
998 return NULL;
999
1000 /* Initialize opp-dev */
1001 opp_dev->dev = dev;
1002
1003 list_add(&opp_dev->node, &opp_table->dev_list);
1004
1005 /* Create debugfs entries for the opp_table */
1006 opp_debug_register(opp_dev, opp_table);
1007
1008 return opp_dev;
1009}
1010
1011struct opp_device *_add_opp_dev(const struct device *dev,
1012 struct opp_table *opp_table)
1013{
1014 struct opp_device *opp_dev;
1015
1016 mutex_lock(&opp_table->lock);
1017 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1018 mutex_unlock(&opp_table->lock);
1019
1020 return opp_dev;
1021}
1022
1023static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1024{
1025 struct opp_table *opp_table;
1026 struct opp_device *opp_dev;
1027 int ret;
1028
1029 /*
1030 * Allocate a new OPP table. In the infrequent case where a new
1031 * device is needed to be added, we pay this penalty.
1032 */
1033 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1034 if (!opp_table)
1035 return NULL;
1036
1037 mutex_init(&opp_table->lock);
1038 mutex_init(&opp_table->genpd_virt_dev_lock);
1039 INIT_LIST_HEAD(&opp_table->dev_list);
1040
1041 /* Mark regulator count uninitialized */
1042 opp_table->regulator_count = -1;
1043
1044 opp_dev = _add_opp_dev(dev, opp_table);
1045 if (!opp_dev) {
1046 kfree(opp_table);
1047 return NULL;
1048 }
1049
1050 _of_init_opp_table(opp_table, dev, index);
1051
1052 /* Find clk for the device */
1053 opp_table->clk = clk_get(dev, NULL);
1054 if (IS_ERR(opp_table->clk)) {
1055 ret = PTR_ERR(opp_table->clk);
1056 if (ret != -EPROBE_DEFER)
1057 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
1058 ret);
1059 }
1060
1061 /* Find interconnect path(s) for the device */
1062 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1063 if (ret)
1064 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1065 __func__, ret);
1066
1067 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1068 INIT_LIST_HEAD(&opp_table->opp_list);
1069 kref_init(&opp_table->kref);
1070
1071 /* Secure the device table modification */
1072 list_add(&opp_table->node, &opp_tables);
1073 return opp_table;
1074}
1075
1076void _get_opp_table_kref(struct opp_table *opp_table)
1077{
1078 kref_get(&opp_table->kref);
1079}
1080
1081static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1082{
1083 struct opp_table *opp_table;
1084
1085 /* Hold our table modification lock here */
1086 mutex_lock(&opp_table_lock);
1087
1088 opp_table = _find_opp_table_unlocked(dev);
1089 if (!IS_ERR(opp_table))
1090 goto unlock;
1091
1092 opp_table = _managed_opp(dev, index);
1093 if (opp_table) {
1094 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1095 dev_pm_opp_put_opp_table(opp_table);
1096 opp_table = NULL;
1097 }
1098 goto unlock;
1099 }
1100
1101 opp_table = _allocate_opp_table(dev, index);
1102
1103unlock:
1104 mutex_unlock(&opp_table_lock);
1105
1106 return opp_table;
1107}
1108
1109struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1110{
1111 return _opp_get_opp_table(dev, 0);
1112}
1113EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1114
1115struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1116 int index)
1117{
1118 return _opp_get_opp_table(dev, index);
1119}
1120
1121static void _opp_table_kref_release(struct kref *kref)
1122{
1123 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1124 struct opp_device *opp_dev, *temp;
1125 int i;
1126
1127 _of_clear_opp_table(opp_table);
1128
1129 /* Release clk */
1130 if (!IS_ERR(opp_table->clk))
1131 clk_put(opp_table->clk);
1132
1133 if (opp_table->paths) {
1134 for (i = 0; i < opp_table->path_count; i++)
1135 icc_put(opp_table->paths[i]);
1136 kfree(opp_table->paths);
1137 }
1138
1139 WARN_ON(!list_empty(&opp_table->opp_list));
1140
1141 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1142 /*
1143 * The OPP table is getting removed, drop the performance state
1144 * constraints.
1145 */
1146 if (opp_table->genpd_performance_state)
1147 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1148
1149 _remove_opp_dev(opp_dev, opp_table);
1150 }
1151
1152 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1153 mutex_destroy(&opp_table->lock);
1154 list_del(&opp_table->node);
1155 kfree(opp_table);
1156
1157 mutex_unlock(&opp_table_lock);
1158}
1159
1160void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1161{
1162 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1163 &opp_table_lock);
1164}
1165EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1166
1167void _opp_free(struct dev_pm_opp *opp)
1168{
1169 kfree(opp);
1170}
1171
1172static void _opp_kref_release(struct dev_pm_opp *opp,
1173 struct opp_table *opp_table)
1174{
1175 /*
1176 * Notify the changes in the availability of the operable
1177 * frequency/voltage list.
