Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_2_6_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 *out = (reg << 6) | val;
218}
219
220static void regmap_format_4_12_write(struct regmap *map,
221 unsigned int reg, unsigned int val)
222{
223 __be16 *out = map->work_buf;
224 *out = cpu_to_be16((reg << 12) | val);
225}
226
227static void regmap_format_7_9_write(struct regmap *map,
228 unsigned int reg, unsigned int val)
229{
230 __be16 *out = map->work_buf;
231 *out = cpu_to_be16((reg << 9) | val);
232}
233
234static void regmap_format_10_14_write(struct regmap *map,
235 unsigned int reg, unsigned int val)
236{
237 u8 *out = map->work_buf;
238
239 out[2] = val;
240 out[1] = (val >> 8) | (reg << 6);
241 out[0] = reg >> 2;
242}
243
244static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
245{
246 u8 *b = buf;
247
248 b[0] = val << shift;
249}
250
251static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
252{
253 put_unaligned_be16(val << shift, buf);
254}
255
256static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
257{
258 put_unaligned_le16(val << shift, buf);
259}
260
261static void regmap_format_16_native(void *buf, unsigned int val,
262 unsigned int shift)
263{
264 u16 v = val << shift;
265
266 memcpy(buf, &v, sizeof(v));
267}
268
269static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
270{
271 u8 *b = buf;
272
273 val <<= shift;
274
275 b[0] = val >> 16;
276 b[1] = val >> 8;
277 b[2] = val;
278}
279
280static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
281{
282 put_unaligned_be32(val << shift, buf);
283}
284
285static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
286{
287 put_unaligned_le32(val << shift, buf);
288}
289
290static void regmap_format_32_native(void *buf, unsigned int val,
291 unsigned int shift)
292{
293 u32 v = val << shift;
294
295 memcpy(buf, &v, sizeof(v));
296}
297
298#ifdef CONFIG_64BIT
299static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
300{
301 put_unaligned_be64((u64) val << shift, buf);
302}
303
304static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
305{
306 put_unaligned_le64((u64) val << shift, buf);
307}
308
309static void regmap_format_64_native(void *buf, unsigned int val,
310 unsigned int shift)
311{
312 u64 v = (u64) val << shift;
313
314 memcpy(buf, &v, sizeof(v));
315}
316#endif
317
318static void regmap_parse_inplace_noop(void *buf)
319{
320}
321
322static unsigned int regmap_parse_8(const void *buf)
323{
324 const u8 *b = buf;
325
326 return b[0];
327}
328
329static unsigned int regmap_parse_16_be(const void *buf)
330{
331 return get_unaligned_be16(buf);
332}
333
334static unsigned int regmap_parse_16_le(const void *buf)
335{
336 return get_unaligned_le16(buf);
337}
338
339static void regmap_parse_16_be_inplace(void *buf)
340{
341 u16 v = get_unaligned_be16(buf);
342
343 memcpy(buf, &v, sizeof(v));
344}
345
346static void regmap_parse_16_le_inplace(void *buf)
347{
348 u16 v = get_unaligned_le16(buf);
349
350 memcpy(buf, &v, sizeof(v));
351}
352
353static unsigned int regmap_parse_16_native(const void *buf)
354{
355 u16 v;
356
357 memcpy(&v, buf, sizeof(v));
358 return v;
359}
360
361static unsigned int regmap_parse_24(const void *buf)
362{
363 const u8 *b = buf;
364 unsigned int ret = b[2];
365 ret |= ((unsigned int)b[1]) << 8;
366 ret |= ((unsigned int)b[0]) << 16;
367
368 return ret;
369}
370
371static unsigned int regmap_parse_32_be(const void *buf)
372{
373 return get_unaligned_be32(buf);
374}
375
376static unsigned int regmap_parse_32_le(const void *buf)
377{
378 return get_unaligned_le32(buf);
379}
380
381static void regmap_parse_32_be_inplace(void *buf)
382{
383 u32 v = get_unaligned_be32(buf);
384
385 memcpy(buf, &v, sizeof(v));
386}
387
388static void regmap_parse_32_le_inplace(void *buf)
389{
390 u32 v = get_unaligned_le32(buf);
391
392 memcpy(buf, &v, sizeof(v));
393}
394
395static unsigned int regmap_parse_32_native(const void *buf)
396{
397 u32 v;
398
399 memcpy(&v, buf, sizeof(v));
400 return v;
401}
402
403#ifdef CONFIG_64BIT
404static unsigned int regmap_parse_64_be(const void *buf)
405{
406 return get_unaligned_be64(buf);
407}
408
409static unsigned int regmap_parse_64_le(const void *buf)
410{
411 return get_unaligned_le64(buf);
412}
413
414static void regmap_parse_64_be_inplace(void *buf)
415{
416 u64 v = get_unaligned_be64(buf);
417
418 memcpy(buf, &v, sizeof(v));
419}
420
421static void regmap_parse_64_le_inplace(void *buf)
422{
423 u64 v = get_unaligned_le64(buf);
424
425 memcpy(buf, &v, sizeof(v));
426}
427
428static unsigned int regmap_parse_64_native(const void *buf)
429{
430 u64 v;
431
432 memcpy(&v, buf, sizeof(v));
433 return v;
434}
435#endif
436
437static void regmap_lock_hwlock(void *__map)
438{
439 struct regmap *map = __map;
440
441 hwspin_lock_timeout(map->hwlock, UINT_MAX);
442}
443
444static void regmap_lock_hwlock_irq(void *__map)
445{
446 struct regmap *map = __map;
447
448 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
449}
450
451static void regmap_lock_hwlock_irqsave(void *__map)
452{
453 struct regmap *map = __map;
454
455 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
456 &map->spinlock_flags);
457}
458
459static void regmap_unlock_hwlock(void *__map)
460{
461 struct regmap *map = __map;
462
463 hwspin_unlock(map->hwlock);
464}
465
466static void regmap_unlock_hwlock_irq(void *__map)
467{
468 struct regmap *map = __map;
469
470 hwspin_unlock_irq(map->hwlock);
471}
472
473static void regmap_unlock_hwlock_irqrestore(void *__map)
474{
475 struct regmap *map = __map;
476
477 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
478}
479
480static void regmap_lock_unlock_none(void *__map)
481{
482
483}
484
485static void regmap_lock_mutex(void *__map)
486{
487 struct regmap *map = __map;
488 mutex_lock(&map->mutex);
489}
490
491static void regmap_unlock_mutex(void *__map)
492{
493 struct regmap *map = __map;
494 mutex_unlock(&map->mutex);
495}
496
497static void regmap_lock_spinlock(void *__map)
498__acquires(&map->spinlock)
499{
500 struct regmap *map = __map;
501 unsigned long flags;
502
503 spin_lock_irqsave(&map->spinlock, flags);
504 map->spinlock_flags = flags;
505}
506
507static void regmap_unlock_spinlock(void *__map)
508__releases(&map->spinlock)
509{
510 struct regmap *map = __map;
511 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
512}
513
514static void dev_get_regmap_release(struct device *dev, void *res)
515{
516 /*
517 * We don't actually have anything to do here; the goal here
518 * is not to manage the regmap but to provide a simple way to
519 * get the regmap back given a struct device.
520 */
521}
522
523static bool _regmap_range_add(struct regmap *map,
524 struct regmap_range_node *data)
525{
526 struct rb_root *root = &map->range_tree;
527 struct rb_node **new = &(root->rb_node), *parent = NULL;
528
529 while (*new) {
530 struct regmap_range_node *this =
531 rb_entry(*new, struct regmap_range_node, node);
532
533 parent = *new;
534 if (data->range_max < this->range_min)
535 new = &((*new)->rb_left);
536 else if (data->range_min > this->range_max)
537 new = &((*new)->rb_right);
538 else
539 return false;
540 }
541
542 rb_link_node(&data->node, parent, new);
543 rb_insert_color(&data->node, root);
544
545 return true;
546}
547
548static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
549 unsigned int reg)
550{
551 struct rb_node *node = map->range_tree.rb_node;
552
553 while (node) {
554 struct regmap_range_node *this =
555 rb_entry(node, struct regmap_range_node, node);
556
557 if (reg < this->range_min)
558 node = node->rb_left;
559 else if (reg > this->range_max)
560 node = node->rb_right;
561 else
562 return this;
563 }
564
565 return NULL;
566}
567
568static void regmap_range_exit(struct regmap *map)
569{
570 struct rb_node *next;
571 struct regmap_range_node *range_node;
572
573 next = rb_first(&map->range_tree);
574 while (next) {
575 range_node = rb_entry(next, struct regmap_range_node, node);
576 next = rb_next(&range_node->node);
577 rb_erase(&range_node->node, &map->range_tree);
578 kfree(range_node);
579 }
580
581 kfree(map->selector_work_buf);
582}
583
584int regmap_attach_dev(struct device *dev, struct regmap *map,
585 const struct regmap_config *config)
586{
587 struct regmap **m;
588
589 map->dev = dev;
590
591 regmap_debugfs_init(map, config->name);
592
593 /* Add a devres resource for dev_get_regmap() */
594 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
595 if (!m) {
596 regmap_debugfs_exit(map);
597 return -ENOMEM;
598 }
599 *m = map;
600 devres_add(dev, m);
601
602 return 0;
603}
604EXPORT_SYMBOL_GPL(regmap_attach_dev);
605
606static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
607 const struct regmap_config *config)
608{
609 enum regmap_endian endian;
610
611 /* Retrieve the endianness specification from the regmap config */
612 endian = config->reg_format_endian;
613
614 /* If the regmap config specified a non-default value, use that */
615 if (endian != REGMAP_ENDIAN_DEFAULT)
616 return endian;
617
618 /* Retrieve the endianness specification from the bus config */
619 if (bus && bus->reg_format_endian_default)
620 endian = bus->reg_format_endian_default;
621
622 /* If the bus specified a non-default value, use that */
623 if (endian != REGMAP_ENDIAN_DEFAULT)
624 return endian;
625
626 /* Use this if no other value was found */
627 return REGMAP_ENDIAN_BIG;
628}
629
630enum regmap_endian regmap_get_val_endian(struct device *dev,
631 const struct regmap_bus *bus,
632 const struct regmap_config *config)
633{
634 struct device_node *np;
635 enum regmap_endian endian;
636
