Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11#define pr_fmt(fmt) "LSM: " fmt
12
13#include <linux/bpf.h>
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/lsm_hooks.h>
20#include <linux/integrity.h>
21#include <linux/ima.h>
22#include <linux/evm.h>
23#include <linux/fsnotify.h>
24#include <linux/mman.h>
25#include <linux/mount.h>
26#include <linux/personality.h>
27#include <linux/backing-dev.h>
28#include <linux/string.h>
29#include <linux/msg.h>
30#include <net/flow.h>
31
32#define MAX_LSM_EVM_XATTR 2
33
34/* How many LSMs were built into the kernel? */
35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36
37/*
38 * These are descriptions of the reasons that can be passed to the
39 * security_locked_down() LSM hook. Placing this array here allows
40 * all security modules to use the same descriptions for auditing
41 * purposes.
42 */
43const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
44 [LOCKDOWN_NONE] = "none",
45 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
46 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
47 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
48 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
49 [LOCKDOWN_HIBERNATION] = "hibernation",
50 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
51 [LOCKDOWN_IOPORT] = "raw io port access",
52 [LOCKDOWN_MSR] = "raw MSR access",
53 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
54 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
55 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
56 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
57 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
58 [LOCKDOWN_DEBUGFS] = "debugfs access",
59 [LOCKDOWN_XMON_WR] = "xmon write access",
60 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
61 [LOCKDOWN_KCORE] = "/proc/kcore access",
62 [LOCKDOWN_KPROBES] = "use of kprobes",
63 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
64 [LOCKDOWN_PERF] = "unsafe use of perf",
65 [LOCKDOWN_TRACEFS] = "use of tracefs",
66 [LOCKDOWN_XMON_RW] = "xmon read and write access",
67 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
68};
69
70struct security_hook_heads security_hook_heads __lsm_ro_after_init;
71static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
72
73static struct kmem_cache *lsm_file_cache;
74static struct kmem_cache *lsm_inode_cache;
75
76char *lsm_names;
77static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
78
79/* Boot-time LSM user choice */
80static __initdata const char *chosen_lsm_order;
81static __initdata const char *chosen_major_lsm;
82
83static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
84
85/* Ordered list of LSMs to initialize. */
86static __initdata struct lsm_info **ordered_lsms;
87static __initdata struct lsm_info *exclusive;
88
89static __initdata bool debug;
90#define init_debug(...) \
91 do { \
92 if (debug) \
93 pr_info(__VA_ARGS__); \
94 } while (0)
95
96static bool __init is_enabled(struct lsm_info *lsm)
97{
98 if (!lsm->enabled)
99 return false;
100
101 return *lsm->enabled;
102}
103
104/* Mark an LSM's enabled flag. */
105static int lsm_enabled_true __initdata = 1;
106static int lsm_enabled_false __initdata = 0;
107static void __init set_enabled(struct lsm_info *lsm, bool enabled)
108{
109 /*
110 * When an LSM hasn't configured an enable variable, we can use
111 * a hard-coded location for storing the default enabled state.
112 */
113 if (!lsm->enabled) {
114 if (enabled)
115 lsm->enabled = &lsm_enabled_true;
116 else
117 lsm->enabled = &lsm_enabled_false;
118 } else if (lsm->enabled == &lsm_enabled_true) {
119 if (!enabled)
120 lsm->enabled = &lsm_enabled_false;
121 } else if (lsm->enabled == &lsm_enabled_false) {
122 if (enabled)
123 lsm->enabled = &lsm_enabled_true;
124 } else {
125 *lsm->enabled = enabled;
126 }
127}
128
129/* Is an LSM already listed in the ordered LSMs list? */
130static bool __init exists_ordered_lsm(struct lsm_info *lsm)
131{
132 struct lsm_info **check;
133
134 for (check = ordered_lsms; *check; check++)
135 if (*check == lsm)
136 return true;
137
138 return false;
139}
140
141/* Append an LSM to the list of ordered LSMs to initialize. */
142static int last_lsm __initdata;
143static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
144{
145 /* Ignore duplicate selections. */
146 if (exists_ordered_lsm(lsm))
147 return;
148
149 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
150 return;
151
152 /* Enable this LSM, if it is not already set. */
153 if (!lsm->enabled)
154 lsm->enabled = &lsm_enabled_true;
155 ordered_lsms[last_lsm++] = lsm;
156
157 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
158 is_enabled(lsm) ? "en" : "dis");
159}
160
161/* Is an LSM allowed to be initialized? */
162static bool __init lsm_allowed(struct lsm_info *lsm)
163{
164 /* Skip if the LSM is disabled. */
165 if (!is_enabled(lsm))
166 return false;
167
168 /* Not allowed if another exclusive LSM already initialized. */
169 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
170 init_debug("exclusive disabled: %s\n", lsm->name);
171 return false;
172 }
173
174 return true;
175}
176
177static void __init lsm_set_blob_size(int *need, int *lbs)
178{
179 int offset;
180
181 if (*need > 0) {
182 offset = *lbs;
183 *lbs += *need;
184 *need = offset;
185 }
186}
187
188static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
189{
190 if (!needed)
191 return;
192
193 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
194 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
195 /*
196 * The inode blob gets an rcu_head in addition to
197 * what the modules might need.
198 */
199 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
200 blob_sizes.lbs_inode = sizeof(struct rcu_head);
201 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
202 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
203 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
204 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
205}
206
207/* Prepare LSM for initialization. */
208static void __init prepare_lsm(struct lsm_info *lsm)
209{
210 int enabled = lsm_allowed(lsm);
211
212 /* Record enablement (to handle any following exclusive LSMs). */
213 set_enabled(lsm, enabled);
214
215 /* If enabled, do pre-initialization work. */
216 if (enabled) {
217 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
218 exclusive = lsm;
219 init_debug("exclusive chosen: %s\n", lsm->name);
220 }
221
222 lsm_set_blob_sizes(lsm->blobs);
223 }
224}
225
226/* Initialize a given LSM, if it is enabled. */
227static void __init initialize_lsm(struct lsm_info *lsm)
228{
229 if (is_enabled(lsm)) {
230 int ret;
231
232 init_debug("initializing %s\n", lsm->name);
233 ret = lsm->init();
234 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
235 }
236}
237
238/* Populate ordered LSMs list from comma-separated LSM name list. */
239static void __init ordered_lsm_parse(const char *order, const char *origin)
240{
241 struct lsm_info *lsm;
242 char *sep, *name, *next;
243
244 /* LSM_ORDER_FIRST is always first. */
245 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246 if (lsm->order == LSM_ORDER_FIRST)
247 append_ordered_lsm(lsm, "first");
248 }
249
250 /* Process "security=", if given. */
251 if (chosen_major_lsm) {
252 struct lsm_info *major;
253
254 /*
255 * To match the original "security=" behavior, this
256 * explicitly does NOT fallback to another Legacy Major
257 * if the selected one was separately disabled: disable
258 * all non-matching Legacy Major LSMs.
