Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/bpf.h>
95#include <linux/bpf_trace.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <net/busy_poll.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/dst_metadata.h>
103#include <net/pkt_sched.h>
104#include <net/pkt_cls.h>
105#include <net/checksum.h>
106#include <net/xfrm.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/module.h>
110#include <linux/netpoll.h>
111#include <linux/rcupdate.h>
112#include <linux/delay.h>
113#include <net/iw_handler.h>
114#include <asm/current.h>
115#include <linux/audit.h>
116#include <linux/dmaengine.h>
117#include <linux/err.h>
118#include <linux/ctype.h>
119#include <linux/if_arp.h>
120#include <linux/if_vlan.h>
121#include <linux/ip.h>
122#include <net/ip.h>
123#include <net/mpls.h>
124#include <linux/ipv6.h>
125#include <linux/in.h>
126#include <linux/jhash.h>
127#include <linux/random.h>
128#include <trace/events/napi.h>
129#include <trace/events/net.h>
130#include <trace/events/skb.h>
131#include <linux/inetdevice.h>
132#include <linux/cpu_rmap.h>
133#include <linux/static_key.h>
134#include <linux/hashtable.h>
135#include <linux/vmalloc.h>
136#include <linux/if_macvlan.h>
137#include <linux/errqueue.h>
138#include <linux/hrtimer.h>
139#include <linux/netfilter_ingress.h>
140#include <linux/crash_dump.h>
141#include <linux/sctp.h>
142#include <net/udp_tunnel.h>
143#include <linux/net_namespace.h>
144#include <linux/indirect_call_wrapper.h>
145#include <net/devlink.h>
146
147#include "net-sysfs.h"
148
149#define MAX_GRO_SKBS 8
150
151/* This should be increased if a protocol with a bigger head is added. */
152#define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154static DEFINE_SPINLOCK(ptype_lock);
155static DEFINE_SPINLOCK(offload_lock);
156struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157struct list_head ptype_all __read_mostly; /* Taps */
158static struct list_head offload_base __read_mostly;
159
160static int netif_rx_internal(struct sk_buff *skb);
161static int call_netdevice_notifiers_info(unsigned long val,
162 struct netdev_notifier_info *info);
163static int call_netdevice_notifiers_extack(unsigned long val,
164 struct net_device *dev,
165 struct netlink_ext_ack *extack);
166static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168/*
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170 * semaphore.
171 *
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
187DEFINE_RWLOCK(dev_base_lock);
188EXPORT_SYMBOL(dev_base_lock);
189
190static DEFINE_MUTEX(ifalias_mutex);
191
192/* protects napi_hash addition/deletion and napi_gen_id */
193static DEFINE_SPINLOCK(napi_hash_lock);
194
195static unsigned int napi_gen_id = NR_CPUS;
196static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198static DECLARE_RWSEM(devnet_rename_sem);
199
200static inline void dev_base_seq_inc(struct net *net)
201{
202 while (++net->dev_base_seq == 0)
203 ;
204}
205
206static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207{
208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211}
212
213static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214{
215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216}
217
218static inline void rps_lock(struct softnet_data *sd)
219{
220#ifdef CONFIG_RPS
221 spin_lock(&sd->input_pkt_queue.lock);
222#endif
223}
224
225static inline void rps_unlock(struct softnet_data *sd)
226{
227#ifdef CONFIG_RPS
228 spin_unlock(&sd->input_pkt_queue.lock);
229#endif
230}
231
232static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
233 const char *name)
234{
235 struct netdev_name_node *name_node;
236
237 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
238 if (!name_node)
239 return NULL;
240 INIT_HLIST_NODE(&name_node->hlist);
241 name_node->dev = dev;
242 name_node->name = name;
243 return name_node;
244}
245
246static struct netdev_name_node *
247netdev_name_node_head_alloc(struct net_device *dev)
248{
249 struct netdev_name_node *name_node;
250
251 name_node = netdev_name_node_alloc(dev, dev->name);
252 if (!name_node)
253 return NULL;
254 INIT_LIST_HEAD(&name_node->list);
255 return name_node;
256}
257
258static void netdev_name_node_free(struct netdev_name_node *name_node)
259{
260 kfree(name_node);
261}
262
263static void netdev_name_node_add(struct net *net,
264 struct netdev_name_node *name_node)
265{
266 hlist_add_head_rcu(&name_node->hlist,
267 dev_name_hash(net, name_node->name));
268}
269
270static void netdev_name_node_del(struct netdev_name_node *name_node)
271{
272 hlist_del_rcu(&name_node->hlist);
273}
274
275static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
276 const char *name)
277{
278 struct hlist_head *head = dev_name_hash(net, name);
279 struct netdev_name_node *name_node;
280
281 hlist_for_each_entry(name_node, head, hlist)
282 if (!strcmp(name_node->name, name))
283 return name_node;
284 return NULL;
285}
286
287static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
288 const char *name)
289{
290 struct hlist_head *head = dev_name_hash(net, name);
291 struct netdev_name_node *name_node;
292
293 hlist_for_each_entry_rcu(name_node, head, hlist)
294 if (!strcmp(name_node->name, name))
295 return name_node;
296 return NULL;
297}
298
299int netdev_name_node_alt_create(struct net_device *dev, const char *name)
300{
301 struct netdev_name_node *name_node;
302 struct net *net = dev_net(dev);
303
304 name_node = netdev_name_node_lookup(net, name);
305 if (name_node)
306 return -EEXIST;
307 name_node = netdev_name_node_alloc(dev, name);
308 if (!name_node)
309 return -ENOMEM;
310 netdev_name_node_add(net, name_node);
311 /* The node that holds dev->name acts as a head of per-device list. */
312 list_add_tail(&name_node->list, &dev->name_node->list);
313
314 return 0;
315}
316EXPORT_SYMBOL(netdev_name_node_alt_create);
317
318static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
319{
320 list_del(&name_node->list);
321 netdev_name_node_del(name_node);
322 kfree(name_node->name);
323 netdev_name_node_free(name_node);
324}
325
326int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
327{
328 struct netdev_name_node *name_node;
329 struct net *net = dev_net(dev);
330
331 name_node = netdev_name_node_lookup(net, name);
332 if (!name_node)
333 return -ENOENT;
334 /* lookup might have found our primary name or a name belonging
335 * to another device.
336 */
337 if (name_node == dev->name_node || name_node->dev != dev)
338 return -EINVAL;
339
340 __netdev_name_node_alt_destroy(name_node);
341
342 return 0;
343}
344EXPORT_SYMBOL(netdev_name_node_alt_destroy);
345
346static void netdev_name_node_alt_flush(struct net_device *dev)
347{
348 struct netdev_name_node *name_node, *tmp;
349
350 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
351 __netdev_name_node_alt_destroy(name_node);
352}
353
354/* Device list insertion */
355static void list_netdevice(struct net_device *dev)
356{
357 struct net *net = dev_net(dev);
358
359 ASSERT_RTNL();
360
361 write_lock_bh(&dev_base_lock);
362 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
363 netdev_name_node_add(net, dev->name_node);
364 hlist_add_head_rcu(&dev->index_hlist,
365 dev_index_hash(net, dev->ifindex));
366 write_unlock_bh(&dev_base_lock);
367
368 dev_base_seq_inc(net);
369}
370
371/* Device list removal
372 * caller must respect a RCU grace period before freeing/reusing dev
373 */
374static void unlist_netdevice(struct net_device *dev)
375{
376 ASSERT_RTNL();
377
378 /* Unlink dev from the device chain */
379 write_lock_bh(&dev_base_lock);
380 list_del_rcu(&dev->dev_list);
381 netdev_name_node_del(dev->name_node);
382 hlist_del_rcu(&dev->index_hlist);
383 write_unlock_bh(&dev_base_lock);
384
385 dev_base_seq_inc(dev_net(dev));
386}
387
388/*
389 * Our notifier list
390 */
391
392static RAW_NOTIFIER_HEAD(netdev_chain);
393
394/*
395 * Device drivers call our routines to queue packets here. We empty the
396 * queue in the local softnet handler.
397 */
398
399DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
400EXPORT_PER_CPU_SYMBOL(softnet_data);
401
402#ifdef CONFIG_LOCKDEP
403/*
404 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
405 * according to dev->type
406 */
407static const unsigned short netdev_lock_type[] = {
408 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
409 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
410 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
411 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
412 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
413 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
414 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
415 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
416 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
417 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
418 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
419 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
420 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
421 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
422 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
423
424static const char *const netdev_lock_name[] = {
425 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
426 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
427 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
428 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
429 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
430 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
431 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
432 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
433 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
434 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
435 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
436 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
437 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
438 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
439 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
440
441static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
442static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
443
444static inline unsigned short netdev_lock_pos(unsigned short dev_type)
445{
446 int i;
447
448 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
449 if (netdev_lock_type[i] == dev_type)
450 return i;
451 /* the last key is used by default */
452 return ARRAY_SIZE(netdev_lock_type) - 1;
453}
454
455static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
456 unsigned short dev_type)
457{
458 int i;
459
460 i = netdev_lock_pos(dev_type);
461 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
462 netdev_lock_name[i]);
463}
464
465static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
466{
467 int i;
468
469 i = netdev_lock_pos(dev->type);
470 lockdep_set_class_and_name(&dev->addr_list_lock,
471 &netdev_addr_lock_key[i],
472 netdev_lock_name[i]);
473}
474#else
475static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
476 unsigned short dev_type)
477{
478}
479
480static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
481{
482}
483#endif
484
485/*******************************************************************************
486 *
487 * Protocol management and registration routines
488 *
489 *******************************************************************************/
490
491
492/*
493 * Add a protocol ID to the list. Now that the input handler is
494 * smarter we can dispense with all the messy stuff that used to be
495 * here.
496 *
497 * BEWARE!!! Protocol handlers, mangling input packets,
498 * MUST BE last in hash buckets and checking protocol handlers
499 * MUST start from promiscuous ptype_all chain in net_bh.
500 * It is true now, do not change it.
501 * Explanation follows: if protocol handler, mangling packet, will
502 * be the first on list, it is not able to sense, that packet
503 * is cloned and should be copied-on-write, so that it will
504 * change it and subsequent readers will get broken packet.
505 * --ANK (980803)
506 */
507
508static inline struct list_head *ptype_head(const struct packet_type *pt)
509{
510 if (pt->type == htons(ETH_P_ALL))
511 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
512 else
513 return pt->dev ? &pt->dev->ptype_specific :
514 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
515}
516
517/**
518 * dev_add_pack - add packet handler
519 * @pt: packet type declaration
520 *
521 * Add a protocol handler to the networking stack. The passed &packet_type
522 * is linked into kernel lists and may not be freed until it has been
523 * removed from the kernel lists.
524 *
525 * This call does not sleep therefore it can not
526 * guarantee all CPU's that are in middle of receiving packets
527 * will see the new packet type (until the next received packet).
528 */
529
530void dev_add_pack(struct packet_type *pt)
531{
532 struct list_head *head = ptype_head(pt);
533
534 spin_lock(&ptype_lock);
535 list_add_rcu(&pt->list, head);
536 spin_unlock(&ptype_lock);
537}
538EXPORT_SYMBOL(dev_add_pack);
539
540/**
541 * __dev_remove_pack - remove packet handler
542 * @pt: packet type declaration
543 *
544 * Remove a protocol handler that was previously added to the kernel
545 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
546 * from the kernel lists and can be freed or reused once this function
547 * returns.
548 *
549 * The packet type might still be in use by receivers
550 * and must not be freed until after all the CPU's have gone
551 * through a quiescent state.
552 */
553void __dev_remove_pack(struct packet_type *pt)
554{
555 struct list_head *head = ptype_head(pt);
556 struct packet_type *pt1;
557
558 spin_lock(&ptype_lock);
559
560 list_for_each_entry(pt1, head, list) {
561 if (pt == pt1) {
562 list_del_rcu(&pt->list);
563 goto out;
564 }
565 }
566
567 pr_warn("dev_remove_pack: %p not found\n", pt);
568out:
569 spin_unlock(&ptype_lock);
570}
571EXPORT_SYMBOL(__dev_remove_pack);
572
573/**
574 * dev_remove_pack - remove packet handler
575 * @pt: packet type declaration
576 *
577 * Remove a protocol handler that was previously added to the kernel
578 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
579 * from the kernel lists and can be freed or reused once this function
580 * returns.
581 *
582 * This call sleeps to guarantee that no CPU is looking at the packet
583 * type after return.
584 */
585void dev_remove_pack(struct packet_type *pt)
586{
587 __dev_remove_pack(pt);
588
589 synchronize_net();
590}
591EXPORT_SYMBOL(dev_remove_pack);
592
593
594/**
595 * dev_add_offload - register offload handlers
596 * @po: protocol offload declaration
597 *
598 * Add protocol offload handlers to the networking stack. The passed
599 * &proto_offload is linked into kernel lists and may not be freed until
600 * it has been removed from the kernel lists.
601 *
602 * This call does not sleep therefore it can not
603 * guarantee all CPU's that are in middle of receiving packets
604 * will see the new offload handlers (until the next received packet).
605 */
606void dev_add_offload(struct packet_offload *po)
607{
608 struct packet_offload *elem;
609
610 spin_lock(&offload_lock);
611 list_for_each_entry(elem, &offload_base, list) {
612 if (po->priority < elem->priority)
613 break;
614 }
615 list_add_rcu(&po->list, elem->list.prev);
616 spin_unlock(&offload_lock);
617}
618EXPORT_SYMBOL(dev_add_offload);
619
620/**
621 * __dev_remove_offload - remove offload handler
622 * @po: packet offload declaration
623 *
624 * Remove a protocol offload handler that was previously added to the
625 * kernel offload handlers by dev_add_offload(). The passed &offload_type
626 * is removed from the kernel lists and can be freed or reused once this
627 * function returns.
628 *
629 * The packet type might still be in use by receivers
630 * and must not be freed until after all the CPU's have gone
631 * through a quiescent state.
632 */
633static void __dev_remove_offload(struct packet_offload *po)
634{
635 struct list_head *head = &offload_base;
636 struct packet_offload *po1;
637
638 spin_lock(&offload_lock);
639
640 list_for_each_entry(po1, head, list) {
641 if (po == po1) {
642 list_del_rcu(&po->list);
643 goto out;
644 }
645 }
646
647 pr_warn("dev_remove_offload: %p not found\n", po);
648out:
649 spin_unlock(&offload_lock);
650}
651
652/**
653 * dev_remove_offload - remove packet offload handler
654 * @po: packet offload declaration
655 *
656 * Remove a packet offload handler that was previously added to the kernel
657 * offload handlers by dev_add_offload(). The passed &offload_type is
658 * removed from the kernel lists and can be freed or reused once this
659 * function returns.
660 *
661 * This call sleeps to guarantee that no CPU is looking at the packet
662 * type after return.
663 */
664void dev_remove_offload(struct packet_offload *po)
665{
666 __dev_remove_offload(po);
667
668 synchronize_net();
669}
670EXPORT_SYMBOL(dev_remove_offload);
671
672/******************************************************************************
673 *
674 * Device Boot-time Settings Routines
675 *
676 ******************************************************************************/
677
678/* Boot time configuration table */
679static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
680
681/**
682 * netdev_boot_setup_add - add new setup entry
683 * @name: name of the device
684 * @map: configured settings for the device
685 *
686 * Adds new setup entry to the dev_boot_setup list. The function
687 * returns 0 on error and 1 on success. This is a generic routine to
688 * all netdevices.
689 */
690static int netdev_boot_setup_add(char *name, struct ifmap *map)
691{
692 struct netdev_boot_setup *s;
693 int i;
694
695 s = dev_boot_setup;
696 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
697 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
698 memset(s[i].name, 0, sizeof(s[i].name));
699 strlcpy(s[i].name, name, IFNAMSIZ);
700 memcpy(&s[i].map, map, sizeof(s[i].map));
701 break;
702 }
703 }
704
705 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
706}
707
708/**
709 * netdev_boot_setup_check - check boot time settings
710 * @dev: the netdevice
711 *
712 * Check boot time settings for the device.
713 * The found settings are set for the device to be used
714 * later in the device probing.
715 * Returns 0 if no settings found, 1 if they are.
716 */
717int netdev_boot_setup_check(struct net_device *dev)
718{
719 struct netdev_boot_setup *s = dev_boot_setup;
720 int i;
721
722 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
723 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
724 !strcmp(dev->name, s[i].name)) {
725 dev->irq = s[i].map.irq;
726 dev->base_addr = s[i].map.base_addr;
727 dev->mem_start = s[i].map.mem_start;
728 dev->mem_end = s[i].map.mem_end;
729 return 1;
730 }
731 }
732 return 0;
733}
734EXPORT_SYMBOL(netdev_boot_setup_check);
735
736
737/**
738 * netdev_boot_base - get address from boot time settings
739 * @prefix: prefix for network device
740 * @unit: id for network device
741 *
742 * Check boot time settings for the base address of device.
743 * The found settings are set for the device to be used
744 * later in the device probing.
745 * Returns 0 if no settings found.
746 */
747unsigned long netdev_boot_base(const char *prefix, int unit)
748{
749 const struct netdev_boot_setup *s = dev_boot_setup;
750 char name[IFNAMSIZ];
751 int i;
752
753 sprintf(name, "%s%d", prefix, unit);
754
755 /*
756 * If device already registered then return base of 1
757 * to indicate not to probe for this interface
758 */
759 if (__dev_get_by_name(&init_net, name))
760 return 1;
761
762 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
763 if (!strcmp(name, s[i].name))
764 return s[i].map.base_addr;
765 return 0;
766}
767
768/*
769 * Saves at boot time configured settings for any netdevice.