637 /* Retrieve the endianness specification from the regmap config */
638 endian = config->val_format_endian;
639
640 /* If the regmap config specified a non-default value, use that */
641 if (endian != REGMAP_ENDIAN_DEFAULT)
642 return endian;
643
644 /* If the dev and dev->of_node exist try to get endianness from DT */
645 if (dev && dev->of_node) {
646 np = dev->of_node;
647
648 /* Parse the device's DT node for an endianness specification */
649 if (of_property_read_bool(np, "big-endian"))
650 endian = REGMAP_ENDIAN_BIG;
651 else if (of_property_read_bool(np, "little-endian"))
652 endian = REGMAP_ENDIAN_LITTLE;
653 else if (of_property_read_bool(np, "native-endian"))
654 endian = REGMAP_ENDIAN_NATIVE;
655
656 /* If the endianness was specified in DT, use that */
657 if (endian != REGMAP_ENDIAN_DEFAULT)
658 return endian;
659 }
660
661 /* Retrieve the endianness specification from the bus config */
662 if (bus && bus->val_format_endian_default)
663 endian = bus->val_format_endian_default;
664
665 /* If the bus specified a non-default value, use that */
666 if (endian != REGMAP_ENDIAN_DEFAULT)
667 return endian;
668
669 /* Use this if no other value was found */
670 return REGMAP_ENDIAN_BIG;
671}
672EXPORT_SYMBOL_GPL(regmap_get_val_endian);
673
674struct regmap *__regmap_init(struct device *dev,
675 const struct regmap_bus *bus,
676 void *bus_context,
677 const struct regmap_config *config,
678 struct lock_class_key *lock_key,
679 const char *lock_name)
680{
681 struct regmap *map;
682 int ret = -EINVAL;
683 enum regmap_endian reg_endian, val_endian;
684 int i, j;
685
686 if (!config)
687 goto err;
688
689 map = kzalloc(sizeof(*map), GFP_KERNEL);
690 if (map == NULL) {
691 ret = -ENOMEM;
692 goto err;
693 }
694
695 if (config->name) {
696 map->name = kstrdup_const(config->name, GFP_KERNEL);
697 if (!map->name) {
698 ret = -ENOMEM;
699 goto err_map;
700 }
701 }
702
703 if (config->disable_locking) {
704 map->lock = map->unlock = regmap_lock_unlock_none;
705 regmap_debugfs_disable(map);
706 } else if (config->lock && config->unlock) {
707 map->lock = config->lock;
708 map->unlock = config->unlock;
709 map->lock_arg = config->lock_arg;
710 } else if (config->use_hwlock) {
711 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
712 if (!map->hwlock) {
713 ret = -ENXIO;
714 goto err_name;
715 }
716
717 switch (config->hwlock_mode) {
718 case HWLOCK_IRQSTATE:
719 map->lock = regmap_lock_hwlock_irqsave;
720 map->unlock = regmap_unlock_hwlock_irqrestore;
721 break;
722 case HWLOCK_IRQ:
723 map->lock = regmap_lock_hwlock_irq;
724 map->unlock = regmap_unlock_hwlock_irq;
725 break;
726 default:
727 map->lock = regmap_lock_hwlock;
728 map->unlock = regmap_unlock_hwlock;
729 break;
730 }
731
732 map->lock_arg = map;
733 } else {
734 if ((bus && bus->fast_io) ||
735 config->fast_io) {
736 spin_lock_init(&map->spinlock);
737 map->lock = regmap_lock_spinlock;
738 map->unlock = regmap_unlock_spinlock;
739 lockdep_set_class_and_name(&map->spinlock,
740 lock_key, lock_name);
741 } else {
742 mutex_init(&map->mutex);
743 map->lock = regmap_lock_mutex;
744 map->unlock = regmap_unlock_mutex;
745 lockdep_set_class_and_name(&map->mutex,
746 lock_key, lock_name);
747 }
748 map->lock_arg = map;
749 }
750
751 /*
752 * When we write in fast-paths with regmap_bulk_write() don't allocate
753 * scratch buffers with sleeping allocations.
754 */
755 if ((bus && bus->fast_io) || config->fast_io)
756 map->alloc_flags = GFP_ATOMIC;
757 else
758 map->alloc_flags = GFP_KERNEL;
759
760 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
761 map->format.pad_bytes = config->pad_bits / 8;
762 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
763 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
764 config->val_bits + config->pad_bits, 8);
765 map->reg_shift = config->pad_bits % 8;
766 if (config->reg_stride)
767 map->reg_stride = config->reg_stride;
768 else
769 map->reg_stride = 1;
770 if (is_power_of_2(map->reg_stride))
771 map->reg_stride_order = ilog2(map->reg_stride);
772 else
773 map->reg_stride_order = -1;
774 map->use_single_read = config->use_single_read || !bus || !bus->read;
775 map->use_single_write = config->use_single_write || !bus || !bus->write;
776 map->can_multi_write = config->can_multi_write && bus && bus->write;
777 if (bus) {
778 map->max_raw_read = bus->max_raw_read;
779 map->max_raw_write = bus->max_raw_write;
780 }
781 map->dev = dev;
782 map->bus = bus;
783 map->bus_context = bus_context;
784 map->max_register = config->max_register;
785 map->wr_table = config->wr_table;
786 map->rd_table = config->rd_table;
787 map->volatile_table = config->volatile_table;
788 map->precious_table = config->precious_table;
789 map->wr_noinc_table = config->wr_noinc_table;
790 map->rd_noinc_table = config->rd_noinc_table;
791 map->writeable_reg = config->writeable_reg;
792 map->readable_reg = config->readable_reg;
793 map->volatile_reg = config->volatile_reg;
794 map->precious_reg = config->precious_reg;
795 map->writeable_noinc_reg = config->writeable_noinc_reg;
796 map->readable_noinc_reg = config->readable_noinc_reg;
797 map->cache_type = config->cache_type;
798
799 spin_lock_init(&map->async_lock);
800 INIT_LIST_HEAD(&map->async_list);
801 INIT_LIST_HEAD(&map->async_free);
802 init_waitqueue_head(&map->async_waitq);
803
804 if (config->read_flag_mask ||
805 config->write_flag_mask ||
806 config->zero_flag_mask) {
807 map->read_flag_mask = config->read_flag_mask;
808 map->write_flag_mask = config->write_flag_mask;
809 } else if (bus) {
810 map->read_flag_mask = bus->read_flag_mask;
811 }
812
813 if (!bus) {
814 map->reg_read = config->reg_read;
815 map->reg_write = config->reg_write;
816
817 map->defer_caching = false;
818 goto skip_format_initialization;
819 } else if (!bus->read || !bus->write) {
820 map->reg_read = _regmap_bus_reg_read;
821 map->reg_write = _regmap_bus_reg_write;
822 map->reg_update_bits = bus->reg_update_bits;
823
824 map->defer_caching = false;
825 goto skip_format_initialization;
826 } else {
827 map->reg_read = _regmap_bus_read;
828 map->reg_update_bits = bus->reg_update_bits;
829 }
830
831 reg_endian = regmap_get_reg_endian(bus, config);
832 val_endian = regmap_get_val_endian(dev, bus, config);
833
834 switch (config->reg_bits + map->reg_shift) {
835 case 2:
836 switch (config->val_bits) {
837 case 6:
838 map->format.format_write = regmap_format_2_6_write;
839 break;
840 default:
841 goto err_hwlock;
842 }
843 break;
844
845 case 4:
846 switch (config->val_bits) {
847 case 12:
848 map->format.format_write = regmap_format_4_12_write;
849 break;
850 default:
851 goto err_hwlock;
852 }
853 break;
854
855 case 7:
856 switch (config->val_bits) {
857 case 9:
858 map->format.format_write = regmap_format_7_9_write;
859 break;
860 default:
861 goto err_hwlock;
862 }
863 break;
864
865 case 10:
866 switch (config->val_bits) {
867 case 14:
868 map->format.format_write = regmap_format_10_14_write;
869 break;
870 default:
871 goto err_hwlock;
872 }
873 break;
874
875 case 8:
876 map->format.format_reg = regmap_format_8;
877 break;
878
879 case 16:
880 switch (reg_endian) {
881 case REGMAP_ENDIAN_BIG:
882 map->format.format_reg = regmap_format_16_be;
883 break;
884 case REGMAP_ENDIAN_LITTLE:
885 map->format.format_reg = regmap_format_16_le;
886 break;
887 case REGMAP_ENDIAN_NATIVE:
888 map->format.format_reg = regmap_format_16_native;
889 break;
890 default:
891 goto err_hwlock;
892 }
893 break;
894
895 case 24:
896 if (reg_endian != REGMAP_ENDIAN_BIG)
897 goto err_hwlock;
898 map->format.format_reg = regmap_format_24;
899 break;
900
901 case 32:
902 switch (reg_endian) {
903 case REGMAP_ENDIAN_BIG:
904 map->format.format_reg = regmap_format_32_be;
905 break;
906 case REGMAP_ENDIAN_LITTLE:
907 map->format.format_reg = regmap_format_32_le;
908 break;
909 case REGMAP_ENDIAN_NATIVE:
910 map->format.format_reg = regmap_format_32_native;
911 break;
912 default:
913 goto err_hwlock;
914 }
915 break;
916
917#ifdef CONFIG_64BIT
918 case 64:
919 switch (reg_endian) {
920 case REGMAP_ENDIAN_BIG:
921 map->format.format_reg = regmap_format_64_be;
922 break;
923 case REGMAP_ENDIAN_LITTLE:
924 map->format.format_reg = regmap_format_64_le;
925 break;
926 case REGMAP_ENDIAN_NATIVE:
927 map->format.format_reg = regmap_format_64_native;
928 break;
929 default:
930 goto err_hwlock;
931 }
932 break;
933#endif
934
935 default:
936 goto err_hwlock;
937 }
938
939 if (val_endian == REGMAP_ENDIAN_NATIVE)
940 map->format.parse_inplace = regmap_parse_inplace_noop;
941
942 switch (config->val_bits) {
943 case 8:
944 map->format.format_val = regmap_format_8;
945 map->format.parse_val = regmap_parse_8;
946 map->format.parse_inplace = regmap_parse_inplace_noop;
947 break;
948 case 16:
949 switch (val_endian) {
950 case REGMAP_ENDIAN_BIG:
951 map->format.format_val = regmap_format_16_be;
952 map->format.parse_val = regmap_parse_16_be;
953 map->format.parse_inplace = regmap_parse_16_be_inplace;
954 break;
955 case REGMAP_ENDIAN_LITTLE:
956 map->format.format_val = regmap_format_16_le;
957 map->format.parse_val = regmap_parse_16_le;
958 map->format.parse_inplace = regmap_parse_16_le_inplace;
959 break;
960 case REGMAP_ENDIAN_NATIVE:
961 map->format.format_val = regmap_format_16_native;
962 map->format.parse_val = regmap_parse_16_native;
963 break;
964 default:
965 goto err_hwlock;
966 }
967 break;
968 case 24:
969 if (val_endian != REGMAP_ENDIAN_BIG)
970 goto err_hwlock;
971 map->format.format_val = regmap_format_24;
972 map->format.parse_val = regmap_parse_24;
973 break;
974 case 32:
975 switch (val_endian) {
976 case REGMAP_ENDIAN_BIG:
977 map->format.format_val = regmap_format_32_be;