259 */
260 for (major = __start_lsm_info; major < __end_lsm_info;
261 major++) {
262 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
263 strcmp(major->name, chosen_major_lsm) != 0) {
264 set_enabled(major, false);
265 init_debug("security=%s disabled: %s\n",
266 chosen_major_lsm, major->name);
267 }
268 }
269 }
270
271 sep = kstrdup(order, GFP_KERNEL);
272 next = sep;
273 /* Walk the list, looking for matching LSMs. */
274 while ((name = strsep(&next, ",")) != NULL) {
275 bool found = false;
276
277 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
278 if (lsm->order == LSM_ORDER_MUTABLE &&
279 strcmp(lsm->name, name) == 0) {
280 append_ordered_lsm(lsm, origin);
281 found = true;
282 }
283 }
284
285 if (!found)
286 init_debug("%s ignored: %s\n", origin, name);
287 }
288
289 /* Process "security=", if given. */
290 if (chosen_major_lsm) {
291 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
292 if (exists_ordered_lsm(lsm))
293 continue;
294 if (strcmp(lsm->name, chosen_major_lsm) == 0)
295 append_ordered_lsm(lsm, "security=");
296 }
297 }
298
299 /* Disable all LSMs not in the ordered list. */
300 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
301 if (exists_ordered_lsm(lsm))
302 continue;
303 set_enabled(lsm, false);
304 init_debug("%s disabled: %s\n", origin, lsm->name);
305 }
306
307 kfree(sep);
308}
309
310static void __init lsm_early_cred(struct cred *cred);
311static void __init lsm_early_task(struct task_struct *task);
312
313static int lsm_append(const char *new, char **result);
314
315static void __init ordered_lsm_init(void)
316{
317 struct lsm_info **lsm;
318
319 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
320 GFP_KERNEL);
321
322 if (chosen_lsm_order) {
323 if (chosen_major_lsm) {
324 pr_info("security= is ignored because it is superseded by lsm=\n");
325 chosen_major_lsm = NULL;
326 }
327 ordered_lsm_parse(chosen_lsm_order, "cmdline");
328 } else
329 ordered_lsm_parse(builtin_lsm_order, "builtin");
330
331 for (lsm = ordered_lsms; *lsm; lsm++)
332 prepare_lsm(*lsm);
333
334 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
335 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
336 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
337 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
338 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
339 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
340
341 /*
342 * Create any kmem_caches needed for blobs
343 */
344 if (blob_sizes.lbs_file)
345 lsm_file_cache = kmem_cache_create("lsm_file_cache",
346 blob_sizes.lbs_file, 0,
347 SLAB_PANIC, NULL);
348 if (blob_sizes.lbs_inode)
349 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
350 blob_sizes.lbs_inode, 0,
351 SLAB_PANIC, NULL);
352
353 lsm_early_cred((struct cred *) current->cred);
354 lsm_early_task(current);
355 for (lsm = ordered_lsms; *lsm; lsm++)
356 initialize_lsm(*lsm);
357
358 kfree(ordered_lsms);
359}
360
361int __init early_security_init(void)
362{
363 int i;
364 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
365 struct lsm_info *lsm;
366
367 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
368 i++)
369 INIT_HLIST_HEAD(&list[i]);
370
371 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
372 if (!lsm->enabled)
373 lsm->enabled = &lsm_enabled_true;
374 prepare_lsm(lsm);
375 initialize_lsm(lsm);
376 }
377
378 return 0;
379}
380
381/**
382 * security_init - initializes the security framework
383 *
384 * This should be called early in the kernel initialization sequence.
385 */
386int __init security_init(void)
387{
388 struct lsm_info *lsm;
389
390 pr_info("Security Framework initializing\n");
391
392 /*
393 * Append the names of the early LSM modules now that kmalloc() is
394 * available
395 */
396 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
397 if (lsm->enabled)
398 lsm_append(lsm->name, &lsm_names);
399 }
400
401 /* Load LSMs in specified order. */
402 ordered_lsm_init();
403
404 return 0;
405}
406
407/* Save user chosen LSM */
408static int __init choose_major_lsm(char *str)
409{
410 chosen_major_lsm = str;
411 return 1;
412}
413__setup("security=", choose_major_lsm);
414
415/* Explicitly choose LSM initialization order. */
416static int __init choose_lsm_order(char *str)
417{
418 chosen_lsm_order = str;
419 return 1;
420}
421__setup("lsm=", choose_lsm_order);
422
423/* Enable LSM order debugging. */
424static int __init enable_debug(char *str)
425{
426 debug = true;
427 return 1;
428}
429__setup("lsm.debug", enable_debug);
430
431static bool match_last_lsm(const char *list, const char *lsm)
432{
433 const char *last;
434
435 if (WARN_ON(!list || !lsm))
436 return false;
437 last = strrchr(list, ',');
438 if (last)
439 /* Pass the comma, strcmp() will check for '\0' */
440 last++;
441 else
442 last = list;
443 return !strcmp(last, lsm);
444}
445
446static int lsm_append(const char *new, char **result)
447{
448 char *cp;
449
450 if (*result == NULL) {
451 *result = kstrdup(new, GFP_KERNEL);
452 if (*result == NULL)
453 return -ENOMEM;
454 } else {
455 /* Check if it is the last registered name */
456 if (match_last_lsm(*result, new))
457 return 0;
458 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
459 if (cp == NULL)
460 return -ENOMEM;
461 kfree(*result);
462 *result = cp;
463 }
464 return 0;
465}
466
467/**
468 * security_add_hooks - Add a modules hooks to the hook lists.
469 * @hooks: the hooks to add
470 * @count: the number of hooks to add
471 * @lsm: the name of the security module
472 *
473 * Each LSM has to register its hooks with the infrastructure.
474 */
475void __init security_add_hooks(struct security_hook_list *hooks, int count,
476 char *lsm)
477{
478 int i;
479
480 for (i = 0; i < count; i++) {
481 hooks[i].lsm = lsm;
482 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
483 }
484
485 /*
486 * Don't try to append during early_security_init(), we'll come back
487 * and fix this up afterwards.
488 */
489 if (slab_is_available()) {
490 if (lsm_append(lsm, &lsm_names) < 0)
491 panic("%s - Cannot get early memory.\n", __func__);
492 }
493}
494
495int call_blocking_lsm_notifier(enum lsm_event event, void *data)
496{
497 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
498 event, data);
499}
500EXPORT_SYMBOL(call_blocking_lsm_notifier);
501
502int register_blocking_lsm_notifier(struct notifier_block *nb)
503{
504 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
505 nb);
506}
507EXPORT_SYMBOL(register_blocking_lsm_notifier);
508
509int unregister_blocking_lsm_notifier(struct notifier_block *nb)
510{
511 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
512 nb);
513}
514EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
515
516/**
517 * lsm_cred_alloc - allocate a composite cred blob
518 * @cred: the cred that needs a blob
519 * @gfp: allocation type
520 *
521 * Allocate the cred blob for all the modules
522 *
523 * Returns 0, or -ENOMEM if memory can't be allocated.
524 */
525static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
526{
527 if (blob_sizes.lbs_cred == 0) {
528 cred->security = NULL;
529 return 0;
530 }
531
532 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
533 if (cred->security == NULL)
534 return -ENOMEM;
535 return 0;
536}
537
538/**
539 * lsm_early_cred - during initialization allocate a composite cred blob
540 * @cred: the cred that needs a blob
541 *
542 * Allocate the cred blob for all the modules
543 */
544static void __init lsm_early_cred(struct cred *cred)
545{
546 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
547
548 if (rc)
549 panic("%s: Early cred alloc failed.\n", __func__);
550}
551
552/**
553 * lsm_file_alloc - allocate a composite file blob
554 * @file: the file that needs a blob
555 *
556 * Allocate the file blob for all the modules
557 *
558 * Returns 0, or -ENOMEM if memory can't be allocated.
559 */
560static int lsm_file_alloc(struct file *file)
561{
562 if (!lsm_file_cache) {
563 file->f_security = NULL;
564 return 0;
565 }
566
567 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
568 if (file->f_security == NULL)
569 return -ENOMEM;
570 return 0;
571}
572
573/**
574 * lsm_inode_alloc - allocate a composite inode blob
575 * @inode: the inode that needs a blob
576 *
577 * Allocate the inode blob for all the modules
578 *
579 * Returns 0, or -ENOMEM if memory can't be allocated.
580 */
581int lsm_inode_alloc(struct inode *inode)
582{
583 if (!lsm_inode_cache) {
584 inode->i_security = NULL;
585 return 0;
586 }
587
588 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
589 if (inode->i_security == NULL)
590 return -ENOMEM;
591 return 0;
592}
593
594/**
595 * lsm_task_alloc - allocate a composite task blob
596 * @task: the task that needs a blob
597 *
598 * Allocate the task blob for all the modules
599 *
600 * Returns 0, or -ENOMEM if memory can't be allocated.
601 */
602static int lsm_task_alloc(struct task_struct *task)
603{
604 if (blob_sizes.lbs_task == 0) {
605 task->security = NULL;
606 return 0;
607 }
608
609 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
610 if (task->security == NULL)
611 return -ENOMEM;
612 return 0;
613}
614
615/**
616 * lsm_ipc_alloc - allocate a composite ipc blob
617 * @kip: the ipc that needs a blob
618 *
619 * Allocate the ipc blob for all the modules
620 *
621 * Returns 0, or -ENOMEM if memory can't be allocated.
