Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <errno.h>
3#include <inttypes.h>
4#include "string2.h"
5#include <sys/param.h>
6#include <sys/types.h>
7#include <byteswap.h>
8#include <unistd.h>
9#include <stdio.h>
10#include <stdlib.h>
11#include <linux/compiler.h>
12#include <linux/list.h>
13#include <linux/kernel.h>
14#include <linux/bitops.h>
15#include <linux/string.h>
16#include <linux/stringify.h>
17#include <linux/zalloc.h>
18#include <sys/stat.h>
19#include <sys/utsname.h>
20#include <linux/time64.h>
21#include <dirent.h>
22#include <bpf/libbpf.h>
23#include <perf/cpumap.h>
24
25#include "dso.h"
26#include "evlist.h"
27#include "evsel.h"
28#include "util/evsel_fprintf.h"
29#include "header.h"
30#include "memswap.h"
31#include "trace-event.h"
32#include "session.h"
33#include "symbol.h"
34#include "debug.h"
35#include "cpumap.h"
36#include "pmu.h"
37#include "vdso.h"
38#include "strbuf.h"
39#include "build-id.h"
40#include "data.h"
41#include <api/fs/fs.h>
42#include "asm/bug.h"
43#include "tool.h"
44#include "time-utils.h"
45#include "units.h"
46#include "util/util.h" // perf_exe()
47#include "cputopo.h"
48#include "bpf-event.h"
49
50#include <linux/ctype.h>
51#include <internal/lib.h>
52
53/*
54 * magic2 = "PERFILE2"
55 * must be a numerical value to let the endianness
56 * determine the memory layout. That way we are able
57 * to detect endianness when reading the perf.data file
58 * back.
59 *
60 * we check for legacy (PERFFILE) format.
61 */
62static const char *__perf_magic1 = "PERFFILE";
63static const u64 __perf_magic2 = 0x32454c4946524550ULL;
64static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65
66#define PERF_MAGIC __perf_magic2
67
68const char perf_version_string[] = PERF_VERSION;
69
70struct perf_file_attr {
71 struct perf_event_attr attr;
72 struct perf_file_section ids;
73};
74
75void perf_header__set_feat(struct perf_header *header, int feat)
76{
77 set_bit(feat, header->adds_features);
78}
79
80void perf_header__clear_feat(struct perf_header *header, int feat)
81{
82 clear_bit(feat, header->adds_features);
83}
84
85bool perf_header__has_feat(const struct perf_header *header, int feat)
86{
87 return test_bit(feat, header->adds_features);
88}
89
90static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91{
92 ssize_t ret = writen(ff->fd, buf, size);
93
94 if (ret != (ssize_t)size)
95 return ret < 0 ? (int)ret : -1;
96 return 0;
97}
98
99static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
100{
101 /* struct perf_event_header::size is u16 */
102 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103 size_t new_size = ff->size;
104 void *addr;
105
106 if (size + ff->offset > max_size)
107 return -E2BIG;
108
109 while (size > (new_size - ff->offset))
110 new_size <<= 1;
111 new_size = min(max_size, new_size);
112
113 if (ff->size < new_size) {
114 addr = realloc(ff->buf, new_size);
115 if (!addr)
116 return -ENOMEM;
117 ff->buf = addr;
118 ff->size = new_size;
119 }
120
121 memcpy(ff->buf + ff->offset, buf, size);
122 ff->offset += size;
123
124 return 0;
125}
126
127/* Return: 0 if succeded, -ERR if failed. */
128int do_write(struct feat_fd *ff, const void *buf, size_t size)
129{
130 if (!ff->buf)
131 return __do_write_fd(ff, buf, size);
132 return __do_write_buf(ff, buf, size);
133}
134
135/* Return: 0 if succeded, -ERR if failed. */
136static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137{
138 u64 *p = (u64 *) set;
139 int i, ret;
140
141 ret = do_write(ff, &size, sizeof(size));
142 if (ret < 0)
143 return ret;
144
145 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146 ret = do_write(ff, p + i, sizeof(*p));
147 if (ret < 0)
148 return ret;
149 }
150
151 return 0;
152}
153
154/* Return: 0 if succeded, -ERR if failed. */
155int write_padded(struct feat_fd *ff, const void *bf,
156 size_t count, size_t count_aligned)
157{
158 static const char zero_buf[NAME_ALIGN];
159 int err = do_write(ff, bf, count);
160
161 if (!err)
162 err = do_write(ff, zero_buf, count_aligned - count);
163
164 return err;
165}
166
167#define string_size(str) \
168 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169
170/* Return: 0 if succeded, -ERR if failed. */
171static int do_write_string(struct feat_fd *ff, const char *str)
172{
173 u32 len, olen;
174 int ret;
175
176 olen = strlen(str) + 1;
177 len = PERF_ALIGN(olen, NAME_ALIGN);
178
179 /* write len, incl. \0 */
180 ret = do_write(ff, &len, sizeof(len));
181 if (ret < 0)
182 return ret;
183
184 return write_padded(ff, str, olen, len);
185}
186
187static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188{
189 ssize_t ret = readn(ff->fd, addr, size);
190
191 if (ret != size)
192 return ret < 0 ? (int)ret : -1;
193 return 0;
194}
195
196static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197{
198 if (size > (ssize_t)ff->size - ff->offset)
199 return -1;
200
201 memcpy(addr, ff->buf + ff->offset, size);
202 ff->offset += size;
203
204 return 0;
205
206}
207
208static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209{
210 if (!ff->buf)
211 return __do_read_fd(ff, addr, size);
212 return __do_read_buf(ff, addr, size);
213}
214
215static int do_read_u32(struct feat_fd *ff, u32 *addr)
216{
217 int ret;
218
219 ret = __do_read(ff, addr, sizeof(*addr));
220 if (ret)
221 return ret;
222
223 if (ff->ph->needs_swap)
224 *addr = bswap_32(*addr);
225 return 0;
226}
227
228static int do_read_u64(struct feat_fd *ff, u64 *addr)
229{
230 int ret;
231
232 ret = __do_read(ff, addr, sizeof(*addr));
233 if (ret)
234 return ret;
235
236 if (ff->ph->needs_swap)
237 *addr = bswap_64(*addr);
238 return 0;
239}
240
241static char *do_read_string(struct feat_fd *ff)
242{
243 u32 len;
244 char *buf;
245
246 if (do_read_u32(ff, &len))
247 return NULL;
248
249 buf = malloc(len);
250 if (!buf)
251 return NULL;
252
253 if (!__do_read(ff, buf, len)) {
254 /*
255 * strings are padded by zeroes
256 * thus the actual strlen of buf
257 * may be less than len
258 */
259 return buf;
260 }
261
262 free(buf);
263 return NULL;
264}
265
266/* Return: 0 if succeded, -ERR if failed. */
267static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268{
269 unsigned long *set;
270 u64 size, *p;
271 int i, ret;
272
273 ret = do_read_u64(ff, &size);
274 if (ret)
275 return ret;
276
277 set = bitmap_alloc(size);
278 if (!set)
279 return -ENOMEM;
280
281 p = (u64 *) set;
282
283 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284 ret = do_read_u64(ff, p + i);
285 if (ret < 0) {
286 free(set);
287 return ret;
288 }
289 }
290
291 *pset = set;
292 *psize = size;
293 return 0;
294}
295
296static int write_tracing_data(struct feat_fd *ff,
297 struct evlist *evlist)
298{
299 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300 return -1;
301
302 return read_tracing_data(ff->fd, &evlist->core.entries);
303}
304
305static int write_build_id(struct feat_fd *ff,
306 struct evlist *evlist __maybe_unused)
307{
308 struct perf_session *session;
309 int err;
310
311 session = container_of(ff->ph, struct perf_session, header);
312
313 if (!perf_session__read_build_ids(session, true))
314 return -1;
315
316 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317 return -1;
318
319 err = perf_session__write_buildid_table(session, ff);
320 if (err < 0) {
321 pr_debug("failed to write buildid table\n");
322 return err;
323 }
324 perf_session__cache_build_ids(session);
325
326 return 0;
327}
328
329static int write_hostname(struct feat_fd *ff,
330 struct evlist *evlist __maybe_unused)
331{
332 struct utsname uts;
333 int ret;
334
335 ret = uname(&uts);
336 if (ret < 0)
337 return -1;
338
339 return do_write_string(ff, uts.nodename);
340}
341
342static int write_osrelease(struct feat_fd *ff,
343 struct evlist *evlist __maybe_unused)
344{
345 struct utsname uts;
346 int ret;
347
348 ret = uname(&uts);
349 if (ret < 0)
350 return -1;
351
352 return do_write_string(ff, uts.release);
353}
354
355static int write_arch(struct feat_fd *ff,
356 struct evlist *evlist __maybe_unused)
357{
358 struct utsname uts;
359 int ret;
360
361 ret = uname(&uts);
362 if (ret < 0)
363 return -1;
364
365 return do_write_string(ff, uts.machine);
366}
367
368static int write_version(struct feat_fd *ff,
369 struct evlist *evlist __maybe_unused)
370{
371 return do_write_string(ff, perf_version_string);
372}
373
374static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375{
376 FILE *file;
377 char *buf = NULL;
378 char *s, *p;
379 const char *search = cpuinfo_proc;
380 size_t len = 0;
381 int ret = -1;
382
383 if (!search)
384 return -1;
385
386 file = fopen("/proc/cpuinfo", "r");
387 if (!file)
388 return -1;
389
390 while (getline(&buf, &len, file) > 0) {
391 ret = strncmp(buf, search, strlen(search));
392 if (!ret)
393 break;
394 }
395
396 if (ret) {
397 ret = -1;
398 goto done;
399 }
400
401 s = buf;
402
403 p = strchr(buf, ':');
404 if (p && *(p+1) == ' ' && *(p+2))
405 s = p + 2;
406 p = strchr(s, '\n');
407 if (p)
408 *p = '\0';
409
410 /* squash extra space characters (branding string) */
411 p = s;
412 while (*p) {
413 if (isspace(*p)) {
414 char *r = p + 1;
415 char *q = skip_spaces(r);
416 *p = ' ';
417 if (q != (p+1))
418 while ((*r++ = *q++));
419 }
420 p++;
421 }
422 ret = do_write_string(ff, s);
423done:
424 free(buf);
425 fclose(file);
426 return ret;
427}
428
429static int write_cpudesc(struct feat_fd *ff,
430 struct evlist *evlist __maybe_unused)
431{
432#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433#define CPUINFO_PROC { "cpu", }
434#elif defined(__s390__)
435#define CPUINFO_PROC { "vendor_id", }
436#elif defined(__sh__)
437#define CPUINFO_PROC { "cpu type", }
438#elif defined(__alpha__) || defined(__mips__)
439#define CPUINFO_PROC { "cpu model", }
440#elif defined(__arm__)
441#define CPUINFO_PROC { "model name", "Processor", }
442#elif defined(__arc__)
443#define CPUINFO_PROC { "Processor", }
444#elif defined(__xtensa__)
445#define CPUINFO_PROC { "core ID", }
446#else
447#define CPUINFO_PROC { "model name", }
448#endif
449 const char *cpuinfo_procs[] = CPUINFO_PROC;
450#undef CPUINFO_PROC
451 unsigned int i;
452
453 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454 int ret;
455 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 if (ret >= 0)
457 return ret;
458 }
459 return -1;
460}
461
462
463static int write_nrcpus(struct feat_fd *ff,
464 struct evlist *evlist __maybe_unused)
465{
466 long nr;
467 u32 nrc, nra;
468 int ret;
469
470 nrc = cpu__max_present_cpu();
471
472 nr = sysconf(_SC_NPROCESSORS_ONLN);
473 if (nr < 0)
474 return -1;
475
476 nra = (u32)(nr & UINT_MAX);