770 */
771int __init netdev_boot_setup(char *str)
772{
773 int ints[5];
774 struct ifmap map;
775
776 str = get_options(str, ARRAY_SIZE(ints), ints);
777 if (!str || !*str)
778 return 0;
779
780 /* Save settings */
781 memset(&map, 0, sizeof(map));
782 if (ints[0] > 0)
783 map.irq = ints[1];
784 if (ints[0] > 1)
785 map.base_addr = ints[2];
786 if (ints[0] > 2)
787 map.mem_start = ints[3];
788 if (ints[0] > 3)
789 map.mem_end = ints[4];
790
791 /* Add new entry to the list */
792 return netdev_boot_setup_add(str, &map);
793}
794
795__setup("netdev=", netdev_boot_setup);
796
797/*******************************************************************************
798 *
799 * Device Interface Subroutines
800 *
801 *******************************************************************************/
802
803/**
804 * dev_get_iflink - get 'iflink' value of a interface
805 * @dev: targeted interface
806 *
807 * Indicates the ifindex the interface is linked to.
808 * Physical interfaces have the same 'ifindex' and 'iflink' values.
809 */
810
811int dev_get_iflink(const struct net_device *dev)
812{
813 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
814 return dev->netdev_ops->ndo_get_iflink(dev);
815
816 return dev->ifindex;
817}
818EXPORT_SYMBOL(dev_get_iflink);
819
820/**
821 * dev_fill_metadata_dst - Retrieve tunnel egress information.
822 * @dev: targeted interface
823 * @skb: The packet.
824 *
825 * For better visibility of tunnel traffic OVS needs to retrieve
826 * egress tunnel information for a packet. Following API allows
827 * user to get this info.
828 */
829int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
830{
831 struct ip_tunnel_info *info;
832
833 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
834 return -EINVAL;
835
836 info = skb_tunnel_info_unclone(skb);
837 if (!info)
838 return -ENOMEM;
839 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
840 return -EINVAL;
841
842 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
843}
844EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
845
846/**
847 * __dev_get_by_name - find a device by its name
848 * @net: the applicable net namespace
849 * @name: name to find
850 *
851 * Find an interface by name. Must be called under RTNL semaphore
852 * or @dev_base_lock. If the name is found a pointer to the device
853 * is returned. If the name is not found then %NULL is returned. The
854 * reference counters are not incremented so the caller must be
855 * careful with locks.
856 */
857
858struct net_device *__dev_get_by_name(struct net *net, const char *name)
859{
860 struct netdev_name_node *node_name;
861
862 node_name = netdev_name_node_lookup(net, name);
863 return node_name ? node_name->dev : NULL;
864}
865EXPORT_SYMBOL(__dev_get_by_name);
866
867/**
868 * dev_get_by_name_rcu - find a device by its name
869 * @net: the applicable net namespace
870 * @name: name to find
871 *
872 * Find an interface by name.
873 * If the name is found a pointer to the device is returned.
874 * If the name is not found then %NULL is returned.
875 * The reference counters are not incremented so the caller must be
876 * careful with locks. The caller must hold RCU lock.
877 */
878
879struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880{
881 struct netdev_name_node *node_name;
882
883 node_name = netdev_name_node_lookup_rcu(net, name);
884 return node_name ? node_name->dev : NULL;
885}
886EXPORT_SYMBOL(dev_get_by_name_rcu);
887
888/**
889 * dev_get_by_name - find a device by its name
890 * @net: the applicable net namespace
891 * @name: name to find
892 *
893 * Find an interface by name. This can be called from any
894 * context and does its own locking. The returned handle has
895 * the usage count incremented and the caller must use dev_put() to
896 * release it when it is no longer needed. %NULL is returned if no
897 * matching device is found.
898 */
899
900struct net_device *dev_get_by_name(struct net *net, const char *name)
901{
902 struct net_device *dev;
903
904 rcu_read_lock();
905 dev = dev_get_by_name_rcu(net, name);
906 if (dev)
907 dev_hold(dev);
908 rcu_read_unlock();
909 return dev;
910}
911EXPORT_SYMBOL(dev_get_by_name);
912
913/**
914 * __dev_get_by_index - find a device by its ifindex
915 * @net: the applicable net namespace
916 * @ifindex: index of device
917 *
918 * Search for an interface by index. Returns %NULL if the device
919 * is not found or a pointer to the device. The device has not
920 * had its reference counter increased so the caller must be careful
921 * about locking. The caller must hold either the RTNL semaphore
922 * or @dev_base_lock.
923 */
924
925struct net_device *__dev_get_by_index(struct net *net, int ifindex)
926{
927 struct net_device *dev;
928 struct hlist_head *head = dev_index_hash(net, ifindex);
929
930 hlist_for_each_entry(dev, head, index_hlist)
931 if (dev->ifindex == ifindex)
932 return dev;
933
934 return NULL;
935}
936EXPORT_SYMBOL(__dev_get_by_index);
937
938/**
939 * dev_get_by_index_rcu - find a device by its ifindex
940 * @net: the applicable net namespace
941 * @ifindex: index of device
942 *
943 * Search for an interface by index. Returns %NULL if the device
944 * is not found or a pointer to the device. The device has not
945 * had its reference counter increased so the caller must be careful
946 * about locking. The caller must hold RCU lock.
947 */
948
949struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
950{
951 struct net_device *dev;
952 struct hlist_head *head = dev_index_hash(net, ifindex);
953
954 hlist_for_each_entry_rcu(dev, head, index_hlist)
955 if (dev->ifindex == ifindex)
956 return dev;
957
958 return NULL;
959}
960EXPORT_SYMBOL(dev_get_by_index_rcu);
961
962
963/**
964 * dev_get_by_index - find a device by its ifindex
965 * @net: the applicable net namespace
966 * @ifindex: index of device
967 *
968 * Search for an interface by index. Returns NULL if the device
969 * is not found or a pointer to the device. The device returned has
970 * had a reference added and the pointer is safe until the user calls
971 * dev_put to indicate they have finished with it.
972 */
973
974struct net_device *dev_get_by_index(struct net *net, int ifindex)
975{
976 struct net_device *dev;
977
978 rcu_read_lock();
979 dev = dev_get_by_index_rcu(net, ifindex);
980 if (dev)
981 dev_hold(dev);
982 rcu_read_unlock();
983 return dev;
984}
985EXPORT_SYMBOL(dev_get_by_index);
986
987/**
988 * dev_get_by_napi_id - find a device by napi_id
989 * @napi_id: ID of the NAPI struct
990 *
991 * Search for an interface by NAPI ID. Returns %NULL if the device
992 * is not found or a pointer to the device. The device has not had
993 * its reference counter increased so the caller must be careful
994 * about locking. The caller must hold RCU lock.
995 */
996
997struct net_device *dev_get_by_napi_id(unsigned int napi_id)
998{
999 struct napi_struct *napi;
1000
1001 WARN_ON_ONCE(!rcu_read_lock_held());
1002
1003 if (napi_id < MIN_NAPI_ID)
1004 return NULL;
1005
1006 napi = napi_by_id(napi_id);
1007
1008 return napi ? napi->dev : NULL;
1009}
1010EXPORT_SYMBOL(dev_get_by_napi_id);
1011
1012/**
1013 * netdev_get_name - get a netdevice name, knowing its ifindex.
1014 * @net: network namespace
1015 * @name: a pointer to the buffer where the name will be stored.
1016 * @ifindex: the ifindex of the interface to get the name from.
1017 */
1018int netdev_get_name(struct net *net, char *name, int ifindex)
1019{
1020 struct net_device *dev;
1021 int ret;
1022
1023 down_read(&devnet_rename_sem);
1024 rcu_read_lock();
1025
1026 dev = dev_get_by_index_rcu(net, ifindex);
1027 if (!dev) {
1028 ret = -ENODEV;
1029 goto out;
1030 }
1031
1032 strcpy(name, dev->name);
1033
1034 ret = 0;
1035out:
1036 rcu_read_unlock();
1037 up_read(&devnet_rename_sem);
1038 return ret;
1039}
1040
1041/**
1042 * dev_getbyhwaddr_rcu - find a device by its hardware address
1043 * @net: the applicable net namespace
1044 * @type: media type of device
1045 * @ha: hardware address
1046 *
1047 * Search for an interface by MAC address. Returns NULL if the device
1048 * is not found or a pointer to the device.
1049 * The caller must hold RCU or RTNL.
1050 * The returned device has not had its ref count increased
1051 * and the caller must therefore be careful about locking
1052 *
1053 */
1054
1055struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1056 const char *ha)
1057{
1058 struct net_device *dev;
1059
1060 for_each_netdev_rcu(net, dev)
1061 if (dev->type == type &&
1062 !memcmp(dev->dev_addr, ha, dev->addr_len))
1063 return dev;
1064
1065 return NULL;
1066}
1067EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1068
1069struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1070{
1071 struct net_device *dev;
1072
1073 ASSERT_RTNL();
1074 for_each_netdev(net, dev)
1075 if (dev->type == type)
1076 return dev;
1077
1078 return NULL;
1079}
1080EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1081
1082struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1083{
1084 struct net_device *dev, *ret = NULL;
1085
1086 rcu_read_lock();
1087 for_each_netdev_rcu(net, dev)
1088 if (dev->type == type) {
1089 dev_hold(dev);
1090 ret = dev;
1091 break;
1092 }
1093 rcu_read_unlock();
1094 return ret;
1095}
1096EXPORT_SYMBOL(dev_getfirstbyhwtype);
1097
1098/**
1099 * __dev_get_by_flags - find any device with given flags
1100 * @net: the applicable net namespace
1101 * @if_flags: IFF_* values
1102 * @mask: bitmask of bits in if_flags to check
1103 *
1104 * Search for any interface with the given flags. Returns NULL if a device
1105 * is not found or a pointer to the device. Must be called inside
1106 * rtnl_lock(), and result refcount is unchanged.
1107 */
1108
1109struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1110 unsigned short mask)
1111{
1112 struct net_device *dev, *ret;
1113
1114 ASSERT_RTNL();
1115
1116 ret = NULL;
1117 for_each_netdev(net, dev) {
1118 if (((dev->flags ^ if_flags) & mask) == 0) {
1119 ret = dev;
1120 break;
1121 }
1122 }
1123 return ret;
1124}
1125EXPORT_SYMBOL(__dev_get_by_flags);
1126
1127/**
1128 * dev_valid_name - check if name is okay for network device
1129 * @name: name string
1130 *
1131 * Network device names need to be valid file names to
1132 * to allow sysfs to work. We also disallow any kind of
1133 * whitespace.
1134 */
1135bool dev_valid_name(const char *name)
1136{
1137 if (*name == '\0')
1138 return false;
1139 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1140 return false;
1141 if (!strcmp(name, ".") || !strcmp(name, ".."))
1142 return false;
1143
1144 while (*name) {
1145 if (*name == '/' || *name == ':' || isspace(*name))
1146 return false;
1147 name++;
1148 }
1149 return true;
1150}
1151EXPORT_SYMBOL(dev_valid_name);
1152
1153/**
1154 * __dev_alloc_name - allocate a name for a device
1155 * @net: network namespace to allocate the device name in
1156 * @name: name format string
1157 * @buf: scratch buffer and result name string
1158 *
1159 * Passed a format string - eg "lt%d" it will try and find a suitable
1160 * id. It scans list of devices to build up a free map, then chooses
1161 * the first empty slot. The caller must hold the dev_base or rtnl lock
1162 * while allocating the name and adding the device in order to avoid
1163 * duplicates.
1164 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1165 * Returns the number of the unit assigned or a negative errno code.
1166 */
1167
1168static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1169{
1170 int i = 0;
1171 const char *p;
1172 const int max_netdevices = 8*PAGE_SIZE;
1173 unsigned long *inuse;
1174 struct net_device *d;
1175
1176 if (!dev_valid_name(name))
1177 return -EINVAL;
1178
1179 p = strchr(name, '%');
1180 if (p) {
1181 /*
1182 * Verify the string as this thing may have come from
1183 * the user. There must be either one "%d" and no other "%"
1184 * characters.
1185 */
1186 if (p[1] != 'd' || strchr(p + 2, '%'))
1187 return -EINVAL;
1188
1189 /* Use one page as a bit array of possible slots */
1190 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1191 if (!inuse)
1192 return -ENOMEM;
1193
1194 for_each_netdev(net, d) {
1195 if (!sscanf(d->name, name, &i))
1196 continue;
1197 if (i < 0 || i >= max_netdevices)
1198 continue;
1199
1200 /* avoid cases where sscanf is not exact inverse of printf */
1201 snprintf(buf, IFNAMSIZ, name, i);
1202 if (!strncmp(buf, d->name, IFNAMSIZ))
1203 set_bit(i, inuse);
1204 }
1205
1206 i = find_first_zero_bit(inuse, max_netdevices);
1207 free_page((unsigned long) inuse);
1208 }
1209
1210 snprintf(buf, IFNAMSIZ, name, i);
1211 if (!__dev_get_by_name(net, buf))
1212 return i;
1213
1214 /* It is possible to run out of possible slots
1215 * when the name is long and there isn't enough space left
1216 * for the digits, or if all bits are used.
1217 */
1218 return -ENFILE;
1219}
1220
1221static int dev_alloc_name_ns(struct net *net,
1222 struct net_device *dev,
1223 const char *name)
1224{
1225 char buf[IFNAMSIZ];
1226 int ret;
1227
1228 BUG_ON(!net);
1229 ret = __dev_alloc_name(net, name, buf);
1230 if (ret >= 0)
1231 strlcpy(dev->name, buf, IFNAMSIZ);
1232 return ret;
1233}
1234
1235/**
1236 * dev_alloc_name - allocate a name for a device
1237 * @dev: device
1238 * @name: name format string
1239 *
1240 * Passed a format string - eg "lt%d" it will try and find a suitable
1241 * id. It scans list of devices to build up a free map, then chooses
1242 * the first empty slot. The caller must hold the dev_base or rtnl lock
1243 * while allocating the name and adding the device in order to avoid
1244 * duplicates.
1245 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1246 * Returns the number of the unit assigned or a negative errno code.
1247 */
1248
1249int dev_alloc_name(struct net_device *dev, const char *name)
1250{
1251 return dev_alloc_name_ns(dev_net(dev), dev, name);
1252}
1253EXPORT_SYMBOL(dev_alloc_name);
1254
1255static int dev_get_valid_name(struct net *net, struct net_device *dev,
1256 const char *name)
1257{
1258 BUG_ON(!net);
1259
1260 if (!dev_valid_name(name))
1261 return -EINVAL;
1262
1263 if (strchr(name, '%'))
1264 return dev_alloc_name_ns(net, dev, name);
1265 else if (__dev_get_by_name(net, name))
1266 return -EEXIST;
1267 else if (dev->name != name)
1268 strlcpy(dev->name, name, IFNAMSIZ);
1269
1270 return 0;
1271}
1272
1273/**
1274 * dev_change_name - change name of a device
1275 * @dev: device
1276 * @newname: name (or format string) must be at least IFNAMSIZ
1277 *
1278 * Change name of a device, can pass format strings "eth%d".
1279 * for wildcarding.
1280 */
1281int dev_change_name(struct net_device *dev, const char *newname)
1282{
1283 unsigned char old_assign_type;
1284 char oldname[IFNAMSIZ];
1285 int err = 0;
1286 int ret;
1287 struct net *net;
1288
1289 ASSERT_RTNL();
1290 BUG_ON(!dev_net(dev));
1291
1292 net = dev_net(dev);
1293
1294 /* Some auto-enslaved devices e.g. failover slaves are
1295 * special, as userspace might rename the device after
1296 * the interface had been brought up and running since
1297 * the point kernel initiated auto-enslavement. Allow
1298 * live name change even when these slave devices are
1299 * up and running.
1300 *
1301 * Typically, users of these auto-enslaving devices
1302 * don't actually care about slave name change, as
1303 * they are supposed to operate on master interface
1304 * directly.
1305 */
1306 if (dev->flags & IFF_UP &&
1307 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1308 return -EBUSY;
1309
1310 down_write(&devnet_rename_sem);
1311
1312 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1313 up_write(&devnet_rename_sem);
1314 return 0;
1315 }
1316
1317 memcpy(oldname, dev->name, IFNAMSIZ);
1318
1319 err = dev_get_valid_name(net, dev, newname);
1320 if (err < 0) {
1321 up_write(&devnet_rename_sem);
1322 return err;
1323 }
1324
1325 if (oldname[0] && !strchr(oldname, '%'))
1326 netdev_info(dev, "renamed from %s\n", oldname);
1327
1328 old_assign_type = dev->name_assign_type;
1329 dev->name_assign_type = NET_NAME_RENAMED;
1330
1331rollback:
1332 ret = device_rename(&dev->dev, dev->name);
1333 if (ret) {
1334 memcpy(dev->name, oldname, IFNAMSIZ);
1335 dev->name_assign_type = old_assign_type;
1336 up_write(&devnet_rename_sem);
1337 return ret;
1338 }
1339
1340 up_write(&devnet_rename_sem);
1341
1342 netdev_adjacent_rename_links(dev, oldname);
1343
1344 write_lock_bh(&dev_base_lock);
1345 netdev_name_node_del(dev->name_node);
1346 write_unlock_bh(&dev_base_lock);
1347
1348 synchronize_rcu();
1349
1350 write_lock_bh(&dev_base_lock);
1351 netdev_name_node_add(net, dev->name_node);
1352 write_unlock_bh(&dev_base_lock);
1353
1354 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1355 ret = notifier_to_errno(ret);
1356
1357 if (ret) {
1358 /* err >= 0 after dev_alloc_name() or stores the first errno */
1359 if (err >= 0) {
1360 err = ret;
1361 down_write(&devnet_rename_sem);
1362 memcpy(dev->name, oldname, IFNAMSIZ);
1363 memcpy(oldname, newname, IFNAMSIZ);
1364 dev->name_assign_type = old_assign_type;
1365 old_assign_type = NET_NAME_RENAMED;
1366 goto rollback;
1367 } else {
1368 pr_err("%s: name change rollback failed: %d\n",
1369 dev->name, ret);
1370 }
1371 }
1372
1373 return err;
1374}
1375
1376/**
1377 * dev_set_alias - change ifalias of a device
1378 * @dev: device
1379 * @alias: name up to IFALIASZ
1380 * @len: limit of bytes to copy from info
1381 *
1382 * Set ifalias for a device,
1383 */
1384int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1385{
1386 struct dev_ifalias *new_alias = NULL;
1387
1388 if (len >= IFALIASZ)
1389 return -EINVAL;
1390
1391 if (len) {
1392 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1393 if (!new_alias)
1394 return -ENOMEM;
1395
1396 memcpy(new_alias->ifalias, alias, len);
1397 new_alias->ifalias[len] = 0;
1398 }
1399
1400 mutex_lock(&ifalias_mutex);
1401 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1402 mutex_is_locked(&ifalias_mutex));
1403 mutex_unlock(&ifalias_mutex);
1404
1405 if (new_alias)
1406 kfree_rcu(new_alias, rcuhead);
1407
1408 return len;
1409}
1410EXPORT_SYMBOL(dev_set_alias);
1411
1412/**
1413 * dev_get_alias - get ifalias of a device
1414 * @dev: device
1415 * @name: buffer to store name of ifalias
1416 * @len: size of buffer
1417 *
1418 * get ifalias for a device. Caller must make sure dev cannot go
1419 * away, e.g. rcu read lock or own a reference count to device.