622 */
623static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
624{
625 if (blob_sizes.lbs_ipc == 0) {
626 kip->security = NULL;
627 return 0;
628 }
629
630 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
631 if (kip->security == NULL)
632 return -ENOMEM;
633 return 0;
634}
635
636/**
637 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
638 * @mp: the msg_msg that needs a blob
639 *
640 * Allocate the ipc blob for all the modules
641 *
642 * Returns 0, or -ENOMEM if memory can't be allocated.
643 */
644static int lsm_msg_msg_alloc(struct msg_msg *mp)
645{
646 if (blob_sizes.lbs_msg_msg == 0) {
647 mp->security = NULL;
648 return 0;
649 }
650
651 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
652 if (mp->security == NULL)
653 return -ENOMEM;
654 return 0;
655}
656
657/**
658 * lsm_early_task - during initialization allocate a composite task blob
659 * @task: the task that needs a blob
660 *
661 * Allocate the task blob for all the modules
662 */
663static void __init lsm_early_task(struct task_struct *task)
664{
665 int rc = lsm_task_alloc(task);
666
667 if (rc)
668 panic("%s: Early task alloc failed.\n", __func__);
669}
670
671/*
672 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
673 * can be accessed with:
674 *
675 * LSM_RET_DEFAULT(<hook_name>)
676 *
677 * The macros below define static constants for the default value of each
678 * LSM hook.
679 */
680#define LSM_RET_DEFAULT(NAME) (NAME##_default)
681#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
682#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
683 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
684#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
685 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
686
687#include <linux/lsm_hook_defs.h>
688#undef LSM_HOOK
689
690/*
691 * Hook list operation macros.
692 *
693 * call_void_hook:
694 * This is a hook that does not return a value.
695 *
696 * call_int_hook:
697 * This is a hook that returns a value.
698 */
699
700#define call_void_hook(FUNC, ...) \
701 do { \
702 struct security_hook_list *P; \
703 \
704 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
705 P->hook.FUNC(__VA_ARGS__); \
706 } while (0)
707
708#define call_int_hook(FUNC, IRC, ...) ({ \
709 int RC = IRC; \
710 do { \
711 struct security_hook_list *P; \
712 \
713 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
714 RC = P->hook.FUNC(__VA_ARGS__); \
715 if (RC != 0) \
716 break; \
717 } \
718 } while (0); \
719 RC; \
720})
721
722/* Security operations */
723
724int security_binder_set_context_mgr(struct task_struct *mgr)
725{
726 return call_int_hook(binder_set_context_mgr, 0, mgr);
727}
728
729int security_binder_transaction(struct task_struct *from,
730 struct task_struct *to)
731{
732 return call_int_hook(binder_transaction, 0, from, to);
733}
734
735int security_binder_transfer_binder(struct task_struct *from,
736 struct task_struct *to)
737{
738 return call_int_hook(binder_transfer_binder, 0, from, to);
739}
740
741int security_binder_transfer_file(struct task_struct *from,
742 struct task_struct *to, struct file *file)
743{
744 return call_int_hook(binder_transfer_file, 0, from, to, file);
745}
746
747int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
748{
749 return call_int_hook(ptrace_access_check, 0, child, mode);
750}
751
752int security_ptrace_traceme(struct task_struct *parent)
753{
754 return call_int_hook(ptrace_traceme, 0, parent);
755}
756
757int security_capget(struct task_struct *target,
758 kernel_cap_t *effective,
759 kernel_cap_t *inheritable,
760 kernel_cap_t *permitted)
761{
762 return call_int_hook(capget, 0, target,
763 effective, inheritable, permitted);
764}
765
766int security_capset(struct cred *new, const struct cred *old,
767 const kernel_cap_t *effective,
768 const kernel_cap_t *inheritable,
769 const kernel_cap_t *permitted)
770{
771 return call_int_hook(capset, 0, new, old,
772 effective, inheritable, permitted);
773}
774
775int security_capable(const struct cred *cred,
776 struct user_namespace *ns,
777 int cap,
778 unsigned int opts)
779{
780 return call_int_hook(capable, 0, cred, ns, cap, opts);
781}
782
783int security_quotactl(int cmds, int type, int id, struct super_block *sb)
784{
785 return call_int_hook(quotactl, 0, cmds, type, id, sb);
786}
787
788int security_quota_on(struct dentry *dentry)
789{
790 return call_int_hook(quota_on, 0, dentry);
791}
792
793int security_syslog(int type)
794{
795 return call_int_hook(syslog, 0, type);
796}
797
798int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
799{
800 return call_int_hook(settime, 0, ts, tz);
801}
802
803int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
804{
805 struct security_hook_list *hp;
806 int cap_sys_admin = 1;
807 int rc;
808
809 /*
810 * The module will respond with a positive value if
811 * it thinks the __vm_enough_memory() call should be
812 * made with the cap_sys_admin set. If all of the modules
813 * agree that it should be set it will. If any module
814 * thinks it should not be set it won't.
815 */
816 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
817 rc = hp->hook.vm_enough_memory(mm, pages);
818 if (rc <= 0) {
819 cap_sys_admin = 0;
820 break;
821 }
822 }
823 return __vm_enough_memory(mm, pages, cap_sys_admin);
824}
825
826int security_bprm_creds_for_exec(struct linux_binprm *bprm)
827{
828 return call_int_hook(bprm_creds_for_exec, 0, bprm);
829}
830
831int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
832{
833 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
834}
835
836int security_bprm_check(struct linux_binprm *bprm)
837{
838 int ret;
839
840 ret = call_int_hook(bprm_check_security, 0, bprm);
841 if (ret)
842 return ret;
843 return ima_bprm_check(bprm);
844}
845
846void security_bprm_committing_creds(struct linux_binprm *bprm)
847{
848 call_void_hook(bprm_committing_creds, bprm);
849}
850
851void security_bprm_committed_creds(struct linux_binprm *bprm)
852{
853 call_void_hook(bprm_committed_creds, bprm);
854}
855
856int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
857{
858 return call_int_hook(fs_context_dup, 0, fc, src_fc);
859}
860
861int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
862{
863 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
864}
865
866int security_sb_alloc(struct super_block *sb)
867{
868 return call_int_hook(sb_alloc_security, 0, sb);
869}
870
871void security_sb_free(struct super_block *sb)
872{
873 call_void_hook(sb_free_security, sb);
874}
875
876void security_free_mnt_opts(void **mnt_opts)
877{
878 if (!*mnt_opts)
879 return;
880 call_void_hook(sb_free_mnt_opts, *mnt_opts);
881 *mnt_opts = NULL;
882}
883EXPORT_SYMBOL(security_free_mnt_opts);
884
885int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
886{
887 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
888}
889EXPORT_SYMBOL(security_sb_eat_lsm_opts);
890
891int security_sb_remount(struct super_block *sb,
892 void *mnt_opts)
893{
894 return call_int_hook(sb_remount, 0, sb, mnt_opts);
895}
896EXPORT_SYMBOL(security_sb_remount);
897
898int security_sb_kern_mount(struct super_block *sb)
899{
900 return call_int_hook(sb_kern_mount, 0, sb);
901}
902
903int security_sb_show_options(struct seq_file *m, struct super_block *sb)
904{
905 return call_int_hook(sb_show_options, 0, m, sb);
906}
907
908int security_sb_statfs(struct dentry *dentry)
909{
910 return call_int_hook(sb_statfs, 0, dentry);
911}
912
913int security_sb_mount(const char *dev_name, const struct path *path,
914 const char *type, unsigned long flags, void *data)
915{
916 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
917}
918
919int security_sb_umount(struct vfsmount *mnt, int flags)
920{
921 return call_int_hook(sb_umount, 0, mnt, flags);
922}
923
924int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
925{
926 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
927}
928
929int security_sb_set_mnt_opts(struct super_block *sb,
930 void *mnt_opts,
931 unsigned long kern_flags,
932 unsigned long *set_kern_flags)
933{
934 return call_int_hook(sb_set_mnt_opts,
935 mnt_opts ? -EOPNOTSUPP : 0, sb,
936 mnt_opts, kern_flags, set_kern_flags);
937}
938EXPORT_SYMBOL(security_sb_set_mnt_opts);
939
940int security_sb_clone_mnt_opts(const struct super_block *oldsb,
941 struct super_block *newsb,
942 unsigned long kern_flags,
943 unsigned long *set_kern_flags)
944{
945 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
946 kern_flags, set_kern_flags);
947}
948EXPORT_SYMBOL(security_sb_clone_mnt_opts);
949
950int security_add_mnt_opt(const char *option, const char *val, int len,
951 void **mnt_opts)
952{
953 return call_int_hook(sb_add_mnt_opt, -EINVAL,
954 option, val, len, mnt_opts);
955}
956EXPORT_SYMBOL(security_add_mnt_opt);
957
958int security_move_mount(const struct path *from_path, const struct path *to_path)
959{
960 return call_int_hook(move_mount, 0, from_path, to_path);
961}
962
963int security_path_notify(const struct path *path, u64 mask,
964 unsigned int obj_type)
965{
966 return call_int_hook(path_notify, 0, path, mask, obj_type);
967}
968
969int security_inode_alloc(struct inode *inode)
970{
971 int rc = lsm_inode_alloc(inode);
972
973 if (unlikely(rc))
974 return rc;
975 rc = call_int_hook(inode_alloc_security, 0, inode);
976 if (unlikely(rc))
977 security_inode_free(inode);
978 return rc;
979}
980
981static void inode_free_by_rcu(struct rcu_head *head)
982{
983 /*
984 * The rcu head is at the start of the inode blob
985 */
986 kmem_cache_free(lsm_inode_cache, head);
987}
988
989void security_inode_free(struct inode *inode)
990{
991 integrity_inode_free(inode);
992 call_void_hook(inode_free_security, inode);
993 /*
994 * The inode may still be referenced in a path walk and
995 * a call to security_inode_permission() can be made
996 * after inode_free_security() is called. Ideally, the VFS
997 * wouldn't do this, but fixing that is a much harder
998 * job. For now, simply free the i_security via RCU, and
999 * leave the current inode->i_security pointer intact.