1178 */
1179 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1180 _of_opp_free_required_opps(opp_table, opp);
1181 opp_debug_remove_one(opp);
1182 list_del(&opp->node);
1183 kfree(opp);
1184}
1185
1186static void _opp_kref_release_unlocked(struct kref *kref)
1187{
1188 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1189 struct opp_table *opp_table = opp->opp_table;
1190
1191 _opp_kref_release(opp, opp_table);
1192}
1193
1194static void _opp_kref_release_locked(struct kref *kref)
1195{
1196 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1197 struct opp_table *opp_table = opp->opp_table;
1198
1199 _opp_kref_release(opp, opp_table);
1200 mutex_unlock(&opp_table->lock);
1201}
1202
1203void dev_pm_opp_get(struct dev_pm_opp *opp)
1204{
1205 kref_get(&opp->kref);
1206}
1207
1208void dev_pm_opp_put(struct dev_pm_opp *opp)
1209{
1210 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1211 &opp->opp_table->lock);
1212}
1213EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1214
1215static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1216{
1217 kref_put(&opp->kref, _opp_kref_release_unlocked);
1218}
1219
1220/**
1221 * dev_pm_opp_remove() - Remove an OPP from OPP table
1222 * @dev: device for which we do this operation
1223 * @freq: OPP to remove with matching 'freq'
1224 *
1225 * This function removes an opp from the opp table.
1226 */
1227void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1228{
1229 struct dev_pm_opp *opp;
1230 struct opp_table *opp_table;
1231 bool found = false;
1232
1233 opp_table = _find_opp_table(dev);
1234 if (IS_ERR(opp_table))
1235 return;
1236
1237 mutex_lock(&opp_table->lock);
1238
1239 list_for_each_entry(opp, &opp_table->opp_list, node) {
1240 if (opp->rate == freq) {
1241 found = true;
1242 break;
1243 }
1244 }
1245
1246 mutex_unlock(&opp_table->lock);
1247
1248 if (found) {
1249 dev_pm_opp_put(opp);
1250
1251 /* Drop the reference taken by dev_pm_opp_add() */
1252 dev_pm_opp_put_opp_table(opp_table);
1253 } else {
1254 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1255 __func__, freq);
1256 }
1257
1258 /* Drop the reference taken by _find_opp_table() */
1259 dev_pm_opp_put_opp_table(opp_table);
1260}
1261EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1262
1263void _opp_remove_all_static(struct opp_table *opp_table)
1264{
1265 struct dev_pm_opp *opp, *tmp;
1266
1267 mutex_lock(&opp_table->lock);
1268
1269 if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps)
1270 goto unlock;
1271
1272 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1273 if (!opp->dynamic)
1274 dev_pm_opp_put_unlocked(opp);
1275 }
1276
1277unlock:
1278 mutex_unlock(&opp_table->lock);
1279}
1280
1281/**
1282 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1283 * @dev: device for which we do this operation
1284 *
1285 * This function removes all dynamically created OPPs from the opp table.
1286 */
1287void dev_pm_opp_remove_all_dynamic(struct device *dev)
1288{
1289 struct opp_table *opp_table;
1290 struct dev_pm_opp *opp, *temp;
1291 int count = 0;
1292
1293 opp_table = _find_opp_table(dev);
1294 if (IS_ERR(opp_table))
1295 return;
1296
1297 mutex_lock(&opp_table->lock);
1298 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1299 if (opp->dynamic) {
1300 dev_pm_opp_put_unlocked(opp);
1301 count++;
1302 }
1303 }
1304 mutex_unlock(&opp_table->lock);
1305
1306 /* Drop the references taken by dev_pm_opp_add() */
1307 while (count--)
1308 dev_pm_opp_put_opp_table(opp_table);
1309
1310 /* Drop the reference taken by _find_opp_table() */
1311 dev_pm_opp_put_opp_table(opp_table);
1312}
1313EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1314
1315struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1316{
1317 struct dev_pm_opp *opp;
1318 int supply_count, supply_size, icc_size;
1319
1320 /* Allocate space for at least one supply */
1321 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1322 supply_size = sizeof(*opp->supplies) * supply_count;
1323 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1324
1325 /* allocate new OPP node and supplies structures */
1326 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1327
1328 if (!opp)
1329 return NULL;
1330
1331 /* Put the supplies at the end of the OPP structure as an empty array */
1332 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1333 if (icc_size)
1334 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1335 INIT_LIST_HEAD(&opp->node);
1336
1337 return opp;
1338}
1339
1340static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1341 struct opp_table *opp_table)
1342{
1343 struct regulator *reg;
1344 int i;
1345
1346 if (!opp_table->regulators)
1347 return true;
1348
1349 for (i = 0; i < opp_table->regulator_count; i++) {
1350 reg = opp_table->regulators[i];
1351
1352 if (!regulator_is_supported_voltage(reg,
1353 opp->supplies[i].u_volt_min,
1354 opp->supplies[i].u_volt_max)) {
1355 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1356 __func__, opp->supplies[i].u_volt_min,
1357 opp->supplies[i].u_volt_max);
1358 return false;
1359 }
1360 }
1361
1362 return true;
1363}
1364
1365int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1366{
1367 if (opp1->rate != opp2->rate)
1368 return opp1->rate < opp2->rate ? -1 : 1;
1369 if (opp1->bandwidth && opp2->bandwidth &&
1370 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1371 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1372 if (opp1->level != opp2->level)
1373 return opp1->level < opp2->level ? -1 : 1;
1374 return 0;
1375}
1376
1377static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1378 struct opp_table *opp_table,
1379 struct list_head **head)
1380{
1381 struct dev_pm_opp *opp;
1382 int opp_cmp;
1383
1384 /*
1385 * Insert new OPP in order of increasing frequency and discard if
1386 * already present.