1420 */
1421int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1422{
1423 const struct dev_ifalias *alias;
1424 int ret = 0;
1425
1426 rcu_read_lock();
1427 alias = rcu_dereference(dev->ifalias);
1428 if (alias)
1429 ret = snprintf(name, len, "%s", alias->ifalias);
1430 rcu_read_unlock();
1431
1432 return ret;
1433}
1434
1435/**
1436 * netdev_features_change - device changes features
1437 * @dev: device to cause notification
1438 *
1439 * Called to indicate a device has changed features.
1440 */
1441void netdev_features_change(struct net_device *dev)
1442{
1443 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1444}
1445EXPORT_SYMBOL(netdev_features_change);
1446
1447/**
1448 * netdev_state_change - device changes state
1449 * @dev: device to cause notification
1450 *
1451 * Called to indicate a device has changed state. This function calls
1452 * the notifier chains for netdev_chain and sends a NEWLINK message
1453 * to the routing socket.
1454 */
1455void netdev_state_change(struct net_device *dev)
1456{
1457 if (dev->flags & IFF_UP) {
1458 struct netdev_notifier_change_info change_info = {
1459 .info.dev = dev,
1460 };
1461
1462 call_netdevice_notifiers_info(NETDEV_CHANGE,
1463 &change_info.info);
1464 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1465 }
1466}
1467EXPORT_SYMBOL(netdev_state_change);
1468
1469/**
1470 * netdev_notify_peers - notify network peers about existence of @dev
1471 * @dev: network device
1472 *
1473 * Generate traffic such that interested network peers are aware of
1474 * @dev, such as by generating a gratuitous ARP. This may be used when
1475 * a device wants to inform the rest of the network about some sort of
1476 * reconfiguration such as a failover event or virtual machine
1477 * migration.
1478 */
1479void netdev_notify_peers(struct net_device *dev)
1480{
1481 rtnl_lock();
1482 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1483 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1484 rtnl_unlock();
1485}
1486EXPORT_SYMBOL(netdev_notify_peers);
1487
1488static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1489{
1490 const struct net_device_ops *ops = dev->netdev_ops;
1491 int ret;
1492
1493 ASSERT_RTNL();
1494
1495 if (!netif_device_present(dev))
1496 return -ENODEV;
1497
1498 /* Block netpoll from trying to do any rx path servicing.
1499 * If we don't do this there is a chance ndo_poll_controller
1500 * or ndo_poll may be running while we open the device
1501 */
1502 netpoll_poll_disable(dev);
1503
1504 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1505 ret = notifier_to_errno(ret);
1506 if (ret)
1507 return ret;
1508
1509 set_bit(__LINK_STATE_START, &dev->state);
1510
1511 if (ops->ndo_validate_addr)
1512 ret = ops->ndo_validate_addr(dev);
1513
1514 if (!ret && ops->ndo_open)
1515 ret = ops->ndo_open(dev);
1516
1517 netpoll_poll_enable(dev);
1518
1519 if (ret)
1520 clear_bit(__LINK_STATE_START, &dev->state);
1521 else {
1522 dev->flags |= IFF_UP;
1523 dev_set_rx_mode(dev);
1524 dev_activate(dev);
1525 add_device_randomness(dev->dev_addr, dev->addr_len);
1526 }
1527
1528 return ret;
1529}
1530
1531/**
1532 * dev_open - prepare an interface for use.
1533 * @dev: device to open
1534 * @extack: netlink extended ack
1535 *
1536 * Takes a device from down to up state. The device's private open
1537 * function is invoked and then the multicast lists are loaded. Finally
1538 * the device is moved into the up state and a %NETDEV_UP message is
1539 * sent to the netdev notifier chain.
1540 *
1541 * Calling this function on an active interface is a nop. On a failure
1542 * a negative errno code is returned.
1543 */
1544int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1545{
1546 int ret;
1547
1548 if (dev->flags & IFF_UP)
1549 return 0;
1550
1551 ret = __dev_open(dev, extack);
1552 if (ret < 0)
1553 return ret;
1554
1555 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1556 call_netdevice_notifiers(NETDEV_UP, dev);
1557
1558 return ret;
1559}
1560EXPORT_SYMBOL(dev_open);
1561
1562static void __dev_close_many(struct list_head *head)
1563{
1564 struct net_device *dev;
1565
1566 ASSERT_RTNL();
1567 might_sleep();
1568
1569 list_for_each_entry(dev, head, close_list) {
1570 /* Temporarily disable netpoll until the interface is down */
1571 netpoll_poll_disable(dev);
1572
1573 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1574
1575 clear_bit(__LINK_STATE_START, &dev->state);
1576
1577 /* Synchronize to scheduled poll. We cannot touch poll list, it
1578 * can be even on different cpu. So just clear netif_running().
1579 *
1580 * dev->stop() will invoke napi_disable() on all of it's
1581 * napi_struct instances on this device.
1582 */
1583 smp_mb__after_atomic(); /* Commit netif_running(). */
1584 }
1585
1586 dev_deactivate_many(head);
1587
1588 list_for_each_entry(dev, head, close_list) {
1589 const struct net_device_ops *ops = dev->netdev_ops;
1590
1591 /*
1592 * Call the device specific close. This cannot fail.
1593 * Only if device is UP
1594 *
1595 * We allow it to be called even after a DETACH hot-plug
1596 * event.
1597 */
1598 if (ops->ndo_stop)
1599 ops->ndo_stop(dev);
1600
1601 dev->flags &= ~IFF_UP;
1602 netpoll_poll_enable(dev);
1603 }
1604}
1605
1606static void __dev_close(struct net_device *dev)
1607{
1608 LIST_HEAD(single);
1609
1610 list_add(&dev->close_list, &single);
1611 __dev_close_many(&single);
1612 list_del(&single);
1613}
1614
1615void dev_close_many(struct list_head *head, bool unlink)
1616{
1617 struct net_device *dev, *tmp;
1618
1619 /* Remove the devices that don't need to be closed */
1620 list_for_each_entry_safe(dev, tmp, head, close_list)
1621 if (!(dev->flags & IFF_UP))
1622 list_del_init(&dev->close_list);
1623
1624 __dev_close_many(head);
1625
1626 list_for_each_entry_safe(dev, tmp, head, close_list) {
1627 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1628 call_netdevice_notifiers(NETDEV_DOWN, dev);
1629 if (unlink)
1630 list_del_init(&dev->close_list);
1631 }
1632}
1633EXPORT_SYMBOL(dev_close_many);
1634
1635/**
1636 * dev_close - shutdown an interface.
1637 * @dev: device to shutdown
1638 *
1639 * This function moves an active device into down state. A
1640 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1641 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1642 * chain.
1643 */
1644void dev_close(struct net_device *dev)
1645{
1646 if (dev->flags & IFF_UP) {
1647 LIST_HEAD(single);
1648
1649 list_add(&dev->close_list, &single);
1650 dev_close_many(&single, true);
1651 list_del(&single);
1652 }
1653}
1654EXPORT_SYMBOL(dev_close);
1655
1656
1657/**
1658 * dev_disable_lro - disable Large Receive Offload on a device
1659 * @dev: device
1660 *
1661 * Disable Large Receive Offload (LRO) on a net device. Must be
1662 * called under RTNL. This is needed if received packets may be
1663 * forwarded to another interface.
1664 */
1665void dev_disable_lro(struct net_device *dev)
1666{
1667 struct net_device *lower_dev;
1668 struct list_head *iter;
1669
1670 dev->wanted_features &= ~NETIF_F_LRO;
1671 netdev_update_features(dev);
1672
1673 if (unlikely(dev->features & NETIF_F_LRO))
1674 netdev_WARN(dev, "failed to disable LRO!\n");
1675
1676 netdev_for_each_lower_dev(dev, lower_dev, iter)
1677 dev_disable_lro(lower_dev);
1678}
1679EXPORT_SYMBOL(dev_disable_lro);
1680
1681/**
1682 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1683 * @dev: device
1684 *
1685 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1686 * called under RTNL. This is needed if Generic XDP is installed on
1687 * the device.
1688 */
1689static void dev_disable_gro_hw(struct net_device *dev)
1690{
1691 dev->wanted_features &= ~NETIF_F_GRO_HW;
1692 netdev_update_features(dev);
1693
1694 if (unlikely(dev->features & NETIF_F_GRO_HW))
1695 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1696}
1697
1698const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1699{
1700#define N(val) \
1701 case NETDEV_##val: \
1702 return "NETDEV_" __stringify(val);
1703 switch (cmd) {
1704 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1705 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1706 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1707 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1708 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1709 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1710 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1711 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1712 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1713 N(PRE_CHANGEADDR)
1714 }
1715#undef N
1716 return "UNKNOWN_NETDEV_EVENT";
1717}
1718EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1719
1720static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1721 struct net_device *dev)
1722{
1723 struct netdev_notifier_info info = {
1724 .dev = dev,
1725 };
1726
1727 return nb->notifier_call(nb, val, &info);
1728}
1729
1730static int call_netdevice_register_notifiers(struct notifier_block *nb,
1731 struct net_device *dev)
1732{
1733 int err;
1734
1735 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1736 err = notifier_to_errno(err);
1737 if (err)
1738 return err;
1739
1740 if (!(dev->flags & IFF_UP))
1741 return 0;
1742
1743 call_netdevice_notifier(nb, NETDEV_UP, dev);
1744 return 0;
1745}
1746
1747static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1748 struct net_device *dev)
1749{
1750 if (dev->flags & IFF_UP) {
1751 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1752 dev);
1753 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1754 }
1755 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1756}
1757
1758static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1759 struct net *net)
1760{
1761 struct net_device *dev;
1762 int err;
1763
1764 for_each_netdev(net, dev) {
1765 err = call_netdevice_register_notifiers(nb, dev);
1766 if (err)
1767 goto rollback;
1768 }
1769 return 0;
1770
1771rollback:
1772 for_each_netdev_continue_reverse(net, dev)
1773 call_netdevice_unregister_notifiers(nb, dev);
1774 return err;
1775}
1776
1777static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1778 struct net *net)
1779{
1780 struct net_device *dev;
1781
1782 for_each_netdev(net, dev)
1783 call_netdevice_unregister_notifiers(nb, dev);
1784}
1785
1786static int dev_boot_phase = 1;
1787
1788/**
1789 * register_netdevice_notifier - register a network notifier block
1790 * @nb: notifier
1791 *
1792 * Register a notifier to be called when network device events occur.
1793 * The notifier passed is linked into the kernel structures and must
1794 * not be reused until it has been unregistered. A negative errno code
1795 * is returned on a failure.
1796 *
1797 * When registered all registration and up events are replayed
1798 * to the new notifier to allow device to have a race free
1799 * view of the network device list.
1800 */
1801
1802int register_netdevice_notifier(struct notifier_block *nb)
1803{
1804 struct net *net;
1805 int err;
1806
1807 /* Close race with setup_net() and cleanup_net() */
1808 down_write(&pernet_ops_rwsem);
1809 rtnl_lock();
1810 err = raw_notifier_chain_register(&netdev_chain, nb);
1811 if (err)
1812 goto unlock;
1813 if (dev_boot_phase)
1814 goto unlock;
1815 for_each_net(net) {
1816 err = call_netdevice_register_net_notifiers(nb, net);
1817 if (err)
1818 goto rollback;
1819 }
1820
1821unlock:
1822 rtnl_unlock();
1823 up_write(&pernet_ops_rwsem);
1824 return err;
1825
1826rollback:
1827 for_each_net_continue_reverse(net)
1828 call_netdevice_unregister_net_notifiers(nb, net);
1829
1830 raw_notifier_chain_unregister(&netdev_chain, nb);
1831 goto unlock;
1832}
1833EXPORT_SYMBOL(register_netdevice_notifier);
1834
1835/**
1836 * unregister_netdevice_notifier - unregister a network notifier block
1837 * @nb: notifier
1838 *
1839 * Unregister a notifier previously registered by
1840 * register_netdevice_notifier(). The notifier is unlinked into the
1841 * kernel structures and may then be reused. A negative errno code
1842 * is returned on a failure.
1843 *
1844 * After unregistering unregister and down device events are synthesized
1845 * for all devices on the device list to the removed notifier to remove
1846 * the need for special case cleanup code.
1847 */
1848
1849int unregister_netdevice_notifier(struct notifier_block *nb)
1850{
1851 struct net *net;
1852 int err;
1853
1854 /* Close race with setup_net() and cleanup_net() */
1855 down_write(&pernet_ops_rwsem);
1856 rtnl_lock();
1857 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1858 if (err)
1859 goto unlock;
1860
1861 for_each_net(net)
1862 call_netdevice_unregister_net_notifiers(nb, net);
1863
1864unlock:
1865 rtnl_unlock();
1866 up_write(&pernet_ops_rwsem);
1867 return err;
1868}
1869EXPORT_SYMBOL(unregister_netdevice_notifier);
1870
1871static int __register_netdevice_notifier_net(struct net *net,
1872 struct notifier_block *nb,
1873 bool ignore_call_fail)
1874{
1875 int err;
1876
1877 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1878 if (err)
1879 return err;
1880 if (dev_boot_phase)
1881 return 0;
1882
1883 err = call_netdevice_register_net_notifiers(nb, net);
1884 if (err && !ignore_call_fail)
1885 goto chain_unregister;
1886
1887 return 0;
1888
1889chain_unregister:
1890 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1891 return err;
1892}
1893
1894static int __unregister_netdevice_notifier_net(struct net *net,
1895 struct notifier_block *nb)
1896{
1897 int err;
1898
1899 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1900 if (err)
1901 return err;
1902
1903 call_netdevice_unregister_net_notifiers(nb, net);
1904 return 0;
1905}
1906
1907/**
1908 * register_netdevice_notifier_net - register a per-netns network notifier block
1909 * @net: network namespace
1910 * @nb: notifier
1911 *
1912 * Register a notifier to be called when network device events occur.
1913 * The notifier passed is linked into the kernel structures and must
1914 * not be reused until it has been unregistered. A negative errno code
1915 * is returned on a failure.
1916 *
1917 * When registered all registration and up events are replayed
1918 * to the new notifier to allow device to have a race free
1919 * view of the network device list.
1920 */
1921
1922int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1923{
1924 int err;
1925
1926 rtnl_lock();
1927 err = __register_netdevice_notifier_net(net, nb, false);
1928 rtnl_unlock();
1929 return err;
1930}
1931EXPORT_SYMBOL(register_netdevice_notifier_net);
1932
1933/**
1934 * unregister_netdevice_notifier_net - unregister a per-netns
1935 * network notifier block
1936 * @net: network namespace
1937 * @nb: notifier
1938 *
1939 * Unregister a notifier previously registered by
1940 * register_netdevice_notifier(). The notifier is unlinked into the
1941 * kernel structures and may then be reused. A negative errno code
1942 * is returned on a failure.
1943 *
1944 * After unregistering unregister and down device events are synthesized
1945 * for all devices on the device list to the removed notifier to remove
1946 * the need for special case cleanup code.
1947 */
1948
1949int unregister_netdevice_notifier_net(struct net *net,
1950 struct notifier_block *nb)
1951{
1952 int err;
1953
1954 rtnl_lock();
1955 err = __unregister_netdevice_notifier_net(net, nb);
1956 rtnl_unlock();
1957 return err;
1958}
1959EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1960
1961int register_netdevice_notifier_dev_net(struct net_device *dev,
1962 struct notifier_block *nb,
1963 struct netdev_net_notifier *nn)
1964{
1965 int err;
1966
1967 rtnl_lock();
1968 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1969 if (!err) {
1970 nn->nb = nb;
1971 list_add(&nn->list, &dev->net_notifier_list);
1972 }
1973 rtnl_unlock();
1974 return err;
1975}
1976EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1977
1978int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1979 struct notifier_block *nb,
1980 struct netdev_net_notifier *nn)
1981{
1982 int err;
1983
1984 rtnl_lock();
1985 list_del(&nn->list);
1986 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1987 rtnl_unlock();
1988 return err;
1989}
1990EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1991
1992static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1993 struct net *net)
1994{
1995 struct netdev_net_notifier *nn;
1996
1997 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1998 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1999 __register_netdevice_notifier_net(net, nn->nb, true);
2000 }
2001}
2002
2003/**
2004 * call_netdevice_notifiers_info - call all network notifier blocks
2005 * @val: value passed unmodified to notifier function
2006 * @info: notifier information data
2007 *
2008 * Call all network notifier blocks. Parameters and return value
2009 * are as for raw_notifier_call_chain().