1000 * The inode will be freed after the RCU grace period too.
1001 */
1002 if (inode->i_security)
1003 call_rcu((struct rcu_head *)inode->i_security,
1004 inode_free_by_rcu);
1005}
1006
1007int security_dentry_init_security(struct dentry *dentry, int mode,
1008 const struct qstr *name, void **ctx,
1009 u32 *ctxlen)
1010{
1011 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1012 name, ctx, ctxlen);
1013}
1014EXPORT_SYMBOL(security_dentry_init_security);
1015
1016int security_dentry_create_files_as(struct dentry *dentry, int mode,
1017 struct qstr *name,
1018 const struct cred *old, struct cred *new)
1019{
1020 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1021 name, old, new);
1022}
1023EXPORT_SYMBOL(security_dentry_create_files_as);
1024
1025int security_inode_init_security(struct inode *inode, struct inode *dir,
1026 const struct qstr *qstr,
1027 const initxattrs initxattrs, void *fs_data)
1028{
1029 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1030 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1031 int ret;
1032
1033 if (unlikely(IS_PRIVATE(inode)))
1034 return 0;
1035
1036 if (!initxattrs)
1037 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1038 dir, qstr, NULL, NULL, NULL);
1039 memset(new_xattrs, 0, sizeof(new_xattrs));
1040 lsm_xattr = new_xattrs;
1041 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1042 &lsm_xattr->name,
1043 &lsm_xattr->value,
1044 &lsm_xattr->value_len);
1045 if (ret)
1046 goto out;
1047
1048 evm_xattr = lsm_xattr + 1;
1049 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1050 if (ret)
1051 goto out;
1052 ret = initxattrs(inode, new_xattrs, fs_data);
1053out:
1054 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1055 kfree(xattr->value);
1056 return (ret == -EOPNOTSUPP) ? 0 : ret;
1057}
1058EXPORT_SYMBOL(security_inode_init_security);
1059
1060int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1061 const struct qstr *qstr, const char **name,
1062 void **value, size_t *len)
1063{
1064 if (unlikely(IS_PRIVATE(inode)))
1065 return -EOPNOTSUPP;
1066 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1067 qstr, name, value, len);
1068}
1069EXPORT_SYMBOL(security_old_inode_init_security);
1070
1071#ifdef CONFIG_SECURITY_PATH
1072int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1073 unsigned int dev)
1074{
1075 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1076 return 0;
1077 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1078}
1079EXPORT_SYMBOL(security_path_mknod);
1080
1081int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1082{
1083 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1084 return 0;
1085 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1086}
1087EXPORT_SYMBOL(security_path_mkdir);
1088
1089int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1090{
1091 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1092 return 0;
1093 return call_int_hook(path_rmdir, 0, dir, dentry);
1094}
1095
1096int security_path_unlink(const struct path *dir, struct dentry *dentry)
1097{
1098 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1099 return 0;
1100 return call_int_hook(path_unlink, 0, dir, dentry);
1101}
1102EXPORT_SYMBOL(security_path_unlink);
1103
1104int security_path_symlink(const struct path *dir, struct dentry *dentry,
1105 const char *old_name)
1106{
1107 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1108 return 0;
1109 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1110}
1111
1112int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1113 struct dentry *new_dentry)
1114{
1115 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1116 return 0;
1117 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1118}
1119
1120int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1121 const struct path *new_dir, struct dentry *new_dentry,
1122 unsigned int flags)
1123{
1124 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1125 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1126 return 0;
1127
1128 if (flags & RENAME_EXCHANGE) {
1129 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1130 old_dir, old_dentry);
1131 if (err)
1132 return err;
1133 }
1134
1135 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1136 new_dentry);
1137}
1138EXPORT_SYMBOL(security_path_rename);
1139
1140int security_path_truncate(const struct path *path)
1141{
1142 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1143 return 0;
1144 return call_int_hook(path_truncate, 0, path);
1145}
1146
1147int security_path_chmod(const struct path *path, umode_t mode)
1148{
1149 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1150 return 0;
1151 return call_int_hook(path_chmod, 0, path, mode);
1152}
1153
1154int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1155{
1156 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1157 return 0;
1158 return call_int_hook(path_chown, 0, path, uid, gid);
1159}
1160
1161int security_path_chroot(const struct path *path)
1162{
1163 return call_int_hook(path_chroot, 0, path);
1164}
1165#endif
1166
1167int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1168{
1169 if (unlikely(IS_PRIVATE(dir)))
1170 return 0;
1171 return call_int_hook(inode_create, 0, dir, dentry, mode);
1172}
1173EXPORT_SYMBOL_GPL(security_inode_create);
1174
1175int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1176 struct dentry *new_dentry)
1177{
1178 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1179 return 0;
1180 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1181}
1182
1183int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1184{
1185 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186 return 0;
1187 return call_int_hook(inode_unlink, 0, dir, dentry);
1188}
1189
1190int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1191 const char *old_name)
1192{
1193 if (unlikely(IS_PRIVATE(dir)))
1194 return 0;
1195 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1196}
1197
1198int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1199{
1200 if (unlikely(IS_PRIVATE(dir)))
1201 return 0;
1202 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1203}
1204EXPORT_SYMBOL_GPL(security_inode_mkdir);
1205
1206int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1207{
1208 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1209 return 0;
1210 return call_int_hook(inode_rmdir, 0, dir, dentry);
1211}
1212
1213int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1214{
1215 if (unlikely(IS_PRIVATE(dir)))
1216 return 0;
1217 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1218}
1219
1220int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1221 struct inode *new_dir, struct dentry *new_dentry,
1222 unsigned int flags)
1223{
1224 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1225 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1226 return 0;
1227
1228 if (flags & RENAME_EXCHANGE) {
1229 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1230 old_dir, old_dentry);
1231 if (err)
1232 return err;
1233 }
1234
1235 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1236 new_dir, new_dentry);
1237}
1238
1239int security_inode_readlink(struct dentry *dentry)
1240{
1241 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1242 return 0;
1243 return call_int_hook(inode_readlink, 0, dentry);
1244}
1245
1246int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1247 bool rcu)
1248{
1249 if (unlikely(IS_PRIVATE(inode)))
1250 return 0;
1251 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1252}
1253
1254int security_inode_permission(struct inode *inode, int mask)
1255{
1256 if (unlikely(IS_PRIVATE(inode)))
1257 return 0;
1258 return call_int_hook(inode_permission, 0, inode, mask);
1259}
1260
1261int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1262{
1263 int ret;
1264
1265 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1266 return 0;
1267 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1268 if (ret)
1269 return ret;
1270 return evm_inode_setattr(dentry, attr);
1271}
1272EXPORT_SYMBOL_GPL(security_inode_setattr);
1273
1274int security_inode_getattr(const struct path *path)
1275{
1276 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1277 return 0;
1278 return call_int_hook(inode_getattr, 0, path);
1279}
1280
1281int security_inode_setxattr(struct dentry *dentry, const char *name,
1282 const void *value, size_t size, int flags)
1283{
1284 int ret;
1285
1286 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1287 return 0;
1288 /*
1289 * SELinux and Smack integrate the cap call,
1290 * so assume that all LSMs supplying this call do so.