1387 *
1388 * Need to use &opp_table->opp_list in the condition part of the 'for'
1389 * loop, don't replace it with head otherwise it will become an infinite
1390 * loop.
1391 */
1392 list_for_each_entry(opp, &opp_table->opp_list, node) {
1393 opp_cmp = _opp_compare_key(new_opp, opp);
1394 if (opp_cmp > 0) {
1395 *head = &opp->node;
1396 continue;
1397 }
1398
1399 if (opp_cmp < 0)
1400 return 0;
1401
1402 /* Duplicate OPPs */
1403 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1404 __func__, opp->rate, opp->supplies[0].u_volt,
1405 opp->available, new_opp->rate,
1406 new_opp->supplies[0].u_volt, new_opp->available);
1407
1408 /* Should we compare voltages for all regulators here ? */
1409 return opp->available &&
1410 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1411 }
1412
1413 return 0;
1414}
1415
1416/*
1417 * Returns:
1418 * 0: On success. And appropriate error message for duplicate OPPs.
1419 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1420 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1421 * sure we don't print error messages unnecessarily if different parts of
1422 * kernel try to initialize the OPP table.
1423 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1424 * should be considered an error by the callers of _opp_add().
1425 */
1426int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1427 struct opp_table *opp_table, bool rate_not_available)
1428{
1429 struct list_head *head;
1430 int ret;
1431
1432 mutex_lock(&opp_table->lock);
1433 head = &opp_table->opp_list;
1434
1435 if (likely(!rate_not_available)) {
1436 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1437 if (ret) {
1438 mutex_unlock(&opp_table->lock);
1439 return ret;
1440 }
1441 }
1442
1443 list_add(&new_opp->node, head);
1444 mutex_unlock(&opp_table->lock);
1445
1446 new_opp->opp_table = opp_table;
1447 kref_init(&new_opp->kref);
1448
1449 opp_debug_create_one(new_opp, opp_table);
1450
1451 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1452 new_opp->available = false;
1453 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1454 __func__, new_opp->rate);
1455 }
1456
1457 return 0;
1458}
1459
1460/**
1461 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1462 * @opp_table: OPP table
1463 * @dev: device for which we do this operation
1464 * @freq: Frequency in Hz for this OPP
1465 * @u_volt: Voltage in uVolts for this OPP
1466 * @dynamic: Dynamically added OPPs.
1467 *
1468 * This function adds an opp definition to the opp table and returns status.
1469 * The opp is made available by default and it can be controlled using
1470 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1471 *
1472 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1473 * and freed by dev_pm_opp_of_remove_table.
1474 *
1475 * Return:
1476 * 0 On success OR
1477 * Duplicate OPPs (both freq and volt are same) and opp->available
1478 * -EEXIST Freq are same and volt are different OR
1479 * Duplicate OPPs (both freq and volt are same) and !opp->available
1480 * -ENOMEM Memory allocation failure
1481 */
1482int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1483 unsigned long freq, long u_volt, bool dynamic)
1484{
1485 struct dev_pm_opp *new_opp;
1486 unsigned long tol;
1487 int ret;
1488
1489 new_opp = _opp_allocate(opp_table);
1490 if (!new_opp)
1491 return -ENOMEM;
1492
1493 /* populate the opp table */
1494 new_opp->rate = freq;
1495 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1496 new_opp->supplies[0].u_volt = u_volt;
1497 new_opp->supplies[0].u_volt_min = u_volt - tol;
1498 new_opp->supplies[0].u_volt_max = u_volt + tol;
1499 new_opp->available = true;
1500 new_opp->dynamic = dynamic;
1501
1502 ret = _opp_add(dev, new_opp, opp_table, false);
1503 if (ret) {
1504 /* Don't return error for duplicate OPPs */
1505 if (ret == -EBUSY)
1506 ret = 0;
1507 goto free_opp;
1508 }
1509
1510 /*
1511 * Notify the changes in the availability of the operable
1512 * frequency/voltage list.
1513 */
1514 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1515 return 0;
1516
1517free_opp:
1518 _opp_free(new_opp);
1519
1520 return ret;
1521}
1522
1523/**
1524 * dev_pm_opp_set_supported_hw() - Set supported platforms
1525 * @dev: Device for which supported-hw has to be set.
1526 * @versions: Array of hierarchy of versions to match.
1527 * @count: Number of elements in the array.
1528 *
1529 * This is required only for the V2 bindings, and it enables a platform to
1530 * specify the hierarchy of versions it supports. OPP layer will then enable
1531 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1532 * property.