477
478 ret = do_write(ff, &nrc, sizeof(nrc));
479 if (ret < 0)
480 return ret;
481
482 return do_write(ff, &nra, sizeof(nra));
483}
484
485static int write_event_desc(struct feat_fd *ff,
486 struct evlist *evlist)
487{
488 struct evsel *evsel;
489 u32 nre, nri, sz;
490 int ret;
491
492 nre = evlist->core.nr_entries;
493
494 /*
495 * write number of events
496 */
497 ret = do_write(ff, &nre, sizeof(nre));
498 if (ret < 0)
499 return ret;
500
501 /*
502 * size of perf_event_attr struct
503 */
504 sz = (u32)sizeof(evsel->core.attr);
505 ret = do_write(ff, &sz, sizeof(sz));
506 if (ret < 0)
507 return ret;
508
509 evlist__for_each_entry(evlist, evsel) {
510 ret = do_write(ff, &evsel->core.attr, sz);
511 if (ret < 0)
512 return ret;
513 /*
514 * write number of unique id per event
515 * there is one id per instance of an event
516 *
517 * copy into an nri to be independent of the
518 * type of ids,
519 */
520 nri = evsel->core.ids;
521 ret = do_write(ff, &nri, sizeof(nri));
522 if (ret < 0)
523 return ret;
524
525 /*
526 * write event string as passed on cmdline
527 */
528 ret = do_write_string(ff, evsel__name(evsel));
529 if (ret < 0)
530 return ret;
531 /*
532 * write unique ids for this event
533 */
534 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 if (ret < 0)
536 return ret;
537 }
538 return 0;
539}
540
541static int write_cmdline(struct feat_fd *ff,
542 struct evlist *evlist __maybe_unused)
543{
544 char pbuf[MAXPATHLEN], *buf;
545 int i, ret, n;
546
547 /* actual path to perf binary */
548 buf = perf_exe(pbuf, MAXPATHLEN);
549
550 /* account for binary path */
551 n = perf_env.nr_cmdline + 1;
552
553 ret = do_write(ff, &n, sizeof(n));
554 if (ret < 0)
555 return ret;
556
557 ret = do_write_string(ff, buf);
558 if (ret < 0)
559 return ret;
560
561 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 if (ret < 0)
564 return ret;
565 }
566 return 0;
567}
568
569
570static int write_cpu_topology(struct feat_fd *ff,
571 struct evlist *evlist __maybe_unused)
572{
573 struct cpu_topology *tp;
574 u32 i;
575 int ret, j;
576
577 tp = cpu_topology__new();
578 if (!tp)
579 return -1;
580
581 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 if (ret < 0)
583 goto done;
584
585 for (i = 0; i < tp->core_sib; i++) {
586 ret = do_write_string(ff, tp->core_siblings[i]);
587 if (ret < 0)
588 goto done;
589 }
590 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 if (ret < 0)
592 goto done;
593
594 for (i = 0; i < tp->thread_sib; i++) {
595 ret = do_write_string(ff, tp->thread_siblings[i]);
596 if (ret < 0)
597 break;
598 }
599
600 ret = perf_env__read_cpu_topology_map(&perf_env);
601 if (ret < 0)
602 goto done;
603
604 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605 ret = do_write(ff, &perf_env.cpu[j].core_id,
606 sizeof(perf_env.cpu[j].core_id));
607 if (ret < 0)
608 return ret;
609 ret = do_write(ff, &perf_env.cpu[j].socket_id,
610 sizeof(perf_env.cpu[j].socket_id));
611 if (ret < 0)
612 return ret;
613 }
614
615 if (!tp->die_sib)
616 goto done;
617
618 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619 if (ret < 0)
620 goto done;
621
622 for (i = 0; i < tp->die_sib; i++) {
623 ret = do_write_string(ff, tp->die_siblings[i]);
624 if (ret < 0)
625 goto done;
626 }
627
628 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629 ret = do_write(ff, &perf_env.cpu[j].die_id,
630 sizeof(perf_env.cpu[j].die_id));
631 if (ret < 0)
632 return ret;
633 }
634
635done:
636 cpu_topology__delete(tp);
637 return ret;
638}
639
640
641
642static int write_total_mem(struct feat_fd *ff,
643 struct evlist *evlist __maybe_unused)
644{
645 char *buf = NULL;
646 FILE *fp;
647 size_t len = 0;
648 int ret = -1, n;
649 uint64_t mem;
650
651 fp = fopen("/proc/meminfo", "r");
652 if (!fp)
653 return -1;
654
655 while (getline(&buf, &len, fp) > 0) {
656 ret = strncmp(buf, "MemTotal:", 9);
657 if (!ret)
658 break;
659 }
660 if (!ret) {
661 n = sscanf(buf, "%*s %"PRIu64, &mem);
662 if (n == 1)
663 ret = do_write(ff, &mem, sizeof(mem));
664 } else
665 ret = -1;
666 free(buf);
667 fclose(fp);
668 return ret;
669}
670
671static int write_numa_topology(struct feat_fd *ff,
672 struct evlist *evlist __maybe_unused)
673{
674 struct numa_topology *tp;
675 int ret = -1;
676 u32 i;
677
678 tp = numa_topology__new();
679 if (!tp)
680 return -ENOMEM;
681
682 ret = do_write(ff, &tp->nr, sizeof(u32));
683 if (ret < 0)
684 goto err;
685
686 for (i = 0; i < tp->nr; i++) {
687 struct numa_topology_node *n = &tp->nodes[i];
688
689 ret = do_write(ff, &n->node, sizeof(u32));
690 if (ret < 0)
691 goto err;
692
693 ret = do_write(ff, &n->mem_total, sizeof(u64));
694 if (ret)
695 goto err;
696
697 ret = do_write(ff, &n->mem_free, sizeof(u64));
698 if (ret)
699 goto err;
700
701 ret = do_write_string(ff, n->cpus);
702 if (ret < 0)
703 goto err;
704 }
705
706 ret = 0;
707
708err:
709 numa_topology__delete(tp);
710 return ret;
711}
712
713/*
714 * File format:
715 *
716 * struct pmu_mappings {
717 * u32 pmu_num;
718 * struct pmu_map {
719 * u32 type;
720 * char name[];
721 * }[pmu_num];
722 * };
723 */
724
725static int write_pmu_mappings(struct feat_fd *ff,
726 struct evlist *evlist __maybe_unused)
727{
728 struct perf_pmu *pmu = NULL;
729 u32 pmu_num = 0;
730 int ret;
731
732 /*
733 * Do a first pass to count number of pmu to avoid lseek so this
734 * works in pipe mode as well.
735 */
736 while ((pmu = perf_pmu__scan(pmu))) {
737 if (!pmu->name)
738 continue;
739 pmu_num++;
740 }
741
742 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 if (ret < 0)
744 return ret;
745
746 while ((pmu = perf_pmu__scan(pmu))) {
747 if (!pmu->name)
748 continue;
749
750 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 if (ret < 0)
752 return ret;
753
754 ret = do_write_string(ff, pmu->name);
755 if (ret < 0)
756 return ret;
757 }
758
759 return 0;
760}
761
762/*
763 * File format:
764 *
765 * struct group_descs {
766 * u32 nr_groups;
767 * struct group_desc {
768 * char name[];
769 * u32 leader_idx;
770 * u32 nr_members;
771 * }[nr_groups];
772 * };
773 */
774static int write_group_desc(struct feat_fd *ff,
775 struct evlist *evlist)
776{
777 u32 nr_groups = evlist->nr_groups;
778 struct evsel *evsel;
779 int ret;
780
781 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 if (ret < 0)
783 return ret;
784
785 evlist__for_each_entry(evlist, evsel) {
786 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
787 const char *name = evsel->group_name ?: "{anon_group}";
788 u32 leader_idx = evsel->idx;
789 u32 nr_members = evsel->core.nr_members;
790
791 ret = do_write_string(ff, name);
792 if (ret < 0)
793 return ret;
794
795 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
796 if (ret < 0)
797 return ret;
798
799 ret = do_write(ff, &nr_members, sizeof(nr_members));
800 if (ret < 0)
801 return ret;
802 }
803 }
804 return 0;
805}
806
807/*
808 * Return the CPU id as a raw string.
809 *
810 * Each architecture should provide a more precise id string that
811 * can be use to match the architecture's "mapfile".
812 */
813char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
814{
815 return NULL;
816}
817
818/* Return zero when the cpuid from the mapfile.csv matches the
819 * cpuid string generated on this platform.
820 * Otherwise return non-zero.
821 */
822int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
823{
824 regex_t re;
825 regmatch_t pmatch[1];
826 int match;
827
828 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
829 /* Warn unable to generate match particular string. */
830 pr_info("Invalid regular expression %s\n", mapcpuid);
831 return 1;
832 }
833
834 match = !regexec(&re, cpuid, 1, pmatch, 0);
835 regfree(&re);
836 if (match) {
837 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
838
839 /* Verify the entire string matched. */
840 if (match_len == strlen(cpuid))
841 return 0;
842 }
843 return 1;
844}
845
846/*
847 * default get_cpuid(): nothing gets recorded
848 * actual implementation must be in arch/$(SRCARCH)/util/header.c
849 */
850int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
851{
852 return ENOSYS; /* Not implemented */
853}
854
855static int write_cpuid(struct feat_fd *ff,
856 struct evlist *evlist __maybe_unused)
857{
858 char buffer[64];
859 int ret;
860
861 ret = get_cpuid(buffer, sizeof(buffer));
862 if (ret)
863 return -1;
864
865 return do_write_string(ff, buffer);
866}
867
868static int write_branch_stack(struct feat_fd *ff __maybe_unused,
869 struct evlist *evlist __maybe_unused)
870{
871 return 0;
872}
873
874static int write_auxtrace(struct feat_fd *ff,
875 struct evlist *evlist __maybe_unused)
876{
877 struct perf_session *session;
878 int err;
879
880 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
881 return -1;
882
883 session = container_of(ff->ph, struct perf_session, header);
884
885 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
886 if (err < 0)
887 pr_err("Failed to write auxtrace index\n");
888 return err;
889}
890
891static int write_clockid(struct feat_fd *ff,
892 struct evlist *evlist __maybe_unused)
893{
894 return do_write(ff, &ff->ph->env.clockid_res_ns,
895 sizeof(ff->ph->env.clockid_res_ns));
896}
897
898static int write_dir_format(struct feat_fd *ff,
899 struct evlist *evlist __maybe_unused)
900{
901 struct perf_session *session;
902 struct perf_data *data;
903
904 session = container_of(ff->ph, struct perf_session, header);
905 data = session->data;
906
907 if (WARN_ON(!perf_data__is_dir(data)))
908 return -1;
909
910 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
911}
912
913#ifdef HAVE_LIBBPF_SUPPORT
914static int write_bpf_prog_info(struct feat_fd *ff,
915 struct evlist *evlist __maybe_unused)
916{
917 struct perf_env *env = &ff->ph->env;
918 struct rb_root *root;
919 struct rb_node *next;
920 int ret;
921
922 down_read(&env->bpf_progs.lock);
923
924 ret = do_write(ff, &env->bpf_progs.infos_cnt,
925 sizeof(env->bpf_progs.infos_cnt));
926 if (ret < 0)
927 goto out;
928
929 root = &env->bpf_progs.infos;
930 next = rb_first(root);
931 while (next) {
932 struct bpf_prog_info_node *node;
933 size_t len;
934
935 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
936 next = rb_next(&node->rb_node);
937 len = sizeof(struct bpf_prog_info_linear) +
938 node->info_linear->data_len;
939
940 /* before writing to file, translate address to offset */
941 bpf_program__bpil_addr_to_offs(node->info_linear);
942 ret = do_write(ff, node->info_linear, len);
943 /*
944 * translate back to address even when do_write() fails,
945 * so that this function never changes the data.