2010 */
2011
2012static int call_netdevice_notifiers_info(unsigned long val,
2013 struct netdev_notifier_info *info)
2014{
2015 struct net *net = dev_net(info->dev);
2016 int ret;
2017
2018 ASSERT_RTNL();
2019
2020 /* Run per-netns notifier block chain first, then run the global one.
2021 * Hopefully, one day, the global one is going to be removed after
2022 * all notifier block registrators get converted to be per-netns.
2023 */
2024 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2025 if (ret & NOTIFY_STOP_MASK)
2026 return ret;
2027 return raw_notifier_call_chain(&netdev_chain, val, info);
2028}
2029
2030static int call_netdevice_notifiers_extack(unsigned long val,
2031 struct net_device *dev,
2032 struct netlink_ext_ack *extack)
2033{
2034 struct netdev_notifier_info info = {
2035 .dev = dev,
2036 .extack = extack,
2037 };
2038
2039 return call_netdevice_notifiers_info(val, &info);
2040}
2041
2042/**
2043 * call_netdevice_notifiers - call all network notifier blocks
2044 * @val: value passed unmodified to notifier function
2045 * @dev: net_device pointer passed unmodified to notifier function
2046 *
2047 * Call all network notifier blocks. Parameters and return value
2048 * are as for raw_notifier_call_chain().
2049 */
2050
2051int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2052{
2053 return call_netdevice_notifiers_extack(val, dev, NULL);
2054}
2055EXPORT_SYMBOL(call_netdevice_notifiers);
2056
2057/**
2058 * call_netdevice_notifiers_mtu - call all network notifier blocks
2059 * @val: value passed unmodified to notifier function
2060 * @dev: net_device pointer passed unmodified to notifier function
2061 * @arg: additional u32 argument passed to the notifier function
2062 *
2063 * Call all network notifier blocks. Parameters and return value
2064 * are as for raw_notifier_call_chain().
2065 */
2066static int call_netdevice_notifiers_mtu(unsigned long val,
2067 struct net_device *dev, u32 arg)
2068{
2069 struct netdev_notifier_info_ext info = {
2070 .info.dev = dev,
2071 .ext.mtu = arg,
2072 };
2073
2074 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2075
2076 return call_netdevice_notifiers_info(val, &info.info);
2077}
2078
2079#ifdef CONFIG_NET_INGRESS
2080static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2081
2082void net_inc_ingress_queue(void)
2083{
2084 static_branch_inc(&ingress_needed_key);
2085}
2086EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2087
2088void net_dec_ingress_queue(void)
2089{
2090 static_branch_dec(&ingress_needed_key);
2091}
2092EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2093#endif
2094
2095#ifdef CONFIG_NET_EGRESS
2096static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2097
2098void net_inc_egress_queue(void)
2099{
2100 static_branch_inc(&egress_needed_key);
2101}
2102EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2103
2104void net_dec_egress_queue(void)
2105{
2106 static_branch_dec(&egress_needed_key);
2107}
2108EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2109#endif
2110
2111static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2112#ifdef CONFIG_JUMP_LABEL
2113static atomic_t netstamp_needed_deferred;
2114static atomic_t netstamp_wanted;
2115static void netstamp_clear(struct work_struct *work)
2116{
2117 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2118 int wanted;
2119
2120 wanted = atomic_add_return(deferred, &netstamp_wanted);
2121 if (wanted > 0)
2122 static_branch_enable(&netstamp_needed_key);
2123 else
2124 static_branch_disable(&netstamp_needed_key);
2125}
2126static DECLARE_WORK(netstamp_work, netstamp_clear);
2127#endif
2128
2129void net_enable_timestamp(void)
2130{
2131#ifdef CONFIG_JUMP_LABEL
2132 int wanted;
2133
2134 while (1) {
2135 wanted = atomic_read(&netstamp_wanted);
2136 if (wanted <= 0)
2137 break;
2138 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2139 return;
2140 }
2141 atomic_inc(&netstamp_needed_deferred);
2142 schedule_work(&netstamp_work);
2143#else
2144 static_branch_inc(&netstamp_needed_key);
2145#endif
2146}
2147EXPORT_SYMBOL(net_enable_timestamp);
2148
2149void net_disable_timestamp(void)
2150{
2151#ifdef CONFIG_JUMP_LABEL
2152 int wanted;
2153
2154 while (1) {
2155 wanted = atomic_read(&netstamp_wanted);
2156 if (wanted <= 1)
2157 break;
2158 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2159 return;
2160 }
2161 atomic_dec(&netstamp_needed_deferred);
2162 schedule_work(&netstamp_work);
2163#else
2164 static_branch_dec(&netstamp_needed_key);
2165#endif
2166}
2167EXPORT_SYMBOL(net_disable_timestamp);
2168
2169static inline void net_timestamp_set(struct sk_buff *skb)
2170{
2171 skb->tstamp = 0;
2172 if (static_branch_unlikely(&netstamp_needed_key))
2173 __net_timestamp(skb);
2174}
2175
2176#define net_timestamp_check(COND, SKB) \
2177 if (static_branch_unlikely(&netstamp_needed_key)) { \
2178 if ((COND) && !(SKB)->tstamp) \
2179 __net_timestamp(SKB); \
2180 } \
2181
2182bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2183{
2184 unsigned int len;
2185
2186 if (!(dev->flags & IFF_UP))
2187 return false;
2188
2189 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2190 if (skb->len <= len)
2191 return true;
2192
2193 /* if TSO is enabled, we don't care about the length as the packet
2194 * could be forwarded without being segmented before
2195 */
2196 if (skb_is_gso(skb))
2197 return true;
2198
2199 return false;
2200}
2201EXPORT_SYMBOL_GPL(is_skb_forwardable);
2202
2203int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2204{
2205 int ret = ____dev_forward_skb(dev, skb);
2206
2207 if (likely(!ret)) {
2208 skb->protocol = eth_type_trans(skb, dev);
2209 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2210 }
2211
2212 return ret;
2213}
2214EXPORT_SYMBOL_GPL(__dev_forward_skb);
2215
2216/**
2217 * dev_forward_skb - loopback an skb to another netif
2218 *
2219 * @dev: destination network device
2220 * @skb: buffer to forward
2221 *
2222 * return values:
2223 * NET_RX_SUCCESS (no congestion)
2224 * NET_RX_DROP (packet was dropped, but freed)
2225 *
2226 * dev_forward_skb can be used for injecting an skb from the
2227 * start_xmit function of one device into the receive queue
2228 * of another device.
2229 *
2230 * The receiving device may be in another namespace, so
2231 * we have to clear all information in the skb that could
2232 * impact namespace isolation.
2233 */
2234int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2235{
2236 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2237}
2238EXPORT_SYMBOL_GPL(dev_forward_skb);
2239
2240static inline int deliver_skb(struct sk_buff *skb,
2241 struct packet_type *pt_prev,
2242 struct net_device *orig_dev)
2243{
2244 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2245 return -ENOMEM;
2246 refcount_inc(&skb->users);
2247 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2248}
2249
2250static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2251 struct packet_type **pt,
2252 struct net_device *orig_dev,
2253 __be16 type,
2254 struct list_head *ptype_list)
2255{
2256 struct packet_type *ptype, *pt_prev = *pt;
2257
2258 list_for_each_entry_rcu(ptype, ptype_list, list) {
2259 if (ptype->type != type)
2260 continue;
2261 if (pt_prev)
2262 deliver_skb(skb, pt_prev, orig_dev);
2263 pt_prev = ptype;
2264 }
2265 *pt = pt_prev;
2266}
2267
2268static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2269{
2270 if (!ptype->af_packet_priv || !skb->sk)
2271 return false;
2272
2273 if (ptype->id_match)
2274 return ptype->id_match(ptype, skb->sk);
2275 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2276 return true;
2277
2278 return false;
2279}
2280
2281/**
2282 * dev_nit_active - return true if any network interface taps are in use
2283 *
2284 * @dev: network device to check for the presence of taps
2285 */
2286bool dev_nit_active(struct net_device *dev)
2287{
2288 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2289}
2290EXPORT_SYMBOL_GPL(dev_nit_active);
2291
2292/*
2293 * Support routine. Sends outgoing frames to any network
2294 * taps currently in use.
2295 */
2296
2297void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2298{
2299 struct packet_type *ptype;
2300 struct sk_buff *skb2 = NULL;
2301 struct packet_type *pt_prev = NULL;
2302 struct list_head *ptype_list = &ptype_all;
2303
2304 rcu_read_lock();
2305again:
2306 list_for_each_entry_rcu(ptype, ptype_list, list) {
2307 if (ptype->ignore_outgoing)
2308 continue;
2309
2310 /* Never send packets back to the socket
2311 * they originated from - MvS (miquels@drinkel.ow.org)
2312 */
2313 if (skb_loop_sk(ptype, skb))
2314 continue;
2315
2316 if (pt_prev) {
2317 deliver_skb(skb2, pt_prev, skb->dev);
2318 pt_prev = ptype;
2319 continue;
2320 }
2321
2322 /* need to clone skb, done only once */
2323 skb2 = skb_clone(skb, GFP_ATOMIC);
2324 if (!skb2)
2325 goto out_unlock;
2326
2327 net_timestamp_set(skb2);
2328
2329 /* skb->nh should be correctly
2330 * set by sender, so that the second statement is
2331 * just protection against buggy protocols.
2332 */
2333 skb_reset_mac_header(skb2);
2334
2335 if (skb_network_header(skb2) < skb2->data ||
2336 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2337 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2338 ntohs(skb2->protocol),
2339 dev->name);
2340 skb_reset_network_header(skb2);
2341 }
2342
2343 skb2->transport_header = skb2->network_header;
2344 skb2->pkt_type = PACKET_OUTGOING;
2345 pt_prev = ptype;
2346 }
2347
2348 if (ptype_list == &ptype_all) {
2349 ptype_list = &dev->ptype_all;
2350 goto again;
2351 }
2352out_unlock:
2353 if (pt_prev) {
2354 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2355 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2356 else
2357 kfree_skb(skb2);
2358 }
2359 rcu_read_unlock();
2360}
2361EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2362
2363/**
2364 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2365 * @dev: Network device
2366 * @txq: number of queues available
2367 *
2368 * If real_num_tx_queues is changed the tc mappings may no longer be
2369 * valid. To resolve this verify the tc mapping remains valid and if
2370 * not NULL the mapping. With no priorities mapping to this
2371 * offset/count pair it will no longer be used. In the worst case TC0
2372 * is invalid nothing can be done so disable priority mappings. If is
2373 * expected that drivers will fix this mapping if they can before
2374 * calling netif_set_real_num_tx_queues.
2375 */
2376static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2377{
2378 int i;
2379 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2380
2381 /* If TC0 is invalidated disable TC mapping */
2382 if (tc->offset + tc->count > txq) {
2383 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2384 dev->num_tc = 0;
2385 return;
2386 }
2387
2388 /* Invalidated prio to tc mappings set to TC0 */
2389 for (i = 1; i < TC_BITMASK + 1; i++) {
2390 int q = netdev_get_prio_tc_map(dev, i);
2391
2392 tc = &dev->tc_to_txq[q];
2393 if (tc->offset + tc->count > txq) {
2394 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2395 i, q);
2396 netdev_set_prio_tc_map(dev, i, 0);
2397 }
2398 }
2399}
2400
2401int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2402{
2403 if (dev->num_tc) {
2404 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2405 int i;
2406
2407 /* walk through the TCs and see if it falls into any of them */
2408 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2409 if ((txq - tc->offset) < tc->count)
2410 return i;
2411 }
2412
2413 /* didn't find it, just return -1 to indicate no match */
2414 return -1;
2415 }
2416
2417 return 0;
2418}
2419EXPORT_SYMBOL(netdev_txq_to_tc);
2420
2421#ifdef CONFIG_XPS
2422struct static_key xps_needed __read_mostly;
2423EXPORT_SYMBOL(xps_needed);
2424struct static_key xps_rxqs_needed __read_mostly;
2425EXPORT_SYMBOL(xps_rxqs_needed);
2426static DEFINE_MUTEX(xps_map_mutex);
2427#define xmap_dereference(P) \
2428 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2429
2430static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2431 int tci, u16 index)
2432{
2433 struct xps_map *map = NULL;
2434 int pos;
2435
2436 if (dev_maps)
2437 map = xmap_dereference(dev_maps->attr_map[tci]);
2438 if (!map)
2439 return false;
2440
2441 for (pos = map->len; pos--;) {
2442 if (map->queues[pos] != index)
2443 continue;
2444
2445 if (map->len > 1) {
2446 map->queues[pos] = map->queues[--map->len];
2447 break;
2448 }
2449
2450 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2451 kfree_rcu(map, rcu);
2452 return false;
2453 }
2454
2455 return true;
2456}
2457
2458static bool remove_xps_queue_cpu(struct net_device *dev,
2459 struct xps_dev_maps *dev_maps,
2460 int cpu, u16 offset, u16 count)
2461{
2462 int num_tc = dev->num_tc ? : 1;
2463 bool active = false;
2464 int tci;
2465
2466 for (tci = cpu * num_tc; num_tc--; tci++) {
2467 int i, j;
2468
2469 for (i = count, j = offset; i--; j++) {
2470 if (!remove_xps_queue(dev_maps, tci, j))
2471 break;
2472 }
2473
2474 active |= i < 0;
2475 }
2476
2477 return active;
2478}
2479
2480static void reset_xps_maps(struct net_device *dev,
2481 struct xps_dev_maps *dev_maps,
2482 bool is_rxqs_map)
2483{
2484 if (is_rxqs_map) {
2485 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2486 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2487 } else {
2488 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2489 }
2490 static_key_slow_dec_cpuslocked(&xps_needed);
2491 kfree_rcu(dev_maps, rcu);
2492}
2493
2494static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2495 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2496 u16 offset, u16 count, bool is_rxqs_map)
2497{
2498 bool active = false;
2499 int i, j;
2500
2501 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2502 j < nr_ids;)
2503 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2504 count);
2505 if (!active)
2506 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2507
2508 if (!is_rxqs_map) {
2509 for (i = offset + (count - 1); count--; i--) {
2510 netdev_queue_numa_node_write(
2511 netdev_get_tx_queue(dev, i),
2512 NUMA_NO_NODE);
2513 }
2514 }
2515}
2516
2517static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2518 u16 count)
2519{
2520 const unsigned long *possible_mask = NULL;
2521 struct xps_dev_maps *dev_maps;
2522 unsigned int nr_ids;
2523
2524 if (!static_key_false(&xps_needed))
2525 return;
2526
2527 cpus_read_lock();
2528 mutex_lock(&xps_map_mutex);
2529
2530 if (static_key_false(&xps_rxqs_needed)) {
2531 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2532 if (dev_maps) {
2533 nr_ids = dev->num_rx_queues;
2534 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2535 offset, count, true);
2536 }
2537 }
2538
2539 dev_maps = xmap_dereference(dev->xps_cpus_map);
2540 if (!dev_maps)
2541 goto out_no_maps;
2542
2543 if (num_possible_cpus() > 1)
2544 possible_mask = cpumask_bits(cpu_possible_mask);
2545 nr_ids = nr_cpu_ids;
2546 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2547 false);
2548
2549out_no_maps:
2550 mutex_unlock(&xps_map_mutex);
2551 cpus_read_unlock();
2552}
2553
2554static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2555{
2556 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2557}
2558
2559static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2560 u16 index, bool is_rxqs_map)
2561{
2562 struct xps_map *new_map;
2563 int alloc_len = XPS_MIN_MAP_ALLOC;
2564 int i, pos;
2565
2566 for (pos = 0; map && pos < map->len; pos++) {
2567 if (map->queues[pos] != index)
2568 continue;
2569 return map;
2570 }
2571
2572 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2573 if (map) {
2574 if (pos < map->alloc_len)
2575 return map;
2576
2577 alloc_len = map->alloc_len * 2;
2578 }
2579
2580 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2581 * map
2582 */
2583 if (is_rxqs_map)
2584 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2585 else
2586 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2587 cpu_to_node(attr_index));
2588 if (!new_map)
2589 return NULL;
2590
2591 for (i = 0; i < pos; i++)
2592 new_map->queues[i] = map->queues[i];
2593 new_map->alloc_len = alloc_len;
2594 new_map->len = pos;
2595
2596 return new_map;
2597}
2598
2599/* Must be called under cpus_read_lock */
2600int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2601 u16 index, bool is_rxqs_map)
2602{
2603 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2604 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2605 int i, j, tci, numa_node_id = -2;
2606 int maps_sz, num_tc = 1, tc = 0;
2607 struct xps_map *map, *new_map;
2608 bool active = false;
2609 unsigned int nr_ids;
2610
2611 if (dev->num_tc) {
2612 /* Do not allow XPS on subordinate device directly */
2613 num_tc = dev->num_tc;
2614 if (num_tc < 0)
2615 return -EINVAL;
2616
2617 /* If queue belongs to subordinate dev use its map */
2618 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2619
2620 tc = netdev_txq_to_tc(dev, index);
2621 if (tc < 0)
2622 return -EINVAL;
2623 }
2624
2625 mutex_lock(&xps_map_mutex);
2626 if (is_rxqs_map) {
2627 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2628 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2629 nr_ids = dev->num_rx_queues;
2630 } else {
2631 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2632 if (num_possible_cpus() > 1) {
2633 online_mask = cpumask_bits(cpu_online_mask);
2634 possible_mask = cpumask_bits(cpu_possible_mask);
2635 }
2636 dev_maps = xmap_dereference(dev->xps_cpus_map);
2637 nr_ids = nr_cpu_ids;
2638 }
2639
2640 if (maps_sz < L1_CACHE_BYTES)
2641 maps_sz = L1_CACHE_BYTES;
2642
2643 /* allocate memory for queue storage */
2644 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2645 j < nr_ids;) {
2646 if (!new_dev_maps)
2647 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2648 if (!new_dev_maps) {
2649 mutex_unlock(&xps_map_mutex);
2650 return -ENOMEM;
2651 }
2652
2653 tci = j * num_tc + tc;
2654 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2655 NULL;
2656
2657 map = expand_xps_map(map, j, index, is_rxqs_map);
2658 if (!map)
2659 goto error;
2660
2661 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2662 }
2663
2664 if (!new_dev_maps)
2665 goto out_no_new_maps;
2666
2667 if (!dev_maps) {
2668 /* Increment static keys at most once per type */
2669 static_key_slow_inc_cpuslocked(&xps_needed);
2670 if (is_rxqs_map)
2671 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2672 }
2673
2674 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2675 j < nr_ids;) {
2676 /* copy maps belonging to foreign traffic classes */
2677 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2678 /* fill in the new device map from the old device map */
2679 map = xmap_dereference(dev_maps->attr_map[tci]);
2680 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2681 }
2682
2683 /* We need to explicitly update tci as prevous loop
2684 * could break out early if dev_maps is NULL.