1291 */
1292 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1293 flags);
1294
1295 if (ret == 1)
1296 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1297 if (ret)
1298 return ret;
1299 ret = ima_inode_setxattr(dentry, name, value, size);
1300 if (ret)
1301 return ret;
1302 return evm_inode_setxattr(dentry, name, value, size);
1303}
1304
1305void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1306 const void *value, size_t size, int flags)
1307{
1308 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1309 return;
1310 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1311 evm_inode_post_setxattr(dentry, name, value, size);
1312}
1313
1314int security_inode_getxattr(struct dentry *dentry, const char *name)
1315{
1316 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1317 return 0;
1318 return call_int_hook(inode_getxattr, 0, dentry, name);
1319}
1320
1321int security_inode_listxattr(struct dentry *dentry)
1322{
1323 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1324 return 0;
1325 return call_int_hook(inode_listxattr, 0, dentry);
1326}
1327
1328int security_inode_removexattr(struct dentry *dentry, const char *name)
1329{
1330 int ret;
1331
1332 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1333 return 0;
1334 /*
1335 * SELinux and Smack integrate the cap call,
1336 * so assume that all LSMs supplying this call do so.
1337 */
1338 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1339 if (ret == 1)
1340 ret = cap_inode_removexattr(dentry, name);
1341 if (ret)
1342 return ret;
1343 ret = ima_inode_removexattr(dentry, name);
1344 if (ret)
1345 return ret;
1346 return evm_inode_removexattr(dentry, name);
1347}
1348
1349int security_inode_need_killpriv(struct dentry *dentry)
1350{
1351 return call_int_hook(inode_need_killpriv, 0, dentry);
1352}
1353
1354int security_inode_killpriv(struct dentry *dentry)
1355{
1356 return call_int_hook(inode_killpriv, 0, dentry);
1357}
1358
1359int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1360{
1361 struct security_hook_list *hp;
1362 int rc;
1363
1364 if (unlikely(IS_PRIVATE(inode)))
1365 return LSM_RET_DEFAULT(inode_getsecurity);
1366 /*
1367 * Only one module will provide an attribute with a given name.
1368 */
1369 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1370 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1371 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1372 return rc;
1373 }
1374 return LSM_RET_DEFAULT(inode_getsecurity);
1375}
1376
1377int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1378{
1379 struct security_hook_list *hp;
1380 int rc;
1381
1382 if (unlikely(IS_PRIVATE(inode)))
1383 return LSM_RET_DEFAULT(inode_setsecurity);
1384 /*
1385 * Only one module will provide an attribute with a given name.
1386 */
1387 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1388 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1389 flags);
1390 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1391 return rc;
1392 }
1393 return LSM_RET_DEFAULT(inode_setsecurity);
1394}
1395
1396int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1397{
1398 if (unlikely(IS_PRIVATE(inode)))
1399 return 0;
1400 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1401}
1402EXPORT_SYMBOL(security_inode_listsecurity);
1403
1404void security_inode_getsecid(struct inode *inode, u32 *secid)
1405{
1406 call_void_hook(inode_getsecid, inode, secid);
1407}
1408
1409int security_inode_copy_up(struct dentry *src, struct cred **new)
1410{
1411 return call_int_hook(inode_copy_up, 0, src, new);
1412}
1413EXPORT_SYMBOL(security_inode_copy_up);
1414
1415int security_inode_copy_up_xattr(const char *name)
1416{
1417 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1418}
1419EXPORT_SYMBOL(security_inode_copy_up_xattr);
1420
1421int security_kernfs_init_security(struct kernfs_node *kn_dir,
1422 struct kernfs_node *kn)
1423{
1424 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1425}
1426
1427int security_file_permission(struct file *file, int mask)
1428{
1429 int ret;
1430
1431 ret = call_int_hook(file_permission, 0, file, mask);
1432 if (ret)
1433 return ret;
1434
1435 return fsnotify_perm(file, mask);
1436}
1437
1438int security_file_alloc(struct file *file)
1439{
1440 int rc = lsm_file_alloc(file);
1441
1442 if (rc)
1443 return rc;
1444 rc = call_int_hook(file_alloc_security, 0, file);
1445 if (unlikely(rc))
1446 security_file_free(file);
1447 return rc;
1448}
1449
1450void security_file_free(struct file *file)
1451{
1452 void *blob;
1453
1454 call_void_hook(file_free_security, file);
1455
1456 blob = file->f_security;
1457 if (blob) {
1458 file->f_security = NULL;
1459 kmem_cache_free(lsm_file_cache, blob);
1460 }
1461}
1462
1463int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1464{
1465 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1466}
1467EXPORT_SYMBOL_GPL(security_file_ioctl);
1468
1469static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1470{
1471 /*
1472 * Does we have PROT_READ and does the application expect
1473 * it to imply PROT_EXEC? If not, nothing to talk about...
1474 */
1475 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1476 return prot;
1477 if (!(current->personality & READ_IMPLIES_EXEC))
1478 return prot;
1479 /*
1480 * if that's an anonymous mapping, let it.
1481 */
1482 if (!file)
1483 return prot | PROT_EXEC;
1484 /*
1485 * ditto if it's not on noexec mount, except that on !MMU we need
1486 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1487 */
1488 if (!path_noexec(&file->f_path)) {
1489#ifndef CONFIG_MMU
1490 if (file->f_op->mmap_capabilities) {
1491 unsigned caps = file->f_op->mmap_capabilities(file);
1492 if (!(caps & NOMMU_MAP_EXEC))
1493 return prot;
1494 }
1495#endif
1496 return prot | PROT_EXEC;
1497 }
1498 /* anything on noexec mount won't get PROT_EXEC */
1499 return prot;
1500}
1501
1502int security_mmap_file(struct file *file, unsigned long prot,
1503 unsigned long flags)
1504{
1505 int ret;
1506 ret = call_int_hook(mmap_file, 0, file, prot,
1507 mmap_prot(file, prot), flags);
1508 if (ret)
1509 return ret;
1510 return ima_file_mmap(file, prot);
1511}
1512
1513int security_mmap_addr(unsigned long addr)
1514{
1515 return call_int_hook(mmap_addr, 0, addr);
1516}
1517
1518int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1519 unsigned long prot)
1520{
1521 int ret;
1522
1523 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1524 if (ret)
1525 return ret;
1526 return ima_file_mprotect(vma, prot);
1527}
1528
1529int security_file_lock(struct file *file, unsigned int cmd)
1530{
1531 return call_int_hook(file_lock, 0, file, cmd);
1532}
1533
1534int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1535{
1536 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1537}
1538
1539void security_file_set_fowner(struct file *file)
1540{
1541 call_void_hook(file_set_fowner, file);
1542}
1543
1544int security_file_send_sigiotask(struct task_struct *tsk,
1545 struct fown_struct *fown, int sig)
1546{
1547 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1548}
1549
1550int security_file_receive(struct file *file)
1551{
1552 return call_int_hook(file_receive, 0, file);
1553}
1554
1555int security_file_open(struct file *file)
1556{
1557 int ret;
1558
1559 ret = call_int_hook(file_open, 0, file);
1560 if (ret)
1561 return ret;
1562
1563 return fsnotify_perm(file, MAY_OPEN);
1564}
1565
1566int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1567{
1568 int rc = lsm_task_alloc(task);
1569
1570 if (rc)
1571 return rc;
1572 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1573 if (unlikely(rc))
1574 security_task_free(task);
1575 return rc;
1576}
1577
1578void security_task_free(struct task_struct *task)
1579{
1580 call_void_hook(task_free, task);
1581
1582 kfree(task->security);
1583 task->security = NULL;
1584}
1585
1586int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1587{
1588 int rc = lsm_cred_alloc(cred, gfp);
1589
1590 if (rc)
1591 return rc;
1592
1593 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1594 if (unlikely(rc))
1595 security_cred_free(cred);
1596 return rc;
1597}
1598
1599void security_cred_free(struct cred *cred)
1600{
1601 /*
1602 * There is a failure case in prepare_creds() that
1603 * may result in a call here with ->security being NULL.