946 */
947 bpf_program__bpil_offs_to_addr(node->info_linear);
948 if (ret < 0)
949 goto out;
950 }
951out:
952 up_read(&env->bpf_progs.lock);
953 return ret;
954}
955#else // HAVE_LIBBPF_SUPPORT
956static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
957 struct evlist *evlist __maybe_unused)
958{
959 return 0;
960}
961#endif // HAVE_LIBBPF_SUPPORT
962
963static int write_bpf_btf(struct feat_fd *ff,
964 struct evlist *evlist __maybe_unused)
965{
966 struct perf_env *env = &ff->ph->env;
967 struct rb_root *root;
968 struct rb_node *next;
969 int ret;
970
971 down_read(&env->bpf_progs.lock);
972
973 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
974 sizeof(env->bpf_progs.btfs_cnt));
975
976 if (ret < 0)
977 goto out;
978
979 root = &env->bpf_progs.btfs;
980 next = rb_first(root);
981 while (next) {
982 struct btf_node *node;
983
984 node = rb_entry(next, struct btf_node, rb_node);
985 next = rb_next(&node->rb_node);
986 ret = do_write(ff, &node->id,
987 sizeof(u32) * 2 + node->data_size);
988 if (ret < 0)
989 goto out;
990 }
991out:
992 up_read(&env->bpf_progs.lock);
993 return ret;
994}
995
996static int cpu_cache_level__sort(const void *a, const void *b)
997{
998 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
999 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1000
1001 return cache_a->level - cache_b->level;
1002}
1003
1004static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1005{
1006 if (a->level != b->level)
1007 return false;
1008
1009 if (a->line_size != b->line_size)
1010 return false;
1011
1012 if (a->sets != b->sets)
1013 return false;
1014
1015 if (a->ways != b->ways)
1016 return false;
1017
1018 if (strcmp(a->type, b->type))
1019 return false;
1020
1021 if (strcmp(a->size, b->size))
1022 return false;
1023
1024 if (strcmp(a->map, b->map))
1025 return false;
1026
1027 return true;
1028}
1029
1030static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1031{
1032 char path[PATH_MAX], file[PATH_MAX];
1033 struct stat st;
1034 size_t len;
1035
1036 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1037 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1038
1039 if (stat(file, &st))
1040 return 1;
1041
1042 scnprintf(file, PATH_MAX, "%s/level", path);
1043 if (sysfs__read_int(file, (int *) &cache->level))
1044 return -1;
1045
1046 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1047 if (sysfs__read_int(file, (int *) &cache->line_size))
1048 return -1;
1049
1050 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1051 if (sysfs__read_int(file, (int *) &cache->sets))
1052 return -1;
1053
1054 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1055 if (sysfs__read_int(file, (int *) &cache->ways))
1056 return -1;
1057
1058 scnprintf(file, PATH_MAX, "%s/type", path);
1059 if (sysfs__read_str(file, &cache->type, &len))
1060 return -1;
1061
1062 cache->type[len] = 0;
1063 cache->type = strim(cache->type);
1064
1065 scnprintf(file, PATH_MAX, "%s/size", path);
1066 if (sysfs__read_str(file, &cache->size, &len)) {
1067 zfree(&cache->type);
1068 return -1;
1069 }
1070
1071 cache->size[len] = 0;
1072 cache->size = strim(cache->size);
1073
1074 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1075 if (sysfs__read_str(file, &cache->map, &len)) {
1076 zfree(&cache->size);
1077 zfree(&cache->type);
1078 return -1;
1079 }
1080
1081 cache->map[len] = 0;
1082 cache->map = strim(cache->map);
1083 return 0;
1084}
1085
1086static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1087{
1088 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1089}
1090
1091#define MAX_CACHE_LVL 4
1092
1093static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1094{
1095 u32 i, cnt = 0;
1096 u32 nr, cpu;
1097 u16 level;
1098
1099 nr = cpu__max_cpu();
1100
1101 for (cpu = 0; cpu < nr; cpu++) {
1102 for (level = 0; level < MAX_CACHE_LVL; level++) {
1103 struct cpu_cache_level c;
1104 int err;
1105
1106 err = cpu_cache_level__read(&c, cpu, level);
1107 if (err < 0)
1108 return err;
1109
1110 if (err == 1)
1111 break;
1112
1113 for (i = 0; i < cnt; i++) {
1114 if (cpu_cache_level__cmp(&c, &caches[i]))
1115 break;
1116 }
1117
1118 if (i == cnt)
1119 caches[cnt++] = c;
1120 else
1121 cpu_cache_level__free(&c);
1122 }
1123 }
1124 *cntp = cnt;
1125 return 0;
1126}
1127
1128static int write_cache(struct feat_fd *ff,
1129 struct evlist *evlist __maybe_unused)
1130{
1131 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1132 struct cpu_cache_level caches[max_caches];
1133 u32 cnt = 0, i, version = 1;
1134 int ret;
1135
1136 ret = build_caches(caches, &cnt);
1137 if (ret)
1138 goto out;
1139
1140 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1141
1142 ret = do_write(ff, &version, sizeof(u32));
1143 if (ret < 0)
1144 goto out;
1145
1146 ret = do_write(ff, &cnt, sizeof(u32));
1147 if (ret < 0)
1148 goto out;
1149
1150 for (i = 0; i < cnt; i++) {
1151 struct cpu_cache_level *c = &caches[i];
1152
1153 #define _W(v) \
1154 ret = do_write(ff, &c->v, sizeof(u32)); \
1155 if (ret < 0) \
1156 goto out;
1157
1158 _W(level)
1159 _W(line_size)
1160 _W(sets)
1161 _W(ways)
1162 #undef _W
1163
1164 #define _W(v) \
1165 ret = do_write_string(ff, (const char *) c->v); \
1166 if (ret < 0) \
1167 goto out;
1168
1169 _W(type)
1170 _W(size)
1171 _W(map)
1172 #undef _W
1173 }
1174
1175out:
1176 for (i = 0; i < cnt; i++)
1177 cpu_cache_level__free(&caches[i]);
1178 return ret;
1179}
1180
1181static int write_stat(struct feat_fd *ff __maybe_unused,
1182 struct evlist *evlist __maybe_unused)
1183{
1184 return 0;
1185}
1186
1187static int write_sample_time(struct feat_fd *ff,
1188 struct evlist *evlist)
1189{
1190 int ret;
1191
1192 ret = do_write(ff, &evlist->first_sample_time,
1193 sizeof(evlist->first_sample_time));
1194 if (ret < 0)
1195 return ret;
1196
1197 return do_write(ff, &evlist->last_sample_time,
1198 sizeof(evlist->last_sample_time));
1199}
1200
1201
1202static int memory_node__read(struct memory_node *n, unsigned long idx)
1203{
1204 unsigned int phys, size = 0;
1205 char path[PATH_MAX];
1206 struct dirent *ent;
1207 DIR *dir;
1208
1209#define for_each_memory(mem, dir) \
1210 while ((ent = readdir(dir))) \
1211 if (strcmp(ent->d_name, ".") && \
1212 strcmp(ent->d_name, "..") && \
1213 sscanf(ent->d_name, "memory%u", &mem) == 1)
1214
1215 scnprintf(path, PATH_MAX,
1216 "%s/devices/system/node/node%lu",
1217 sysfs__mountpoint(), idx);
1218
1219 dir = opendir(path);
1220 if (!dir) {
1221 pr_warning("failed: cant' open memory sysfs data\n");
1222 return -1;
1223 }
1224
1225 for_each_memory(phys, dir) {
1226 size = max(phys, size);
1227 }
1228
1229 size++;
1230
1231 n->set = bitmap_alloc(size);
1232 if (!n->set) {
1233 closedir(dir);
1234 return -ENOMEM;
1235 }
1236
1237 n->node = idx;
1238 n->size = size;
1239
1240 rewinddir(dir);
1241
1242 for_each_memory(phys, dir) {
1243 set_bit(phys, n->set);
1244 }
1245
1246 closedir(dir);
1247 return 0;
1248}
1249
1250static int memory_node__sort(const void *a, const void *b)
1251{
1252 const struct memory_node *na = a;
1253 const struct memory_node *nb = b;
1254
1255 return na->node - nb->node;
1256}
1257
1258static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1259{
1260 char path[PATH_MAX];
1261 struct dirent *ent;
1262 DIR *dir;
1263 u64 cnt = 0;
1264 int ret = 0;
1265
1266 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1267 sysfs__mountpoint());
1268
1269 dir = opendir(path);
1270 if (!dir) {
1271 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1272 __func__, path);
1273 return -1;
1274 }
1275
1276 while (!ret && (ent = readdir(dir))) {
1277 unsigned int idx;
1278 int r;
1279
1280 if (!strcmp(ent->d_name, ".") ||
1281 !strcmp(ent->d_name, ".."))
1282 continue;
1283
1284 r = sscanf(ent->d_name, "node%u", &idx);
1285 if (r != 1)
1286 continue;
1287
1288 if (WARN_ONCE(cnt >= size,
1289 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1290 closedir(dir);
1291 return -1;
1292 }
1293
1294 ret = memory_node__read(&nodes[cnt++], idx);
1295 }
1296
1297 *cntp = cnt;
1298 closedir(dir);
1299
1300 if (!ret)
1301 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1302
1303 return ret;
1304}
1305
1306#define MAX_MEMORY_NODES 2000
1307
1308/*
1309 * The MEM_TOPOLOGY holds physical memory map for every
1310 * node in system. The format of data is as follows:
1311 *
1312 * 0 - version | for future changes
1313 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1314 * 16 - count | number of nodes
1315 *
1316 * For each node we store map of physical indexes for
1317 * each node:
1318 *
1319 * 32 - node id | node index
1320 * 40 - size | size of bitmap
1321 * 48 - bitmap | bitmap of memory indexes that belongs to node
1322 */
1323static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1324 struct evlist *evlist __maybe_unused)
1325{
1326 static struct memory_node nodes[MAX_MEMORY_NODES];
1327 u64 bsize, version = 1, i, nr;
1328 int ret;
1329
1330 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1331 (unsigned long long *) &bsize);
1332 if (ret)
1333 return ret;
1334
1335 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1336 if (ret)
1337 return ret;
1338
1339 ret = do_write(ff, &version, sizeof(version));
1340 if (ret < 0)
1341 goto out;
1342
1343 ret = do_write(ff, &bsize, sizeof(bsize));
1344 if (ret < 0)
1345 goto out;
1346
1347 ret = do_write(ff, &nr, sizeof(nr));
1348 if (ret < 0)
1349 goto out;
1350
1351 for (i = 0; i < nr; i++) {
1352 struct memory_node *n = &nodes[i];
1353
1354 #define _W(v) \
1355 ret = do_write(ff, &n->v, sizeof(n->v)); \
1356 if (ret < 0) \
1357 goto out;
1358
1359 _W(node)
1360 _W(size)
1361
1362 #undef _W
1363
1364 ret = do_write_bitmap(ff, n->set, n->size);
1365 if (ret < 0)
1366 goto out;
1367 }
1368
1369out:
1370 return ret;
1371}
1372
1373static int write_compressed(struct feat_fd *ff __maybe_unused,
1374 struct evlist *evlist __maybe_unused)
1375{
1376 int ret;
1377
1378 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1379 if (ret)
1380 return ret;
1381
1382 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1383 if (ret)
1384 return ret;
1385
1386 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1387 if (ret)
1388 return ret;
1389
1390 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1391 if (ret)
1392 return ret;
1393
1394 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1395}
1396
1397static int write_cpu_pmu_caps(struct feat_fd *ff,
1398 struct evlist *evlist __maybe_unused)
1399{
1400 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1401 struct perf_pmu_caps *caps = NULL;
1402 int nr_caps;
1403 int ret;
1404
1405 if (!cpu_pmu)
1406 return -ENOENT;
1407
1408 nr_caps = perf_pmu__caps_parse(cpu_pmu);
1409 if (nr_caps < 0)
1410 return nr_caps;
1411
1412 ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1413 if (ret < 0)
1414 return ret;
1415
1416 list_for_each_entry(caps, &cpu_pmu->caps, list) {
1417 ret = do_write_string(ff, caps->name);
1418 if (ret < 0)
1419 return ret;
1420
1421 ret = do_write_string(ff, caps->value);
1422 if (ret < 0)
1423 return ret;
1424 }
1425
1426 return ret;
1427}
1428
1429static void print_hostname(struct feat_fd *ff, FILE *fp)
1430{
1431 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1432}
1433
1434static void print_osrelease(struct feat_fd *ff, FILE *fp)
1435{
1436 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1437}
1438
1439static void print_arch(struct feat_fd *ff, FILE *fp)
1440{
1441 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1442}
1443
1444static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1445{
1446 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1447}
1448
1449static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1450{
1451 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1452 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1453}
1454
1455static void print_version(struct feat_fd *ff, FILE *fp)
1456{
1457 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1458}
1459
1460static void print_cmdline(struct feat_fd *ff, FILE *fp)
1461{
1462 int nr, i;
1463
1464 nr = ff->ph->env.nr_cmdline;
1465
1466 fprintf(fp, "# cmdline : ");
1467
1468 for (i = 0; i < nr; i++) {
1469 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1470 if (!argv_i) {
1471 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1472 } else {
1473 char *mem = argv_i;
1474 do {
1475 char *quote = strchr(argv_i, '\'');
1476 if (!quote)
1477 break;
1478 *quote++ = '\0';
1479 fprintf(fp, "%s\\\'", argv_i);
1480 argv_i = quote;
1481 } while (1);
1482 fprintf(fp, "%s ", argv_i);
1483 free(mem);
1484 }
1485 }
1486 fputc('\n', fp);
1487}
1488
1489static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1490{
1491 struct perf_header *ph = ff->ph;
1492 int cpu_nr = ph->env.nr_cpus_avail;
1493 int nr, i;
1494 char *str;
1495
1496 nr = ph->env.nr_sibling_cores;
1497 str = ph->env.sibling_cores;
1498
1499 for (i = 0; i < nr; i++) {
1500 fprintf(fp, "# sibling sockets : %s\n", str);
1501 str += strlen(str) + 1;
1502 }
1503
1504 if (ph->env.nr_sibling_dies) {
1505 nr = ph->env.nr_sibling_dies;
1506 str = ph->env.sibling_dies;
1507
1508 for (i = 0; i < nr; i++) {
1509 fprintf(fp, "# sibling dies : %s\n", str);
1510 str += strlen(str) + 1;
1511 }
1512 }
1513
1514 nr = ph->env.nr_sibling_threads;
1515 str = ph->env.sibling_threads;
1516
1517 for (i = 0; i < nr; i++) {
1518 fprintf(fp, "# sibling threads : %s\n", str);
1519 str += strlen(str) + 1;
1520 }
1521
1522 if (ph->env.nr_sibling_dies) {
1523 if (ph->env.cpu != NULL) {
1524 for (i = 0; i < cpu_nr; i++)
1525 fprintf(fp, "# CPU %d: Core ID %d, "
1526 "Die ID %d, Socket ID %d\n",
1527 i, ph->env.cpu[i].core_id,
1528 ph->env.cpu[i].die_id,
1529 ph->env.cpu[i].socket_id);
1530 } else
1531 fprintf(fp, "# Core ID, Die ID and Socket ID "
1532 "information is not available\n");
1533 } else {
1534 if (ph->env.cpu != NULL) {
1535 for (i = 0; i < cpu_nr; i++)
1536 fprintf(fp, "# CPU %d: Core ID %d, "
1537 "Socket ID %d\n",
1538 i, ph->env.cpu[i].core_id,
1539 ph->env.cpu[i].socket_id);
1540 } else
1541 fprintf(fp, "# Core ID and Socket ID "
1542 "information is not available\n");
1543 }
1544}
1545
1546static void print_clockid(struct feat_fd *ff, FILE *fp)
1547{
1548 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1549 ff->ph->env.clockid_res_ns * 1000);
1550}
1551
1552static void print_dir_format(struct feat_fd *ff, FILE *fp)
1553{
1554 struct perf_session *session;
1555 struct perf_data *data;
1556
1557 session = container_of(ff->ph, struct perf_session, header);
1558 data = session->data;
1559
1560 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1561}
1562
1563static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1564{
1565 struct perf_env *env = &ff->ph->env;
1566 struct rb_root *root;
1567 struct rb_node *next;
1568
1569 down_read(&env->bpf_progs.lock);
1570
1571 root = &env->bpf_progs.infos;
1572 next = rb_first(root);
1573
1574 while (next) {
1575 struct bpf_prog_info_node *node;
1576
1577 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1578 next = rb_next(&node->rb_node);
1579
1580 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1581 env, fp);
1582 }
1583
1584 up_read(&env->bpf_progs.lock);
1585}
1586
1587static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1588{
1589 struct perf_env *env = &ff->ph->env;
1590 struct rb_root *root;
1591 struct rb_node *next;
1592
1593 down_read(&env->bpf_progs.lock);
1594
1595 root = &env->bpf_progs.btfs;
1596 next = rb_first(root);
1597
1598 while (next) {
1599 struct btf_node *node;
1600
1601 node = rb_entry(next, struct btf_node, rb_node);
1602 next = rb_next(&node->rb_node);
1603 fprintf(fp, "# btf info of id %u\n", node->id);
1604 }
1605
1606 up_read(&env->bpf_progs.lock);
1607}
1608
1609static void free_event_desc(struct evsel *events)
1610{
1611 struct evsel *evsel;
1612
1613 if (!events)
1614 return;
1615
1616 for (evsel = events; evsel->core.attr.size; evsel++) {
1617 zfree(&evsel->name);
1618 zfree(&evsel->core.id);
1619 }
1620
1621 free(events);
1622}
1623
1624static bool perf_attr_check(struct perf_event_attr *attr)
1625{
1626 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1627 pr_warning("Reserved bits are set unexpectedly. "
1628 "Please update perf tool.\n");
1629 return false;
1630 }
1631
1632 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1633 pr_warning("Unknown sample type (0x%llx) is detected. "
1634 "Please update perf tool.\n",
1635 attr->sample_type);
1636 return false;
1637 }
1638
1639 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1640 pr_warning("Unknown read format (0x%llx) is detected. "
1641 "Please update perf tool.\n",
1642 attr->read_format);
1643 return false;
1644 }
1645
1646 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1647 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1648 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1649 "Please update perf tool.\n",
1650 attr->branch_sample_type);
1651
1652 return false;
1653 }
1654
1655 return true;
1656}
1657
1658static struct evsel *read_event_desc(struct feat_fd *ff)
1659{
1660 struct evsel *evsel, *events = NULL;
1661 u64 *id;
1662 void *buf = NULL;
1663 u32 nre, sz, nr, i, j;
1664 size_t msz;
1665
1666 /* number of events */
1667 if (do_read_u32(ff, &nre))
1668 goto error;
1669
1670 if (do_read_u32(ff, &sz))
1671 goto error;
1672
1673 /* buffer to hold on file attr struct */
1674 buf = malloc(sz);
1675 if (!buf)
1676 goto error;
1677
1678 /* the last event terminates with evsel->core.attr.size == 0: */
1679 events = calloc(nre + 1, sizeof(*events));
1680 if (!events)
1681 goto error;
1682
1683 msz = sizeof(evsel->core.attr);
1684 if (sz < msz)
1685 msz = sz;
1686
1687 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1688 evsel->idx = i;
1689
1690 /*
1691 * must read entire on-file attr struct to
1692 * sync up with layout.