978 map->format.parse_val = regmap_parse_32_be;
979 map->format.parse_inplace = regmap_parse_32_be_inplace;
980 break;
981 case REGMAP_ENDIAN_LITTLE:
982 map->format.format_val = regmap_format_32_le;
983 map->format.parse_val = regmap_parse_32_le;
984 map->format.parse_inplace = regmap_parse_32_le_inplace;
985 break;
986 case REGMAP_ENDIAN_NATIVE:
987 map->format.format_val = regmap_format_32_native;
988 map->format.parse_val = regmap_parse_32_native;
989 break;
990 default:
991 goto err_hwlock;
992 }
993 break;
994#ifdef CONFIG_64BIT
995 case 64:
996 switch (val_endian) {
997 case REGMAP_ENDIAN_BIG:
998 map->format.format_val = regmap_format_64_be;
999 map->format.parse_val = regmap_parse_64_be;
1000 map->format.parse_inplace = regmap_parse_64_be_inplace;
1001 break;
1002 case REGMAP_ENDIAN_LITTLE:
1003 map->format.format_val = regmap_format_64_le;
1004 map->format.parse_val = regmap_parse_64_le;
1005 map->format.parse_inplace = regmap_parse_64_le_inplace;
1006 break;
1007 case REGMAP_ENDIAN_NATIVE:
1008 map->format.format_val = regmap_format_64_native;
1009 map->format.parse_val = regmap_parse_64_native;
1010 break;
1011 default:
1012 goto err_hwlock;
1013 }
1014 break;
1015#endif
1016 }
1017
1018 if (map->format.format_write) {
1019 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1020 (val_endian != REGMAP_ENDIAN_BIG))
1021 goto err_hwlock;
1022 map->use_single_write = true;
1023 }
1024
1025 if (!map->format.format_write &&
1026 !(map->format.format_reg && map->format.format_val))
1027 goto err_hwlock;
1028
1029 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1030 if (map->work_buf == NULL) {
1031 ret = -ENOMEM;
1032 goto err_hwlock;
1033 }
1034
1035 if (map->format.format_write) {
1036 map->defer_caching = false;
1037 map->reg_write = _regmap_bus_formatted_write;
1038 } else if (map->format.format_val) {
1039 map->defer_caching = true;
1040 map->reg_write = _regmap_bus_raw_write;
1041 }
1042
1043skip_format_initialization:
1044
1045 map->range_tree = RB_ROOT;
1046 for (i = 0; i < config->num_ranges; i++) {
1047 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1048 struct regmap_range_node *new;
1049
1050 /* Sanity check */
1051 if (range_cfg->range_max < range_cfg->range_min) {
1052 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1053 range_cfg->range_max, range_cfg->range_min);
1054 goto err_range;
1055 }
1056
1057 if (range_cfg->range_max > map->max_register) {
1058 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1059 range_cfg->range_max, map->max_register);
1060 goto err_range;
1061 }
1062
1063 if (range_cfg->selector_reg > map->max_register) {
1064 dev_err(map->dev,
1065 "Invalid range %d: selector out of map\n", i);
1066 goto err_range;
1067 }
1068
1069 if (range_cfg->window_len == 0) {
1070 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1071 i);
1072 goto err_range;
1073 }
1074
1075 /* Make sure, that this register range has no selector
1076 or data window within its boundary */
1077 for (j = 0; j < config->num_ranges; j++) {
1078 unsigned sel_reg = config->ranges[j].selector_reg;
1079 unsigned win_min = config->ranges[j].window_start;
1080 unsigned win_max = win_min +
1081 config->ranges[j].window_len - 1;
1082
1083 /* Allow data window inside its own virtual range */
1084 if (j == i)
1085 continue;
1086
1087 if (range_cfg->range_min <= sel_reg &&
1088 sel_reg <= range_cfg->range_max) {
1089 dev_err(map->dev,
1090 "Range %d: selector for %d in window\n",
1091 i, j);
1092 goto err_range;
1093 }
1094
1095 if (!(win_max < range_cfg->range_min ||
1096 win_min > range_cfg->range_max)) {
1097 dev_err(map->dev,
1098 "Range %d: window for %d in window\n",
1099 i, j);
1100 goto err_range;
1101 }
1102 }
1103
1104 new = kzalloc(sizeof(*new), GFP_KERNEL);
1105 if (new == NULL) {
1106 ret = -ENOMEM;
1107 goto err_range;
1108 }
1109
1110 new->map = map;
1111 new->name = range_cfg->name;
1112 new->range_min = range_cfg->range_min;
1113 new->range_max = range_cfg->range_max;
1114 new->selector_reg = range_cfg->selector_reg;
1115 new->selector_mask = range_cfg->selector_mask;
1116 new->selector_shift = range_cfg->selector_shift;
1117 new->window_start = range_cfg->window_start;
1118 new->window_len = range_cfg->window_len;
1119
1120 if (!_regmap_range_add(map, new)) {
1121 dev_err(map->dev, "Failed to add range %d\n", i);
1122 kfree(new);
1123 goto err_range;
1124 }
1125
1126 if (map->selector_work_buf == NULL) {
1127 map->selector_work_buf =
1128 kzalloc(map->format.buf_size, GFP_KERNEL);
1129 if (map->selector_work_buf == NULL) {
1130 ret = -ENOMEM;
1131 goto err_range;
1132 }
1133 }
1134 }
1135
1136 ret = regcache_init(map, config);
1137 if (ret != 0)
1138 goto err_range;
1139
1140 if (dev) {
1141 ret = regmap_attach_dev(dev, map, config);
1142 if (ret != 0)
1143 goto err_regcache;
1144 } else {
1145 regmap_debugfs_init(map, config->name);
1146 }
1147
1148 return map;
1149
1150err_regcache:
1151 regcache_exit(map);
1152err_range:
1153 regmap_range_exit(map);
1154 kfree(map->work_buf);
1155err_hwlock:
1156 if (map->hwlock)
1157 hwspin_lock_free(map->hwlock);
1158err_name:
1159 kfree_const(map->name);
1160err_map:
1161 kfree(map);
1162err:
1163 return ERR_PTR(ret);
1164}
1165EXPORT_SYMBOL_GPL(__regmap_init);
1166
1167static void devm_regmap_release(struct device *dev, void *res)
1168{
1169 regmap_exit(*(struct regmap **)res);
1170}
1171
1172struct regmap *__devm_regmap_init(struct device *dev,
1173 const struct regmap_bus *bus,
1174 void *bus_context,
1175 const struct regmap_config *config,
1176 struct lock_class_key *lock_key,
1177 const char *lock_name)
1178{
1179 struct regmap **ptr, *regmap;
1180
1181 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1182 if (!ptr)
1183 return ERR_PTR(-ENOMEM);
1184
1185 regmap = __regmap_init(dev, bus, bus_context, config,
1186 lock_key, lock_name);
1187 if (!IS_ERR(regmap)) {
1188 *ptr = regmap;
1189 devres_add(dev, ptr);
1190 } else {
1191 devres_free(ptr);
1192 }
1193
1194 return regmap;
1195}
1196EXPORT_SYMBOL_GPL(__devm_regmap_init);
1197
1198static void regmap_field_init(struct regmap_field *rm_field,
1199 struct regmap *regmap, struct reg_field reg_field)
1200{
1201 rm_field->regmap = regmap;
1202 rm_field->reg = reg_field.reg;
1203 rm_field->shift = reg_field.lsb;
1204 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1205 rm_field->id_size = reg_field.id_size;
1206 rm_field->id_offset = reg_field.id_offset;
1207}
1208
1209/**
1210 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1211 *
1212 * @dev: Device that will be interacted with
1213 * @regmap: regmap bank in which this register field is located.
1214 * @reg_field: Register field with in the bank.
1215 *
1216 * The return value will be an ERR_PTR() on error or a valid pointer
1217 * to a struct regmap_field. The regmap_field will be automatically freed
1218 * by the device management code.
1219 */
1220struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1221 struct regmap *regmap, struct reg_field reg_field)
1222{
1223 struct regmap_field *rm_field = devm_kzalloc(dev,
1224 sizeof(*rm_field), GFP_KERNEL);
1225 if (!rm_field)
1226 return ERR_PTR(-ENOMEM);
1227
1228 regmap_field_init(rm_field, regmap, reg_field);
1229
1230 return rm_field;
1231
1232}
1233EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1234
1235/**
1236 * devm_regmap_field_free() - Free a register field allocated using
1237 * devm_regmap_field_alloc.
1238 *
1239 * @dev: Device that will be interacted with
1240 * @field: regmap field which should be freed.
1241 *
1242 * Free register field allocated using devm_regmap_field_alloc(). Usually
1243 * drivers need not call this function, as the memory allocated via devm
1244 * will be freed as per device-driver life-cyle.
1245 */
1246void devm_regmap_field_free(struct device *dev,
1247 struct regmap_field *field)
1248{
1249 devm_kfree(dev, field);
1250}
1251EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1252
1253/**
1254 * regmap_field_alloc() - Allocate and initialise a register field.
1255 *
1256 * @regmap: regmap bank in which this register field is located.
1257 * @reg_field: Register field with in the bank.
1258 *
1259 * The return value will be an ERR_PTR() on error or a valid pointer
1260 * to a struct regmap_field. The regmap_field should be freed by the
1261 * user once its finished working with it using regmap_field_free().
1262 */
1263struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1264 struct reg_field reg_field)
1265{
1266 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1267
1268 if (!rm_field)
1269 return ERR_PTR(-ENOMEM);
1270
1271 regmap_field_init(rm_field, regmap, reg_field);
1272
1273 return rm_field;
1274}
1275EXPORT_SYMBOL_GPL(regmap_field_alloc);
1276
1277/**
1278 * regmap_field_free() - Free register field allocated using
1279 * regmap_field_alloc.
1280 *
1281 * @field: regmap field which should be freed.
1282 */
1283void regmap_field_free(struct regmap_field *field)
1284{
1285 kfree(field);
1286}
1287EXPORT_SYMBOL_GPL(regmap_field_free);
1288
1289/**
1290 * regmap_reinit_cache() - Reinitialise the current register cache
1291 *
1292 * @map: Register map to operate on.
1293 * @config: New configuration. Only the cache data will be used.
1294 *
1295 * Discard any existing register cache for the map and initialize a
1296 * new cache. This can be used to restore the cache to defaults or to
1297 * update the cache configuration to reflect runtime discovery of the
1298 * hardware.
1299 *
1300 * No explicit locking is done here, the user needs to ensure that
1301 * this function will not race with other calls to regmap.