1604 */
1605 if (unlikely(cred->security == NULL))
1606 return;
1607
1608 call_void_hook(cred_free, cred);
1609
1610 kfree(cred->security);
1611 cred->security = NULL;
1612}
1613
1614int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1615{
1616 int rc = lsm_cred_alloc(new, gfp);
1617
1618 if (rc)
1619 return rc;
1620
1621 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1622 if (unlikely(rc))
1623 security_cred_free(new);
1624 return rc;
1625}
1626
1627void security_transfer_creds(struct cred *new, const struct cred *old)
1628{
1629 call_void_hook(cred_transfer, new, old);
1630}
1631
1632void security_cred_getsecid(const struct cred *c, u32 *secid)
1633{
1634 *secid = 0;
1635 call_void_hook(cred_getsecid, c, secid);
1636}
1637EXPORT_SYMBOL(security_cred_getsecid);
1638
1639int security_kernel_act_as(struct cred *new, u32 secid)
1640{
1641 return call_int_hook(kernel_act_as, 0, new, secid);
1642}
1643
1644int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1645{
1646 return call_int_hook(kernel_create_files_as, 0, new, inode);
1647}
1648
1649int security_kernel_module_request(char *kmod_name)
1650{
1651 int ret;
1652
1653 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1654 if (ret)
1655 return ret;
1656 return integrity_kernel_module_request(kmod_name);
1657}
1658
1659int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1660{
1661 int ret;
1662
1663 ret = call_int_hook(kernel_read_file, 0, file, id);
1664 if (ret)
1665 return ret;
1666 return ima_read_file(file, id);
1667}
1668EXPORT_SYMBOL_GPL(security_kernel_read_file);
1669
1670int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1671 enum kernel_read_file_id id)
1672{
1673 int ret;
1674
1675 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1676 if (ret)
1677 return ret;
1678 return ima_post_read_file(file, buf, size, id);
1679}
1680EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1681
1682int security_kernel_load_data(enum kernel_load_data_id id)
1683{
1684 int ret;
1685
1686 ret = call_int_hook(kernel_load_data, 0, id);
1687 if (ret)
1688 return ret;
1689 return ima_load_data(id);
1690}
1691EXPORT_SYMBOL_GPL(security_kernel_load_data);
1692
1693int security_task_fix_setuid(struct cred *new, const struct cred *old,
1694 int flags)
1695{
1696 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1697}
1698
1699int security_task_fix_setgid(struct cred *new, const struct cred *old,
1700 int flags)
1701{
1702 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1703}
1704
1705int security_task_setpgid(struct task_struct *p, pid_t pgid)
1706{
1707 return call_int_hook(task_setpgid, 0, p, pgid);
1708}
1709
1710int security_task_getpgid(struct task_struct *p)
1711{
1712 return call_int_hook(task_getpgid, 0, p);
1713}
1714
1715int security_task_getsid(struct task_struct *p)
1716{
1717 return call_int_hook(task_getsid, 0, p);
1718}
1719
1720void security_task_getsecid(struct task_struct *p, u32 *secid)
1721{
1722 *secid = 0;
1723 call_void_hook(task_getsecid, p, secid);
1724}
1725EXPORT_SYMBOL(security_task_getsecid);
1726
1727int security_task_setnice(struct task_struct *p, int nice)
1728{
1729 return call_int_hook(task_setnice, 0, p, nice);
1730}
1731
1732int security_task_setioprio(struct task_struct *p, int ioprio)
1733{
1734 return call_int_hook(task_setioprio, 0, p, ioprio);
1735}
1736
1737int security_task_getioprio(struct task_struct *p)
1738{
1739 return call_int_hook(task_getioprio, 0, p);
1740}
1741
1742int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1743 unsigned int flags)
1744{
1745 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1746}
1747
1748int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1749 struct rlimit *new_rlim)
1750{
1751 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1752}
1753
1754int security_task_setscheduler(struct task_struct *p)
1755{
1756 return call_int_hook(task_setscheduler, 0, p);
1757}
1758
1759int security_task_getscheduler(struct task_struct *p)
1760{
1761 return call_int_hook(task_getscheduler, 0, p);
1762}
1763
1764int security_task_movememory(struct task_struct *p)
1765{
1766 return call_int_hook(task_movememory, 0, p);
1767}
1768
1769int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1770 int sig, const struct cred *cred)
1771{
1772 return call_int_hook(task_kill, 0, p, info, sig, cred);
1773}
1774
1775int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1776 unsigned long arg4, unsigned long arg5)
1777{
1778 int thisrc;
1779 int rc = LSM_RET_DEFAULT(task_prctl);
1780 struct security_hook_list *hp;
1781
1782 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1783 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1784 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1785 rc = thisrc;
1786 if (thisrc != 0)
1787 break;
1788 }
1789 }
1790 return rc;
1791}
1792
1793void security_task_to_inode(struct task_struct *p, struct inode *inode)
1794{
1795 call_void_hook(task_to_inode, p, inode);
1796}
1797
1798int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1799{
1800 return call_int_hook(ipc_permission, 0, ipcp, flag);
1801}
1802
1803void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1804{
1805 *secid = 0;
1806 call_void_hook(ipc_getsecid, ipcp, secid);
1807}
1808
1809int security_msg_msg_alloc(struct msg_msg *msg)
1810{
1811 int rc = lsm_msg_msg_alloc(msg);
1812
1813 if (unlikely(rc))
1814 return rc;
1815 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1816 if (unlikely(rc))
1817 security_msg_msg_free(msg);
1818 return rc;
1819}
1820
1821void security_msg_msg_free(struct msg_msg *msg)
1822{
1823 call_void_hook(msg_msg_free_security, msg);
1824 kfree(msg->security);
1825 msg->security = NULL;
1826}
1827
1828int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1829{
1830 int rc = lsm_ipc_alloc(msq);
1831
1832 if (unlikely(rc))
1833 return rc;
1834 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1835 if (unlikely(rc))
1836 security_msg_queue_free(msq);
1837 return rc;
1838}
1839
1840void security_msg_queue_free(struct kern_ipc_perm *msq)
1841{
1842 call_void_hook(msg_queue_free_security, msq);
1843 kfree(msq->security);
1844 msq->security = NULL;
1845}
1846
1847int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1848{
1849 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1850}
1851
1852int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1853{
1854 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1855}
1856
1857int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1858 struct msg_msg *msg, int msqflg)
1859{
1860 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1861}
1862
1863int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1864 struct task_struct *target, long type, int mode)
1865{
1866 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1867}
1868
1869int security_shm_alloc(struct kern_ipc_perm *shp)
1870{
1871 int rc = lsm_ipc_alloc(shp);
1872
1873 if (unlikely(rc))
1874 return rc;
1875 rc = call_int_hook(shm_alloc_security, 0, shp);
1876 if (unlikely(rc))
1877 security_shm_free(shp);
1878 return rc;
1879}
1880
1881void security_shm_free(struct kern_ipc_perm *shp)
1882{
1883 call_void_hook(shm_free_security, shp);
1884 kfree(shp->security);
1885 shp->security = NULL;
1886}
1887
1888int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1889{
1890 return call_int_hook(shm_associate, 0, shp, shmflg);
1891}
1892
1893int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1894{
1895 return call_int_hook(shm_shmctl, 0, shp, cmd);
1896}
1897
1898int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1899{
1900 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1901}
1902
1903int security_sem_alloc(struct kern_ipc_perm *sma)
1904{
1905 int rc = lsm_ipc_alloc(sma);
1906
1907 if (unlikely(rc))
1908 return rc;
1909 rc = call_int_hook(sem_alloc_security, 0, sma);
1910 if (unlikely(rc))
1911 security_sem_free(sma);
1912 return rc;
1913}
1914
1915void security_sem_free(struct kern_ipc_perm *sma)
1916{
1917 call_void_hook(sem_free_security, sma);
1918 kfree(sma->security);
1919 sma->security = NULL;
1920}
1921
1922int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1923{
1924 return call_int_hook(sem_associate, 0, sma, semflg);
1925}
1926
1927int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1928{
1929 return call_int_hook(sem_semctl, 0, sma, cmd);
1930}
1931
1932int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1933 unsigned nsops, int alter)
1934{
1935 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1936}
1937
1938void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1939{
1940 if (unlikely(inode && IS_PRIVATE(inode)))
1941 return;
1942 call_void_hook(d_instantiate, dentry, inode);
1943}
1944EXPORT_SYMBOL(security_d_instantiate);
1945
1946int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1947 char **value)
1948{
1949 struct security_hook_list *hp;
1950
1951 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1952 if (lsm != NULL && strcmp(lsm, hp->lsm))
1953 continue;
1954 return hp->hook.getprocattr(p, name, value);
1955 }
1956 return LSM_RET_DEFAULT(getprocattr);
1957}
1958
1959int security_setprocattr(const char *lsm, const char *name, void *value,
1960 size_t size)
1961{
1962 struct security_hook_list *hp;
1963
1964 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1965 if (lsm != NULL && strcmp(lsm, hp->lsm))
1966 continue;
1967 return hp->hook.setprocattr(name, value, size);
1968 }
1969 return LSM_RET_DEFAULT(setprocattr);
1970}
1971
1972int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1973{
1974 return call_int_hook(netlink_send, 0, sk, skb);
1975}
1976
1977int security_ismaclabel(const char *name)
1978{
1979 return call_int_hook(ismaclabel, 0, name);
1980}
1981EXPORT_SYMBOL(security_ismaclabel);
1982
1983int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1984{
1985 struct security_hook_list *hp;
1986 int rc;
1987
1988 /*
1989 * Currently, only one LSM can implement secid_to_secctx (i.e this
1990 * LSM hook is not "stackable").