1533 */
1534struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1535 const u32 *versions, unsigned int count)
1536{
1537 struct opp_table *opp_table;
1538
1539 opp_table = dev_pm_opp_get_opp_table(dev);
1540 if (!opp_table)
1541 return ERR_PTR(-ENOMEM);
1542
1543 /* Make sure there are no concurrent readers while updating opp_table */
1544 WARN_ON(!list_empty(&opp_table->opp_list));
1545
1546 /* Another CPU that shares the OPP table has set the property ? */
1547 if (opp_table->supported_hw)
1548 return opp_table;
1549
1550 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1551 GFP_KERNEL);
1552 if (!opp_table->supported_hw) {
1553 dev_pm_opp_put_opp_table(opp_table);
1554 return ERR_PTR(-ENOMEM);
1555 }
1556
1557 opp_table->supported_hw_count = count;
1558
1559 return opp_table;
1560}
1561EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1562
1563/**
1564 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1565 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1566 *
1567 * This is required only for the V2 bindings, and is called for a matching
1568 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1569 * will not be freed.
1570 */
1571void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1572{
1573 /* Make sure there are no concurrent readers while updating opp_table */
1574 WARN_ON(!list_empty(&opp_table->opp_list));
1575
1576 kfree(opp_table->supported_hw);
1577 opp_table->supported_hw = NULL;
1578 opp_table->supported_hw_count = 0;
1579
1580 dev_pm_opp_put_opp_table(opp_table);
1581}
1582EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1583
1584/**
1585 * dev_pm_opp_set_prop_name() - Set prop-extn name
1586 * @dev: Device for which the prop-name has to be set.
1587 * @name: name to postfix to properties.
1588 *
1589 * This is required only for the V2 bindings, and it enables a platform to
1590 * specify the extn to be used for certain property names. The properties to
1591 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1592 * should postfix the property name with -<name> while looking for them.
1593 */
1594struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1595{
1596 struct opp_table *opp_table;
1597
1598 opp_table = dev_pm_opp_get_opp_table(dev);
1599 if (!opp_table)
1600 return ERR_PTR(-ENOMEM);
1601
1602 /* Make sure there are no concurrent readers while updating opp_table */
1603 WARN_ON(!list_empty(&opp_table->opp_list));
1604
1605 /* Another CPU that shares the OPP table has set the property ? */
1606 if (opp_table->prop_name)
1607 return opp_table;
1608
1609 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1610 if (!opp_table->prop_name) {
1611 dev_pm_opp_put_opp_table(opp_table);
1612 return ERR_PTR(-ENOMEM);
1613 }
1614
1615 return opp_table;
1616}
1617EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1618
1619/**
1620 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1621 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1622 *
1623 * This is required only for the V2 bindings, and is called for a matching
1624 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1625 * will not be freed.
1626 */
1627void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1628{
1629 /* Make sure there are no concurrent readers while updating opp_table */
1630 WARN_ON(!list_empty(&opp_table->opp_list));
1631
1632 kfree(opp_table->prop_name);
1633 opp_table->prop_name = NULL;
1634
1635 dev_pm_opp_put_opp_table(opp_table);
1636}
1637EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1638
1639static int _allocate_set_opp_data(struct opp_table *opp_table)
1640{
1641 struct dev_pm_set_opp_data *data;
1642 int len, count = opp_table->regulator_count;
1643
1644 if (WARN_ON(!opp_table->regulators))
1645 return -EINVAL;
1646
1647 /* space for set_opp_data */
1648 len = sizeof(*data);
1649
1650 /* space for old_opp.supplies and new_opp.supplies */
1651 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1652
1653 data = kzalloc(len, GFP_KERNEL);
1654 if (!data)
1655 return -ENOMEM;
1656
1657 data->old_opp.supplies = (void *)(data + 1);
1658 data->new_opp.supplies = data->old_opp.supplies + count;
1659
1660 opp_table->set_opp_data = data;
1661
1662 return 0;
1663}
1664
1665static void _free_set_opp_data(struct opp_table *opp_table)
1666{
1667 kfree(opp_table->set_opp_data);
1668 opp_table->set_opp_data = NULL;
1669}
1670
1671/**
1672 * dev_pm_opp_set_regulators() - Set regulator names for the device
1673 * @dev: Device for which regulator name is being set.
1674 * @names: Array of pointers to the names of the regulator.
1675 * @count: Number of regulators.
1676 *
1677 * In order to support OPP switching, OPP layer needs to know the name of the
1678 * device's regulators, as the core would be required to switch voltages as
1679 * well.
1680 *
1681 * This must be called before any OPPs are initialized for the device.