1693 */
1694 if (__do_read(ff, buf, sz))
1695 goto error;
1696
1697 if (ff->ph->needs_swap)
1698 perf_event__attr_swap(buf);
1699
1700 memcpy(&evsel->core.attr, buf, msz);
1701
1702 if (!perf_attr_check(&evsel->core.attr))
1703 goto error;
1704
1705 if (do_read_u32(ff, &nr))
1706 goto error;
1707
1708 if (ff->ph->needs_swap)
1709 evsel->needs_swap = true;
1710
1711 evsel->name = do_read_string(ff);
1712 if (!evsel->name)
1713 goto error;
1714
1715 if (!nr)
1716 continue;
1717
1718 id = calloc(nr, sizeof(*id));
1719 if (!id)
1720 goto error;
1721 evsel->core.ids = nr;
1722 evsel->core.id = id;
1723
1724 for (j = 0 ; j < nr; j++) {
1725 if (do_read_u64(ff, id))
1726 goto error;
1727 id++;
1728 }
1729 }
1730out:
1731 free(buf);
1732 return events;
1733error:
1734 free_event_desc(events);
1735 events = NULL;
1736 goto out;
1737}
1738
1739static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1740 void *priv __maybe_unused)
1741{
1742 return fprintf(fp, ", %s = %s", name, val);
1743}
1744
1745static void print_event_desc(struct feat_fd *ff, FILE *fp)
1746{
1747 struct evsel *evsel, *events;
1748 u32 j;
1749 u64 *id;
1750
1751 if (ff->events)
1752 events = ff->events;
1753 else
1754 events = read_event_desc(ff);
1755
1756 if (!events) {
1757 fprintf(fp, "# event desc: not available or unable to read\n");
1758 return;
1759 }
1760
1761 for (evsel = events; evsel->core.attr.size; evsel++) {
1762 fprintf(fp, "# event : name = %s, ", evsel->name);
1763
1764 if (evsel->core.ids) {
1765 fprintf(fp, ", id = {");
1766 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1767 if (j)
1768 fputc(',', fp);
1769 fprintf(fp, " %"PRIu64, *id);
1770 }
1771 fprintf(fp, " }");
1772 }
1773
1774 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1775
1776 fputc('\n', fp);
1777 }
1778
1779 free_event_desc(events);
1780 ff->events = NULL;
1781}
1782
1783static void print_total_mem(struct feat_fd *ff, FILE *fp)
1784{
1785 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1786}
1787
1788static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1789{
1790 int i;
1791 struct numa_node *n;
1792
1793 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1794 n = &ff->ph->env.numa_nodes[i];
1795
1796 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1797 " free = %"PRIu64" kB\n",
1798 n->node, n->mem_total, n->mem_free);
1799
1800 fprintf(fp, "# node%u cpu list : ", n->node);
1801 cpu_map__fprintf(n->map, fp);
1802 }
1803}
1804
1805static void print_cpuid(struct feat_fd *ff, FILE *fp)
1806{
1807 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1808}
1809
1810static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1811{
1812 fprintf(fp, "# contains samples with branch stack\n");
1813}
1814
1815static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1816{
1817 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1818}
1819
1820static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1821{
1822 fprintf(fp, "# contains stat data\n");
1823}
1824
1825static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1826{
1827 int i;
1828
1829 fprintf(fp, "# CPU cache info:\n");
1830 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1831 fprintf(fp, "# ");
1832 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1833 }
1834}
1835
1836static void print_compressed(struct feat_fd *ff, FILE *fp)
1837{
1838 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1839 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1840 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1841}
1842
1843static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1844{
1845 const char *delimiter = "# cpu pmu capabilities: ";
1846 u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1847 char *str;
1848
1849 if (!nr_caps) {
1850 fprintf(fp, "# cpu pmu capabilities: not available\n");
1851 return;
1852 }
1853
1854 str = ff->ph->env.cpu_pmu_caps;
1855 while (nr_caps--) {
1856 fprintf(fp, "%s%s", delimiter, str);
1857 delimiter = ", ";
1858 str += strlen(str) + 1;
1859 }
1860
1861 fprintf(fp, "\n");
1862}
1863
1864static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1865{
1866 const char *delimiter = "# pmu mappings: ";
1867 char *str, *tmp;
1868 u32 pmu_num;
1869 u32 type;
1870
1871 pmu_num = ff->ph->env.nr_pmu_mappings;
1872 if (!pmu_num) {
1873 fprintf(fp, "# pmu mappings: not available\n");
1874 return;
1875 }
1876
1877 str = ff->ph->env.pmu_mappings;
1878
1879 while (pmu_num) {
1880 type = strtoul(str, &tmp, 0);
1881 if (*tmp != ':')
1882 goto error;
1883
1884 str = tmp + 1;
1885 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1886
1887 delimiter = ", ";
1888 str += strlen(str) + 1;
1889 pmu_num--;
1890 }
1891
1892 fprintf(fp, "\n");
1893
1894 if (!pmu_num)
1895 return;
1896error:
1897 fprintf(fp, "# pmu mappings: unable to read\n");
1898}
1899
1900static void print_group_desc(struct feat_fd *ff, FILE *fp)
1901{
1902 struct perf_session *session;
1903 struct evsel *evsel;
1904 u32 nr = 0;
1905
1906 session = container_of(ff->ph, struct perf_session, header);
1907
1908 evlist__for_each_entry(session->evlist, evsel) {
1909 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1910 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1911
1912 nr = evsel->core.nr_members - 1;
1913 } else if (nr) {
1914 fprintf(fp, ",%s", evsel__name(evsel));
1915
1916 if (--nr == 0)
1917 fprintf(fp, "}\n");
1918 }
1919 }
1920}
1921
1922static void print_sample_time(struct feat_fd *ff, FILE *fp)
1923{
1924 struct perf_session *session;
1925 char time_buf[32];
1926 double d;
1927
1928 session = container_of(ff->ph, struct perf_session, header);
1929
1930 timestamp__scnprintf_usec(session->evlist->first_sample_time,
1931 time_buf, sizeof(time_buf));
1932 fprintf(fp, "# time of first sample : %s\n", time_buf);
1933
1934 timestamp__scnprintf_usec(session->evlist->last_sample_time,
1935 time_buf, sizeof(time_buf));
1936 fprintf(fp, "# time of last sample : %s\n", time_buf);
1937
1938 d = (double)(session->evlist->last_sample_time -
1939 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1940
1941 fprintf(fp, "# sample duration : %10.3f ms\n", d);
1942}
1943
1944static void memory_node__fprintf(struct memory_node *n,
1945 unsigned long long bsize, FILE *fp)
1946{
1947 char buf_map[100], buf_size[50];
1948 unsigned long long size;
1949
1950 size = bsize * bitmap_weight(n->set, n->size);
1951 unit_number__scnprintf(buf_size, 50, size);
1952
1953 bitmap_scnprintf(n->set, n->size, buf_map, 100);
1954 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1955}
1956
1957static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1958{
1959 struct memory_node *nodes;
1960 int i, nr;
1961
1962 nodes = ff->ph->env.memory_nodes;
1963 nr = ff->ph->env.nr_memory_nodes;
1964
1965 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1966 nr, ff->ph->env.memory_bsize);
1967
1968 for (i = 0; i < nr; i++) {
1969 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1970 }
1971}
1972
1973static int __event_process_build_id(struct perf_record_header_build_id *bev,
1974 char *filename,
1975 struct perf_session *session)
1976{
1977 int err = -1;
1978 struct machine *machine;
1979 u16 cpumode;
1980 struct dso *dso;
1981 enum dso_kernel_type dso_type;
1982
1983 machine = perf_session__findnew_machine(session, bev->pid);
1984 if (!machine)
1985 goto out;
1986
1987 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1988
1989 switch (cpumode) {
1990 case PERF_RECORD_MISC_KERNEL:
1991 dso_type = DSO_TYPE_KERNEL;
1992 break;
1993 case PERF_RECORD_MISC_GUEST_KERNEL:
1994 dso_type = DSO_TYPE_GUEST_KERNEL;
1995 break;
1996 case PERF_RECORD_MISC_USER:
1997 case PERF_RECORD_MISC_GUEST_USER:
1998 dso_type = DSO_TYPE_USER;
1999 break;
2000 default:
2001 goto out;
2002 }
2003
2004 dso = machine__findnew_dso(machine, filename);
2005 if (dso != NULL) {
2006 char sbuild_id[SBUILD_ID_SIZE];
2007
2008 dso__set_build_id(dso, &bev->build_id);
2009
2010 if (dso_type != DSO_TYPE_USER) {
2011 struct kmod_path m = { .name = NULL, };
2012
2013 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2014 dso__set_module_info(dso, &m, machine);
2015 else
2016 dso->kernel = dso_type;
2017
2018 free(m.name);
2019 }
2020
2021 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
2022 sbuild_id);
2023 pr_debug("build id event received for %s: %s\n",
2024 dso->long_name, sbuild_id);
2025 dso__put(dso);
2026 }
2027
2028 err = 0;
2029out:
2030 return err;
2031}
2032
2033static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2034 int input, u64 offset, u64 size)
2035{
2036 struct perf_session *session = container_of(header, struct perf_session, header);
2037 struct {
2038 struct perf_event_header header;
2039 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2040 char filename[0];
2041 } old_bev;
2042 struct perf_record_header_build_id bev;
2043 char filename[PATH_MAX];
2044 u64 limit = offset + size;
2045
2046 while (offset < limit) {
2047 ssize_t len;
2048
2049 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2050 return -1;
2051
2052 if (header->needs_swap)
2053 perf_event_header__bswap(&old_bev.header);
2054
2055 len = old_bev.header.size - sizeof(old_bev);
2056 if (readn(input, filename, len) != len)
2057 return -1;
2058
2059 bev.header = old_bev.header;
2060
2061 /*
2062 * As the pid is the missing value, we need to fill
2063 * it properly. The header.misc value give us nice hint.
2064 */
2065 bev.pid = HOST_KERNEL_ID;
2066 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2067 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2068 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2069
2070 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2071 __event_process_build_id(&bev, filename, session);
2072
2073 offset += bev.header.size;
2074 }
2075
2076 return 0;
2077}
2078
2079static int perf_header__read_build_ids(struct perf_header *header,
2080 int input, u64 offset, u64 size)
2081{
2082 struct perf_session *session = container_of(header, struct perf_session, header);
2083 struct perf_record_header_build_id bev;
2084 char filename[PATH_MAX];
2085 u64 limit = offset + size, orig_offset = offset;
2086 int err = -1;
2087
2088 while (offset < limit) {
2089 ssize_t len;
2090
2091 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2092 goto out;
2093
2094 if (header->needs_swap)
2095 perf_event_header__bswap(&bev.header);
2096
2097 len = bev.header.size - sizeof(bev);
2098 if (readn(input, filename, len) != len)
2099 goto out;
2100 /*
2101 * The a1645ce1 changeset:
2102 *
2103 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2104 *
2105 * Added a field to struct perf_record_header_build_id that broke the file
2106 * format.