1991 */
1992 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
1993 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
1994 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
1995 return rc;
1996 }
1997
1998 return LSM_RET_DEFAULT(secid_to_secctx);
1999}
2000EXPORT_SYMBOL(security_secid_to_secctx);
2001
2002int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2003{
2004 *secid = 0;
2005 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2006}
2007EXPORT_SYMBOL(security_secctx_to_secid);
2008
2009void security_release_secctx(char *secdata, u32 seclen)
2010{
2011 call_void_hook(release_secctx, secdata, seclen);
2012}
2013EXPORT_SYMBOL(security_release_secctx);
2014
2015void security_inode_invalidate_secctx(struct inode *inode)
2016{
2017 call_void_hook(inode_invalidate_secctx, inode);
2018}
2019EXPORT_SYMBOL(security_inode_invalidate_secctx);
2020
2021int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2022{
2023 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2024}
2025EXPORT_SYMBOL(security_inode_notifysecctx);
2026
2027int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2028{
2029 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2030}
2031EXPORT_SYMBOL(security_inode_setsecctx);
2032
2033int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2034{
2035 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2036}
2037EXPORT_SYMBOL(security_inode_getsecctx);
2038
2039#ifdef CONFIG_WATCH_QUEUE
2040int security_post_notification(const struct cred *w_cred,
2041 const struct cred *cred,
2042 struct watch_notification *n)
2043{
2044 return call_int_hook(post_notification, 0, w_cred, cred, n);
2045}
2046#endif /* CONFIG_WATCH_QUEUE */
2047
2048#ifdef CONFIG_KEY_NOTIFICATIONS
2049int security_watch_key(struct key *key)
2050{
2051 return call_int_hook(watch_key, 0, key);
2052}
2053#endif
2054
2055#ifdef CONFIG_SECURITY_NETWORK
2056
2057int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2058{
2059 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2060}
2061EXPORT_SYMBOL(security_unix_stream_connect);
2062
2063int security_unix_may_send(struct socket *sock, struct socket *other)
2064{
2065 return call_int_hook(unix_may_send, 0, sock, other);
2066}
2067EXPORT_SYMBOL(security_unix_may_send);
2068
2069int security_socket_create(int family, int type, int protocol, int kern)
2070{
2071 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2072}
2073
2074int security_socket_post_create(struct socket *sock, int family,
2075 int type, int protocol, int kern)
2076{
2077 return call_int_hook(socket_post_create, 0, sock, family, type,
2078 protocol, kern);
2079}
2080
2081int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2082{
2083 return call_int_hook(socket_socketpair, 0, socka, sockb);
2084}
2085EXPORT_SYMBOL(security_socket_socketpair);
2086
2087int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2088{
2089 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2090}
2091
2092int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2093{
2094 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2095}
2096
2097int security_socket_listen(struct socket *sock, int backlog)
2098{
2099 return call_int_hook(socket_listen, 0, sock, backlog);
2100}
2101
2102int security_socket_accept(struct socket *sock, struct socket *newsock)
2103{
2104 return call_int_hook(socket_accept, 0, sock, newsock);
2105}
2106
2107int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2108{
2109 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2110}
2111
2112int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2113 int size, int flags)
2114{
2115 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2116}
2117
2118int security_socket_getsockname(struct socket *sock)
2119{
2120 return call_int_hook(socket_getsockname, 0, sock);
2121}
2122
2123int security_socket_getpeername(struct socket *sock)
2124{
2125 return call_int_hook(socket_getpeername, 0, sock);
2126}
2127
2128int security_socket_getsockopt(struct socket *sock, int level, int optname)
2129{
2130 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2131}
2132
2133int security_socket_setsockopt(struct socket *sock, int level, int optname)
2134{
2135 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2136}
2137
2138int security_socket_shutdown(struct socket *sock, int how)
2139{
2140 return call_int_hook(socket_shutdown, 0, sock, how);
2141}
2142
2143int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2144{
2145 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2146}
2147EXPORT_SYMBOL(security_sock_rcv_skb);
2148
2149int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2150 int __user *optlen, unsigned len)
2151{
2152 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2153 optval, optlen, len);
2154}
2155
2156int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2157{
2158 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2159 skb, secid);
2160}
2161EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2162
2163int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2164{
2165 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2166}
2167
2168void security_sk_free(struct sock *sk)
2169{
2170 call_void_hook(sk_free_security, sk);
2171}
2172
2173void security_sk_clone(const struct sock *sk, struct sock *newsk)
2174{
2175 call_void_hook(sk_clone_security, sk, newsk);
2176}
2177EXPORT_SYMBOL(security_sk_clone);
2178
2179void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2180{
2181 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2182}
2183EXPORT_SYMBOL(security_sk_classify_flow);
2184
2185void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2186{
2187 call_void_hook(req_classify_flow, req, fl);
2188}
2189EXPORT_SYMBOL(security_req_classify_flow);
2190
2191void security_sock_graft(struct sock *sk, struct socket *parent)
2192{
2193 call_void_hook(sock_graft, sk, parent);
2194}
2195EXPORT_SYMBOL(security_sock_graft);
2196
2197int security_inet_conn_request(struct sock *sk,
2198 struct sk_buff *skb, struct request_sock *req)
2199{
2200 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2201}
2202EXPORT_SYMBOL(security_inet_conn_request);
2203
2204void security_inet_csk_clone(struct sock *newsk,
2205 const struct request_sock *req)
2206{
2207 call_void_hook(inet_csk_clone, newsk, req);
2208}
2209
2210void security_inet_conn_established(struct sock *sk,
2211 struct sk_buff *skb)
2212{
2213 call_void_hook(inet_conn_established, sk, skb);
2214}
2215EXPORT_SYMBOL(security_inet_conn_established);
2216
2217int security_secmark_relabel_packet(u32 secid)
2218{
2219 return call_int_hook(secmark_relabel_packet, 0, secid);
2220}
2221EXPORT_SYMBOL(security_secmark_relabel_packet);
2222
2223void security_secmark_refcount_inc(void)
2224{
2225 call_void_hook(secmark_refcount_inc);
2226}
2227EXPORT_SYMBOL(security_secmark_refcount_inc);
2228
2229void security_secmark_refcount_dec(void)
2230{
2231 call_void_hook(secmark_refcount_dec);
2232}
2233EXPORT_SYMBOL(security_secmark_refcount_dec);
2234
2235int security_tun_dev_alloc_security(void **security)
2236{
2237 return call_int_hook(tun_dev_alloc_security, 0, security);
2238}
2239EXPORT_SYMBOL(security_tun_dev_alloc_security);
2240
2241void security_tun_dev_free_security(void *security)
2242{
2243 call_void_hook(tun_dev_free_security, security);
2244}
2245EXPORT_SYMBOL(security_tun_dev_free_security);
2246
2247int security_tun_dev_create(void)
2248{
2249 return call_int_hook(tun_dev_create, 0);
2250}
2251EXPORT_SYMBOL(security_tun_dev_create);
2252
2253int security_tun_dev_attach_queue(void *security)
2254{
2255 return call_int_hook(tun_dev_attach_queue, 0, security);
2256}