1682 */
1683struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1684 const char * const names[],
1685 unsigned int count)
1686{
1687 struct opp_table *opp_table;
1688 struct regulator *reg;
1689 int ret, i;
1690
1691 opp_table = dev_pm_opp_get_opp_table(dev);
1692 if (!opp_table)
1693 return ERR_PTR(-ENOMEM);
1694
1695 /* This should be called before OPPs are initialized */
1696 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1697 ret = -EBUSY;
1698 goto err;
1699 }
1700
1701 /* Another CPU that shares the OPP table has set the regulators ? */
1702 if (opp_table->regulators)
1703 return opp_table;
1704
1705 opp_table->regulators = kmalloc_array(count,
1706 sizeof(*opp_table->regulators),
1707 GFP_KERNEL);
1708 if (!opp_table->regulators) {
1709 ret = -ENOMEM;
1710 goto err;
1711 }
1712
1713 for (i = 0; i < count; i++) {
1714 reg = regulator_get_optional(dev, names[i]);
1715 if (IS_ERR(reg)) {
1716 ret = PTR_ERR(reg);
1717 if (ret != -EPROBE_DEFER)
1718 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1719 __func__, names[i], ret);
1720 goto free_regulators;
1721 }
1722
1723 opp_table->regulators[i] = reg;
1724 }
1725
1726 opp_table->regulator_count = count;
1727
1728 /* Allocate block only once to pass to set_opp() routines */
1729 ret = _allocate_set_opp_data(opp_table);
1730 if (ret)
1731 goto free_regulators;
1732
1733 return opp_table;
1734
1735free_regulators:
1736 while (i != 0)
1737 regulator_put(opp_table->regulators[--i]);
1738
1739 kfree(opp_table->regulators);
1740 opp_table->regulators = NULL;
1741 opp_table->regulator_count = -1;
1742err:
1743 dev_pm_opp_put_opp_table(opp_table);
1744
1745 return ERR_PTR(ret);
1746}
1747EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1748
1749/**
1750 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1751 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1752 */
1753void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1754{
1755 int i;
1756
1757 if (!opp_table->regulators)
1758 goto put_opp_table;
1759
1760 /* Make sure there are no concurrent readers while updating opp_table */
1761 WARN_ON(!list_empty(&opp_table->opp_list));
1762
1763 if (opp_table->regulator_enabled) {
1764 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1765 regulator_disable(opp_table->regulators[i]);
1766
1767 opp_table->regulator_enabled = false;
1768 }
1769
1770 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1771 regulator_put(opp_table->regulators[i]);
1772
1773 _free_set_opp_data(opp_table);
1774
1775 kfree(opp_table->regulators);
1776 opp_table->regulators = NULL;
1777 opp_table->regulator_count = -1;
1778
1779put_opp_table:
1780 dev_pm_opp_put_opp_table(opp_table);
1781}
1782EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1783
1784/**
1785 * dev_pm_opp_set_clkname() - Set clk name for the device
1786 * @dev: Device for which clk name is being set.
1787 * @name: Clk name.
1788 *
1789 * In order to support OPP switching, OPP layer needs to get pointer to the
1790 * clock for the device. Simple cases work fine without using this routine (i.e.
1791 * by passing connection-id as NULL), but for a device with multiple clocks
1792 * available, the OPP core needs to know the exact name of the clk to use.
1793 *
1794 * This must be called before any OPPs are initialized for the device.
1795 */
1796struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1797{
1798 struct opp_table *opp_table;
1799 int ret;
1800
1801 opp_table = dev_pm_opp_get_opp_table(dev);
1802 if (!opp_table)
1803 return ERR_PTR(-ENOMEM);
1804
1805 /* This should be called before OPPs are initialized */
1806 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1807 ret = -EBUSY;
1808 goto err;
1809 }
1810
1811 /* Already have default clk set, free it */
1812 if (!IS_ERR(opp_table->clk))
1813 clk_put(opp_table->clk);
1814
1815 /* Find clk for the device */
1816 opp_table->clk = clk_get(dev, name);
1817 if (IS_ERR(opp_table->clk)) {
1818 ret = PTR_ERR(opp_table->clk);
1819 if (ret != -EPROBE_DEFER) {
1820 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1821 ret);
1822 }
1823 goto err;
1824 }
1825
1826 return opp_table;
1827
1828err:
1829 dev_pm_opp_put_opp_table(opp_table);
1830
1831 return ERR_PTR(ret);
1832}
1833EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1834
1835/**
1836 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1837 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1838 */
1839void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1840{
1841 /* Make sure there are no concurrent readers while updating opp_table */
1842 WARN_ON(!list_empty(&opp_table->opp_list));
1843
1844 clk_put(opp_table->clk);
1845 opp_table->clk = ERR_PTR(-EINVAL);
1846
1847 dev_pm_opp_put_opp_table(opp_table);
1848}
1849EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1850
1851/**
1852 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1853 * @dev: Device for which the helper is getting registered.
1854 * @set_opp: Custom set OPP helper.
1855 *
1856 * This is useful to support complex platforms (like platforms with multiple
1857 * regulators per device), instead of the generic OPP set rate helper.
1858 *
1859 * This must be called before any OPPs are initialized for the device.
1860 */
1861struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1862 int (*set_opp)(struct dev_pm_set_opp_data *data))
1863{
1864 struct opp_table *opp_table;
1865
1866 if (!set_opp)
1867 return ERR_PTR(-EINVAL);
1868
1869 opp_table = dev_pm_opp_get_opp_table(dev);
1870 if (!opp_table)
1871 return ERR_PTR(-ENOMEM);
1872
1873 /* This should be called before OPPs are initialized */
1874 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1875 dev_pm_opp_put_opp_table(opp_table);
1876 return ERR_PTR(-EBUSY);
1877 }
1878
1879 /* Another CPU that shares the OPP table has set the helper ? */
1880 if (!opp_table->set_opp)
1881 opp_table->set_opp = set_opp;
1882
1883 return opp_table;
1884}
1885EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1886
1887/**
1888 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1889 * set_opp helper
1890 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1891 *
1892 * Release resources blocked for platform specific set_opp helper.