2685 */
2686 tci = j * num_tc + tc;
2687
2688 if (netif_attr_test_mask(j, mask, nr_ids) &&
2689 netif_attr_test_online(j, online_mask, nr_ids)) {
2690 /* add tx-queue to CPU/rx-queue maps */
2691 int pos = 0;
2692
2693 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694 while ((pos < map->len) && (map->queues[pos] != index))
2695 pos++;
2696
2697 if (pos == map->len)
2698 map->queues[map->len++] = index;
2699#ifdef CONFIG_NUMA
2700 if (!is_rxqs_map) {
2701 if (numa_node_id == -2)
2702 numa_node_id = cpu_to_node(j);
2703 else if (numa_node_id != cpu_to_node(j))
2704 numa_node_id = -1;
2705 }
2706#endif
2707 } else if (dev_maps) {
2708 /* fill in the new device map from the old device map */
2709 map = xmap_dereference(dev_maps->attr_map[tci]);
2710 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2711 }
2712
2713 /* copy maps belonging to foreign traffic classes */
2714 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2715 /* fill in the new device map from the old device map */
2716 map = xmap_dereference(dev_maps->attr_map[tci]);
2717 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2718 }
2719 }
2720
2721 if (is_rxqs_map)
2722 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2723 else
2724 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2725
2726 /* Cleanup old maps */
2727 if (!dev_maps)
2728 goto out_no_old_maps;
2729
2730 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2731 j < nr_ids;) {
2732 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2733 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2734 map = xmap_dereference(dev_maps->attr_map[tci]);
2735 if (map && map != new_map)
2736 kfree_rcu(map, rcu);
2737 }
2738 }
2739
2740 kfree_rcu(dev_maps, rcu);
2741
2742out_no_old_maps:
2743 dev_maps = new_dev_maps;
2744 active = true;
2745
2746out_no_new_maps:
2747 if (!is_rxqs_map) {
2748 /* update Tx queue numa node */
2749 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2750 (numa_node_id >= 0) ?
2751 numa_node_id : NUMA_NO_NODE);
2752 }
2753
2754 if (!dev_maps)
2755 goto out_no_maps;
2756
2757 /* removes tx-queue from unused CPUs/rx-queues */
2758 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2759 j < nr_ids;) {
2760 for (i = tc, tci = j * num_tc; i--; tci++)
2761 active |= remove_xps_queue(dev_maps, tci, index);
2762 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2763 !netif_attr_test_online(j, online_mask, nr_ids))
2764 active |= remove_xps_queue(dev_maps, tci, index);
2765 for (i = num_tc - tc, tci++; --i; tci++)
2766 active |= remove_xps_queue(dev_maps, tci, index);
2767 }
2768
2769 /* free map if not active */
2770 if (!active)
2771 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2772
2773out_no_maps:
2774 mutex_unlock(&xps_map_mutex);
2775
2776 return 0;
2777error:
2778 /* remove any maps that we added */
2779 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2780 j < nr_ids;) {
2781 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2782 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2783 map = dev_maps ?
2784 xmap_dereference(dev_maps->attr_map[tci]) :
2785 NULL;
2786 if (new_map && new_map != map)
2787 kfree(new_map);
2788 }
2789 }
2790
2791 mutex_unlock(&xps_map_mutex);
2792
2793 kfree(new_dev_maps);
2794 return -ENOMEM;
2795}
2796EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2797
2798int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2799 u16 index)
2800{
2801 int ret;
2802
2803 cpus_read_lock();
2804 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2805 cpus_read_unlock();
2806
2807 return ret;
2808}
2809EXPORT_SYMBOL(netif_set_xps_queue);
2810
2811#endif
2812static void netdev_unbind_all_sb_channels(struct net_device *dev)
2813{
2814 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2815
2816 /* Unbind any subordinate channels */
2817 while (txq-- != &dev->_tx[0]) {
2818 if (txq->sb_dev)
2819 netdev_unbind_sb_channel(dev, txq->sb_dev);
2820 }
2821}
2822
2823void netdev_reset_tc(struct net_device *dev)
2824{
2825#ifdef CONFIG_XPS
2826 netif_reset_xps_queues_gt(dev, 0);
2827#endif
2828 netdev_unbind_all_sb_channels(dev);
2829
2830 /* Reset TC configuration of device */
2831 dev->num_tc = 0;
2832 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2833 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2834}
2835EXPORT_SYMBOL(netdev_reset_tc);
2836
2837int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2838{
2839 if (tc >= dev->num_tc)
2840 return -EINVAL;
2841
2842#ifdef CONFIG_XPS
2843 netif_reset_xps_queues(dev, offset, count);
2844#endif
2845 dev->tc_to_txq[tc].count = count;
2846 dev->tc_to_txq[tc].offset = offset;
2847 return 0;
2848}
2849EXPORT_SYMBOL(netdev_set_tc_queue);
2850
2851int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2852{
2853 if (num_tc > TC_MAX_QUEUE)
2854 return -EINVAL;
2855
2856#ifdef CONFIG_XPS
2857 netif_reset_xps_queues_gt(dev, 0);
2858#endif
2859 netdev_unbind_all_sb_channels(dev);
2860
2861 dev->num_tc = num_tc;
2862 return 0;
2863}
2864EXPORT_SYMBOL(netdev_set_num_tc);
2865
2866void netdev_unbind_sb_channel(struct net_device *dev,
2867 struct net_device *sb_dev)
2868{
2869 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2870
2871#ifdef CONFIG_XPS
2872 netif_reset_xps_queues_gt(sb_dev, 0);
2873#endif
2874 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2875 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2876
2877 while (txq-- != &dev->_tx[0]) {
2878 if (txq->sb_dev == sb_dev)
2879 txq->sb_dev = NULL;
2880 }
2881}
2882EXPORT_SYMBOL(netdev_unbind_sb_channel);
2883
2884int netdev_bind_sb_channel_queue(struct net_device *dev,
2885 struct net_device *sb_dev,
2886 u8 tc, u16 count, u16 offset)
2887{
2888 /* Make certain the sb_dev and dev are already configured */
2889 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2890 return -EINVAL;
2891
2892 /* We cannot hand out queues we don't have */
2893 if ((offset + count) > dev->real_num_tx_queues)
2894 return -EINVAL;
2895
2896 /* Record the mapping */
2897 sb_dev->tc_to_txq[tc].count = count;
2898 sb_dev->tc_to_txq[tc].offset = offset;
2899
2900 /* Provide a way for Tx queue to find the tc_to_txq map or
2901 * XPS map for itself.
2902 */
2903 while (count--)
2904 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2905
2906 return 0;
2907}
2908EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2909
2910int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2911{
2912 /* Do not use a multiqueue device to represent a subordinate channel */
2913 if (netif_is_multiqueue(dev))
2914 return -ENODEV;
2915
2916 /* We allow channels 1 - 32767 to be used for subordinate channels.
2917 * Channel 0 is meant to be "native" mode and used only to represent
2918 * the main root device. We allow writing 0 to reset the device back
2919 * to normal mode after being used as a subordinate channel.
2920 */
2921 if (channel > S16_MAX)
2922 return -EINVAL;
2923
2924 dev->num_tc = -channel;
2925
2926 return 0;
2927}
2928EXPORT_SYMBOL(netdev_set_sb_channel);
2929
2930/*
2931 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2932 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2933 */
2934int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2935{
2936 bool disabling;
2937 int rc;
2938
2939 disabling = txq < dev->real_num_tx_queues;
2940
2941 if (txq < 1 || txq > dev->num_tx_queues)
2942 return -EINVAL;
2943
2944 if (dev->reg_state == NETREG_REGISTERED ||
2945 dev->reg_state == NETREG_UNREGISTERING) {
2946 ASSERT_RTNL();
2947
2948 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2949 txq);
2950 if (rc)
2951 return rc;
2952
2953 if (dev->num_tc)
2954 netif_setup_tc(dev, txq);
2955
2956 dev->real_num_tx_queues = txq;
2957
2958 if (disabling) {
2959 synchronize_net();
2960 qdisc_reset_all_tx_gt(dev, txq);
2961#ifdef CONFIG_XPS
2962 netif_reset_xps_queues_gt(dev, txq);
2963#endif
2964 }
2965 } else {
2966 dev->real_num_tx_queues = txq;
2967 }
2968
2969 return 0;
2970}
2971EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2972
2973#ifdef CONFIG_SYSFS
2974/**
2975 * netif_set_real_num_rx_queues - set actual number of RX queues used
2976 * @dev: Network device
2977 * @rxq: Actual number of RX queues
2978 *
2979 * This must be called either with the rtnl_lock held or before
2980 * registration of the net device. Returns 0 on success, or a
2981 * negative error code. If called before registration, it always
2982 * succeeds.
2983 */
2984int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2985{
2986 int rc;
2987
2988 if (rxq < 1 || rxq > dev->num_rx_queues)
2989 return -EINVAL;
2990
2991 if (dev->reg_state == NETREG_REGISTERED) {
2992 ASSERT_RTNL();
2993
2994 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2995 rxq);
2996 if (rc)
2997 return rc;
2998 }
2999
3000 dev->real_num_rx_queues = rxq;
3001 return 0;
3002}
3003EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3004#endif
3005
3006/**
3007 * netif_get_num_default_rss_queues - default number of RSS queues
3008 *
3009 * This routine should set an upper limit on the number of RSS queues
3010 * used by default by multiqueue devices.
3011 */
3012int netif_get_num_default_rss_queues(void)
3013{
3014 return is_kdump_kernel() ?
3015 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3016}
3017EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3018
3019static void __netif_reschedule(struct Qdisc *q)
3020{
3021 struct softnet_data *sd;
3022 unsigned long flags;
3023
3024 local_irq_save(flags);
3025 sd = this_cpu_ptr(&softnet_data);
3026 q->next_sched = NULL;
3027 *sd->output_queue_tailp = q;
3028 sd->output_queue_tailp = &q->next_sched;
3029 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3030 local_irq_restore(flags);
3031}
3032
3033void __netif_schedule(struct Qdisc *q)
3034{
3035 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3036 __netif_reschedule(q);
3037}
3038EXPORT_SYMBOL(__netif_schedule);
3039
3040struct dev_kfree_skb_cb {
3041 enum skb_free_reason reason;
3042};
3043
3044static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3045{
3046 return (struct dev_kfree_skb_cb *)skb->cb;
3047}
3048
3049void netif_schedule_queue(struct netdev_queue *txq)
3050{
3051 rcu_read_lock();
3052 if (!netif_xmit_stopped(txq)) {
3053 struct Qdisc *q = rcu_dereference(txq->qdisc);
3054
3055 __netif_schedule(q);
3056 }
3057 rcu_read_unlock();
3058}
3059EXPORT_SYMBOL(netif_schedule_queue);
3060
3061void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3062{
3063 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3064 struct Qdisc *q;
3065
3066 rcu_read_lock();
3067 q = rcu_dereference(dev_queue->qdisc);
3068 __netif_schedule(q);
3069 rcu_read_unlock();
3070 }
3071}
3072EXPORT_SYMBOL(netif_tx_wake_queue);
3073
3074void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3075{
3076 unsigned long flags;
3077
3078 if (unlikely(!skb))
3079 return;
3080
3081 if (likely(refcount_read(&skb->users) == 1)) {
3082 smp_rmb();
3083 refcount_set(&skb->users, 0);
3084 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3085 return;
3086 }
3087 get_kfree_skb_cb(skb)->reason = reason;
3088 local_irq_save(flags);
3089 skb->next = __this_cpu_read(softnet_data.completion_queue);
3090 __this_cpu_write(softnet_data.completion_queue, skb);
3091 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3092 local_irq_restore(flags);
3093}
3094EXPORT_SYMBOL(__dev_kfree_skb_irq);
3095
3096void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3097{
3098 if (in_irq() || irqs_disabled())
3099 __dev_kfree_skb_irq(skb, reason);
3100 else
3101 dev_kfree_skb(skb);
3102}
3103EXPORT_SYMBOL(__dev_kfree_skb_any);
3104
3105
3106/**
3107 * netif_device_detach - mark device as removed
3108 * @dev: network device
3109 *
3110 * Mark device as removed from system and therefore no longer available.
3111 */
3112void netif_device_detach(struct net_device *dev)
3113{
3114 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3115 netif_running(dev)) {
3116 netif_tx_stop_all_queues(dev);
3117 }
3118}
3119EXPORT_SYMBOL(netif_device_detach);
3120
3121/**
3122 * netif_device_attach - mark device as attached
3123 * @dev: network device
3124 *
3125 * Mark device as attached from system and restart if needed.
3126 */
3127void netif_device_attach(struct net_device *dev)
3128{
3129 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3130 netif_running(dev)) {
3131 netif_tx_wake_all_queues(dev);
3132 __netdev_watchdog_up(dev);
3133 }
3134}
3135EXPORT_SYMBOL(netif_device_attach);
3136
3137/*
3138 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3139 * to be used as a distribution range.
3140 */
3141static u16 skb_tx_hash(const struct net_device *dev,
3142 const struct net_device *sb_dev,
3143 struct sk_buff *skb)
3144{
3145 u32 hash;
3146 u16 qoffset = 0;
3147 u16 qcount = dev->real_num_tx_queues;
3148
3149 if (dev->num_tc) {
3150 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3151
3152 qoffset = sb_dev->tc_to_txq[tc].offset;
3153 qcount = sb_dev->tc_to_txq[tc].count;
3154 }
3155
3156 if (skb_rx_queue_recorded(skb)) {
3157 hash = skb_get_rx_queue(skb);
3158 if (hash >= qoffset)
3159 hash -= qoffset;
3160 while (unlikely(hash >= qcount))
3161 hash -= qcount;
3162 return hash + qoffset;
3163 }
3164
3165 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3166}
3167
3168static void skb_warn_bad_offload(const struct sk_buff *skb)
3169{
3170 static const netdev_features_t null_features;
3171 struct net_device *dev = skb->dev;
3172 const char *name = "";
3173
3174 if (!net_ratelimit())
3175 return;
3176
3177 if (dev) {
3178 if (dev->dev.parent)
3179 name = dev_driver_string(dev->dev.parent);
3180 else
3181 name = netdev_name(dev);
3182 }
3183 skb_dump(KERN_WARNING, skb, false);
3184 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3185 name, dev ? &dev->features : &null_features,
3186 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3187}
3188
3189/*
3190 * Invalidate hardware checksum when packet is to be mangled, and
3191 * complete checksum manually on outgoing path.
3192 */
3193int skb_checksum_help(struct sk_buff *skb)
3194{
3195 __wsum csum;
3196 int ret = 0, offset;
3197
3198 if (skb->ip_summed == CHECKSUM_COMPLETE)
3199 goto out_set_summed;
3200
3201 if (unlikely(skb_shinfo(skb)->gso_size)) {
3202 skb_warn_bad_offload(skb);
3203 return -EINVAL;
3204 }
3205
3206 /* Before computing a checksum, we should make sure no frag could
3207 * be modified by an external entity : checksum could be wrong.
3208 */
3209 if (skb_has_shared_frag(skb)) {
3210 ret = __skb_linearize(skb);
3211 if (ret)
3212 goto out;
3213 }
3214
3215 offset = skb_checksum_start_offset(skb);
3216 BUG_ON(offset >= skb_headlen(skb));
3217 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3218
3219 offset += skb->csum_offset;
3220 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3221
3222 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3223 if (ret)
3224 goto out;
3225
3226 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3227out_set_summed:
3228 skb->ip_summed = CHECKSUM_NONE;
3229out:
3230 return ret;
3231}
3232EXPORT_SYMBOL(skb_checksum_help);
3233
3234int skb_crc32c_csum_help(struct sk_buff *skb)
3235{
3236 __le32 crc32c_csum;
3237 int ret = 0, offset, start;
3238
3239 if (skb->ip_summed != CHECKSUM_PARTIAL)
3240 goto out;
3241
3242 if (unlikely(skb_is_gso(skb)))
3243 goto out;
3244
3245 /* Before computing a checksum, we should make sure no frag could
3246 * be modified by an external entity : checksum could be wrong.