1302 */
1303int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1304{
1305 regcache_exit(map);
1306 regmap_debugfs_exit(map);
1307
1308 map->max_register = config->max_register;
1309 map->writeable_reg = config->writeable_reg;
1310 map->readable_reg = config->readable_reg;
1311 map->volatile_reg = config->volatile_reg;
1312 map->precious_reg = config->precious_reg;
1313 map->writeable_noinc_reg = config->writeable_noinc_reg;
1314 map->readable_noinc_reg = config->readable_noinc_reg;
1315 map->cache_type = config->cache_type;
1316
1317 regmap_debugfs_init(map, config->name);
1318
1319 map->cache_bypass = false;
1320 map->cache_only = false;
1321
1322 return regcache_init(map, config);
1323}
1324EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1325
1326/**
1327 * regmap_exit() - Free a previously allocated register map
1328 *
1329 * @map: Register map to operate on.
1330 */
1331void regmap_exit(struct regmap *map)
1332{
1333 struct regmap_async *async;
1334
1335 regcache_exit(map);
1336 regmap_debugfs_exit(map);
1337 regmap_range_exit(map);
1338 if (map->bus && map->bus->free_context)
1339 map->bus->free_context(map->bus_context);
1340 kfree(map->work_buf);
1341 while (!list_empty(&map->async_free)) {
1342 async = list_first_entry_or_null(&map->async_free,
1343 struct regmap_async,
1344 list);
1345 list_del(&async->list);
1346 kfree(async->work_buf);
1347 kfree(async);
1348 }
1349 if (map->hwlock)
1350 hwspin_lock_free(map->hwlock);
1351 kfree_const(map->name);
1352 kfree(map->patch);
1353 kfree(map);
1354}
1355EXPORT_SYMBOL_GPL(regmap_exit);
1356
1357static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1358{
1359 struct regmap **r = res;
1360 if (!r || !*r) {
1361 WARN_ON(!r || !*r);
1362 return 0;
1363 }
1364
1365 /* If the user didn't specify a name match any */
1366 if (data)
1367 return !strcmp((*r)->name, data);
1368 else
1369 return 1;
1370}
1371
1372/**
1373 * dev_get_regmap() - Obtain the regmap (if any) for a device
1374 *
1375 * @dev: Device to retrieve the map for
1376 * @name: Optional name for the register map, usually NULL.
1377 *
1378 * Returns the regmap for the device if one is present, or NULL. If
1379 * name is specified then it must match the name specified when
1380 * registering the device, if it is NULL then the first regmap found
1381 * will be used. Devices with multiple register maps are very rare,
1382 * generic code should normally not need to specify a name.
1383 */
1384struct regmap *dev_get_regmap(struct device *dev, const char *name)
1385{
1386 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1387 dev_get_regmap_match, (void *)name);
1388
1389 if (!r)
1390 return NULL;
1391 return *r;
1392}
1393EXPORT_SYMBOL_GPL(dev_get_regmap);
1394
1395/**
1396 * regmap_get_device() - Obtain the device from a regmap
1397 *
1398 * @map: Register map to operate on.
1399 *
1400 * Returns the underlying device that the regmap has been created for.
1401 */
1402struct device *regmap_get_device(struct regmap *map)
1403{
1404 return map->dev;
1405}
1406EXPORT_SYMBOL_GPL(regmap_get_device);
1407
1408static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1409 struct regmap_range_node *range,
1410 unsigned int val_num)
1411{
1412 void *orig_work_buf;
1413 unsigned int win_offset;
1414 unsigned int win_page;
1415 bool page_chg;
1416 int ret;
1417
1418 win_offset = (*reg - range->range_min) % range->window_len;
1419 win_page = (*reg - range->range_min) / range->window_len;
1420
1421 if (val_num > 1) {
1422 /* Bulk write shouldn't cross range boundary */
1423 if (*reg + val_num - 1 > range->range_max)
1424 return -EINVAL;
1425
1426 /* ... or single page boundary */
1427 if (val_num > range->window_len - win_offset)
1428 return -EINVAL;
1429 }
1430
1431 /* It is possible to have selector register inside data window.
1432 In that case, selector register is located on every page and
1433 it needs no page switching, when accessed alone. */
1434 if (val_num > 1 ||
1435 range->window_start + win_offset != range->selector_reg) {
1436 /* Use separate work_buf during page switching */
1437 orig_work_buf = map->work_buf;
1438 map->work_buf = map->selector_work_buf;
1439
1440 ret = _regmap_update_bits(map, range->selector_reg,
1441 range->selector_mask,
1442 win_page << range->selector_shift,
1443 &page_chg, false);
1444
1445 map->work_buf = orig_work_buf;
1446
1447 if (ret != 0)
1448 return ret;
1449 }
1450
1451 *reg = range->window_start + win_offset;
1452
1453 return 0;
1454}
1455
1456static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1457 unsigned long mask)
1458{
1459 u8 *buf;
1460 int i;
1461
1462 if (!mask || !map->work_buf)
1463 return;
1464
1465 buf = map->work_buf;
1466
1467 for (i = 0; i < max_bytes; i++)
1468 buf[i] |= (mask >> (8 * i)) & 0xff;
1469}
1470
1471static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1472 const void *val, size_t val_len)
1473{
1474 struct regmap_range_node *range;
1475 unsigned long flags;
1476 void *work_val = map->work_buf + map->format.reg_bytes +
1477 map->format.pad_bytes;
1478 void *buf;
1479 int ret = -ENOTSUPP;
1480 size_t len;
1481 int i;
1482
1483 WARN_ON(!map->bus);
1484
1485 /* Check for unwritable or noinc registers in range
1486 * before we start
1487 */
1488 if (!regmap_writeable_noinc(map, reg)) {
1489 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1490 unsigned int element =
1491 reg + regmap_get_offset(map, i);
1492 if (!regmap_writeable(map, element) ||
1493 regmap_writeable_noinc(map, element))
1494 return -EINVAL;
1495 }
1496 }
1497
1498 if (!map->cache_bypass && map->format.parse_val) {
1499 unsigned int ival;
1500 int val_bytes = map->format.val_bytes;
1501 for (i = 0; i < val_len / val_bytes; i++) {
1502 ival = map->format.parse_val(val + (i * val_bytes));
1503 ret = regcache_write(map,
1504 reg + regmap_get_offset(map, i),
1505 ival);
1506 if (ret) {
1507 dev_err(map->dev,
1508 "Error in caching of register: %x ret: %d\n",
1509 reg + i, ret);
1510 return ret;
1511 }
1512 }
1513 if (map->cache_only) {
1514 map->cache_dirty = true;
1515 return 0;
1516 }
1517 }
1518
1519 range = _regmap_range_lookup(map, reg);
1520 if (range) {
1521 int val_num = val_len / map->format.val_bytes;
1522 int win_offset = (reg - range->range_min) % range->window_len;
1523 int win_residue = range->window_len - win_offset;
1524
1525 /* If the write goes beyond the end of the window split it */
1526 while (val_num > win_residue) {
1527 dev_dbg(map->dev, "Writing window %d/%zu\n",
1528 win_residue, val_len / map->format.val_bytes);
1529 ret = _regmap_raw_write_impl(map, reg, val,
1530 win_residue *
1531 map->format.val_bytes);
1532 if (ret != 0)
1533 return ret;
1534
1535 reg += win_residue;
1536 val_num -= win_residue;
1537 val += win_residue * map->format.val_bytes;
1538 val_len -= win_residue * map->format.val_bytes;
1539
1540 win_offset = (reg - range->range_min) %
1541 range->window_len;
1542 win_residue = range->window_len - win_offset;
1543 }
1544
1545 ret = _regmap_select_page(map, ®, range, val_num);
1546 if (ret != 0)
1547 return ret;
1548 }
1549
1550 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1551 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1552 map->write_flag_mask);
1553
1554 /*
1555 * Essentially all I/O mechanisms will be faster with a single
1556 * buffer to write. Since register syncs often generate raw
1557 * writes of single registers optimise that case.
1558 */
1559 if (val != work_val && val_len == map->format.val_bytes) {
1560 memcpy(work_val, val, map->format.val_bytes);
1561 val = work_val;
1562 }
1563
1564 if (map->async && map->bus->async_write) {
1565 struct regmap_async *async;
1566
1567 trace_regmap_async_write_start(map, reg, val_len);
1568
1569 spin_lock_irqsave(&map->async_lock, flags);
1570 async = list_first_entry_or_null(&map->async_free,
1571 struct regmap_async,
1572 list);
1573 if (async)
1574 list_del(&async->list);
1575 spin_unlock_irqrestore(&map->async_lock, flags);
1576
1577 if (!async) {
1578 async = map->bus->async_alloc();
1579 if (!async)
1580 return -ENOMEM;
1581
1582 async->work_buf = kzalloc(map->format.buf_size,
1583 GFP_KERNEL | GFP_DMA);
1584 if (!async->work_buf) {
1585 kfree(async);
1586 return -ENOMEM;
1587 }
1588 }
1589
1590 async->map = map;
1591
1592 /* If the caller supplied the value we can use it safely. */
1593 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1594 map->format.reg_bytes + map->format.val_bytes);
1595
1596 spin_lock_irqsave(&map->async_lock, flags);
1597 list_add_tail(&async->list, &map->async_list);
1598 spin_unlock_irqrestore(&map->async_lock, flags);
1599
1600 if (val != work_val)
1601 ret = map->bus->async_write(map->bus_context,
1602 async->work_buf,
1603 map->format.reg_bytes +
1604 map->format.pad_bytes,
1605 val, val_len, async);
1606 else
1607 ret = map->bus->async_write(map->bus_context,
1608 async->work_buf,
1609 map->format.reg_bytes +
1610 map->format.pad_bytes +
1611 val_len, NULL, 0, async);
1612
1613 if (ret != 0) {
1614 dev_err(map->dev, "Failed to schedule write: %d\n",
1615 ret);
1616
1617 spin_lock_irqsave(&map->async_lock, flags);
1618 list_move(&async->list, &map->async_free);
1619 spin_unlock_irqrestore(&map->async_lock, flags);
1620 }
1621
1622 return ret;
1623 }
1624
1625 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1626
1627 /* If we're doing a single register write we can probably just
1628 * send the work_buf directly, otherwise try to do a gather
1629 * write.