1893 */
1894void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1895{
1896 /* Make sure there are no concurrent readers while updating opp_table */
1897 WARN_ON(!list_empty(&opp_table->opp_list));
1898
1899 opp_table->set_opp = NULL;
1900 dev_pm_opp_put_opp_table(opp_table);
1901}
1902EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1903
1904static void _opp_detach_genpd(struct opp_table *opp_table)
1905{
1906 int index;
1907
1908 for (index = 0; index < opp_table->required_opp_count; index++) {
1909 if (!opp_table->genpd_virt_devs[index])
1910 continue;
1911
1912 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1913 opp_table->genpd_virt_devs[index] = NULL;
1914 }
1915
1916 kfree(opp_table->genpd_virt_devs);
1917 opp_table->genpd_virt_devs = NULL;
1918}
1919
1920/**
1921 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1922 * @dev: Consumer device for which the genpd is getting attached.
1923 * @names: Null terminated array of pointers containing names of genpd to attach.
1924 * @virt_devs: Pointer to return the array of virtual devices.
1925 *
1926 * Multiple generic power domains for a device are supported with the help of
1927 * virtual genpd devices, which are created for each consumer device - genpd
1928 * pair. These are the device structures which are attached to the power domain
1929 * and are required by the OPP core to set the performance state of the genpd.
1930 * The same API also works for the case where single genpd is available and so
1931 * we don't need to support that separately.
1932 *
1933 * This helper will normally be called by the consumer driver of the device
1934 * "dev", as only that has details of the genpd names.
1935 *
1936 * This helper needs to be called once with a list of all genpd to attach.
1937 * Otherwise the original device structure will be used instead by the OPP core.
1938 *
1939 * The order of entries in the names array must match the order in which
1940 * "required-opps" are added in DT.
1941 */
1942struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1943 const char **names, struct device ***virt_devs)
1944{
1945 struct opp_table *opp_table;
1946 struct device *virt_dev;
1947 int index = 0, ret = -EINVAL;
1948 const char **name = names;
1949
1950 opp_table = dev_pm_opp_get_opp_table(dev);
1951 if (!opp_table)
1952 return ERR_PTR(-ENOMEM);
1953
1954 /*
1955 * If the genpd's OPP table isn't already initialized, parsing of the
1956 * required-opps fail for dev. We should retry this after genpd's OPP
1957 * table is added.
1958 */
1959 if (!opp_table->required_opp_count) {
1960 ret = -EPROBE_DEFER;
1961 goto put_table;
1962 }
1963
1964 mutex_lock(&opp_table->genpd_virt_dev_lock);
1965
1966 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1967 sizeof(*opp_table->genpd_virt_devs),
1968 GFP_KERNEL);
1969 if (!opp_table->genpd_virt_devs)
1970 goto unlock;
1971
1972 while (*name) {
1973 if (index >= opp_table->required_opp_count) {
1974 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1975 *name, opp_table->required_opp_count, index);
1976 goto err;
1977 }
1978
1979 if (opp_table->genpd_virt_devs[index]) {
1980 dev_err(dev, "Genpd virtual device already set %s\n",
1981 *name);
1982 goto err;
1983 }
1984
1985 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1986 if (IS_ERR(virt_dev)) {
1987 ret = PTR_ERR(virt_dev);
1988 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1989 goto err;
1990 }
1991
1992 opp_table->genpd_virt_devs[index] = virt_dev;
1993 index++;
1994 name++;
1995 }
1996
1997 if (virt_devs)
1998 *virt_devs = opp_table->genpd_virt_devs;
1999 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2000
2001 return opp_table;
2002
2003err:
2004 _opp_detach_genpd(opp_table);
2005unlock:
2006 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2007
2008put_table:
2009 dev_pm_opp_put_opp_table(opp_table);
2010
2011 return ERR_PTR(ret);
2012}
2013EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2014
2015/**
2016 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2017 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2018 *
2019 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2020 * OPP table.
2021 */
2022void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2023{
2024 /*
2025 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2026 * used in parallel.
2027 */
2028 mutex_lock(&opp_table->genpd_virt_dev_lock);
2029 _opp_detach_genpd(opp_table);
2030 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2031
2032 dev_pm_opp_put_opp_table(opp_table);
2033}
2034EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2035
2036/**
2037 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2038 * @src_table: OPP table which has dst_table as one of its required OPP table.
2039 * @dst_table: Required OPP table of the src_table.
2040 * @pstate: Current performance state of the src_table.
2041 *
2042 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2043 * "required-opps" property of the OPP (present in @src_table) which has
2044 * performance state set to @pstate.
2045 *
2046 * Return: Zero or positive performance state on success, otherwise negative
2047 * value on errors.