3247 */
3248 if (unlikely(skb_has_shared_frag(skb))) {
3249 ret = __skb_linearize(skb);
3250 if (ret)
3251 goto out;
3252 }
3253 start = skb_checksum_start_offset(skb);
3254 offset = start + offsetof(struct sctphdr, checksum);
3255 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3256 ret = -EINVAL;
3257 goto out;
3258 }
3259
3260 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3261 if (ret)
3262 goto out;
3263
3264 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3265 skb->len - start, ~(__u32)0,
3266 crc32c_csum_stub));
3267 *(__le32 *)(skb->data + offset) = crc32c_csum;
3268 skb->ip_summed = CHECKSUM_NONE;
3269 skb->csum_not_inet = 0;
3270out:
3271 return ret;
3272}
3273
3274__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3275{
3276 __be16 type = skb->protocol;
3277
3278 /* Tunnel gso handlers can set protocol to ethernet. */
3279 if (type == htons(ETH_P_TEB)) {
3280 struct ethhdr *eth;
3281
3282 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3283 return 0;
3284
3285 eth = (struct ethhdr *)skb->data;
3286 type = eth->h_proto;
3287 }
3288
3289 return __vlan_get_protocol(skb, type, depth);
3290}
3291
3292/**
3293 * skb_mac_gso_segment - mac layer segmentation handler.
3294 * @skb: buffer to segment
3295 * @features: features for the output path (see dev->features)
3296 */
3297struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3298 netdev_features_t features)
3299{
3300 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3301 struct packet_offload *ptype;
3302 int vlan_depth = skb->mac_len;
3303 __be16 type = skb_network_protocol(skb, &vlan_depth);
3304
3305 if (unlikely(!type))
3306 return ERR_PTR(-EINVAL);
3307
3308 __skb_pull(skb, vlan_depth);
3309
3310 rcu_read_lock();
3311 list_for_each_entry_rcu(ptype, &offload_base, list) {
3312 if (ptype->type == type && ptype->callbacks.gso_segment) {
3313 segs = ptype->callbacks.gso_segment(skb, features);
3314 break;
3315 }
3316 }
3317 rcu_read_unlock();
3318
3319 __skb_push(skb, skb->data - skb_mac_header(skb));
3320
3321 return segs;
3322}
3323EXPORT_SYMBOL(skb_mac_gso_segment);
3324
3325
3326/* openvswitch calls this on rx path, so we need a different check.
3327 */
3328static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3329{
3330 if (tx_path)
3331 return skb->ip_summed != CHECKSUM_PARTIAL &&
3332 skb->ip_summed != CHECKSUM_UNNECESSARY;
3333
3334 return skb->ip_summed == CHECKSUM_NONE;
3335}
3336
3337/**
3338 * __skb_gso_segment - Perform segmentation on skb.
3339 * @skb: buffer to segment
3340 * @features: features for the output path (see dev->features)
3341 * @tx_path: whether it is called in TX path
3342 *
3343 * This function segments the given skb and returns a list of segments.
3344 *
3345 * It may return NULL if the skb requires no segmentation. This is
3346 * only possible when GSO is used for verifying header integrity.
3347 *
3348 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3349 */
3350struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3351 netdev_features_t features, bool tx_path)
3352{
3353 struct sk_buff *segs;
3354
3355 if (unlikely(skb_needs_check(skb, tx_path))) {
3356 int err;
3357
3358 /* We're going to init ->check field in TCP or UDP header */
3359 err = skb_cow_head(skb, 0);
3360 if (err < 0)
3361 return ERR_PTR(err);
3362 }
3363
3364 /* Only report GSO partial support if it will enable us to
3365 * support segmentation on this frame without needing additional
3366 * work.
3367 */
3368 if (features & NETIF_F_GSO_PARTIAL) {
3369 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3370 struct net_device *dev = skb->dev;
3371
3372 partial_features |= dev->features & dev->gso_partial_features;
3373 if (!skb_gso_ok(skb, features | partial_features))
3374 features &= ~NETIF_F_GSO_PARTIAL;
3375 }
3376
3377 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3378 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3379
3380 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3381 SKB_GSO_CB(skb)->encap_level = 0;
3382
3383 skb_reset_mac_header(skb);
3384 skb_reset_mac_len(skb);
3385
3386 segs = skb_mac_gso_segment(skb, features);
3387
3388 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3389 skb_warn_bad_offload(skb);
3390
3391 return segs;
3392}
3393EXPORT_SYMBOL(__skb_gso_segment);
3394
3395/* Take action when hardware reception checksum errors are detected. */
3396#ifdef CONFIG_BUG
3397void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3398{
3399 if (net_ratelimit()) {
3400 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3401 skb_dump(KERN_ERR, skb, true);
3402 dump_stack();
3403 }
3404}
3405EXPORT_SYMBOL(netdev_rx_csum_fault);
3406#endif
3407
3408/* XXX: check that highmem exists at all on the given machine. */
3409static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3410{
3411#ifdef CONFIG_HIGHMEM
3412 int i;
3413
3414 if (!(dev->features & NETIF_F_HIGHDMA)) {
3415 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3416 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3417
3418 if (PageHighMem(skb_frag_page(frag)))
3419 return 1;
3420 }
3421 }
3422#endif
3423 return 0;
3424}
3425
3426/* If MPLS offload request, verify we are testing hardware MPLS features
3427 * instead of standard features for the netdev.
3428 */
3429#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3430static netdev_features_t net_mpls_features(struct sk_buff *skb,
3431 netdev_features_t features,
3432 __be16 type)
3433{
3434 if (eth_p_mpls(type))
3435 features &= skb->dev->mpls_features;
3436
3437 return features;
3438}
3439#else
3440static netdev_features_t net_mpls_features(struct sk_buff *skb,
3441 netdev_features_t features,
3442 __be16 type)
3443{
3444 return features;
3445}
3446#endif
3447
3448static netdev_features_t harmonize_features(struct sk_buff *skb,
3449 netdev_features_t features)
3450{
3451 int tmp;
3452 __be16 type;
3453
3454 type = skb_network_protocol(skb, &tmp);
3455 features = net_mpls_features(skb, features, type);
3456
3457 if (skb->ip_summed != CHECKSUM_NONE &&
3458 !can_checksum_protocol(features, type)) {
3459 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3460 }
3461 if (illegal_highdma(skb->dev, skb))
3462 features &= ~NETIF_F_SG;
3463
3464 return features;
3465}
3466
3467netdev_features_t passthru_features_check(struct sk_buff *skb,
3468 struct net_device *dev,
3469 netdev_features_t features)
3470{
3471 return features;
3472}
3473EXPORT_SYMBOL(passthru_features_check);
3474
3475static netdev_features_t dflt_features_check(struct sk_buff *skb,
3476 struct net_device *dev,
3477 netdev_features_t features)
3478{
3479 return vlan_features_check(skb, features);
3480}
3481
3482static netdev_features_t gso_features_check(const struct sk_buff *skb,
3483 struct net_device *dev,
3484 netdev_features_t features)
3485{
3486 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3487
3488 if (gso_segs > dev->gso_max_segs)
3489 return features & ~NETIF_F_GSO_MASK;
3490
3491 /* Support for GSO partial features requires software
3492 * intervention before we can actually process the packets
3493 * so we need to strip support for any partial features now
3494 * and we can pull them back in after we have partially
3495 * segmented the frame.
3496 */
3497 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3498 features &= ~dev->gso_partial_features;
3499
3500 /* Make sure to clear the IPv4 ID mangling feature if the
3501 * IPv4 header has the potential to be fragmented.
3502 */
3503 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3504 struct iphdr *iph = skb->encapsulation ?
3505 inner_ip_hdr(skb) : ip_hdr(skb);
3506
3507 if (!(iph->frag_off & htons(IP_DF)))
3508 features &= ~NETIF_F_TSO_MANGLEID;
3509 }
3510
3511 return features;
3512}
3513
3514netdev_features_t netif_skb_features(struct sk_buff *skb)
3515{
3516 struct net_device *dev = skb->dev;
3517 netdev_features_t features = dev->features;
3518
3519 if (skb_is_gso(skb))
3520 features = gso_features_check(skb, dev, features);
3521
3522 /* If encapsulation offload request, verify we are testing
3523 * hardware encapsulation features instead of standard
3524 * features for the netdev
3525 */
3526 if (skb->encapsulation)
3527 features &= dev->hw_enc_features;
3528
3529 if (skb_vlan_tagged(skb))
3530 features = netdev_intersect_features(features,
3531 dev->vlan_features |
3532 NETIF_F_HW_VLAN_CTAG_TX |
3533 NETIF_F_HW_VLAN_STAG_TX);
3534
3535 if (dev->netdev_ops->ndo_features_check)
3536 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3537 features);
3538 else
3539 features &= dflt_features_check(skb, dev, features);
3540
3541 return harmonize_features(skb, features);
3542}
3543EXPORT_SYMBOL(netif_skb_features);
3544
3545static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3546 struct netdev_queue *txq, bool more)
3547{
3548 unsigned int len;
3549 int rc;
3550
3551 if (dev_nit_active(dev))
3552 dev_queue_xmit_nit(skb, dev);
3553
3554 len = skb->len;
3555 trace_net_dev_start_xmit(skb, dev);
3556 rc = netdev_start_xmit(skb, dev, txq, more);
3557 trace_net_dev_xmit(skb, rc, dev, len);
3558
3559 return rc;
3560}
3561
3562struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3563 struct netdev_queue *txq, int *ret)
3564{
3565 struct sk_buff *skb = first;
3566 int rc = NETDEV_TX_OK;
3567
3568 while (skb) {
3569 struct sk_buff *next = skb->next;
3570
3571 skb_mark_not_on_list(skb);
3572 rc = xmit_one(skb, dev, txq, next != NULL);
3573 if (unlikely(!dev_xmit_complete(rc))) {
3574 skb->next = next;
3575 goto out;
3576 }
3577
3578 skb = next;
3579 if (netif_tx_queue_stopped(txq) && skb) {
3580 rc = NETDEV_TX_BUSY;
3581 break;
3582 }
3583 }
3584
3585out:
3586 *ret = rc;
3587 return skb;
3588}
3589
3590static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3591 netdev_features_t features)
3592{
3593 if (skb_vlan_tag_present(skb) &&
3594 !vlan_hw_offload_capable(features, skb->vlan_proto))
3595 skb = __vlan_hwaccel_push_inside(skb);
3596 return skb;
3597}
3598
3599int skb_csum_hwoffload_help(struct sk_buff *skb,
3600 const netdev_features_t features)
3601{
3602 if (unlikely(skb->csum_not_inet))
3603 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3604 skb_crc32c_csum_help(skb);
3605
3606 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3607}
3608EXPORT_SYMBOL(skb_csum_hwoffload_help);
3609
3610static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3611{
3612 netdev_features_t features;
3613
3614 features = netif_skb_features(skb);
3615 skb = validate_xmit_vlan(skb, features);
3616 if (unlikely(!skb))
3617 goto out_null;
3618
3619 skb = sk_validate_xmit_skb(skb, dev);
3620 if (unlikely(!skb))
3621 goto out_null;
3622
3623 if (netif_needs_gso(skb, features)) {
3624 struct sk_buff *segs;
3625
3626 segs = skb_gso_segment(skb, features);
3627 if (IS_ERR(segs)) {
3628 goto out_kfree_skb;
3629 } else if (segs) {
3630 consume_skb(skb);
3631 skb = segs;
3632 }
3633 } else {
3634 if (skb_needs_linearize(skb, features) &&
3635 __skb_linearize(skb))
3636 goto out_kfree_skb;
3637
3638 /* If packet is not checksummed and device does not
3639 * support checksumming for this protocol, complete
3640 * checksumming here.
3641 */
3642 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3643 if (skb->encapsulation)
3644 skb_set_inner_transport_header(skb,
3645 skb_checksum_start_offset(skb));
3646 else
3647 skb_set_transport_header(skb,
3648 skb_checksum_start_offset(skb));
3649 if (skb_csum_hwoffload_help(skb, features))
3650 goto out_kfree_skb;
3651 }
3652 }
3653
3654 skb = validate_xmit_xfrm(skb, features, again);
3655
3656 return skb;
3657
3658out_kfree_skb:
3659 kfree_skb(skb);
3660out_null:
3661 atomic_long_inc(&dev->tx_dropped);
3662 return NULL;
3663}
3664
3665struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3666{
3667 struct sk_buff *next, *head = NULL, *tail;
3668
3669 for (; skb != NULL; skb = next) {
3670 next = skb->next;
3671 skb_mark_not_on_list(skb);
3672
3673 /* in case skb wont be segmented, point to itself */
3674 skb->prev = skb;
3675
3676 skb = validate_xmit_skb(skb, dev, again);
3677 if (!skb)
3678 continue;
3679
3680 if (!head)
3681 head = skb;
3682 else
3683 tail->next = skb;
3684 /* If skb was segmented, skb->prev points to
3685 * the last segment. If not, it still contains skb.
3686 */
3687 tail = skb->prev;
3688 }
3689 return head;
3690}
3691EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3692
3693static void qdisc_pkt_len_init(struct sk_buff *skb)
3694{
3695 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3696
3697 qdisc_skb_cb(skb)->pkt_len = skb->len;
3698
3699 /* To get more precise estimation of bytes sent on wire,
3700 * we add to pkt_len the headers size of all segments
3701 */
3702 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3703 unsigned int hdr_len;
3704 u16 gso_segs = shinfo->gso_segs;
3705
3706 /* mac layer + network layer */
3707 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3708
3709 /* + transport layer */
3710 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3711 const struct tcphdr *th;
3712 struct tcphdr _tcphdr;
3713
3714 th = skb_header_pointer(skb, skb_transport_offset(skb),
3715 sizeof(_tcphdr), &_tcphdr);
3716 if (likely(th))
3717 hdr_len += __tcp_hdrlen(th);
3718 } else {
3719 struct udphdr _udphdr;
3720
3721 if (skb_header_pointer(skb, skb_transport_offset(skb),
3722 sizeof(_udphdr), &_udphdr))
3723 hdr_len += sizeof(struct udphdr);
3724 }
3725
3726 if (shinfo->gso_type & SKB_GSO_DODGY)
3727 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3728 shinfo->gso_size);
3729
3730 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3731 }
3732}
3733
3734static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3735 struct net_device *dev,
3736 struct netdev_queue *txq)
3737{
3738 spinlock_t *root_lock = qdisc_lock(q);
3739 struct sk_buff *to_free = NULL;
3740 bool contended;
3741 int rc;
3742
3743 qdisc_calculate_pkt_len(skb, q);
3744
3745 if (q->flags & TCQ_F_NOLOCK) {
3746 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3747 qdisc_run(q);
3748
3749 if (unlikely(to_free))
3750 kfree_skb_list(to_free);
3751 return rc;
3752 }
3753
3754 /*
3755 * Heuristic to force contended enqueues to serialize on a
3756 * separate lock before trying to get qdisc main lock.
3757 * This permits qdisc->running owner to get the lock more
3758 * often and dequeue packets faster.
3759 */
3760 contended = qdisc_is_running(q);
3761 if (unlikely(contended))
3762 spin_lock(&q->busylock);
3763
3764 spin_lock(root_lock);
3765 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3766 __qdisc_drop(skb, &to_free);
3767 rc = NET_XMIT_DROP;
3768 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3769 qdisc_run_begin(q)) {
3770 /*
3771 * This is a work-conserving queue; there are no old skbs
3772 * waiting to be sent out; and the qdisc is not running -
3773 * xmit the skb directly.