1630 */
1631 if (val == work_val)
1632 ret = map->bus->write(map->bus_context, map->work_buf,
1633 map->format.reg_bytes +
1634 map->format.pad_bytes +
1635 val_len);
1636 else if (map->bus->gather_write)
1637 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1638 map->format.reg_bytes +
1639 map->format.pad_bytes,
1640 val, val_len);
1641 else
1642 ret = -ENOTSUPP;
1643
1644 /* If that didn't work fall back on linearising by hand. */
1645 if (ret == -ENOTSUPP) {
1646 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1647 buf = kzalloc(len, GFP_KERNEL);
1648 if (!buf)
1649 return -ENOMEM;
1650
1651 memcpy(buf, map->work_buf, map->format.reg_bytes);
1652 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1653 val, val_len);
1654 ret = map->bus->write(map->bus_context, buf, len);
1655
1656 kfree(buf);
1657 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1658 /* regcache_drop_region() takes lock that we already have,
1659 * thus call map->cache_ops->drop() directly
1660 */
1661 if (map->cache_ops && map->cache_ops->drop)
1662 map->cache_ops->drop(map, reg, reg + 1);
1663 }
1664
1665 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1666
1667 return ret;
1668}
1669
1670/**
1671 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1672 *
1673 * @map: Map to check.
1674 */
1675bool regmap_can_raw_write(struct regmap *map)
1676{
1677 return map->bus && map->bus->write && map->format.format_val &&
1678 map->format.format_reg;
1679}
1680EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1681
1682/**
1683 * regmap_get_raw_read_max - Get the maximum size we can read
1684 *
1685 * @map: Map to check.
1686 */
1687size_t regmap_get_raw_read_max(struct regmap *map)
1688{
1689 return map->max_raw_read;
1690}
1691EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1692
1693/**
1694 * regmap_get_raw_write_max - Get the maximum size we can read
1695 *
1696 * @map: Map to check.
1697 */
1698size_t regmap_get_raw_write_max(struct regmap *map)
1699{
1700 return map->max_raw_write;
1701}
1702EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1703
1704static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1705 unsigned int val)
1706{
1707 int ret;
1708 struct regmap_range_node *range;
1709 struct regmap *map = context;
1710
1711 WARN_ON(!map->bus || !map->format.format_write);
1712
1713 range = _regmap_range_lookup(map, reg);
1714 if (range) {
1715 ret = _regmap_select_page(map, ®, range, 1);
1716 if (ret != 0)
1717 return ret;
1718 }
1719
1720 map->format.format_write(map, reg, val);
1721
1722 trace_regmap_hw_write_start(map, reg, 1);
1723
1724 ret = map->bus->write(map->bus_context, map->work_buf,
1725 map->format.buf_size);
1726
1727 trace_regmap_hw_write_done(map, reg, 1);
1728
1729 return ret;
1730}
1731
1732static int _regmap_bus_reg_write(void *context, unsigned int reg,
1733 unsigned int val)
1734{
1735 struct regmap *map = context;
1736
1737 return map->bus->reg_write(map->bus_context, reg, val);
1738}
1739
1740static int _regmap_bus_raw_write(void *context, unsigned int reg,
1741 unsigned int val)
1742{
1743 struct regmap *map = context;
1744
1745 WARN_ON(!map->bus || !map->format.format_val);
1746
1747 map->format.format_val(map->work_buf + map->format.reg_bytes
1748 + map->format.pad_bytes, val, 0);
1749 return _regmap_raw_write_impl(map, reg,
1750 map->work_buf +
1751 map->format.reg_bytes +
1752 map->format.pad_bytes,
1753 map->format.val_bytes);
1754}
1755
1756static inline void *_regmap_map_get_context(struct regmap *map)
1757{
1758 return (map->bus) ? map : map->bus_context;
1759}
1760
1761int _regmap_write(struct regmap *map, unsigned int reg,
1762 unsigned int val)
1763{
1764 int ret;
1765 void *context = _regmap_map_get_context(map);
1766
1767 if (!regmap_writeable(map, reg))
1768 return -EIO;
1769
1770 if (!map->cache_bypass && !map->defer_caching) {
1771 ret = regcache_write(map, reg, val);
1772 if (ret != 0)
1773 return ret;
1774 if (map->cache_only) {
1775 map->cache_dirty = true;
1776 return 0;
1777 }
1778 }
1779
1780 if (regmap_should_log(map))
1781 dev_info(map->dev, "%x <= %x\n", reg, val);
1782
1783 trace_regmap_reg_write(map, reg, val);
1784
1785 return map->reg_write(context, reg, val);
1786}
1787
1788/**
1789 * regmap_write() - Write a value to a single register
1790 *
1791 * @map: Register map to write to
1792 * @reg: Register to write to
1793 * @val: Value to be written
1794 *
1795 * A value of zero will be returned on success, a negative errno will
1796 * be returned in error cases.
1797 */
1798int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1799{
1800 int ret;
1801
1802 if (!IS_ALIGNED(reg, map->reg_stride))
1803 return -EINVAL;
1804
1805 map->lock(map->lock_arg);
1806
1807 ret = _regmap_write(map, reg, val);
1808
1809 map->unlock(map->lock_arg);
1810
1811 return ret;
1812}
1813EXPORT_SYMBOL_GPL(regmap_write);
1814
1815/**
1816 * regmap_write_async() - Write a value to a single register asynchronously
1817 *
1818 * @map: Register map to write to
1819 * @reg: Register to write to
1820 * @val: Value to be written
1821 *
1822 * A value of zero will be returned on success, a negative errno will
1823 * be returned in error cases.
1824 */
1825int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1826{
1827 int ret;
1828
1829 if (!IS_ALIGNED(reg, map->reg_stride))
1830 return -EINVAL;
1831
1832 map->lock(map->lock_arg);
1833
1834 map->async = true;
1835
1836 ret = _regmap_write(map, reg, val);
1837
1838 map->async = false;
1839
1840 map->unlock(map->lock_arg);
1841
1842 return ret;
1843}
1844EXPORT_SYMBOL_GPL(regmap_write_async);
1845
1846int _regmap_raw_write(struct regmap *map, unsigned int reg,
1847 const void *val, size_t val_len)
1848{
1849 size_t val_bytes = map->format.val_bytes;
1850 size_t val_count = val_len / val_bytes;
1851 size_t chunk_count, chunk_bytes;
1852 size_t chunk_regs = val_count;
1853 int ret, i;
1854
1855 if (!val_count)
1856 return -EINVAL;
1857
1858 if (map->use_single_write)
1859 chunk_regs = 1;
1860 else if (map->max_raw_write && val_len > map->max_raw_write)
1861 chunk_regs = map->max_raw_write / val_bytes;
1862
1863 chunk_count = val_count / chunk_regs;
1864 chunk_bytes = chunk_regs * val_bytes;
1865
1866 /* Write as many bytes as possible with chunk_size */
1867 for (i = 0; i < chunk_count; i++) {
1868 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1869 if (ret)
1870 return ret;
1871
1872 reg += regmap_get_offset(map, chunk_regs);
1873 val += chunk_bytes;
1874 val_len -= chunk_bytes;
1875 }
1876
1877 /* Write remaining bytes */
1878 if (val_len)
1879 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1880
1881 return ret;
1882}
1883
1884/**
1885 * regmap_raw_write() - Write raw values to one or more registers
1886 *
1887 * @map: Register map to write to
1888 * @reg: Initial register to write to
1889 * @val: Block of data to be written, laid out for direct transmission to the
1890 * device
1891 * @val_len: Length of data pointed to by val.
1892 *
1893 * This function is intended to be used for things like firmware
1894 * download where a large block of data needs to be transferred to the
1895 * device. No formatting will be done on the data provided.
1896 *
1897 * A value of zero will be returned on success, a negative errno will
1898 * be returned in error cases.
1899 */
1900int regmap_raw_write(struct regmap *map, unsigned int reg,
1901 const void *val, size_t val_len)
1902{
1903 int ret;
1904
1905 if (!regmap_can_raw_write(map))
1906 return -EINVAL;
1907 if (val_len % map->format.val_bytes)
1908 return -EINVAL;
1909
1910 map->lock(map->lock_arg);
1911
1912 ret = _regmap_raw_write(map, reg, val, val_len);
1913
1914 map->unlock(map->lock_arg);
1915
1916 return ret;
1917}
1918EXPORT_SYMBOL_GPL(regmap_raw_write);
1919
1920/**
1921 * regmap_noinc_write(): Write data from a register without incrementing the
1922 * register number
1923 *
1924 * @map: Register map to write to
1925 * @reg: Register to write to
1926 * @val: Pointer to data buffer
1927 * @val_len: Length of output buffer in bytes.
1928 *
1929 * The regmap API usually assumes that bulk bus write operations will write a
1930 * range of registers. Some devices have certain registers for which a write
1931 * operation can write to an internal FIFO.
1932 *
1933 * The target register must be volatile but registers after it can be
1934 * completely unrelated cacheable registers.
1935 *
1936 * This will attempt multiple writes as required to write val_len bytes.
1937 *
1938 * A value of zero will be returned on success, a negative errno will be
1939 * returned in error cases.
1940 */
1941int regmap_noinc_write(struct regmap *map, unsigned int reg,
1942 const void *val, size_t val_len)
1943{
1944 size_t write_len;
1945 int ret;
1946
1947 if (!map->bus)
1948 return -EINVAL;
1949 if (!map->bus->write)
1950 return -ENOTSUPP;
1951 if (val_len % map->format.val_bytes)
1952 return -EINVAL;
1953 if (!IS_ALIGNED(reg, map->reg_stride))
1954 return -EINVAL;
1955 if (val_len == 0)
1956 return -EINVAL;
1957
1958 map->lock(map->lock_arg);
1959
1960 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1961 ret = -EINVAL;
1962 goto out_unlock;
1963 }
1964
1965 while (val_len) {
1966 if (map->max_raw_write && map->max_raw_write < val_len)
1967 write_len = map->max_raw_write;
1968 else
1969 write_len = val_len;
1970 ret = _regmap_raw_write(map, reg, val, write_len);
1971 if (ret)
1972 goto out_unlock;
1973 val = ((u8 *)val) + write_len;
1974 val_len -= write_len;
1975 }
1976
1977out_unlock:
1978 map->unlock(map->lock_arg);
1979 return ret;
1980}
1981EXPORT_SYMBOL_GPL(regmap_noinc_write);
1982
1983/**
1984 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1985 * register field.
1986 *
1987 * @field: Register field to write to
1988 * @mask: Bitmask to change
1989 * @val: Value to be written
1990 * @change: Boolean indicating if a write was done
1991 * @async: Boolean indicating asynchronously
1992 * @force: Boolean indicating use force update
1993 *
1994 * Perform a read/modify/write cycle on the register field with change,
1995 * async, force option.
1996 *
1997 * A value of zero will be returned on success, a negative errno will
1998 * be returned in error cases.
1999 */
2000int regmap_field_update_bits_base(struct regmap_field *field,
2001 unsigned int mask, unsigned int val,
2002 bool *change, bool async, bool force)
2003{
2004 mask = (mask << field->shift) & field->mask;
2005
2006 return regmap_update_bits_base(field->regmap, field->reg,
2007 mask, val << field->shift,
2008 change, async, force);
2009}
2010EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2011
2012/**
2013 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2014 * register field with port ID
2015 *
2016 * @field: Register field to write to
2017 * @id: port ID
2018 * @mask: Bitmask to change
2019 * @val: Value to be written
2020 * @change: Boolean indicating if a write was done
2021 * @async: Boolean indicating asynchronously
2022 * @force: Boolean indicating use force update
2023 *
2024 * A value of zero will be returned on success, a negative errno will
2025 * be returned in error cases.