2048 */
2049int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2050 struct opp_table *dst_table,
2051 unsigned int pstate)
2052{
2053 struct dev_pm_opp *opp;
2054 int dest_pstate = -EINVAL;
2055 int i;
2056
2057 if (!pstate)
2058 return 0;
2059
2060 /*
2061 * Normally the src_table will have the "required_opps" property set to
2062 * point to one of the OPPs in the dst_table, but in some cases the
2063 * genpd and its master have one to one mapping of performance states
2064 * and so none of them have the "required-opps" property set. Return the
2065 * pstate of the src_table as it is in such cases.
2066 */
2067 if (!src_table->required_opp_count)
2068 return pstate;
2069
2070 for (i = 0; i < src_table->required_opp_count; i++) {
2071 if (src_table->required_opp_tables[i]->np == dst_table->np)
2072 break;
2073 }
2074
2075 if (unlikely(i == src_table->required_opp_count)) {
2076 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2077 __func__, src_table, dst_table);
2078 return -EINVAL;
2079 }
2080
2081 mutex_lock(&src_table->lock);
2082
2083 list_for_each_entry(opp, &src_table->opp_list, node) {
2084 if (opp->pstate == pstate) {
2085 dest_pstate = opp->required_opps[i]->pstate;
2086 goto unlock;
2087 }
2088 }
2089
2090 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2091 dst_table);
2092
2093unlock:
2094 mutex_unlock(&src_table->lock);
2095
2096 return dest_pstate;
2097}
2098
2099/**
2100 * dev_pm_opp_add() - Add an OPP table from a table definitions
2101 * @dev: device for which we do this operation
2102 * @freq: Frequency in Hz for this OPP
2103 * @u_volt: Voltage in uVolts for this OPP
2104 *
2105 * This function adds an opp definition to the opp table and returns status.
2106 * The opp is made available by default and it can be controlled using
2107 * dev_pm_opp_enable/disable functions.
2108 *
2109 * Return:
2110 * 0 On success OR
2111 * Duplicate OPPs (both freq and volt are same) and opp->available
2112 * -EEXIST Freq are same and volt are different OR
2113 * Duplicate OPPs (both freq and volt are same) and !opp->available
2114 * -ENOMEM Memory allocation failure
2115 */
2116int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2117{
2118 struct opp_table *opp_table;
2119 int ret;
2120
2121 opp_table = dev_pm_opp_get_opp_table(dev);
2122 if (!opp_table)
2123 return -ENOMEM;
2124
2125 /* Fix regulator count for dynamic OPPs */
2126 opp_table->regulator_count = 1;
2127
2128 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2129 if (ret)
2130 dev_pm_opp_put_opp_table(opp_table);
2131
2132 return ret;
2133}
2134EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2135
2136/**
2137 * _opp_set_availability() - helper to set the availability of an opp
2138 * @dev: device for which we do this operation
2139 * @freq: OPP frequency to modify availability
2140 * @availability_req: availability status requested for this opp
2141 *
2142 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2143 * which is isolated here.
2144 *
2145 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2146 * copy operation, returns 0 if no modification was done OR modification was
2147 * successful.
2148 */
2149static int _opp_set_availability(struct device *dev, unsigned long freq,
2150 bool availability_req)
2151{
2152 struct opp_table *opp_table;
2153 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2154 int r = 0;
2155
2156 /* Find the opp_table */
2157 opp_table = _find_opp_table(dev);
2158 if (IS_ERR(opp_table)) {
2159 r = PTR_ERR(opp_table);
2160 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2161 return r;
2162 }
2163
2164 mutex_lock(&opp_table->lock);
2165
2166 /* Do we have the frequency? */
2167 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2168 if (tmp_opp->rate == freq) {
2169 opp = tmp_opp;
2170 break;
2171 }
2172 }
2173
2174 if (IS_ERR(opp)) {
2175 r = PTR_ERR(opp);
2176 goto unlock;
2177 }
2178
2179 /* Is update really needed? */
2180 if (opp->available == availability_req)
2181 goto unlock;
2182
2183 opp->available = availability_req;
2184
2185 dev_pm_opp_get(opp);
2186 mutex_unlock(&opp_table->lock);
2187
2188 /* Notify the change of the OPP availability */
2189 if (availability_req)
2190 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2191 opp);
2192 else
2193 blocking_notifier_call_chain(&opp_table->head,
2194 OPP_EVENT_DISABLE, opp);
2195
2196 dev_pm_opp_put(opp);
2197 goto put_table;
2198
2199unlock:
2200 mutex_unlock(&opp_table->lock);
2201put_table:
2202 dev_pm_opp_put_opp_table(opp_table);
2203 return r;
2204}
2205
2206/**
2207 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2208 * @dev: device for which we do this operation
2209 * @freq: OPP frequency to adjust voltage of
2210 * @u_volt: new OPP target voltage
2211 * @u_volt_min: new OPP min voltage
2212 * @u_volt_max: new OPP max voltage
2213 *
2214 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2215 * copy operation, returns 0 if no modifcation was done OR modification was
2216 * successful.