2107 *
2108 * Since the kernel build-id is the first entry, process the
2109 * table using the old format if the well known
2110 * '[kernel.kallsyms]' string for the kernel build-id has the
2111 * first 4 characters chopped off (where the pid_t sits).
2112 */
2113 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2114 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2115 return -1;
2116 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2117 }
2118
2119 __event_process_build_id(&bev, filename, session);
2120
2121 offset += bev.header.size;
2122 }
2123 err = 0;
2124out:
2125 return err;
2126}
2127
2128/* Macro for features that simply need to read and store a string. */
2129#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2130static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2131{\
2132 ff->ph->env.__feat_env = do_read_string(ff); \
2133 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2134}
2135
2136FEAT_PROCESS_STR_FUN(hostname, hostname);
2137FEAT_PROCESS_STR_FUN(osrelease, os_release);
2138FEAT_PROCESS_STR_FUN(version, version);
2139FEAT_PROCESS_STR_FUN(arch, arch);
2140FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2141FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2142
2143static int process_tracing_data(struct feat_fd *ff, void *data)
2144{
2145 ssize_t ret = trace_report(ff->fd, data, false);
2146
2147 return ret < 0 ? -1 : 0;
2148}
2149
2150static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2151{
2152 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2153 pr_debug("Failed to read buildids, continuing...\n");
2154 return 0;
2155}
2156
2157static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2158{
2159 int ret;
2160 u32 nr_cpus_avail, nr_cpus_online;
2161
2162 ret = do_read_u32(ff, &nr_cpus_avail);
2163 if (ret)
2164 return ret;
2165
2166 ret = do_read_u32(ff, &nr_cpus_online);
2167 if (ret)
2168 return ret;
2169 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2170 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2171 return 0;
2172}
2173
2174static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2175{
2176 u64 total_mem;
2177 int ret;
2178
2179 ret = do_read_u64(ff, &total_mem);
2180 if (ret)
2181 return -1;
2182 ff->ph->env.total_mem = (unsigned long long)total_mem;
2183 return 0;
2184}
2185
2186static struct evsel *
2187perf_evlist__find_by_index(struct evlist *evlist, int idx)
2188{
2189 struct evsel *evsel;
2190
2191 evlist__for_each_entry(evlist, evsel) {
2192 if (evsel->idx == idx)
2193 return evsel;
2194 }
2195
2196 return NULL;
2197}
2198
2199static void
2200perf_evlist__set_event_name(struct evlist *evlist,
2201 struct evsel *event)
2202{
2203 struct evsel *evsel;
2204
2205 if (!event->name)
2206 return;
2207
2208 evsel = perf_evlist__find_by_index(evlist, event->idx);
2209 if (!evsel)
2210 return;
2211
2212 if (evsel->name)
2213 return;
2214
2215 evsel->name = strdup(event->name);
2216}
2217
2218static int
2219process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2220{
2221 struct perf_session *session;
2222 struct evsel *evsel, *events = read_event_desc(ff);
2223
2224 if (!events)
2225 return 0;
2226
2227 session = container_of(ff->ph, struct perf_session, header);
2228
2229 if (session->data->is_pipe) {
2230 /* Save events for reading later by print_event_desc,
2231 * since they can't be read again in pipe mode. */
2232 ff->events = events;
2233 }
2234
2235 for (evsel = events; evsel->core.attr.size; evsel++)
2236 perf_evlist__set_event_name(session->evlist, evsel);
2237
2238 if (!session->data->is_pipe)
2239 free_event_desc(events);
2240
2241 return 0;
2242}
2243
2244static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2245{
2246 char *str, *cmdline = NULL, **argv = NULL;
2247 u32 nr, i, len = 0;
2248
2249 if (do_read_u32(ff, &nr))
2250 return -1;
2251
2252 ff->ph->env.nr_cmdline = nr;
2253
2254 cmdline = zalloc(ff->size + nr + 1);
2255 if (!cmdline)
2256 return -1;
2257
2258 argv = zalloc(sizeof(char *) * (nr + 1));
2259 if (!argv)
2260 goto error;
2261
2262 for (i = 0; i < nr; i++) {
2263 str = do_read_string(ff);
2264 if (!str)
2265 goto error;
2266
2267 argv[i] = cmdline + len;
2268 memcpy(argv[i], str, strlen(str) + 1);
2269 len += strlen(str) + 1;
2270 free(str);
2271 }
2272 ff->ph->env.cmdline = cmdline;
2273 ff->ph->env.cmdline_argv = (const char **) argv;
2274 return 0;
2275
2276error:
2277 free(argv);
2278 free(cmdline);
2279 return -1;
2280}
2281
2282static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2283{
2284 u32 nr, i;
2285 char *str;
2286 struct strbuf sb;
2287 int cpu_nr = ff->ph->env.nr_cpus_avail;
2288 u64 size = 0;
2289 struct perf_header *ph = ff->ph;
2290 bool do_core_id_test = true;
2291
2292 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2293 if (!ph->env.cpu)
2294 return -1;
2295
2296 if (do_read_u32(ff, &nr))
2297 goto free_cpu;
2298
2299 ph->env.nr_sibling_cores = nr;
2300 size += sizeof(u32);
2301 if (strbuf_init(&sb, 128) < 0)
2302 goto free_cpu;
2303
2304 for (i = 0; i < nr; i++) {
2305 str = do_read_string(ff);
2306 if (!str)
2307 goto error;
2308
2309 /* include a NULL character at the end */
2310 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2311 goto error;
2312 size += string_size(str);
2313 free(str);
2314 }
2315 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2316
2317 if (do_read_u32(ff, &nr))
2318 return -1;
2319
2320 ph->env.nr_sibling_threads = nr;
2321 size += sizeof(u32);
2322
2323 for (i = 0; i < nr; i++) {
2324 str = do_read_string(ff);
2325 if (!str)
2326 goto error;
2327
2328 /* include a NULL character at the end */
2329 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2330 goto error;
2331 size += string_size(str);
2332 free(str);
2333 }
2334 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2335
2336 /*
2337 * The header may be from old perf,
2338 * which doesn't include core id and socket id information.
2339 */
2340 if (ff->size <= size) {
2341 zfree(&ph->env.cpu);
2342 return 0;
2343 }
2344
2345 /* On s390 the socket_id number is not related to the numbers of cpus.
2346 * The socket_id number might be higher than the numbers of cpus.
2347 * This depends on the configuration.
2348 * AArch64 is the same.
2349 */
2350 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2351 || !strncmp(ph->env.arch, "aarch64", 7)))
2352 do_core_id_test = false;
2353
2354 for (i = 0; i < (u32)cpu_nr; i++) {
2355 if (do_read_u32(ff, &nr))
2356 goto free_cpu;
2357
2358 ph->env.cpu[i].core_id = nr;
2359 size += sizeof(u32);
2360
2361 if (do_read_u32(ff, &nr))
2362 goto free_cpu;
2363
2364 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2365 pr_debug("socket_id number is too big."
2366 "You may need to upgrade the perf tool.\n");
2367 goto free_cpu;
2368 }
2369
2370 ph->env.cpu[i].socket_id = nr;
2371 size += sizeof(u32);
2372 }
2373
2374 /*
2375 * The header may be from old perf,
2376 * which doesn't include die information.
2377 */
2378 if (ff->size <= size)
2379 return 0;
2380
2381 if (do_read_u32(ff, &nr))
2382 return -1;
2383
2384 ph->env.nr_sibling_dies = nr;
2385 size += sizeof(u32);
2386
2387 for (i = 0; i < nr; i++) {
2388 str = do_read_string(ff);
2389 if (!str)
2390 goto error;
2391
2392 /* include a NULL character at the end */
2393 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2394 goto error;
2395 size += string_size(str);
2396 free(str);
2397 }
2398 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2399
2400 for (i = 0; i < (u32)cpu_nr; i++) {
2401 if (do_read_u32(ff, &nr))
2402 goto free_cpu;
2403
2404 ph->env.cpu[i].die_id = nr;
2405 }
2406
2407 return 0;
2408
2409error:
2410 strbuf_release(&sb);
2411free_cpu:
2412 zfree(&ph->env.cpu);
2413 return -1;
2414}
2415
2416static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2417{
2418 struct numa_node *nodes, *n;
2419 u32 nr, i;
2420 char *str;
2421
2422 /* nr nodes */
2423 if (do_read_u32(ff, &nr))
2424 return -1;
2425
2426 nodes = zalloc(sizeof(*nodes) * nr);
2427 if (!nodes)
2428 return -ENOMEM;
2429
2430 for (i = 0; i < nr; i++) {
2431 n = &nodes[i];
2432
2433 /* node number */
2434 if (do_read_u32(ff, &n->node))
2435 goto error;
2436
2437 if (do_read_u64(ff, &n->mem_total))
2438 goto error;
2439
2440 if (do_read_u64(ff, &n->mem_free))
2441 goto error;
2442
2443 str = do_read_string(ff);
2444 if (!str)
2445 goto error;
2446
2447 n->map = perf_cpu_map__new(str);
2448 if (!n->map)
2449 goto error;
2450
2451 free(str);
2452 }
2453 ff->ph->env.nr_numa_nodes = nr;
2454 ff->ph->env.numa_nodes = nodes;
2455 return 0;
2456
2457error:
2458 free(nodes);
2459 return -1;
2460}
2461
2462static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2463{
2464 char *name;
2465 u32 pmu_num;
2466 u32 type;
2467 struct strbuf sb;
2468
2469 if (do_read_u32(ff, &pmu_num))
2470 return -1;
2471
2472 if (!pmu_num) {
2473 pr_debug("pmu mappings not available\n");
2474 return 0;
2475 }
2476
2477 ff->ph->env.nr_pmu_mappings = pmu_num;
2478 if (strbuf_init(&sb, 128) < 0)
2479 return -1;
2480
2481 while (pmu_num) {
2482 if (do_read_u32(ff, &type))
2483 goto error;
2484
2485 name = do_read_string(ff);
2486 if (!name)
2487 goto error;
2488
2489 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2490 goto error;
2491 /* include a NULL character at the end */
2492 if (strbuf_add(&sb, "", 1) < 0)
2493 goto error;
2494
2495 if (!strcmp(name, "msr"))
2496 ff->ph->env.msr_pmu_type = type;
2497
2498 free(name);
2499 pmu_num--;
2500 }
2501 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2502 return 0;
2503
2504error:
2505 strbuf_release(&sb);
2506 return -1;
2507}
2508
2509static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2510{
2511 size_t ret = -1;
2512 u32 i, nr, nr_groups;
2513 struct perf_session *session;
2514 struct evsel *evsel, *leader = NULL;
2515 struct group_desc {
2516 char *name;
2517 u32 leader_idx;
2518 u32 nr_members;
2519 } *desc;
2520
2521 if (do_read_u32(ff, &nr_groups))
2522 return -1;
2523
2524 ff->ph->env.nr_groups = nr_groups;
2525 if (!nr_groups) {
2526 pr_debug("group desc not available\n");
2527 return 0;
2528 }
2529
2530 desc = calloc(nr_groups, sizeof(*desc));
2531 if (!desc)
2532 return -1;
2533
2534 for (i = 0; i < nr_groups; i++) {
2535 desc[i].name = do_read_string(ff);
2536 if (!desc[i].name)
2537 goto out_free;
2538
2539 if (do_read_u32(ff, &desc[i].leader_idx))
2540 goto out_free;
2541
2542 if (do_read_u32(ff, &desc[i].nr_members))
2543 goto out_free;
2544 }
2545
2546 /*
2547 * Rebuild group relationship based on the group_desc
2548 */
2549 session = container_of(ff->ph, struct perf_session, header);
2550 session->evlist->nr_groups = nr_groups;
2551
2552 i = nr = 0;
2553 evlist__for_each_entry(session->evlist, evsel) {
2554 if (evsel->idx == (int) desc[i].leader_idx) {
2555 evsel->leader = evsel;
2556 /* {anon_group} is a dummy name */
2557 if (strcmp(desc[i].name, "{anon_group}")) {
2558 evsel->group_name = desc[i].name;
2559 desc[i].name = NULL;
2560 }
2561 evsel->core.nr_members = desc[i].nr_members;
2562
2563 if (i >= nr_groups || nr > 0) {
2564 pr_debug("invalid group desc\n");
2565 goto out_free;
2566 }
2567
2568 leader = evsel;
2569 nr = evsel->core.nr_members - 1;
2570 i++;
2571 } else if (nr) {
2572 /* This is a group member */
2573 evsel->leader = leader;
2574
2575 nr--;
2576 }
2577 }
2578
2579 if (i != nr_groups || nr != 0) {
2580 pr_debug("invalid group desc\n");
2581 goto out_free;
2582 }
2583
2584 ret = 0;
2585out_free:
2586 for (i = 0; i < nr_groups; i++)
2587 zfree(&desc[i].name);
2588 free(desc);
2589