2026 */
2027int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2028 unsigned int mask, unsigned int val,
2029 bool *change, bool async, bool force)
2030{
2031 if (id >= field->id_size)
2032 return -EINVAL;
2033
2034 mask = (mask << field->shift) & field->mask;
2035
2036 return regmap_update_bits_base(field->regmap,
2037 field->reg + (field->id_offset * id),
2038 mask, val << field->shift,
2039 change, async, force);
2040}
2041EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2042
2043/**
2044 * regmap_bulk_write() - Write multiple registers to the device
2045 *
2046 * @map: Register map to write to
2047 * @reg: First register to be write from
2048 * @val: Block of data to be written, in native register size for device
2049 * @val_count: Number of registers to write
2050 *
2051 * This function is intended to be used for writing a large block of
2052 * data to the device either in single transfer or multiple transfer.
2053 *
2054 * A value of zero will be returned on success, a negative errno will
2055 * be returned in error cases.
2056 */
2057int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2058 size_t val_count)
2059{
2060 int ret = 0, i;
2061 size_t val_bytes = map->format.val_bytes;
2062
2063 if (!IS_ALIGNED(reg, map->reg_stride))
2064 return -EINVAL;
2065
2066 /*
2067 * Some devices don't support bulk write, for them we have a series of
2068 * single write operations.
2069 */
2070 if (!map->bus || !map->format.parse_inplace) {
2071 map->lock(map->lock_arg);
2072 for (i = 0; i < val_count; i++) {
2073 unsigned int ival;
2074
2075 switch (val_bytes) {
2076 case 1:
2077 ival = *(u8 *)(val + (i * val_bytes));
2078 break;
2079 case 2:
2080 ival = *(u16 *)(val + (i * val_bytes));
2081 break;
2082 case 4:
2083 ival = *(u32 *)(val + (i * val_bytes));
2084 break;
2085#ifdef CONFIG_64BIT
2086 case 8:
2087 ival = *(u64 *)(val + (i * val_bytes));
2088 break;
2089#endif
2090 default:
2091 ret = -EINVAL;
2092 goto out;
2093 }
2094
2095 ret = _regmap_write(map,
2096 reg + regmap_get_offset(map, i),
2097 ival);
2098 if (ret != 0)
2099 goto out;
2100 }
2101out:
2102 map->unlock(map->lock_arg);
2103 } else {
2104 void *wval;
2105
2106 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2107 if (!wval)
2108 return -ENOMEM;
2109
2110 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2111 map->format.parse_inplace(wval + i);
2112
2113 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2114
2115 kfree(wval);
2116 }
2117 return ret;
2118}
2119EXPORT_SYMBOL_GPL(regmap_bulk_write);
2120
2121/*
2122 * _regmap_raw_multi_reg_write()
2123 *
2124 * the (register,newvalue) pairs in regs have not been formatted, but
2125 * they are all in the same page and have been changed to being page
2126 * relative. The page register has been written if that was necessary.
2127 */
2128static int _regmap_raw_multi_reg_write(struct regmap *map,
2129 const struct reg_sequence *regs,
2130 size_t num_regs)
2131{
2132 int ret;
2133 void *buf;
2134 int i;
2135 u8 *u8;
2136 size_t val_bytes = map->format.val_bytes;
2137 size_t reg_bytes = map->format.reg_bytes;
2138 size_t pad_bytes = map->format.pad_bytes;
2139 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2140 size_t len = pair_size * num_regs;
2141
2142 if (!len)
2143 return -EINVAL;
2144
2145 buf = kzalloc(len, GFP_KERNEL);
2146 if (!buf)
2147 return -ENOMEM;
2148
2149 /* We have to linearise by hand. */
2150
2151 u8 = buf;
2152
2153 for (i = 0; i < num_regs; i++) {
2154 unsigned int reg = regs[i].reg;
2155 unsigned int val = regs[i].def;
2156 trace_regmap_hw_write_start(map, reg, 1);
2157 map->format.format_reg(u8, reg, map->reg_shift);
2158 u8 += reg_bytes + pad_bytes;
2159 map->format.format_val(u8, val, 0);
2160 u8 += val_bytes;
2161 }
2162 u8 = buf;
2163 *u8 |= map->write_flag_mask;
2164
2165 ret = map->bus->write(map->bus_context, buf, len);
2166
2167 kfree(buf);
2168
2169 for (i = 0; i < num_regs; i++) {
2170 int reg = regs[i].reg;
2171 trace_regmap_hw_write_done(map, reg, 1);
2172 }
2173 return ret;
2174}
2175
2176static unsigned int _regmap_register_page(struct regmap *map,
2177 unsigned int reg,
2178 struct regmap_range_node *range)
2179{
2180 unsigned int win_page = (reg - range->range_min) / range->window_len;
2181
2182 return win_page;
2183}
2184
2185static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2186 struct reg_sequence *regs,
2187 size_t num_regs)
2188{
2189 int ret;
2190 int i, n;
2191 struct reg_sequence *base;
2192 unsigned int this_page = 0;
2193 unsigned int page_change = 0;
2194 /*
2195 * the set of registers are not neccessarily in order, but
2196 * since the order of write must be preserved this algorithm
2197 * chops the set each time the page changes. This also applies
2198 * if there is a delay required at any point in the sequence.
2199 */
2200 base = regs;
2201 for (i = 0, n = 0; i < num_regs; i++, n++) {
2202 unsigned int reg = regs[i].reg;
2203 struct regmap_range_node *range;
2204
2205 range = _regmap_range_lookup(map, reg);
2206 if (range) {
2207 unsigned int win_page = _regmap_register_page(map, reg,
2208 range);
2209
2210 if (i == 0)
2211 this_page = win_page;
2212 if (win_page != this_page) {
2213 this_page = win_page;
2214 page_change = 1;
2215 }
2216 }
2217
2218 /* If we have both a page change and a delay make sure to
2219 * write the regs and apply the delay before we change the
2220 * page.
2221 */
2222
2223 if (page_change || regs[i].delay_us) {
2224
2225 /* For situations where the first write requires
2226 * a delay we need to make sure we don't call
2227 * raw_multi_reg_write with n=0
2228 * This can't occur with page breaks as we
2229 * never write on the first iteration
2230 */
2231 if (regs[i].delay_us && i == 0)
2232 n = 1;
2233
2234 ret = _regmap_raw_multi_reg_write(map, base, n);
2235 if (ret != 0)
2236 return ret;
2237
2238 if (regs[i].delay_us)
2239 udelay(regs[i].delay_us);
2240
2241 base += n;
2242 n = 0;
2243
2244 if (page_change) {
2245 ret = _regmap_select_page(map,
2246 &base[n].reg,
2247 range, 1);
2248 if (ret != 0)
2249 return ret;
2250
2251 page_change = 0;
2252 }
2253
2254 }
2255
2256 }
2257 if (n > 0)
2258 return _regmap_raw_multi_reg_write(map, base, n);
2259 return 0;
2260}
2261
2262static int _regmap_multi_reg_write(struct regmap *map,
2263 const struct reg_sequence *regs,
2264 size_t num_regs)
2265{
2266 int i;
2267 int ret;
2268
2269 if (!map->can_multi_write) {
2270 for (i = 0; i < num_regs; i++) {
2271 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2272 if (ret != 0)
2273 return ret;
2274
2275 if (regs[i].delay_us)
2276 udelay(regs[i].delay_us);
2277 }
2278 return 0;
2279 }
2280
2281 if (!map->format.parse_inplace)
2282 return -EINVAL;
2283
2284 if (map->writeable_reg)
2285 for (i = 0; i < num_regs; i++) {
2286 int reg = regs[i].reg;
2287 if (!map->writeable_reg(map->dev, reg))
2288 return -EINVAL;
2289 if (!IS_ALIGNED(reg, map->reg_stride))
2290 return -EINVAL;
2291 }
2292
2293 if (!map->cache_bypass) {
2294 for (i = 0; i < num_regs; i++) {
2295 unsigned int val = regs[i].def;
2296 unsigned int reg = regs[i].reg;
2297 ret = regcache_write(map, reg, val);
2298 if (ret) {
2299 dev_err(map->dev,
2300 "Error in caching of register: %x ret: %d\n",
2301 reg, ret);
2302 return ret;
2303 }
2304 }
2305 if (map->cache_only) {
2306 map->cache_dirty = true;
2307 return 0;
2308 }
2309 }
2310
2311 WARN_ON(!map->bus);
2312
2313 for (i = 0; i < num_regs; i++) {
2314 unsigned int reg = regs[i].reg;
2315 struct regmap_range_node *range;
2316
2317 /* Coalesce all the writes between a page break or a delay
2318 * in a sequence
2319 */
2320 range = _regmap_range_lookup(map, reg);
2321 if (range || regs[i].delay_us) {
2322 size_t len = sizeof(struct reg_sequence)*num_regs;
2323 struct reg_sequence *base = kmemdup(regs, len,
2324 GFP_KERNEL);
2325 if (!base)
2326 return -ENOMEM;
2327 ret = _regmap_range_multi_paged_reg_write(map, base,
2328 num_regs);
2329 kfree(base);
2330
2331 return ret;
2332 }
2333 }
2334 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2335}
2336
2337/**
2338 * regmap_multi_reg_write() - Write multiple registers to the device
2339 *
2340 * @map: Register map to write to
2341 * @regs: Array of structures containing register,value to be written
2342 * @num_regs: Number of registers to write
2343 *
2344 * Write multiple registers to the device where the set of register, value
2345 * pairs are supplied in any order, possibly not all in a single range.
2346 *
2347 * The 'normal' block write mode will send ultimately send data on the
2348 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2349 * addressed. However, this alternative block multi write mode will send
2350 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2351 * must of course support the mode.
2352 *
2353 * A value of zero will be returned on success, a negative errno will be
2354 * returned in error cases.
2355 */
2356int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2357 int num_regs)
2358{
2359 int ret;
2360
2361 map->lock(map->lock_arg);
2362
2363 ret = _regmap_multi_reg_write(map, regs, num_regs);
2364
2365 map->unlock(map->lock_arg);
2366
2367 return ret;
2368}
2369EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2370
2371/**
2372 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2373 * device but not the cache
2374 *
2375 * @map: Register map to write to
2376 * @regs: Array of structures containing register,value to be written
2377 * @num_regs: Number of registers to write
2378 *
2379 * Write multiple registers to the device but not the cache where the set
2380 * of register are supplied in any order.