2217 */
2218int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2219 unsigned long u_volt, unsigned long u_volt_min,
2220 unsigned long u_volt_max)
2221
2222{
2223 struct opp_table *opp_table;
2224 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2225 int r = 0;
2226
2227 /* Find the opp_table */
2228 opp_table = _find_opp_table(dev);
2229 if (IS_ERR(opp_table)) {
2230 r = PTR_ERR(opp_table);
2231 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2232 return r;
2233 }
2234
2235 mutex_lock(&opp_table->lock);
2236
2237 /* Do we have the frequency? */
2238 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2239 if (tmp_opp->rate == freq) {
2240 opp = tmp_opp;
2241 break;
2242 }
2243 }
2244
2245 if (IS_ERR(opp)) {
2246 r = PTR_ERR(opp);
2247 goto adjust_unlock;
2248 }
2249
2250 /* Is update really needed? */
2251 if (opp->supplies->u_volt == u_volt)
2252 goto adjust_unlock;
2253
2254 opp->supplies->u_volt = u_volt;
2255 opp->supplies->u_volt_min = u_volt_min;
2256 opp->supplies->u_volt_max = u_volt_max;
2257
2258 dev_pm_opp_get(opp);
2259 mutex_unlock(&opp_table->lock);
2260
2261 /* Notify the voltage change of the OPP */
2262 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2263 opp);
2264
2265 dev_pm_opp_put(opp);
2266 goto adjust_put_table;
2267
2268adjust_unlock:
2269 mutex_unlock(&opp_table->lock);
2270adjust_put_table:
2271 dev_pm_opp_put_opp_table(opp_table);
2272 return r;
2273}
2274
2275/**
2276 * dev_pm_opp_enable() - Enable a specific OPP
2277 * @dev: device for which we do this operation
2278 * @freq: OPP frequency to enable
2279 *
2280 * Enables a provided opp. If the operation is valid, this returns 0, else the
2281 * corresponding error value. It is meant to be used for users an OPP available
2282 * after being temporarily made unavailable with dev_pm_opp_disable.
2283 *
2284 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2285 * copy operation, returns 0 if no modification was done OR modification was
2286 * successful.
2287 */
2288int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2289{
2290 return _opp_set_availability(dev, freq, true);
2291}
2292EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2293
2294/**
2295 * dev_pm_opp_disable() - Disable a specific OPP
2296 * @dev: device for which we do this operation
2297 * @freq: OPP frequency to disable
2298 *
2299 * Disables a provided opp. If the operation is valid, this returns
2300 * 0, else the corresponding error value. It is meant to be a temporary
2301 * control by users to make this OPP not available until the circumstances are
2302 * right to make it available again (with a call to dev_pm_opp_enable).
2303 *
2304 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2305 * copy operation, returns 0 if no modification was done OR modification was
2306 * successful.
2307 */
2308int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2309{
2310 return _opp_set_availability(dev, freq, false);
2311}
2312EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2313
2314/**
2315 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2316 * @dev: Device for which notifier needs to be registered
2317 * @nb: Notifier block to be registered
2318 *
2319 * Return: 0 on success or a negative error value.
2320 */
2321int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2322{
2323 struct opp_table *opp_table;
2324 int ret;
2325
2326 opp_table = _find_opp_table(dev);
2327 if (IS_ERR(opp_table))
2328 return PTR_ERR(opp_table);
2329
2330 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2331
2332 dev_pm_opp_put_opp_table(opp_table);
2333
2334 return ret;
2335}
2336EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2337
2338/**
2339 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2340 * @dev: Device for which notifier needs to be unregistered
2341 * @nb: Notifier block to be unregistered
2342 *
2343 * Return: 0 on success or a negative error value.
2344 */
2345int dev_pm_opp_unregister_notifier(struct device *dev,
2346 struct notifier_block *nb)
2347{
2348 struct opp_table *opp_table;
2349 int ret;
2350
2351 opp_table = _find_opp_table(dev);
2352 if (IS_ERR(opp_table))
2353 return PTR_ERR(opp_table);
2354
2355 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2356
2357 dev_pm_opp_put_opp_table(opp_table);
2358
2359 return ret;
2360}
2361EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2362
2363void _dev_pm_opp_find_and_remove_table(struct device *dev)
2364{
2365 struct opp_table *opp_table;
2366
2367 /* Check for existing table for 'dev' */
2368 opp_table = _find_opp_table(dev);
2369 if (IS_ERR(opp_table)) {
2370 int error = PTR_ERR(opp_table);
2371
2372 if (error != -ENODEV)
2373 WARN(1, "%s: opp_table: %d\n",
2374 IS_ERR_OR_NULL(dev) ?
2375 "Invalid device" : dev_name(dev),
2376 error);
2377 return;
2378 }
2379
2380 _opp_remove_all_static(opp_table);
2381
2382 /* Drop reference taken by _find_opp_table() */
2383 dev_pm_opp_put_opp_table(opp_table);
2384
2385 /* Drop reference taken while the OPP table was added */
2386 dev_pm_opp_put_opp_table(opp_table);
2387}
2388
2389/**
2390 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2391 * @dev: device pointer used to lookup OPP table.
2392 *
2393 * Free both OPPs created using static entries present in DT and the
2394 * dynamically added entries.
2395 */
2396void dev_pm_opp_remove_table(struct device *dev)
2397{
2398 _dev_pm_opp_find_and_remove_table(dev);
2399}
2400EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);