2257EXPORT_SYMBOL(security_tun_dev_attach_queue);
2258
2259int security_tun_dev_attach(struct sock *sk, void *security)
2260{
2261 return call_int_hook(tun_dev_attach, 0, sk, security);
2262}
2263EXPORT_SYMBOL(security_tun_dev_attach);
2264
2265int security_tun_dev_open(void *security)
2266{
2267 return call_int_hook(tun_dev_open, 0, security);
2268}
2269EXPORT_SYMBOL(security_tun_dev_open);
2270
2271int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2272{
2273 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2274}
2275EXPORT_SYMBOL(security_sctp_assoc_request);
2276
2277int security_sctp_bind_connect(struct sock *sk, int optname,
2278 struct sockaddr *address, int addrlen)
2279{
2280 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2281 address, addrlen);
2282}
2283EXPORT_SYMBOL(security_sctp_bind_connect);
2284
2285void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2286 struct sock *newsk)
2287{
2288 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2289}
2290EXPORT_SYMBOL(security_sctp_sk_clone);
2291
2292#endif /* CONFIG_SECURITY_NETWORK */
2293
2294#ifdef CONFIG_SECURITY_INFINIBAND
2295
2296int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2297{
2298 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2299}
2300EXPORT_SYMBOL(security_ib_pkey_access);
2301
2302int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2303{
2304 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2305}
2306EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2307
2308int security_ib_alloc_security(void **sec)
2309{
2310 return call_int_hook(ib_alloc_security, 0, sec);
2311}
2312EXPORT_SYMBOL(security_ib_alloc_security);
2313
2314void security_ib_free_security(void *sec)
2315{
2316 call_void_hook(ib_free_security, sec);
2317}
2318EXPORT_SYMBOL(security_ib_free_security);
2319#endif /* CONFIG_SECURITY_INFINIBAND */
2320
2321#ifdef CONFIG_SECURITY_NETWORK_XFRM
2322
2323int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2324 struct xfrm_user_sec_ctx *sec_ctx,
2325 gfp_t gfp)
2326{
2327 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2328}
2329EXPORT_SYMBOL(security_xfrm_policy_alloc);
2330
2331int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2332 struct xfrm_sec_ctx **new_ctxp)
2333{
2334 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2335}
2336
2337void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2338{
2339 call_void_hook(xfrm_policy_free_security, ctx);
2340}
2341EXPORT_SYMBOL(security_xfrm_policy_free);
2342
2343int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2344{
2345 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2346}
2347
2348int security_xfrm_state_alloc(struct xfrm_state *x,
2349 struct xfrm_user_sec_ctx *sec_ctx)
2350{
2351 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2352}
2353EXPORT_SYMBOL(security_xfrm_state_alloc);
2354
2355int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2356 struct xfrm_sec_ctx *polsec, u32 secid)
2357{
2358 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2359}
2360
2361int security_xfrm_state_delete(struct xfrm_state *x)
2362{
2363 return call_int_hook(xfrm_state_delete_security, 0, x);
2364}
2365EXPORT_SYMBOL(security_xfrm_state_delete);
2366
2367void security_xfrm_state_free(struct xfrm_state *x)
2368{
2369 call_void_hook(xfrm_state_free_security, x);
2370}
2371
2372int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2373{
2374 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2375}
2376
2377int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2378 struct xfrm_policy *xp,
2379 const struct flowi *fl)
2380{
2381 struct security_hook_list *hp;
2382 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2383
2384 /*
2385 * Since this function is expected to return 0 or 1, the judgment
2386 * becomes difficult if multiple LSMs supply this call. Fortunately,
2387 * we can use the first LSM's judgment because currently only SELinux
2388 * supplies this call.
2389 *
2390 * For speed optimization, we explicitly break the loop rather than
2391 * using the macro
2392 */
2393 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2394 list) {
2395 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2396 break;
2397 }
2398 return rc;
2399}
2400
2401int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2402{
2403 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2404}
2405
2406void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2407{
2408 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2409 0);
2410
2411 BUG_ON(rc);
2412}
2413EXPORT_SYMBOL(security_skb_classify_flow);
2414
2415#endif /* CONFIG_SECURITY_NETWORK_XFRM */
2416
2417#ifdef CONFIG_KEYS
2418
2419int security_key_alloc(struct key *key, const struct cred *cred,
2420 unsigned long flags)
2421{
2422 return call_int_hook(key_alloc, 0, key, cred, flags);
2423}
2424
2425void security_key_free(struct key *key)
2426{
2427 call_void_hook(key_free, key);
2428}
2429
2430int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2431 enum key_need_perm need_perm)
2432{
2433 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2434}
2435
2436int security_key_getsecurity(struct key *key, char **_buffer)
2437{
2438 *_buffer = NULL;
2439 return call_int_hook(key_getsecurity, 0, key, _buffer);
2440}
2441
2442#endif /* CONFIG_KEYS */
2443
2444#ifdef CONFIG_AUDIT
2445
2446int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2447{
2448 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2449}
2450
2451int security_audit_rule_known(struct audit_krule *krule)
2452{
2453 return call_int_hook(audit_rule_known, 0, krule);
2454}
2455
2456void security_audit_rule_free(void *lsmrule)
2457{
2458 call_void_hook(audit_rule_free, lsmrule);
2459}
2460
2461int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2462{
2463 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2464}
2465#endif /* CONFIG_AUDIT */
2466
2467#ifdef CONFIG_BPF_SYSCALL
2468int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2469{
2470 return call_int_hook(bpf, 0, cmd, attr, size);
2471}
2472int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2473{
2474 return call_int_hook(bpf_map, 0, map, fmode);
2475}
2476int security_bpf_prog(struct bpf_prog *prog)
2477{
2478 return call_int_hook(bpf_prog, 0, prog);
2479}
2480int security_bpf_map_alloc(struct bpf_map *map)
2481{
2482 return call_int_hook(bpf_map_alloc_security, 0, map);
2483}
2484int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2485{
2486 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2487}
2488void security_bpf_map_free(struct bpf_map *map)
2489{
2490 call_void_hook(bpf_map_free_security, map);
2491}
2492void security_bpf_prog_free(struct bpf_prog_aux *aux)
2493{
2494 call_void_hook(bpf_prog_free_security, aux);
2495}
2496#endif /* CONFIG_BPF_SYSCALL */
2497
2498int security_locked_down(enum lockdown_reason what)
2499{
2500 return call_int_hook(locked_down, 0, what);
2501}
2502EXPORT_SYMBOL(security_locked_down);
2503
2504#ifdef CONFIG_PERF_EVENTS
2505int security_perf_event_open(struct perf_event_attr *attr, int type)
2506{
2507 return call_int_hook(perf_event_open, 0, attr, type);
2508}
2509
2510int security_perf_event_alloc(struct perf_event *event)
2511{
2512 return call_int_hook(perf_event_alloc, 0, event);
2513}
2514
2515void security_perf_event_free(struct perf_event *event)
2516{
2517 call_void_hook(perf_event_free, event);
2518}
2519
2520int security_perf_event_read(struct perf_event *event)
2521{
2522 return call_int_hook(perf_event_read, 0, event);
2523}
2524
2525int security_perf_event_write(struct perf_event *event)
2526{
2527 return call_int_hook(perf_event_write, 0, event);
2528}
2529#endif /* CONFIG_PERF_EVENTS */