2590 return ret;
2591}
2592
2593static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2594{
2595 struct perf_session *session;
2596 int err;
2597
2598 session = container_of(ff->ph, struct perf_session, header);
2599
2600 err = auxtrace_index__process(ff->fd, ff->size, session,
2601 ff->ph->needs_swap);
2602 if (err < 0)
2603 pr_err("Failed to process auxtrace index\n");
2604 return err;
2605}
2606
2607static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2608{
2609 struct cpu_cache_level *caches;
2610 u32 cnt, i, version;
2611
2612 if (do_read_u32(ff, &version))
2613 return -1;
2614
2615 if (version != 1)
2616 return -1;
2617
2618 if (do_read_u32(ff, &cnt))
2619 return -1;
2620
2621 caches = zalloc(sizeof(*caches) * cnt);
2622 if (!caches)
2623 return -1;
2624
2625 for (i = 0; i < cnt; i++) {
2626 struct cpu_cache_level c;
2627
2628 #define _R(v) \
2629 if (do_read_u32(ff, &c.v))\
2630 goto out_free_caches; \
2631
2632 _R(level)
2633 _R(line_size)
2634 _R(sets)
2635 _R(ways)
2636 #undef _R
2637
2638 #define _R(v) \
2639 c.v = do_read_string(ff); \
2640 if (!c.v) \
2641 goto out_free_caches;
2642
2643 _R(type)
2644 _R(size)
2645 _R(map)
2646 #undef _R
2647
2648 caches[i] = c;
2649 }
2650
2651 ff->ph->env.caches = caches;
2652 ff->ph->env.caches_cnt = cnt;
2653 return 0;
2654out_free_caches:
2655 free(caches);
2656 return -1;
2657}
2658
2659static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2660{
2661 struct perf_session *session;
2662 u64 first_sample_time, last_sample_time;
2663 int ret;
2664
2665 session = container_of(ff->ph, struct perf_session, header);
2666
2667 ret = do_read_u64(ff, &first_sample_time);
2668 if (ret)
2669 return -1;
2670
2671 ret = do_read_u64(ff, &last_sample_time);
2672 if (ret)
2673 return -1;
2674
2675 session->evlist->first_sample_time = first_sample_time;
2676 session->evlist->last_sample_time = last_sample_time;
2677 return 0;
2678}
2679
2680static int process_mem_topology(struct feat_fd *ff,
2681 void *data __maybe_unused)
2682{
2683 struct memory_node *nodes;
2684 u64 version, i, nr, bsize;
2685 int ret = -1;
2686
2687 if (do_read_u64(ff, &version))
2688 return -1;
2689
2690 if (version != 1)
2691 return -1;
2692
2693 if (do_read_u64(ff, &bsize))
2694 return -1;
2695
2696 if (do_read_u64(ff, &nr))
2697 return -1;
2698
2699 nodes = zalloc(sizeof(*nodes) * nr);
2700 if (!nodes)
2701 return -1;
2702
2703 for (i = 0; i < nr; i++) {
2704 struct memory_node n;
2705
2706 #define _R(v) \
2707 if (do_read_u64(ff, &n.v)) \
2708 goto out; \
2709
2710 _R(node)
2711 _R(size)
2712
2713 #undef _R
2714
2715 if (do_read_bitmap(ff, &n.set, &n.size))
2716 goto out;
2717
2718 nodes[i] = n;
2719 }
2720
2721 ff->ph->env.memory_bsize = bsize;
2722 ff->ph->env.memory_nodes = nodes;
2723 ff->ph->env.nr_memory_nodes = nr;
2724 ret = 0;
2725
2726out:
2727 if (ret)
2728 free(nodes);
2729 return ret;
2730}
2731
2732static int process_clockid(struct feat_fd *ff,
2733 void *data __maybe_unused)
2734{
2735 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2736 return -1;
2737
2738 return 0;
2739}
2740
2741static int process_dir_format(struct feat_fd *ff,
2742 void *_data __maybe_unused)
2743{
2744 struct perf_session *session;
2745 struct perf_data *data;
2746
2747 session = container_of(ff->ph, struct perf_session, header);
2748 data = session->data;
2749
2750 if (WARN_ON(!perf_data__is_dir(data)))
2751 return -1;
2752
2753 return do_read_u64(ff, &data->dir.version);
2754}
2755
2756#ifdef HAVE_LIBBPF_SUPPORT
2757static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2758{
2759 struct bpf_prog_info_linear *info_linear;
2760 struct bpf_prog_info_node *info_node;
2761 struct perf_env *env = &ff->ph->env;
2762 u32 count, i;
2763 int err = -1;
2764
2765 if (ff->ph->needs_swap) {
2766 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2767 return 0;
2768 }
2769
2770 if (do_read_u32(ff, &count))
2771 return -1;
2772
2773 down_write(&env->bpf_progs.lock);
2774
2775 for (i = 0; i < count; ++i) {
2776 u32 info_len, data_len;
2777
2778 info_linear = NULL;
2779 info_node = NULL;
2780 if (do_read_u32(ff, &info_len))
2781 goto out;
2782 if (do_read_u32(ff, &data_len))
2783 goto out;
2784
2785 if (info_len > sizeof(struct bpf_prog_info)) {
2786 pr_warning("detected invalid bpf_prog_info\n");
2787 goto out;
2788 }
2789
2790 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2791 data_len);
2792 if (!info_linear)
2793 goto out;
2794 info_linear->info_len = sizeof(struct bpf_prog_info);
2795 info_linear->data_len = data_len;
2796 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2797 goto out;
2798 if (__do_read(ff, &info_linear->info, info_len))
2799 goto out;
2800 if (info_len < sizeof(struct bpf_prog_info))
2801 memset(((void *)(&info_linear->info)) + info_len, 0,
2802 sizeof(struct bpf_prog_info) - info_len);
2803
2804 if (__do_read(ff, info_linear->data, data_len))
2805 goto out;
2806
2807 info_node = malloc(sizeof(struct bpf_prog_info_node));
2808 if (!info_node)
2809 goto out;
2810
2811 /* after reading from file, translate offset to address */
2812 bpf_program__bpil_offs_to_addr(info_linear);
2813 info_node->info_linear = info_linear;
2814 perf_env__insert_bpf_prog_info(env, info_node);
2815 }
2816
2817 up_write(&env->bpf_progs.lock);
2818 return 0;
2819out:
2820 free(info_linear);
2821 free(info_node);
2822 up_write(&env->bpf_progs.lock);
2823 return err;
2824}
2825#else // HAVE_LIBBPF_SUPPORT
2826static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2827{
2828 return 0;
2829}
2830#endif // HAVE_LIBBPF_SUPPORT
2831
2832static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2833{
2834 struct perf_env *env = &ff->ph->env;
2835 struct btf_node *node = NULL;
2836 u32 count, i;
2837 int err = -1;
2838
2839 if (ff->ph->needs_swap) {
2840 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2841 return 0;
2842 }
2843
2844 if (do_read_u32(ff, &count))
2845 return -1;
2846
2847 down_write(&env->bpf_progs.lock);
2848
2849 for (i = 0; i < count; ++i) {
2850 u32 id, data_size;
2851
2852 if (do_read_u32(ff, &id))
2853 goto out;
2854 if (do_read_u32(ff, &data_size))
2855 goto out;
2856
2857 node = malloc(sizeof(struct btf_node) + data_size);
2858 if (!node)
2859 goto out;
2860
2861 node->id = id;
2862 node->data_size = data_size;
2863
2864 if (__do_read(ff, node->data, data_size))
2865 goto out;
2866
2867 perf_env__insert_btf(env, node);
2868 node = NULL;
2869 }
2870
2871 err = 0;
2872out:
2873 up_write(&env->bpf_progs.lock);
2874 free(node);
2875 return err;
2876}
2877
2878static int process_compressed(struct feat_fd *ff,
2879 void *data __maybe_unused)
2880{
2881 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2882 return -1;
2883
2884 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2885 return -1;
2886
2887 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2888 return -1;
2889
2890 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2891 return -1;
2892
2893 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2894 return -1;
2895
2896 return 0;
2897}
2898
2899static int process_cpu_pmu_caps(struct feat_fd *ff,
2900 void *data __maybe_unused)
2901{
2902 char *name, *value;
2903 struct strbuf sb;
2904 u32 nr_caps;
2905
2906 if (do_read_u32(ff, &nr_caps))
2907 return -1;
2908
2909 if (!nr_caps) {
2910 pr_debug("cpu pmu capabilities not available\n");
2911 return 0;
2912 }
2913
2914 ff->ph->env.nr_cpu_pmu_caps = nr_caps;
2915
2916 if (strbuf_init(&sb, 128) < 0)
2917 return -1;
2918
2919 while (nr_caps--) {
2920 name = do_read_string(ff);
2921 if (!name)
2922 goto error;
2923
2924 value = do_read_string(ff);
2925 if (!value)
2926 goto free_name;
2927
2928 if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
2929 goto free_value;
2930
2931 /* include a NULL character at the end */
2932 if (strbuf_add(&sb, "", 1) < 0)
2933 goto free_value;
2934
2935 if (!strcmp(name, "branches"))
2936 ff->ph->env.max_branches = atoi(value);
2937
2938 free(value);
2939 free(name);
2940 }
2941 ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
2942 return 0;
2943
2944free_value:
2945 free(value);
2946free_name:
2947 free(name);
2948error:
2949 strbuf_release(&sb);
2950 return -1;
2951}
2952
2953#define FEAT_OPR(n, func, __full_only) \
2954 [HEADER_##n] = { \
2955 .name = __stringify(n), \
2956 .write = write_##func, \
2957 .print = print_##func, \
2958 .full_only = __full_only, \
2959 .process = process_##func, \
2960 .synthesize = true \
2961 }
2962
2963#define FEAT_OPN(n, func, __full_only) \
2964 [HEADER_##n] = { \
2965 .name = __stringify(n), \
2966 .write = write_##func, \
2967 .print = print_##func, \
2968 .full_only = __full_only, \
2969 .process = process_##func \
2970 }
2971
2972/* feature_ops not implemented: */
2973#define print_tracing_data NULL
2974#define print_build_id NULL
2975
2976#define process_branch_stack NULL
2977#define process_stat NULL
2978
2979// Only used in util/synthetic-events.c
2980const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2981
2982const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2983 FEAT_OPN(TRACING_DATA, tracing_data, false),
2984 FEAT_OPN(BUILD_ID, build_id, false),
2985 FEAT_OPR(HOSTNAME, hostname, false),
2986 FEAT_OPR(OSRELEASE, osrelease, false),
2987 FEAT_OPR(VERSION, version, false),
2988 FEAT_OPR(ARCH, arch, false),
2989 FEAT_OPR(NRCPUS, nrcpus, false),
2990 FEAT_OPR(CPUDESC, cpudesc, false),
2991 FEAT_OPR(CPUID, cpuid, false),
2992 FEAT_OPR(TOTAL_MEM, total_mem, false),
2993 FEAT_OPR(EVENT_DESC, event_desc, false),
2994 FEAT_OPR(CMDLINE, cmdline, false),
2995 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
2996 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
2997 FEAT_OPN(BRANCH_STACK, branch_stack, false),
2998 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
2999 FEAT_OPR(GROUP_DESC, group_desc, false),
3000 FEAT_OPN(AUXTRACE, auxtrace, false),
3001 FEAT_OPN(STAT, stat, false),
3002 FEAT_OPN(CACHE, cache, true),
3003 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3004 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3005 FEAT_OPR(CLOCKID, clockid, false),
3006 FEAT_OPN(DIR_FORMAT, dir_format, false),
3007 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3008 FEAT_OPR(BPF_BTF, bpf_btf, false),
3009 FEAT_OPR(COMPRESSED, compressed, false),
3010 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3011};
3012
3013struct header_print_data {
3014 FILE *fp;
3015 bool full; /* extended list of headers */
3016};
3017
3018static int perf_file_section__fprintf_info(struct perf_file_section *section,
3019 struct perf_header *ph,
3020 int feat, int fd, void *data)
3021{
3022 struct header_print_data *hd = data;
3023 struct feat_fd ff;
3024
3025 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3026 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3027 "%d, continuing...\n", section->offset, feat);
3028 return 0;
3029 }
3030 if (feat >= HEADER_LAST_FEATURE) {
3031 pr_warning("unknown feature %d\n", feat);
3032 return 0;
3033 }
3034 if (!feat_ops[feat].print)
3035 return 0;
3036
3037 ff = (struct feat_fd) {
3038 .fd = fd,
3039 .ph = ph,
3040 };
3041
3042 if (!feat_ops[feat].full_only || hd->full)
3043 feat_ops[feat].print(&ff, hd->fp);
3044 else
3045 fprintf(hd->fp, "# %s info available, use -I to display\n",
3046 feat_ops[feat].name);
3047
3048 return 0;
3049}
3050
3051int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3052{
3053 struct header_print_data hd;
3054 struct perf_header *header = &session->header;
3055 int fd = perf_data__fd(session->data);
3056 struct stat st;