3774 */
3775
3776 qdisc_bstats_update(q, skb);
3777
3778 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3779 if (unlikely(contended)) {
3780 spin_unlock(&q->busylock);
3781 contended = false;
3782 }
3783 __qdisc_run(q);
3784 }
3785
3786 qdisc_run_end(q);
3787 rc = NET_XMIT_SUCCESS;
3788 } else {
3789 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3790 if (qdisc_run_begin(q)) {
3791 if (unlikely(contended)) {
3792 spin_unlock(&q->busylock);
3793 contended = false;
3794 }
3795 __qdisc_run(q);
3796 qdisc_run_end(q);
3797 }
3798 }
3799 spin_unlock(root_lock);
3800 if (unlikely(to_free))
3801 kfree_skb_list(to_free);
3802 if (unlikely(contended))
3803 spin_unlock(&q->busylock);
3804 return rc;
3805}
3806
3807#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3808static void skb_update_prio(struct sk_buff *skb)
3809{
3810 const struct netprio_map *map;
3811 const struct sock *sk;
3812 unsigned int prioidx;
3813
3814 if (skb->priority)
3815 return;
3816 map = rcu_dereference_bh(skb->dev->priomap);
3817 if (!map)
3818 return;
3819 sk = skb_to_full_sk(skb);
3820 if (!sk)
3821 return;
3822
3823 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3824
3825 if (prioidx < map->priomap_len)
3826 skb->priority = map->priomap[prioidx];
3827}
3828#else
3829#define skb_update_prio(skb)
3830#endif
3831
3832/**
3833 * dev_loopback_xmit - loop back @skb
3834 * @net: network namespace this loopback is happening in
3835 * @sk: sk needed to be a netfilter okfn
3836 * @skb: buffer to transmit
3837 */
3838int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3839{
3840 skb_reset_mac_header(skb);
3841 __skb_pull(skb, skb_network_offset(skb));
3842 skb->pkt_type = PACKET_LOOPBACK;
3843 skb->ip_summed = CHECKSUM_UNNECESSARY;
3844 WARN_ON(!skb_dst(skb));
3845 skb_dst_force(skb);
3846 netif_rx_ni(skb);
3847 return 0;
3848}
3849EXPORT_SYMBOL(dev_loopback_xmit);
3850
3851#ifdef CONFIG_NET_EGRESS
3852static struct sk_buff *
3853sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3854{
3855 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3856 struct tcf_result cl_res;
3857
3858 if (!miniq)
3859 return skb;
3860
3861 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3862 mini_qdisc_bstats_cpu_update(miniq, skb);
3863
3864 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3865 case TC_ACT_OK:
3866 case TC_ACT_RECLASSIFY:
3867 skb->tc_index = TC_H_MIN(cl_res.classid);
3868 break;
3869 case TC_ACT_SHOT:
3870 mini_qdisc_qstats_cpu_drop(miniq);
3871 *ret = NET_XMIT_DROP;
3872 kfree_skb(skb);
3873 return NULL;
3874 case TC_ACT_STOLEN:
3875 case TC_ACT_QUEUED:
3876 case TC_ACT_TRAP:
3877 *ret = NET_XMIT_SUCCESS;
3878 consume_skb(skb);
3879 return NULL;
3880 case TC_ACT_REDIRECT:
3881 /* No need to push/pop skb's mac_header here on egress! */
3882 skb_do_redirect(skb);
3883 *ret = NET_XMIT_SUCCESS;
3884 return NULL;
3885 default:
3886 break;
3887 }
3888
3889 return skb;
3890}
3891#endif /* CONFIG_NET_EGRESS */
3892
3893#ifdef CONFIG_XPS
3894static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3895 struct xps_dev_maps *dev_maps, unsigned int tci)
3896{
3897 struct xps_map *map;
3898 int queue_index = -1;
3899
3900 if (dev->num_tc) {
3901 tci *= dev->num_tc;
3902 tci += netdev_get_prio_tc_map(dev, skb->priority);
3903 }
3904
3905 map = rcu_dereference(dev_maps->attr_map[tci]);
3906 if (map) {
3907 if (map->len == 1)
3908 queue_index = map->queues[0];
3909 else
3910 queue_index = map->queues[reciprocal_scale(
3911 skb_get_hash(skb), map->len)];
3912 if (unlikely(queue_index >= dev->real_num_tx_queues))
3913 queue_index = -1;
3914 }
3915 return queue_index;
3916}
3917#endif
3918
3919static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3920 struct sk_buff *skb)
3921{
3922#ifdef CONFIG_XPS
3923 struct xps_dev_maps *dev_maps;
3924 struct sock *sk = skb->sk;
3925 int queue_index = -1;
3926
3927 if (!static_key_false(&xps_needed))
3928 return -1;
3929
3930 rcu_read_lock();
3931 if (!static_key_false(&xps_rxqs_needed))
3932 goto get_cpus_map;
3933
3934 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3935 if (dev_maps) {
3936 int tci = sk_rx_queue_get(sk);
3937
3938 if (tci >= 0 && tci < dev->num_rx_queues)
3939 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3940 tci);
3941 }
3942
3943get_cpus_map:
3944 if (queue_index < 0) {
3945 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3946 if (dev_maps) {
3947 unsigned int tci = skb->sender_cpu - 1;
3948
3949 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3950 tci);
3951 }
3952 }
3953 rcu_read_unlock();
3954
3955 return queue_index;
3956#else
3957 return -1;
3958#endif
3959}
3960
3961u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3962 struct net_device *sb_dev)
3963{
3964 return 0;
3965}
3966EXPORT_SYMBOL(dev_pick_tx_zero);
3967
3968u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3969 struct net_device *sb_dev)
3970{
3971 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3972}
3973EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3974
3975u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3976 struct net_device *sb_dev)
3977{
3978 struct sock *sk = skb->sk;
3979 int queue_index = sk_tx_queue_get(sk);
3980
3981 sb_dev = sb_dev ? : dev;
3982
3983 if (queue_index < 0 || skb->ooo_okay ||
3984 queue_index >= dev->real_num_tx_queues) {
3985 int new_index = get_xps_queue(dev, sb_dev, skb);
3986
3987 if (new_index < 0)
3988 new_index = skb_tx_hash(dev, sb_dev, skb);
3989
3990 if (queue_index != new_index && sk &&
3991 sk_fullsock(sk) &&
3992 rcu_access_pointer(sk->sk_dst_cache))
3993 sk_tx_queue_set(sk, new_index);
3994
3995 queue_index = new_index;
3996 }
3997
3998 return queue_index;
3999}
4000EXPORT_SYMBOL(netdev_pick_tx);
4001
4002struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4003 struct sk_buff *skb,
4004 struct net_device *sb_dev)
4005{
4006 int queue_index = 0;
4007
4008#ifdef CONFIG_XPS
4009 u32 sender_cpu = skb->sender_cpu - 1;
4010
4011 if (sender_cpu >= (u32)NR_CPUS)
4012 skb->sender_cpu = raw_smp_processor_id() + 1;
4013#endif
4014
4015 if (dev->real_num_tx_queues != 1) {
4016 const struct net_device_ops *ops = dev->netdev_ops;
4017
4018 if (ops->ndo_select_queue)
4019 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4020 else
4021 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4022
4023 queue_index = netdev_cap_txqueue(dev, queue_index);
4024 }
4025
4026 skb_set_queue_mapping(skb, queue_index);
4027 return netdev_get_tx_queue(dev, queue_index);
4028}
4029
4030/**
4031 * __dev_queue_xmit - transmit a buffer
4032 * @skb: buffer to transmit
4033 * @sb_dev: suboordinate device used for L2 forwarding offload
4034 *
4035 * Queue a buffer for transmission to a network device. The caller must
4036 * have set the device and priority and built the buffer before calling
4037 * this function. The function can be called from an interrupt.
4038 *
4039 * A negative errno code is returned on a failure. A success does not
4040 * guarantee the frame will be transmitted as it may be dropped due
4041 * to congestion or traffic shaping.
4042 *
4043 * -----------------------------------------------------------------------------------
4044 * I notice this method can also return errors from the queue disciplines,
4045 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4046 * be positive.
4047 *
4048 * Regardless of the return value, the skb is consumed, so it is currently
4049 * difficult to retry a send to this method. (You can bump the ref count
4050 * before sending to hold a reference for retry if you are careful.)
4051 *
4052 * When calling this method, interrupts MUST be enabled. This is because
4053 * the BH enable code must have IRQs enabled so that it will not deadlock.
4054 * --BLG
4055 */
4056static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4057{
4058 struct net_device *dev = skb->dev;
4059 struct netdev_queue *txq;
4060 struct Qdisc *q;
4061 int rc = -ENOMEM;
4062 bool again = false;
4063
4064 skb_reset_mac_header(skb);
4065
4066 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4067 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
4068
4069 /* Disable soft irqs for various locks below. Also
4070 * stops preemption for RCU.
4071 */
4072 rcu_read_lock_bh();
4073
4074 skb_update_prio(skb);
4075
4076 qdisc_pkt_len_init(skb);
4077#ifdef CONFIG_NET_CLS_ACT
4078 skb->tc_at_ingress = 0;
4079# ifdef CONFIG_NET_EGRESS
4080 if (static_branch_unlikely(&egress_needed_key)) {
4081 skb = sch_handle_egress(skb, &rc, dev);
4082 if (!skb)
4083 goto out;
4084 }
4085# endif
4086#endif
4087 /* If device/qdisc don't need skb->dst, release it right now while
4088 * its hot in this cpu cache.
4089 */
4090 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4091 skb_dst_drop(skb);
4092 else
4093 skb_dst_force(skb);
4094
4095 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4096 q = rcu_dereference_bh(txq->qdisc);
4097
4098 trace_net_dev_queue(skb);
4099 if (q->enqueue) {
4100 rc = __dev_xmit_skb(skb, q, dev, txq);
4101 goto out;
4102 }
4103
4104 /* The device has no queue. Common case for software devices:
4105 * loopback, all the sorts of tunnels...
4106
4107 * Really, it is unlikely that netif_tx_lock protection is necessary
4108 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4109 * counters.)
4110 * However, it is possible, that they rely on protection
4111 * made by us here.
4112
4113 * Check this and shot the lock. It is not prone from deadlocks.
4114 *Either shot noqueue qdisc, it is even simpler 8)
4115 */
4116 if (dev->flags & IFF_UP) {
4117 int cpu = smp_processor_id(); /* ok because BHs are off */
4118
4119 if (txq->xmit_lock_owner != cpu) {
4120 if (dev_xmit_recursion())
4121 goto recursion_alert;
4122
4123 skb = validate_xmit_skb(skb, dev, &again);
4124 if (!skb)
4125 goto out;
4126
4127 HARD_TX_LOCK(dev, txq, cpu);
4128
4129 if (!netif_xmit_stopped(txq)) {
4130 dev_xmit_recursion_inc();
4131 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4132 dev_xmit_recursion_dec();
4133 if (dev_xmit_complete(rc)) {
4134 HARD_TX_UNLOCK(dev, txq);
4135 goto out;
4136 }
4137 }
4138 HARD_TX_UNLOCK(dev, txq);
4139 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4140 dev->name);
4141 } else {
4142 /* Recursion is detected! It is possible,
4143 * unfortunately
4144 */
4145recursion_alert:
4146 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4147 dev->name);
4148 }
4149 }
4150
4151 rc = -ENETDOWN;
4152 rcu_read_unlock_bh();
4153
4154 atomic_long_inc(&dev->tx_dropped);
4155 kfree_skb_list(skb);
4156 return rc;
4157out:
4158 rcu_read_unlock_bh();
4159 return rc;
4160}
4161
4162int dev_queue_xmit(struct sk_buff *skb)
4163{
4164 return __dev_queue_xmit(skb, NULL);
4165}
4166EXPORT_SYMBOL(dev_queue_xmit);
4167
4168int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4169{
4170 return __dev_queue_xmit(skb, sb_dev);
4171}
4172EXPORT_SYMBOL(dev_queue_xmit_accel);
4173
4174int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4175{
4176 struct net_device *dev = skb->dev;
4177 struct sk_buff *orig_skb = skb;
4178 struct netdev_queue *txq;
4179 int ret = NETDEV_TX_BUSY;
4180 bool again = false;
4181
4182 if (unlikely(!netif_running(dev) ||
4183 !netif_carrier_ok(dev)))
4184 goto drop;
4185
4186 skb = validate_xmit_skb_list(skb, dev, &again);
4187 if (skb != orig_skb)
4188 goto drop;
4189
4190 skb_set_queue_mapping(skb, queue_id);
4191 txq = skb_get_tx_queue(dev, skb);
4192
4193 local_bh_disable();
4194
4195 HARD_TX_LOCK(dev, txq, smp_processor_id());
4196 if (!netif_xmit_frozen_or_drv_stopped(txq))
4197 ret = netdev_start_xmit(skb, dev, txq, false);
4198 HARD_TX_UNLOCK(dev, txq);
4199
4200 local_bh_enable();
4201
4202 if (!dev_xmit_complete(ret))
4203 kfree_skb(skb);
4204
4205 return ret;
4206drop:
4207 atomic_long_inc(&dev->tx_dropped);
4208 kfree_skb_list(skb);
4209 return NET_XMIT_DROP;
4210}
4211EXPORT_SYMBOL(dev_direct_xmit);
4212
4213/*************************************************************************
4214 * Receiver routines
4215 *************************************************************************/
4216
4217int netdev_max_backlog __read_mostly = 1000;
4218EXPORT_SYMBOL(netdev_max_backlog);
4219
4220int netdev_tstamp_prequeue __read_mostly = 1;
4221int netdev_budget __read_mostly = 300;
4222/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4223unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4224int weight_p __read_mostly = 64; /* old backlog weight */
4225int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4226int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4227int dev_rx_weight __read_mostly = 64;
4228int dev_tx_weight __read_mostly = 64;
4229/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4230int gro_normal_batch __read_mostly = 8;
4231
4232/* Called with irq disabled */
4233static inline void ____napi_schedule(struct softnet_data *sd,
4234 struct napi_struct *napi)
4235{
4236 list_add_tail(&napi->poll_list, &sd->poll_list);
4237 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4238}
4239
4240#ifdef CONFIG_RPS
4241
4242/* One global table that all flow-based protocols share. */
4243struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4244EXPORT_SYMBOL(rps_sock_flow_table);
4245u32 rps_cpu_mask __read_mostly;
4246EXPORT_SYMBOL(rps_cpu_mask);
4247
4248struct static_key_false rps_needed __read_mostly;
4249EXPORT_SYMBOL(rps_needed);
4250struct static_key_false rfs_needed __read_mostly;
4251EXPORT_SYMBOL(rfs_needed);
4252
4253static struct rps_dev_flow *
4254set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4255 struct rps_dev_flow *rflow, u16 next_cpu)
4256{
4257 if (next_cpu < nr_cpu_ids) {
4258#ifdef CONFIG_RFS_ACCEL
4259 struct netdev_rx_queue *rxqueue;
4260 struct rps_dev_flow_table *flow_table;
4261 struct rps_dev_flow *old_rflow;
4262 u32 flow_id;
4263 u16 rxq_index;
4264 int rc;
4265
4266 /* Should we steer this flow to a different hardware queue? */
4267 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4268 !(dev->features & NETIF_F_NTUPLE))
4269 goto out;
4270 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4271 if (rxq_index == skb_get_rx_queue(skb))
4272 goto out;
4273
4274 rxqueue = dev->_rx + rxq_index;
4275 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4276 if (!flow_table)
4277 goto out;
4278 flow_id = skb_get_hash(skb) & flow_table->mask;
4279 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4280 rxq_index, flow_id);
4281 if (rc < 0)
4282 goto out;
4283 old_rflow = rflow;
4284 rflow = &flow_table->flows[flow_id];
4285 rflow->filter = rc;
4286 if (old_rflow->filter == rflow->filter)
4287 old_rflow->filter = RPS_NO_FILTER;
4288 out:
4289#endif
4290 rflow->last_qtail =
4291 per_cpu(softnet_data, next_cpu).input_queue_head;
4292 }
4293
4294 rflow->cpu = next_cpu;
4295 return rflow;
4296}
4297
4298/*
4299 * get_rps_cpu is called from netif_receive_skb and returns the target
4300 * CPU from the RPS map of the receiving queue for a given skb.
4301 * rcu_read_lock must be held on entry.
4302 */
4303static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4304 struct rps_dev_flow **rflowp)
4305{
4306 const struct rps_sock_flow_table *sock_flow_table;
4307 struct netdev_rx_queue *rxqueue = dev->_rx;
4308 struct rps_dev_flow_table *flow_table;
4309 struct rps_map *map;
4310 int cpu = -1;
4311 u32 tcpu;
4312 u32 hash;
4313
4314 if (skb_rx_queue_recorded(skb)) {
4315 u16 index = skb_get_rx_queue(skb);
4316
4317 if (unlikely(index >= dev->real_num_rx_queues)) {
4318 WARN_ONCE(dev->real_num_rx_queues > 1,
4319 "%s received packet on queue %u, but number "
4320 "of RX queues is %u\n",
4321 dev->name, index, dev->real_num_rx_queues);
4322 goto done;
4323 }
4324 rxqueue += index;
4325 }
4326
4327 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4328
4329 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4330 map = rcu_dereference(rxqueue->rps_map);
4331 if (!flow_table && !map)
4332 goto done;
4333
4334 skb_reset_network_header(skb);
4335 hash = skb_get_hash(skb);
4336 if (!hash)
4337 goto done;
4338
4339 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4340 if (flow_table && sock_flow_table) {
4341 struct rps_dev_flow *rflow;
4342 u32 next_cpu;
4343 u32 ident;
4344
4345 /* First check into global flow table if there is a match */
4346 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4347 if ((ident ^ hash) & ~rps_cpu_mask)
4348 goto try_rps;
4349
4350 next_cpu = ident & rps_cpu_mask;
4351
4352 /* OK, now we know there is a match,
4353 * we can look at the local (per receive queue) flow table
4354 */
4355 rflow = &flow_table->flows[hash & flow_table->mask];
4356 tcpu = rflow->cpu;
4357
4358 /*
4359 * If the desired CPU (where last recvmsg was done) is
4360 * different from current CPU (one in the rx-queue flow
4361 * table entry), switch if one of the following holds:
4362 * - Current CPU is unset (>= nr_cpu_ids).
4363 * - Current CPU is offline.
4364 * - The current CPU's queue tail has advanced beyond the
4365 * last packet that was enqueued using this table entry.
4366 * This guarantees that all previous packets for the flow
4367 * have been dequeued, thus preserving in order delivery.
4368 */
4369 if (unlikely(tcpu != next_cpu) &&
4370 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4371 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4372 rflow->last_qtail)) >= 0)) {
4373 tcpu = next_cpu;
4374 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4375 }
4376
4377 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4378 *rflowp = rflow;
4379 cpu = tcpu;
4380 goto done;
4381 }
4382 }
4383
4384try_rps:
4385
4386 if (map) {
4387 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4388 if (cpu_online(tcpu)) {
4389 cpu = tcpu;
4390 goto done;
4391 }
4392 }
4393
4394done:
4395 return cpu;
4396}
4397
4398#ifdef CONFIG_RFS_ACCEL
4399
4400/**
4401 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4402 * @dev: Device on which the filter was set
4403 * @rxq_index: RX queue index
4404 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4405 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4406 *
4407 * Drivers that implement ndo_rx_flow_steer() should periodically call
4408 * this function for each installed filter and remove the filters for
4409 * which it returns %true.