2381 *
2382 * This function is intended to be used for writing a large block of data
2383 * atomically to the device in single transfer for those I2C client devices
2384 * that implement this alternative block write mode.
2385 *
2386 * A value of zero will be returned on success, a negative errno will
2387 * be returned in error cases.
2388 */
2389int regmap_multi_reg_write_bypassed(struct regmap *map,
2390 const struct reg_sequence *regs,
2391 int num_regs)
2392{
2393 int ret;
2394 bool bypass;
2395
2396 map->lock(map->lock_arg);
2397
2398 bypass = map->cache_bypass;
2399 map->cache_bypass = true;
2400
2401 ret = _regmap_multi_reg_write(map, regs, num_regs);
2402
2403 map->cache_bypass = bypass;
2404
2405 map->unlock(map->lock_arg);
2406
2407 return ret;
2408}
2409EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2410
2411/**
2412 * regmap_raw_write_async() - Write raw values to one or more registers
2413 * asynchronously
2414 *
2415 * @map: Register map to write to
2416 * @reg: Initial register to write to
2417 * @val: Block of data to be written, laid out for direct transmission to the
2418 * device. Must be valid until regmap_async_complete() is called.
2419 * @val_len: Length of data pointed to by val.
2420 *
2421 * This function is intended to be used for things like firmware
2422 * download where a large block of data needs to be transferred to the
2423 * device. No formatting will be done on the data provided.
2424 *
2425 * If supported by the underlying bus the write will be scheduled
2426 * asynchronously, helping maximise I/O speed on higher speed buses
2427 * like SPI. regmap_async_complete() can be called to ensure that all
2428 * asynchrnous writes have been completed.
2429 *
2430 * A value of zero will be returned on success, a negative errno will
2431 * be returned in error cases.
2432 */
2433int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2434 const void *val, size_t val_len)
2435{
2436 int ret;
2437
2438 if (val_len % map->format.val_bytes)
2439 return -EINVAL;
2440 if (!IS_ALIGNED(reg, map->reg_stride))
2441 return -EINVAL;
2442
2443 map->lock(map->lock_arg);
2444
2445 map->async = true;
2446
2447 ret = _regmap_raw_write(map, reg, val, val_len);
2448
2449 map->async = false;
2450
2451 map->unlock(map->lock_arg);
2452
2453 return ret;
2454}
2455EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2456
2457static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2458 unsigned int val_len)
2459{
2460 struct regmap_range_node *range;
2461 int ret;
2462
2463 WARN_ON(!map->bus);
2464
2465 if (!map->bus || !map->bus->read)
2466 return -EINVAL;
2467
2468 range = _regmap_range_lookup(map, reg);
2469 if (range) {
2470 ret = _regmap_select_page(map, ®, range,
2471 val_len / map->format.val_bytes);
2472 if (ret != 0)
2473 return ret;
2474 }
2475
2476 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2477 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2478 map->read_flag_mask);
2479 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2480
2481 ret = map->bus->read(map->bus_context, map->work_buf,
2482 map->format.reg_bytes + map->format.pad_bytes,
2483 val, val_len);
2484
2485 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2486
2487 return ret;
2488}
2489
2490static int _regmap_bus_reg_read(void *context, unsigned int reg,
2491 unsigned int *val)
2492{
2493 struct regmap *map = context;
2494
2495 return map->bus->reg_read(map->bus_context, reg, val);
2496}
2497
2498static int _regmap_bus_read(void *context, unsigned int reg,
2499 unsigned int *val)
2500{
2501 int ret;
2502 struct regmap *map = context;
2503 void *work_val = map->work_buf + map->format.reg_bytes +
2504 map->format.pad_bytes;
2505
2506 if (!map->format.parse_val)
2507 return -EINVAL;
2508
2509 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2510 if (ret == 0)
2511 *val = map->format.parse_val(work_val);
2512
2513 return ret;
2514}
2515
2516static int _regmap_read(struct regmap *map, unsigned int reg,
2517 unsigned int *val)
2518{
2519 int ret;
2520 void *context = _regmap_map_get_context(map);
2521
2522 if (!map->cache_bypass) {
2523 ret = regcache_read(map, reg, val);
2524 if (ret == 0)
2525 return 0;
2526 }
2527
2528 if (map->cache_only)
2529 return -EBUSY;
2530
2531 if (!regmap_readable(map, reg))
2532 return -EIO;
2533
2534 ret = map->reg_read(context, reg, val);
2535 if (ret == 0) {
2536 if (regmap_should_log(map))
2537 dev_info(map->dev, "%x => %x\n", reg, *val);
2538
2539 trace_regmap_reg_read(map, reg, *val);
2540
2541 if (!map->cache_bypass)
2542 regcache_write(map, reg, *val);
2543 }
2544
2545 return ret;
2546}
2547
2548/**
2549 * regmap_read() - Read a value from a single register
2550 *
2551 * @map: Register map to read from
2552 * @reg: Register to be read from
2553 * @val: Pointer to store read value
2554 *
2555 * A value of zero will be returned on success, a negative errno will
2556 * be returned in error cases.
2557 */
2558int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2559{
2560 int ret;
2561
2562 if (!IS_ALIGNED(reg, map->reg_stride))
2563 return -EINVAL;
2564
2565 map->lock(map->lock_arg);
2566
2567 ret = _regmap_read(map, reg, val);
2568
2569 map->unlock(map->lock_arg);
2570
2571 return ret;
2572}
2573EXPORT_SYMBOL_GPL(regmap_read);
2574
2575/**
2576 * regmap_raw_read() - Read raw data from the device
2577 *
2578 * @map: Register map to read from
2579 * @reg: First register to be read from
2580 * @val: Pointer to store read value
2581 * @val_len: Size of data to read
2582 *
2583 * A value of zero will be returned on success, a negative errno will
2584 * be returned in error cases.
2585 */
2586int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2587 size_t val_len)
2588{
2589 size_t val_bytes = map->format.val_bytes;
2590 size_t val_count = val_len / val_bytes;
2591 unsigned int v;
2592 int ret, i;
2593
2594 if (!map->bus)
2595 return -EINVAL;
2596 if (val_len % map->format.val_bytes)
2597 return -EINVAL;
2598 if (!IS_ALIGNED(reg, map->reg_stride))
2599 return -EINVAL;
2600 if (val_count == 0)
2601 return -EINVAL;
2602
2603 map->lock(map->lock_arg);
2604
2605 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2606 map->cache_type == REGCACHE_NONE) {
2607 size_t chunk_count, chunk_bytes;
2608 size_t chunk_regs = val_count;
2609
2610 if (!map->bus->read) {
2611 ret = -ENOTSUPP;
2612 goto out;
2613 }
2614
2615 if (map->use_single_read)
2616 chunk_regs = 1;
2617 else if (map->max_raw_read && val_len > map->max_raw_read)
2618 chunk_regs = map->max_raw_read / val_bytes;
2619
2620 chunk_count = val_count / chunk_regs;
2621 chunk_bytes = chunk_regs * val_bytes;
2622
2623 /* Read bytes that fit into whole chunks */
2624 for (i = 0; i < chunk_count; i++) {
2625 ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2626 if (ret != 0)
2627 goto out;
2628
2629 reg += regmap_get_offset(map, chunk_regs);
2630 val += chunk_bytes;
2631 val_len -= chunk_bytes;
2632 }
2633
2634 /* Read remaining bytes */
2635 if (val_len) {
2636 ret = _regmap_raw_read(map, reg, val, val_len);
2637 if (ret != 0)
2638 goto out;
2639 }
2640 } else {
2641 /* Otherwise go word by word for the cache; should be low
2642 * cost as we expect to hit the cache.
2643 */
2644 for (i = 0; i < val_count; i++) {
2645 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2646 &v);
2647 if (ret != 0)
2648 goto out;
2649
2650 map->format.format_val(val + (i * val_bytes), v, 0);
2651 }
2652 }
2653
2654 out:
2655 map->unlock(map->lock_arg);
2656
2657 return ret;
2658}
2659EXPORT_SYMBOL_GPL(regmap_raw_read);
2660
2661/**
2662 * regmap_noinc_read(): Read data from a register without incrementing the
2663 * register number
2664 *
2665 * @map: Register map to read from
2666 * @reg: Register to read from
2667 * @val: Pointer to data buffer
2668 * @val_len: Length of output buffer in bytes.
2669 *
2670 * The regmap API usually assumes that bulk bus read operations will read a
2671 * range of registers. Some devices have certain registers for which a read
2672 * operation read will read from an internal FIFO.
2673 *
2674 * The target register must be volatile but registers after it can be
2675 * completely unrelated cacheable registers.
2676 *
2677 * This will attempt multiple reads as required to read val_len bytes.
2678 *
2679 * A value of zero will be returned on success, a negative errno will be
2680 * returned in error cases.
2681 */
2682int regmap_noinc_read(struct regmap *map, unsigned int reg,
2683 void *val, size_t val_len)
2684{
2685 size_t read_len;
2686 int ret;
2687
2688 if (!map->bus)
2689 return -EINVAL;
2690 if (!map->bus->read)
2691 return -ENOTSUPP;
2692 if (val_len % map->format.val_bytes)
2693 return -EINVAL;
2694 if (!IS_ALIGNED(reg, map->reg_stride))
2695 return -EINVAL;
2696 if (val_len == 0)
2697 return -EINVAL;
2698
2699 map->lock(map->lock_arg);
2700
2701 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2702 ret = -EINVAL;
2703 goto out_unlock;
2704 }
2705
2706 while (val_len) {
2707 if (map->max_raw_read && map->max_raw_read < val_len)
2708 read_len = map->max_raw_read;
2709 else
2710 read_len = val_len;
2711 ret = _regmap_raw_read(map, reg, val, read_len);
2712 if (ret)
2713 goto out_unlock;
2714 val = ((u8 *)val) + read_len;
2715 val_len -= read_len;
2716 }
2717
2718out_unlock:
2719 map->unlock(map->lock_arg);
2720 return ret;
2721}
2722EXPORT_SYMBOL_GPL(regmap_noinc_read);
2723
2724/**
2725 * regmap_field_read(): Read a value to a single register field
2726 *
2727 * @field: Register field to read from
2728 * @val: Pointer to store read value
2729 *
2730 * A value of zero will be returned on success, a negative errno will
2731 * be returned in error cases.
2732 */
2733int regmap_field_read(struct regmap_field *field, unsigned int *val)
2734{
2735 int ret;
2736 unsigned int reg_val;
2737 ret = regmap_read(field->regmap, field->reg, ®_val);
2738 if (ret != 0)
2739 return ret;
2740
2741 reg_val &= field->mask;
2742 reg_val >>= field->shift;
2743 *val = reg_val;
2744
2745 return ret;
2746}
2747EXPORT_SYMBOL_GPL(regmap_field_read);
2748
2749/**
2750 * regmap_fields_read() - Read a value to a single register field with port ID
2751 *
2752 * @field: Register field to read from
2753 * @id: port ID
2754 * @val: Pointer to store read value
2755 *
2756 * A value of zero will be returned on success, a negative errno will
2757 * be returned in error cases.