3057 time_t stctime;
3058 int ret, bit;
3059
3060 hd.fp = fp;
3061 hd.full = full;
3062
3063 ret = fstat(fd, &st);
3064 if (ret == -1)
3065 return -1;
3066
3067 stctime = st.st_mtime;
3068 fprintf(fp, "# captured on : %s", ctime(&stctime));
3069
3070 fprintf(fp, "# header version : %u\n", header->version);
3071 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3072 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3073 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3074
3075 perf_header__process_sections(header, fd, &hd,
3076 perf_file_section__fprintf_info);
3077
3078 if (session->data->is_pipe)
3079 return 0;
3080
3081 fprintf(fp, "# missing features: ");
3082 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3083 if (bit)
3084 fprintf(fp, "%s ", feat_ops[bit].name);
3085 }
3086
3087 fprintf(fp, "\n");
3088 return 0;
3089}
3090
3091static int do_write_feat(struct feat_fd *ff, int type,
3092 struct perf_file_section **p,
3093 struct evlist *evlist)
3094{
3095 int err;
3096 int ret = 0;
3097
3098 if (perf_header__has_feat(ff->ph, type)) {
3099 if (!feat_ops[type].write)
3100 return -1;
3101
3102 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3103 return -1;
3104
3105 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3106
3107 err = feat_ops[type].write(ff, evlist);
3108 if (err < 0) {
3109 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3110
3111 /* undo anything written */
3112 lseek(ff->fd, (*p)->offset, SEEK_SET);
3113
3114 return -1;
3115 }
3116 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3117 (*p)++;
3118 }
3119 return ret;
3120}
3121
3122static int perf_header__adds_write(struct perf_header *header,
3123 struct evlist *evlist, int fd)
3124{
3125 int nr_sections;
3126 struct feat_fd ff;
3127 struct perf_file_section *feat_sec, *p;
3128 int sec_size;
3129 u64 sec_start;
3130 int feat;
3131 int err;
3132
3133 ff = (struct feat_fd){
3134 .fd = fd,
3135 .ph = header,
3136 };
3137
3138 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3139 if (!nr_sections)
3140 return 0;
3141
3142 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3143 if (feat_sec == NULL)
3144 return -ENOMEM;
3145
3146 sec_size = sizeof(*feat_sec) * nr_sections;
3147
3148 sec_start = header->feat_offset;
3149 lseek(fd, sec_start + sec_size, SEEK_SET);
3150
3151 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3152 if (do_write_feat(&ff, feat, &p, evlist))
3153 perf_header__clear_feat(header, feat);
3154 }
3155
3156 lseek(fd, sec_start, SEEK_SET);
3157 /*
3158 * may write more than needed due to dropped feature, but
3159 * this is okay, reader will skip the missing entries
3160 */
3161 err = do_write(&ff, feat_sec, sec_size);
3162 if (err < 0)
3163 pr_debug("failed to write feature section\n");
3164 free(feat_sec);
3165 return err;
3166}
3167
3168int perf_header__write_pipe(int fd)
3169{
3170 struct perf_pipe_file_header f_header;
3171 struct feat_fd ff;
3172 int err;
3173
3174 ff = (struct feat_fd){ .fd = fd };
3175
3176 f_header = (struct perf_pipe_file_header){
3177 .magic = PERF_MAGIC,
3178 .size = sizeof(f_header),
3179 };
3180
3181 err = do_write(&ff, &f_header, sizeof(f_header));
3182 if (err < 0) {
3183 pr_debug("failed to write perf pipe header\n");
3184 return err;
3185 }
3186
3187 return 0;
3188}
3189
3190int perf_session__write_header(struct perf_session *session,
3191 struct evlist *evlist,
3192 int fd, bool at_exit)
3193{
3194 struct perf_file_header f_header;
3195 struct perf_file_attr f_attr;
3196 struct perf_header *header = &session->header;
3197 struct evsel *evsel;
3198 struct feat_fd ff;
3199 u64 attr_offset;
3200 int err;
3201
3202 ff = (struct feat_fd){ .fd = fd};
3203 lseek(fd, sizeof(f_header), SEEK_SET);
3204
3205 evlist__for_each_entry(session->evlist, evsel) {
3206 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3207 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3208 if (err < 0) {
3209 pr_debug("failed to write perf header\n");
3210 return err;
3211 }
3212 }
3213
3214 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3215
3216 evlist__for_each_entry(evlist, evsel) {
3217 f_attr = (struct perf_file_attr){
3218 .attr = evsel->core.attr,
3219 .ids = {
3220 .offset = evsel->id_offset,
3221 .size = evsel->core.ids * sizeof(u64),
3222 }
3223 };
3224 err = do_write(&ff, &f_attr, sizeof(f_attr));
3225 if (err < 0) {
3226 pr_debug("failed to write perf header attribute\n");
3227 return err;
3228 }
3229 }
3230
3231 if (!header->data_offset)
3232 header->data_offset = lseek(fd, 0, SEEK_CUR);
3233 header->feat_offset = header->data_offset + header->data_size;
3234
3235 if (at_exit) {
3236 err = perf_header__adds_write(header, evlist, fd);
3237 if (err < 0)
3238 return err;
3239 }
3240
3241 f_header = (struct perf_file_header){
3242 .magic = PERF_MAGIC,
3243 .size = sizeof(f_header),
3244 .attr_size = sizeof(f_attr),
3245 .attrs = {
3246 .offset = attr_offset,
3247 .size = evlist->core.nr_entries * sizeof(f_attr),
3248 },
3249 .data = {
3250 .offset = header->data_offset,
3251 .size = header->data_size,
3252 },
3253 /* event_types is ignored, store zeros */
3254 };
3255
3256 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3257
3258 lseek(fd, 0, SEEK_SET);
3259 err = do_write(&ff, &f_header, sizeof(f_header));
3260 if (err < 0) {
3261 pr_debug("failed to write perf header\n");
3262 return err;
3263 }
3264 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3265
3266 return 0;
3267}
3268
3269static int perf_header__getbuffer64(struct perf_header *header,
3270 int fd, void *buf, size_t size)
3271{
3272 if (readn(fd, buf, size) <= 0)
3273 return -1;
3274
3275 if (header->needs_swap)
3276 mem_bswap_64(buf, size);
3277
3278 return 0;
3279}
3280
3281int perf_header__process_sections(struct perf_header *header, int fd,
3282 void *data,
3283 int (*process)(struct perf_file_section *section,
3284 struct perf_header *ph,
3285 int feat, int fd, void *data))
3286{
3287 struct perf_file_section *feat_sec, *sec;
3288 int nr_sections;
3289 int sec_size;
3290 int feat;
3291 int err;
3292
3293 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3294 if (!nr_sections)
3295 return 0;
3296
3297 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3298 if (!feat_sec)
3299 return -1;
3300
3301 sec_size = sizeof(*feat_sec) * nr_sections;
3302
3303 lseek(fd, header->feat_offset, SEEK_SET);
3304
3305 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3306 if (err < 0)
3307 goto out_free;
3308
3309 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3310 err = process(sec++, header, feat, fd, data);
3311 if (err < 0)
3312 goto out_free;
3313 }
3314 err = 0;
3315out_free:
3316 free(feat_sec);
3317 return err;
3318}
3319
3320static const int attr_file_abi_sizes[] = {
3321 [0] = PERF_ATTR_SIZE_VER0,
3322 [1] = PERF_ATTR_SIZE_VER1,
3323 [2] = PERF_ATTR_SIZE_VER2,
3324 [3] = PERF_ATTR_SIZE_VER3,
3325 [4] = PERF_ATTR_SIZE_VER4,
3326 0,
3327};
3328
3329/*
3330 * In the legacy file format, the magic number is not used to encode endianness.
3331 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3332 * on ABI revisions, we need to try all combinations for all endianness to
3333 * detect the endianness.
3334 */
3335static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3336{
3337 uint64_t ref_size, attr_size;
3338 int i;
3339
3340 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3341 ref_size = attr_file_abi_sizes[i]
3342 + sizeof(struct perf_file_section);
3343 if (hdr_sz != ref_size) {
3344 attr_size = bswap_64(hdr_sz);
3345 if (attr_size != ref_size)
3346 continue;
3347
3348 ph->needs_swap = true;
3349 }
3350 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3351 i,
3352 ph->needs_swap);
3353 return 0;
3354 }
3355 /* could not determine endianness */
3356 return -1;
3357}
3358
3359#define PERF_PIPE_HDR_VER0 16
3360
3361static const size_t attr_pipe_abi_sizes[] = {
3362 [0] = PERF_PIPE_HDR_VER0,
3363 0,
3364};
3365
3366/*
3367 * In the legacy pipe format, there is an implicit assumption that endiannesss
3368 * between host recording the samples, and host parsing the samples is the
3369 * same. This is not always the case given that the pipe output may always be
3370 * redirected into a file and analyzed on a different machine with possibly a
3371 * different endianness and perf_event ABI revsions in the perf tool itself.
3372 */
3373static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3374{
3375 u64 attr_size;
3376 int i;
3377
3378 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3379 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3380 attr_size = bswap_64(hdr_sz);
3381 if (attr_size != hdr_sz)
3382 continue;
3383
3384 ph->needs_swap = true;
3385 }
3386 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3387 return 0;
3388 }
3389 return -1;
3390}
3391
3392bool is_perf_magic(u64 magic)
3393{
3394 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3395 || magic == __perf_magic2
3396 || magic == __perf_magic2_sw)
3397 return true;
3398
3399 return false;
3400}
3401
3402static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3403 bool is_pipe, struct perf_header *ph)
3404{
3405 int ret;
3406
3407 /* check for legacy format */
3408 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3409 if (ret == 0) {
3410 ph->version = PERF_HEADER_VERSION_1;
3411 pr_debug("legacy perf.data format\n");
3412 if (is_pipe)
3413 return try_all_pipe_abis(hdr_sz, ph);
3414
3415 return try_all_file_abis(hdr_sz, ph);
3416 }
3417 /*
3418 * the new magic number serves two purposes:
3419 * - unique number to identify actual perf.data files
3420 * - encode endianness of file
3421 */
3422 ph->version = PERF_HEADER_VERSION_2;
3423
3424 /* check magic number with one endianness */
3425 if (magic == __perf_magic2)
3426 return 0;
3427
3428 /* check magic number with opposite endianness */
3429 if (magic != __perf_magic2_sw)
3430 return -1;
3431
3432 ph->needs_swap = true;
3433
3434 return 0;
3435}
3436
3437int perf_file_header__read(struct perf_file_header *header,
3438 struct perf_header *ph, int fd)
3439{
3440 ssize_t ret;
3441
3442 lseek(fd, 0, SEEK_SET);
3443
3444 ret = readn(fd, header, sizeof(*header));
3445 if (ret <= 0)
3446 return -1;
3447
3448 if (check_magic_endian(header->magic,
3449 header->attr_size, false, ph) < 0) {
3450 pr_debug("magic/endian check failed\n");
3451 return -1;
3452 }
3453
3454 if (ph->needs_swap) {
3455 mem_bswap_64(header, offsetof(struct perf_file_header,
3456 adds_features));
3457 }
3458
3459 if (header->size != sizeof(*header)) {
3460 /* Support the previous format */
3461 if (header->size == offsetof(typeof(*header), adds_features))
3462 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3463 else
3464 return -1;
3465 } else if (ph->needs_swap) {
3466 /*
3467 * feature bitmap is declared as an array of unsigned longs --
3468 * not good since its size can differ between the host that
3469 * generated the data file and the host analyzing the file.
3470 *
3471 * We need to handle endianness, but we don't know the size of
3472 * the unsigned long where the file was generated. Take a best
3473 * guess at determining it: try 64-bit swap first (ie., file
3474 * created on a 64-bit host), and check if the hostname feature
3475 * bit is set (this feature bit is forced on as of fbe96f2).
3476 * If the bit is not, undo the 64-bit swap and try a 32-bit
3477 * swap. If the hostname bit is still not set (e.g., older data
3478 * file), punt and fallback to the original behavior --
3479 * clearing all feature bits and setting buildid.
3480 */
3481 mem_bswap_64(&header->adds_features,
3482 BITS_TO_U64(HEADER_FEAT_BITS));
3483
3484 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3485 /* unswap as u64 */
3486 mem_bswap_64(&header->adds_features,
3487 BITS_TO_U64(HEADER_FEAT_BITS));
3488
3489 /* unswap as u32 */
3490 mem_bswap_32(&header->adds_features,
3491 BITS_TO_U32(HEADER_FEAT_BITS));
3492 }
3493
3494 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3495 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3496 set_bit(HEADER_BUILD_ID, header->adds_features);
3497 }
3498 }
3499
3500 memcpy(&ph->adds_features, &header->adds_features,
3501 sizeof(ph->adds_features));
3502
3503 ph->data_offset = header->data.offset;
3504 ph->data_size = header->data.size;
3505 ph->feat_offset = header->data.offset + header->data.size;
3506 return 0;
3507}
3508
3509static int perf_file_section__process(struct perf_file_section *section,
3510 struct perf_header *ph,
3511 int feat, int fd, void *data)
3512{
3513 struct feat_fd fdd = {
3514 .fd = fd,
3515 .ph = ph,
3516 .size = section->size,
3517 .offset = section->offset,
3518 };
3519
3520 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3521 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3522 "%d, continuing...\n", section->offset, feat);
3523 return 0;
3524 }
3525
3526 if (feat >= HEADER_LAST_FEATURE) {
3527 pr_debug("unknown feature %d, continuing...\n", feat);
3528 return 0;
3529 }
3530
3531 if (!feat_ops[feat].process)
3532 return 0;
3533
3534 return feat_ops[feat].process(&fdd, data);
3535}
3536
3537static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3538 struct perf_header *ph, int fd,
3539 bool repipe)
3540{
3541 struct feat_fd ff = {
3542 .fd = STDOUT_FILENO,
3543 .ph = ph,
3544 };
3545 ssize_t ret;
3546
3547 ret = readn(fd, header, sizeof(*header));
3548 if (ret <= 0)
3549 return -1;
3550
3551 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3552 pr_debug("endian/magic failed\n");
3553 return -1;
3554 }
3555
3556 if (ph->needs_swap)
3557 header->size = bswap_64(header->size);
3558
3559 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3560 return -1;
3561
3562 return 0;
3563}
3564
3565static int perf_header__read_pipe(struct perf_session *session)
3566{
3567 struct perf_header *header = &session->header;
3568 struct perf_pipe_file_header f_header;
3569
3570 if (perf_file_header__read_pipe(&f_header, header,
3571 perf_data__fd(session->data),
3572 session->repipe) < 0) {
3573 pr_debug("incompatible file format\n");
3574 return -EINVAL;
3575 }
3576
3577 return f_header.size == sizeof(f_header) ? 0 : -1;
3578}
3579
3580static int read_attr(int fd, struct perf_header *ph,
3581 struct perf_file_attr *f_attr)
3582{
3583 struct perf_event_attr *attr = &f_attr->attr;
3584 size_t sz, left;
3585 size_t our_sz = sizeof(f_attr->attr);
3586 ssize_t ret;
3587
3588 memset(f_attr, 0, sizeof(*f_attr));
3589
3590 /* read minimal guaranteed structure */
3591 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3592 if (ret <= 0) {
3593 pr_debug("cannot read %d bytes of header attr\n",
3594 PERF_ATTR_SIZE_VER0);
3595 return -1;
3596 }
3597
3598 /* on file perf_event_attr size */
3599 sz = attr->size;
3600
3601 if (ph->needs_swap)
3602 sz = bswap_32(sz);
3603
3604 if (sz == 0) {
3605 /* assume ABI0 */
3606 sz = PERF_ATTR_SIZE_VER0;
3607 } else if (sz > our_sz) {
3608 pr_debug("file uses a more recent and unsupported ABI"
3609 " (%zu bytes extra)\n", sz - our_sz);
3610 return -1;
3611 }
3612 /* what we have not yet read and that we know about */
3613 left = sz - PERF_ATTR_SIZE_VER0;
3614 if (left) {
3615 void *ptr = attr;
3616 ptr += PERF_ATTR_SIZE_VER0;
3617
3618 ret = readn(fd, ptr, left);
3619 }
3620 /* read perf_file_section, ids are read in caller */
3621 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3622
3623 return ret <= 0 ? -1 : 0;
3624}
3625
3626static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3627 struct tep_handle *pevent)
3628{
3629 struct tep_event *event;
3630 char bf[128];
3631
3632 /* already prepared */
3633 if (evsel->tp_format)
3634 return 0;
3635
3636 if (pevent == NULL) {
3637 pr_debug("broken or missing trace data\n");
3638 return -1;
3639 }
3640
3641 event = tep_find_event(pevent, evsel->core.attr.config);
3642 if (event == NULL) {
3643 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3644 return -1;
3645 }
3646
3647 if (!evsel->name) {
3648 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3649 evsel->name = strdup(bf);
3650 if (evsel->name == NULL)
3651 return -1;
3652 }
3653
3654 evsel->tp_format = event;
3655 return 0;
3656}
3657
3658static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3659 struct tep_handle *pevent)
3660{
3661 struct evsel *pos;
3662
3663 evlist__for_each_entry(evlist, pos) {
3664 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3665 perf_evsel__prepare_tracepoint_event(pos, pevent))
3666 return -1;
3667 }
3668
3669 return 0;
3670}
3671
3672int perf_session__read_header(struct perf_session *session)
3673{
3674 struct perf_data *data = session->data;
3675 struct perf_header *header = &session->header;
3676 struct perf_file_header f_header;
3677 struct perf_file_attr f_attr;
3678 u64 f_id;
3679 int nr_attrs, nr_ids, i, j, err;
3680 int fd = perf_data__fd(data);
3681
3682 session->evlist = evlist__new();
3683 if (session->evlist == NULL)
3684 return -ENOMEM;
3685
3686 session->evlist->env = &header->env;
3687 session->machines.host.env = &header->env;
3688
3689 /*
3690 * We can read 'pipe' data event from regular file,
3691 * check for the pipe header regardless of source.
3692 */
3693 err = perf_header__read_pipe(session);
3694 if (!err || (err && perf_data__is_pipe(data))) {
3695 data->is_pipe = true;
3696 return err;
3697 }
3698
3699 if (perf_file_header__read(&f_header, header, fd) < 0)
3700 return -EINVAL;
3701
3702 /*
3703 * Sanity check that perf.data was written cleanly; data size is
3704 * initialized to 0 and updated only if the on_exit function is run.
3705 * If data size is still 0 then the file contains only partial
3706 * information. Just warn user and process it as much as it can.
3707 */
3708 if (f_header.data.size == 0) {
3709 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3710 "Was the 'perf record' command properly terminated?\n",
3711 data->file.path);
3712 }
3713
3714 if (f_header.attr_size == 0) {
3715 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3716 "Was the 'perf record' command properly terminated?\n",
3717 data->file.path);
3718 return -EINVAL;
3719 }
3720
3721 nr_attrs = f_header.attrs.size / f_header.attr_size;
3722 lseek(fd, f_header.attrs.offset, SEEK_SET);
3723
3724 for (i = 0; i < nr_attrs; i++) {
3725 struct evsel *evsel;
3726 off_t tmp;
3727
3728 if (read_attr(fd, header, &f_attr) < 0)
3729 goto out_errno;
3730
3731 if (header->needs_swap) {
3732 f_attr.ids.size = bswap_64(f_attr.ids.size);
3733 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3734 perf_event__attr_swap(&f_attr.attr);
3735 }
3736
3737 tmp = lseek(fd, 0, SEEK_CUR);
3738 evsel = evsel__new(&f_attr.attr);
3739
3740 if (evsel == NULL)
3741 goto out_delete_evlist;
3742
3743 evsel->needs_swap = header->needs_swap;
3744 /*
3745 * Do it before so that if perf_evsel__alloc_id fails, this
3746 * entry gets purged too at evlist__delete().
3747 */
3748 evlist__add(session->evlist, evsel);
3749
3750 nr_ids = f_attr.ids.size / sizeof(u64);
3751 /*
3752 * We don't have the cpu and thread maps on the header, so
3753 * for allocating the perf_sample_id table we fake 1 cpu and
3754 * hattr->ids threads.
3755 */
3756 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3757 goto out_delete_evlist;
3758
3759 lseek(fd, f_attr.ids.offset, SEEK_SET);
3760
3761 for (j = 0; j < nr_ids; j++) {
3762 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3763 goto out_errno;
3764
3765 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3766 }
3767
3768 lseek(fd, tmp, SEEK_SET);
3769 }
3770
3771 perf_header__process_sections(header, fd, &session->tevent,
3772 perf_file_section__process);
3773
3774 if (perf_evlist__prepare_tracepoint_events(session->evlist,
3775 session->tevent.pevent))
3776 goto out_delete_evlist;
3777
3778 return 0;
3779out_errno:
3780 return -errno;
3781
3782out_delete_evlist:
3783 evlist__delete(session->evlist);
3784 session->evlist = NULL;
3785 return -ENOMEM;
3786}
3787
3788int perf_event__process_feature(struct perf_session *session,
3789 union perf_event *event)
3790{
3791 struct perf_tool *tool = session->tool;
3792 struct feat_fd ff = { .fd = 0 };
3793 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3794 int type = fe->header.type;
3795 u64 feat = fe->feat_id;
3796
3797 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3798 pr_warning("invalid record type %d in pipe-mode\n", type);
3799 return 0;
3800 }
3801 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3802 pr_warning("invalid record type %d in pipe-mode\n", type);
3803 return -1;
3804 }
3805
3806 if (!feat_ops[feat].process)
3807 return 0;
3808
3809 ff.buf = (void *)fe->data;
3810 ff.size = event->header.size - sizeof(*fe);
3811 ff.ph = &session->header;
3812
3813 if (feat_ops[feat].process(&ff, NULL))
3814 return -1;
3815
3816 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3817 return 0;
3818
3819 if (!feat_ops[feat].full_only ||
3820 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3821 feat_ops[feat].print(&ff, stdout);
3822 } else {
3823 fprintf(stdout, "# %s info available, use -I to display\n",
3824 feat_ops[feat].name);
3825 }
3826
3827 return 0;
3828}
3829
3830size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3831{
3832 struct perf_record_event_update *ev = &event->event_update;
3833 struct perf_record_event_update_scale *ev_scale;
3834 struct perf_record_event_update_cpus *ev_cpus;
3835 struct perf_cpu_map *map;
3836 size_t ret;
3837
3838 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
3839
3840 switch (ev->type) {
3841 case PERF_EVENT_UPDATE__SCALE:
3842 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3843 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3844 break;
3845 case PERF_EVENT_UPDATE__UNIT:
3846 ret += fprintf(fp, "... unit: %s\n", ev->data);
3847 break;
3848 case PERF_EVENT_UPDATE__NAME:
3849 ret += fprintf(fp, "... name: %s\n", ev->data);
3850 break;
3851 case PERF_EVENT_UPDATE__CPUS:
3852 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3853 ret += fprintf(fp, "... ");
3854
3855 map = cpu_map__new_data(&ev_cpus->cpus);
3856 if (map)
3857 ret += cpu_map__fprintf(map, fp);
3858 else
3859 ret += fprintf(fp, "failed to get cpus\n");
3860 break;
3861 default:
3862 ret += fprintf(fp, "... unknown type\n");
3863 break;
3864 }
3865
3866 return ret;
3867}
3868
3869int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3870 union perf_event *event,
3871 struct evlist **pevlist)
3872{
3873 u32 i, ids, n_ids;
3874 struct evsel *evsel;
3875 struct evlist *evlist = *pevlist;
3876
3877 if (evlist == NULL) {
3878 *pevlist = evlist = evlist__new();
3879 if (evlist == NULL)
3880 return -ENOMEM;
3881 }
3882
3883 evsel = evsel__new(&event->attr.attr);
3884 if (evsel == NULL)
3885 return -ENOMEM;
3886
3887 evlist__add(evlist, evsel);
3888
3889 ids = event->header.size;
3890 ids -= (void *)&event->attr.id - (void *)event;
3891 n_ids = ids / sizeof(u64);
3892 /*
3893 * We don't have the cpu and thread maps on the header, so
3894 * for allocating the perf_sample_id table we fake 1 cpu and
3895 * hattr->ids threads.
3896 */
3897 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3898 return -ENOMEM;
3899
3900 for (i = 0; i < n_ids; i++) {
3901 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3902 }
3903
3904 return 0;
3905}
3906
3907int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3908 union perf_event *event,
3909 struct evlist **pevlist)
3910{
3911 struct perf_record_event_update *ev = &event->event_update;
3912 struct perf_record_event_update_scale *ev_scale;
3913 struct perf_record_event_update_cpus *ev_cpus;
3914 struct evlist *evlist;
3915 struct evsel *evsel;
3916 struct perf_cpu_map *map;
3917
3918 if (!pevlist || *pevlist == NULL)
3919 return -EINVAL;
3920
3921 evlist = *pevlist;
3922
3923 evsel = perf_evlist__id2evsel(evlist, ev->id);
3924 if (evsel == NULL)
3925 return -EINVAL;
3926
3927 switch (ev->type) {
3928 case PERF_EVENT_UPDATE__UNIT:
3929 evsel->unit = strdup(ev->data);
3930 break;
3931 case PERF_EVENT_UPDATE__NAME:
3932 evsel->name = strdup(ev->data);
3933 break;
3934 case PERF_EVENT_UPDATE__SCALE:
3935 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3936 evsel->scale = ev_scale->scale;
3937 break;
3938 case PERF_EVENT_UPDATE__CPUS:
3939 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3940
3941 map = cpu_map__new_data(&ev_cpus->cpus);
3942 if (map)
3943 evsel->core.own_cpus = map;
3944 else
3945 pr_err("failed to get event_update cpus\n");
3946 default:
3947 break;
3948 }
3949
3950 return 0;
3951}
3952
3953int perf_event__process_tracing_data(struct perf_session *session,
3954 union perf_event *event)
3955{
3956 ssize_t size_read, padding, size = event->tracing_data.size;
3957 int fd = perf_data__fd(session->data);
3958 char buf[BUFSIZ];
3959
3960 /*
3961 * The pipe fd is already in proper place and in any case
3962 * we can't move it, and we'd screw the case where we read
3963 * 'pipe' data from regular file. The trace_report reads
3964 * data from 'fd' so we need to set it directly behind the
3965 * event, where the tracing data starts.
3966 */
3967 if (!perf_data__is_pipe(session->data)) {
3968 off_t offset = lseek(fd, 0, SEEK_CUR);
3969
3970 /* setup for reading amidst mmap */
3971 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3972 SEEK_SET);
3973 }
3974
3975 size_read = trace_report(fd, &session->tevent,
3976 session->repipe);
3977 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3978
3979 if (readn(fd, buf, padding) < 0) {
3980 pr_err("%s: reading input file", __func__);
3981 return -1;
3982 }
3983 if (session->repipe) {
3984 int retw = write(STDOUT_FILENO, buf, padding);
3985 if (retw <= 0 || retw != padding) {
3986 pr_err("%s: repiping tracing data padding", __func__);
3987 return -1;
3988 }
3989 }
3990
3991 if (size_read + padding != size) {
3992 pr_err("%s: tracing data size mismatch", __func__);
3993 return -1;
3994 }
3995
3996 perf_evlist__prepare_tracepoint_events(session->evlist,
3997 session->tevent.pevent);
3998
3999 return size_read + padding;
4000}
4001
4002int perf_event__process_build_id(struct perf_session *session,
4003 union perf_event *event)
4004{
4005 __event_process_build_id(&event->build_id,
4006 event->build_id.filename,
4007 session);
4008 return 0;
4009}