2758 */
2759int regmap_fields_read(struct regmap_field *field, unsigned int id,
2760 unsigned int *val)
2761{
2762 int ret;
2763 unsigned int reg_val;
2764
2765 if (id >= field->id_size)
2766 return -EINVAL;
2767
2768 ret = regmap_read(field->regmap,
2769 field->reg + (field->id_offset * id),
2770 ®_val);
2771 if (ret != 0)
2772 return ret;
2773
2774 reg_val &= field->mask;
2775 reg_val >>= field->shift;
2776 *val = reg_val;
2777
2778 return ret;
2779}
2780EXPORT_SYMBOL_GPL(regmap_fields_read);
2781
2782/**
2783 * regmap_bulk_read() - Read multiple registers from the device
2784 *
2785 * @map: Register map to read from
2786 * @reg: First register to be read from
2787 * @val: Pointer to store read value, in native register size for device
2788 * @val_count: Number of registers to read
2789 *
2790 * A value of zero will be returned on success, a negative errno will
2791 * be returned in error cases.
2792 */
2793int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2794 size_t val_count)
2795{
2796 int ret, i;
2797 size_t val_bytes = map->format.val_bytes;
2798 bool vol = regmap_volatile_range(map, reg, val_count);
2799
2800 if (!IS_ALIGNED(reg, map->reg_stride))
2801 return -EINVAL;
2802 if (val_count == 0)
2803 return -EINVAL;
2804
2805 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2806 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2807 if (ret != 0)
2808 return ret;
2809
2810 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2811 map->format.parse_inplace(val + i);
2812 } else {
2813#ifdef CONFIG_64BIT
2814 u64 *u64 = val;
2815#endif
2816 u32 *u32 = val;
2817 u16 *u16 = val;
2818 u8 *u8 = val;
2819
2820 map->lock(map->lock_arg);
2821
2822 for (i = 0; i < val_count; i++) {
2823 unsigned int ival;
2824
2825 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2826 &ival);
2827 if (ret != 0)
2828 goto out;
2829
2830 switch (map->format.val_bytes) {
2831#ifdef CONFIG_64BIT
2832 case 8:
2833 u64[i] = ival;
2834 break;
2835#endif
2836 case 4:
2837 u32[i] = ival;
2838 break;
2839 case 2:
2840 u16[i] = ival;
2841 break;
2842 case 1:
2843 u8[i] = ival;
2844 break;
2845 default:
2846 ret = -EINVAL;
2847 goto out;
2848 }
2849 }
2850
2851out:
2852 map->unlock(map->lock_arg);
2853 }
2854
2855 return ret;
2856}
2857EXPORT_SYMBOL_GPL(regmap_bulk_read);
2858
2859static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2860 unsigned int mask, unsigned int val,
2861 bool *change, bool force_write)
2862{
2863 int ret;
2864 unsigned int tmp, orig;
2865
2866 if (change)
2867 *change = false;
2868
2869 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2870 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2871 if (ret == 0 && change)
2872 *change = true;
2873 } else {
2874 ret = _regmap_read(map, reg, &orig);
2875 if (ret != 0)
2876 return ret;
2877
2878 tmp = orig & ~mask;
2879 tmp |= val & mask;
2880
2881 if (force_write || (tmp != orig)) {
2882 ret = _regmap_write(map, reg, tmp);
2883 if (ret == 0 && change)
2884 *change = true;
2885 }
2886 }
2887
2888 return ret;
2889}
2890
2891/**
2892 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2893 *
2894 * @map: Register map to update
2895 * @reg: Register to update
2896 * @mask: Bitmask to change
2897 * @val: New value for bitmask
2898 * @change: Boolean indicating if a write was done
2899 * @async: Boolean indicating asynchronously
2900 * @force: Boolean indicating use force update
2901 *
2902 * Perform a read/modify/write cycle on a register map with change, async, force
2903 * options.
2904 *
2905 * If async is true:
2906 *
2907 * With most buses the read must be done synchronously so this is most useful
2908 * for devices with a cache which do not need to interact with the hardware to
2909 * determine the current register value.
2910 *
2911 * Returns zero for success, a negative number on error.
2912 */
2913int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2914 unsigned int mask, unsigned int val,
2915 bool *change, bool async, bool force)
2916{
2917 int ret;
2918
2919 map->lock(map->lock_arg);
2920
2921 map->async = async;
2922
2923 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2924
2925 map->async = false;
2926
2927 map->unlock(map->lock_arg);
2928
2929 return ret;
2930}
2931EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2932
2933/**
2934 * regmap_test_bits() - Check if all specified bits are set in a register.
2935 *
2936 * @map: Register map to operate on
2937 * @reg: Register to read from
2938 * @bits: Bits to test
2939 *
2940 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
2941 * bits are set and a negative error number if the underlying regmap_read()
2942 * fails.
2943 */
2944int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
2945{
2946 unsigned int val, ret;
2947
2948 ret = regmap_read(map, reg, &val);
2949 if (ret)
2950 return ret;
2951
2952 return (val & bits) == bits;
2953}
2954EXPORT_SYMBOL_GPL(regmap_test_bits);
2955
2956void regmap_async_complete_cb(struct regmap_async *async, int ret)
2957{
2958 struct regmap *map = async->map;
2959 bool wake;
2960
2961 trace_regmap_async_io_complete(map);
2962
2963 spin_lock(&map->async_lock);
2964 list_move(&async->list, &map->async_free);
2965 wake = list_empty(&map->async_list);
2966
2967 if (ret != 0)
2968 map->async_ret = ret;
2969
2970 spin_unlock(&map->async_lock);
2971
2972 if (wake)
2973 wake_up(&map->async_waitq);
2974}
2975EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2976
2977static int regmap_async_is_done(struct regmap *map)
2978{
2979 unsigned long flags;
2980 int ret;
2981
2982 spin_lock_irqsave(&map->async_lock, flags);
2983 ret = list_empty(&map->async_list);
2984 spin_unlock_irqrestore(&map->async_lock, flags);
2985
2986 return ret;
2987}
2988
2989/**
2990 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2991 *
2992 * @map: Map to operate on.
2993 *
2994 * Blocks until any pending asynchronous I/O has completed. Returns
2995 * an error code for any failed I/O operations.
2996 */
2997int regmap_async_complete(struct regmap *map)
2998{
2999 unsigned long flags;
3000 int ret;
3001
3002 /* Nothing to do with no async support */
3003 if (!map->bus || !map->bus->async_write)
3004 return 0;
3005
3006 trace_regmap_async_complete_start(map);
3007
3008 wait_event(map->async_waitq, regmap_async_is_done(map));
3009
3010 spin_lock_irqsave(&map->async_lock, flags);
3011 ret = map->async_ret;
3012 map->async_ret = 0;
3013 spin_unlock_irqrestore(&map->async_lock, flags);
3014
3015 trace_regmap_async_complete_done(map);
3016
3017 return ret;
3018}
3019EXPORT_SYMBOL_GPL(regmap_async_complete);
3020
3021/**
3022 * regmap_register_patch - Register and apply register updates to be applied
3023 * on device initialistion
3024 *
3025 * @map: Register map to apply updates to.
3026 * @regs: Values to update.
3027 * @num_regs: Number of entries in regs.
3028 *
3029 * Register a set of register updates to be applied to the device
3030 * whenever the device registers are synchronised with the cache and
3031 * apply them immediately. Typically this is used to apply
3032 * corrections to be applied to the device defaults on startup, such
3033 * as the updates some vendors provide to undocumented registers.
3034 *
3035 * The caller must ensure that this function cannot be called
3036 * concurrently with either itself or regcache_sync().
3037 */
3038int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3039 int num_regs)
3040{
3041 struct reg_sequence *p;
3042 int ret;
3043 bool bypass;
3044
3045 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3046 num_regs))
3047 return 0;
3048
3049 p = krealloc(map->patch,
3050 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3051 GFP_KERNEL);
3052 if (p) {
3053 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3054 map->patch = p;
3055 map->patch_regs += num_regs;
3056 } else {
3057 return -ENOMEM;
3058 }
3059
3060 map->lock(map->lock_arg);
3061
3062 bypass = map->cache_bypass;
3063
3064 map->cache_bypass = true;
3065 map->async = true;
3066
3067 ret = _regmap_multi_reg_write(map, regs, num_regs);
3068
3069 map->async = false;
3070 map->cache_bypass = bypass;
3071
3072 map->unlock(map->lock_arg);
3073
3074 regmap_async_complete(map);
3075
3076 return ret;
3077}
3078EXPORT_SYMBOL_GPL(regmap_register_patch);
3079
3080/**
3081 * regmap_get_val_bytes() - Report the size of a register value
3082 *
3083 * @map: Register map to operate on.
3084 *
3085 * Report the size of a register value, mainly intended to for use by
3086 * generic infrastructure built on top of regmap.
3087 */
3088int regmap_get_val_bytes(struct regmap *map)
3089{
3090 if (map->format.format_write)
3091 return -EINVAL;
3092
3093 return map->format.val_bytes;
3094}
3095EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3096
3097/**
3098 * regmap_get_max_register() - Report the max register value
3099 *
3100 * @map: Register map to operate on.
3101 *
3102 * Report the max register value, mainly intended to for use by
3103 * generic infrastructure built on top of regmap.
3104 */
3105int regmap_get_max_register(struct regmap *map)
3106{
3107 return map->max_register ? map->max_register : -EINVAL;
3108}
3109EXPORT_SYMBOL_GPL(regmap_get_max_register);
3110
3111/**
3112 * regmap_get_reg_stride() - Report the register address stride
3113 *
3114 * @map: Register map to operate on.
3115 *
3116 * Report the register address stride, mainly intended to for use by
3117 * generic infrastructure built on top of regmap.
3118 */
3119int regmap_get_reg_stride(struct regmap *map)
3120{
3121 return map->reg_stride;
3122}
3123EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3124
3125int regmap_parse_val(struct regmap *map, const void *buf,
3126 unsigned int *val)
3127{
3128 if (!map->format.parse_val)
3129 return -EINVAL;
3130
3131 *val = map->format.parse_val(buf);
3132
3133 return 0;
3134}
3135EXPORT_SYMBOL_GPL(regmap_parse_val);
3136
3137static int __init regmap_initcall(void)
3138{
3139 regmap_debugfs_initcall();
3140
3141 return 0;
3142}
3143postcore_initcall(regmap_initcall);