4410 */
4411bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4412 u32 flow_id, u16 filter_id)
4413{
4414 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4415 struct rps_dev_flow_table *flow_table;
4416 struct rps_dev_flow *rflow;
4417 bool expire = true;
4418 unsigned int cpu;
4419
4420 rcu_read_lock();
4421 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4422 if (flow_table && flow_id <= flow_table->mask) {
4423 rflow = &flow_table->flows[flow_id];
4424 cpu = READ_ONCE(rflow->cpu);
4425 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4426 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4427 rflow->last_qtail) <
4428 (int)(10 * flow_table->mask)))
4429 expire = false;
4430 }
4431 rcu_read_unlock();
4432 return expire;
4433}
4434EXPORT_SYMBOL(rps_may_expire_flow);
4435
4436#endif /* CONFIG_RFS_ACCEL */
4437
4438/* Called from hardirq (IPI) context */
4439static void rps_trigger_softirq(void *data)
4440{
4441 struct softnet_data *sd = data;
4442
4443 ____napi_schedule(sd, &sd->backlog);
4444 sd->received_rps++;
4445}
4446
4447#endif /* CONFIG_RPS */
4448
4449/*
4450 * Check if this softnet_data structure is another cpu one
4451 * If yes, queue it to our IPI list and return 1
4452 * If no, return 0
4453 */
4454static int rps_ipi_queued(struct softnet_data *sd)
4455{
4456#ifdef CONFIG_RPS
4457 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4458
4459 if (sd != mysd) {
4460 sd->rps_ipi_next = mysd->rps_ipi_list;
4461 mysd->rps_ipi_list = sd;
4462
4463 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4464 return 1;
4465 }
4466#endif /* CONFIG_RPS */
4467 return 0;
4468}
4469
4470#ifdef CONFIG_NET_FLOW_LIMIT
4471int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4472#endif
4473
4474static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4475{
4476#ifdef CONFIG_NET_FLOW_LIMIT
4477 struct sd_flow_limit *fl;
4478 struct softnet_data *sd;
4479 unsigned int old_flow, new_flow;
4480
4481 if (qlen < (netdev_max_backlog >> 1))
4482 return false;
4483
4484 sd = this_cpu_ptr(&softnet_data);
4485
4486 rcu_read_lock();
4487 fl = rcu_dereference(sd->flow_limit);
4488 if (fl) {
4489 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4490 old_flow = fl->history[fl->history_head];
4491 fl->history[fl->history_head] = new_flow;
4492
4493 fl->history_head++;
4494 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4495
4496 if (likely(fl->buckets[old_flow]))
4497 fl->buckets[old_flow]--;
4498
4499 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4500 fl->count++;
4501 rcu_read_unlock();
4502 return true;
4503 }
4504 }
4505 rcu_read_unlock();
4506#endif
4507 return false;
4508}
4509
4510/*
4511 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4512 * queue (may be a remote CPU queue).
4513 */
4514static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4515 unsigned int *qtail)
4516{
4517 struct softnet_data *sd;
4518 unsigned long flags;
4519 unsigned int qlen;
4520
4521 sd = &per_cpu(softnet_data, cpu);
4522
4523 local_irq_save(flags);
4524
4525 rps_lock(sd);
4526 if (!netif_running(skb->dev))
4527 goto drop;
4528 qlen = skb_queue_len(&sd->input_pkt_queue);
4529 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4530 if (qlen) {
4531enqueue:
4532 __skb_queue_tail(&sd->input_pkt_queue, skb);
4533 input_queue_tail_incr_save(sd, qtail);
4534 rps_unlock(sd);
4535 local_irq_restore(flags);
4536 return NET_RX_SUCCESS;
4537 }
4538
4539 /* Schedule NAPI for backlog device
4540 * We can use non atomic operation since we own the queue lock
4541 */
4542 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4543 if (!rps_ipi_queued(sd))
4544 ____napi_schedule(sd, &sd->backlog);
4545 }
4546 goto enqueue;
4547 }
4548
4549drop:
4550 sd->dropped++;
4551 rps_unlock(sd);
4552
4553 local_irq_restore(flags);
4554
4555 atomic_long_inc(&skb->dev->rx_dropped);
4556 kfree_skb(skb);
4557 return NET_RX_DROP;
4558}
4559
4560static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4561{
4562 struct net_device *dev = skb->dev;
4563 struct netdev_rx_queue *rxqueue;
4564
4565 rxqueue = dev->_rx;
4566
4567 if (skb_rx_queue_recorded(skb)) {
4568 u16 index = skb_get_rx_queue(skb);
4569
4570 if (unlikely(index >= dev->real_num_rx_queues)) {
4571 WARN_ONCE(dev->real_num_rx_queues > 1,
4572 "%s received packet on queue %u, but number "
4573 "of RX queues is %u\n",
4574 dev->name, index, dev->real_num_rx_queues);
4575
4576 return rxqueue; /* Return first rxqueue */
4577 }
4578 rxqueue += index;
4579 }
4580 return rxqueue;
4581}
4582
4583static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4584 struct xdp_buff *xdp,
4585 struct bpf_prog *xdp_prog)
4586{
4587 struct netdev_rx_queue *rxqueue;
4588 void *orig_data, *orig_data_end;
4589 u32 metalen, act = XDP_DROP;
4590 __be16 orig_eth_type;
4591 struct ethhdr *eth;
4592 bool orig_bcast;
4593 int hlen, off;
4594 u32 mac_len;
4595
4596 /* Reinjected packets coming from act_mirred or similar should
4597 * not get XDP generic processing.
4598 */
4599 if (skb_is_redirected(skb))
4600 return XDP_PASS;
4601
4602 /* XDP packets must be linear and must have sufficient headroom
4603 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4604 * native XDP provides, thus we need to do it here as well.
4605 */
4606 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4607 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4608 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4609 int troom = skb->tail + skb->data_len - skb->end;
4610
4611 /* In case we have to go down the path and also linearize,
4612 * then lets do the pskb_expand_head() work just once here.
4613 */
4614 if (pskb_expand_head(skb,
4615 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4616 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4617 goto do_drop;
4618 if (skb_linearize(skb))
4619 goto do_drop;
4620 }
4621
4622 /* The XDP program wants to see the packet starting at the MAC
4623 * header.
4624 */
4625 mac_len = skb->data - skb_mac_header(skb);
4626 hlen = skb_headlen(skb) + mac_len;
4627 xdp->data = skb->data - mac_len;
4628 xdp->data_meta = xdp->data;
4629 xdp->data_end = xdp->data + hlen;
4630 xdp->data_hard_start = skb->data - skb_headroom(skb);
4631
4632 /* SKB "head" area always have tailroom for skb_shared_info */
4633 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start;
4634 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4635
4636 orig_data_end = xdp->data_end;
4637 orig_data = xdp->data;
4638 eth = (struct ethhdr *)xdp->data;
4639 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4640 orig_eth_type = eth->h_proto;
4641
4642 rxqueue = netif_get_rxqueue(skb);
4643 xdp->rxq = &rxqueue->xdp_rxq;
4644
4645 act = bpf_prog_run_xdp(xdp_prog, xdp);
4646
4647 /* check if bpf_xdp_adjust_head was used */
4648 off = xdp->data - orig_data;
4649 if (off) {
4650 if (off > 0)
4651 __skb_pull(skb, off);
4652 else if (off < 0)
4653 __skb_push(skb, -off);
4654
4655 skb->mac_header += off;
4656 skb_reset_network_header(skb);
4657 }
4658
4659 /* check if bpf_xdp_adjust_tail was used */
4660 off = xdp->data_end - orig_data_end;
4661 if (off != 0) {
4662 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4663 skb->len += off; /* positive on grow, negative on shrink */
4664 }
4665
4666 /* check if XDP changed eth hdr such SKB needs update */
4667 eth = (struct ethhdr *)xdp->data;
4668 if ((orig_eth_type != eth->h_proto) ||
4669 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4670 __skb_push(skb, ETH_HLEN);
4671 skb->protocol = eth_type_trans(skb, skb->dev);
4672 }
4673
4674 switch (act) {
4675 case XDP_REDIRECT:
4676 case XDP_TX:
4677 __skb_push(skb, mac_len);
4678 break;
4679 case XDP_PASS:
4680 metalen = xdp->data - xdp->data_meta;
4681 if (metalen)
4682 skb_metadata_set(skb, metalen);
4683 break;
4684 default:
4685 bpf_warn_invalid_xdp_action(act);
4686 /* fall through */
4687 case XDP_ABORTED:
4688 trace_xdp_exception(skb->dev, xdp_prog, act);
4689 /* fall through */
4690 case XDP_DROP:
4691 do_drop:
4692 kfree_skb(skb);
4693 break;
4694 }
4695
4696 return act;
4697}
4698
4699/* When doing generic XDP we have to bypass the qdisc layer and the
4700 * network taps in order to match in-driver-XDP behavior.
4701 */
4702void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4703{
4704 struct net_device *dev = skb->dev;
4705 struct netdev_queue *txq;
4706 bool free_skb = true;
4707 int cpu, rc;
4708
4709 txq = netdev_core_pick_tx(dev, skb, NULL);
4710 cpu = smp_processor_id();
4711 HARD_TX_LOCK(dev, txq, cpu);
4712 if (!netif_xmit_stopped(txq)) {
4713 rc = netdev_start_xmit(skb, dev, txq, 0);
4714 if (dev_xmit_complete(rc))
4715 free_skb = false;
4716 }
4717 HARD_TX_UNLOCK(dev, txq);
4718 if (free_skb) {
4719 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4720 kfree_skb(skb);
4721 }
4722}
4723
4724static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4725
4726int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4727{
4728 if (xdp_prog) {
4729 struct xdp_buff xdp;
4730 u32 act;
4731 int err;
4732
4733 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4734 if (act != XDP_PASS) {
4735 switch (act) {
4736 case XDP_REDIRECT:
4737 err = xdp_do_generic_redirect(skb->dev, skb,
4738 &xdp, xdp_prog);
4739 if (err)
4740 goto out_redir;
4741 break;
4742 case XDP_TX:
4743 generic_xdp_tx(skb, xdp_prog);
4744 break;
4745 }
4746 return XDP_DROP;
4747 }
4748 }
4749 return XDP_PASS;
4750out_redir:
4751 kfree_skb(skb);
4752 return XDP_DROP;
4753}
4754EXPORT_SYMBOL_GPL(do_xdp_generic);
4755
4756static int netif_rx_internal(struct sk_buff *skb)
4757{
4758 int ret;
4759
4760 net_timestamp_check(netdev_tstamp_prequeue, skb);
4761
4762 trace_netif_rx(skb);
4763
4764#ifdef CONFIG_RPS
4765 if (static_branch_unlikely(&rps_needed)) {
4766 struct rps_dev_flow voidflow, *rflow = &voidflow;
4767 int cpu;
4768
4769 preempt_disable();
4770 rcu_read_lock();
4771
4772 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4773 if (cpu < 0)
4774 cpu = smp_processor_id();
4775
4776 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4777
4778 rcu_read_unlock();
4779 preempt_enable();
4780 } else
4781#endif
4782 {
4783 unsigned int qtail;
4784
4785 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4786 put_cpu();
4787 }
4788 return ret;
4789}
4790
4791/**
4792 * netif_rx - post buffer to the network code
4793 * @skb: buffer to post
4794 *
4795 * This function receives a packet from a device driver and queues it for
4796 * the upper (protocol) levels to process. It always succeeds. The buffer
4797 * may be dropped during processing for congestion control or by the
4798 * protocol layers.
4799 *
4800 * return values:
4801 * NET_RX_SUCCESS (no congestion)
4802 * NET_RX_DROP (packet was dropped)
4803 *
4804 */
4805
4806int netif_rx(struct sk_buff *skb)
4807{
4808 int ret;
4809
4810 trace_netif_rx_entry(skb);
4811
4812 ret = netif_rx_internal(skb);
4813 trace_netif_rx_exit(ret);
4814
4815 return ret;
4816}
4817EXPORT_SYMBOL(netif_rx);
4818
4819int netif_rx_ni(struct sk_buff *skb)
4820{
4821 int err;
4822
4823 trace_netif_rx_ni_entry(skb);
4824
4825 preempt_disable();
4826 err = netif_rx_internal(skb);
4827 if (local_softirq_pending())
4828 do_softirq();
4829 preempt_enable();
4830 trace_netif_rx_ni_exit(err);
4831
4832 return err;
4833}
4834EXPORT_SYMBOL(netif_rx_ni);
4835
4836static __latent_entropy void net_tx_action(struct softirq_action *h)
4837{
4838 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4839
4840 if (sd->completion_queue) {
4841 struct sk_buff *clist;
4842
4843 local_irq_disable();
4844 clist = sd->completion_queue;
4845 sd->completion_queue = NULL;
4846 local_irq_enable();
4847
4848 while (clist) {
4849 struct sk_buff *skb = clist;
4850
4851 clist = clist->next;
4852
4853 WARN_ON(refcount_read(&skb->users));
4854 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4855 trace_consume_skb(skb);
4856 else
4857 trace_kfree_skb(skb, net_tx_action);
4858
4859 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4860 __kfree_skb(skb);
4861 else
4862 __kfree_skb_defer(skb);
4863 }
4864
4865 __kfree_skb_flush();
4866 }
4867
4868 if (sd->output_queue) {
4869 struct Qdisc *head;
4870
4871 local_irq_disable();
4872 head = sd->output_queue;
4873 sd->output_queue = NULL;
4874 sd->output_queue_tailp = &sd->output_queue;
4875 local_irq_enable();
4876
4877 while (head) {
4878 struct Qdisc *q = head;
4879 spinlock_t *root_lock = NULL;
4880
4881 head = head->next_sched;
4882
4883 if (!(q->flags & TCQ_F_NOLOCK)) {
4884 root_lock = qdisc_lock(q);
4885 spin_lock(root_lock);
4886 }
4887 /* We need to make sure head->next_sched is read
4888 * before clearing __QDISC_STATE_SCHED
4889 */
4890 smp_mb__before_atomic();
4891 clear_bit(__QDISC_STATE_SCHED, &q->state);
4892 qdisc_run(q);
4893 if (root_lock)
4894 spin_unlock(root_lock);
4895 }
4896 }
4897
4898 xfrm_dev_backlog(sd);
4899}
4900
4901#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4902/* This hook is defined here for ATM LANE */
4903int (*br_fdb_test_addr_hook)(struct net_device *dev,
4904 unsigned char *addr) __read_mostly;
4905EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4906#endif
4907
4908static inline struct sk_buff *
4909sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4910 struct net_device *orig_dev)
4911{
4912#ifdef CONFIG_NET_CLS_ACT
4913 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4914 struct tcf_result cl_res;
4915
4916 /* If there's at least one ingress present somewhere (so
4917 * we get here via enabled static key), remaining devices
4918 * that are not configured with an ingress qdisc will bail
4919 * out here.
4920 */
4921 if (!miniq)
4922 return skb;
4923
4924 if (*pt_prev) {
4925 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4926 *pt_prev = NULL;
4927 }
4928
4929 qdisc_skb_cb(skb)->pkt_len = skb->len;
4930 skb->tc_at_ingress = 1;
4931 mini_qdisc_bstats_cpu_update(miniq, skb);
4932
4933 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4934 &cl_res, false)) {
4935 case TC_ACT_OK:
4936 case TC_ACT_RECLASSIFY:
4937 skb->tc_index = TC_H_MIN(cl_res.classid);
4938 break;
4939 case TC_ACT_SHOT:
4940 mini_qdisc_qstats_cpu_drop(miniq);
4941 kfree_skb(skb);
4942 return NULL;
4943 case TC_ACT_STOLEN:
4944 case TC_ACT_QUEUED:
4945 case TC_ACT_TRAP:
4946 consume_skb(skb);
4947 return NULL;
4948 case TC_ACT_REDIRECT:
4949 /* skb_mac_header check was done by cls/act_bpf, so
4950 * we can safely push the L2 header back before
4951 * redirecting to another netdev
4952 */
4953 __skb_push(skb, skb->mac_len);
4954 skb_do_redirect(skb);
4955 return NULL;
4956 case TC_ACT_CONSUMED:
4957 return NULL;
4958 default:
4959 break;
4960 }
4961#endif /* CONFIG_NET_CLS_ACT */
4962 return skb;
4963}
4964
4965/**
4966 * netdev_is_rx_handler_busy - check if receive handler is registered
4967 * @dev: device to check
4968 *
4969 * Check if a receive handler is already registered for a given device.
4970 * Return true if there one.
4971 *
4972 * The caller must hold the rtnl_mutex.
4973 */
4974bool netdev_is_rx_handler_busy(struct net_device *dev)
4975{
4976 ASSERT_RTNL();
4977 return dev && rtnl_dereference(dev->rx_handler);
4978}
4979EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4980
4981/**
4982 * netdev_rx_handler_register - register receive handler
4983 * @dev: device to register a handler for
4984 * @rx_handler: receive handler to register
4985 * @rx_handler_data: data pointer that is used by rx handler
4986 *
4987 * Register a receive handler for a device. This handler will then be
4988 * called from __netif_receive_skb. A negative errno code is returned
4989 * on a failure.
4990 *
4991 * The caller must hold the rtnl_mutex.
4992 *
4993 * For a general description of rx_handler, see enum rx_handler_result.
4994 */
4995int netdev_rx_handler_register(struct net_device *dev,
4996 rx_handler_func_t *rx_handler,
4997 void *rx_handler_data)
4998{
4999 if (netdev_is_rx_handler_busy(dev))
5000 return -EBUSY;
5001
5002 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5003 return -EINVAL;
5004
5005 /* Note: rx_handler_data must be set before rx_handler */
5006 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5007 rcu_assign_pointer(dev->rx_handler, rx_handler);
5008
5009 return 0;
5010}
5011EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5012
5013/**
5014 * netdev_rx_handler_unregister - unregister receive handler
5015 * @dev: device to unregister a handler from
5016 *
5017 * Unregister a receive handler from a device.
5018 *
5019 * The caller must hold the rtnl_mutex.
5020 */
5021void netdev_rx_handler_unregister(struct net_device *dev)
5022{
5023
5024 ASSERT_RTNL();
5025 RCU_INIT_POINTER(dev->rx_handler, NULL);
5026 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5027 * section has a guarantee to see a non NULL rx_handler_data
5028 * as well.
5029 */
5030 synchronize_net();
5031 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5032}
5033EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5034
5035/*
5036 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5037 * the special handling of PFMEMALLOC skbs.
5038 */
5039static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5040{
5041 switch (skb->protocol) {
5042 case htons(ETH_P_ARP):
5043 case htons(ETH_P_IP):
5044 case htons(ETH_P_IPV6):
5045 case htons(ETH_P_8021Q):
5046 case htons(ETH_P_8021AD):
5047 return true;
5048 default:
5049 return false;
5050 }
5051}
5052
5053static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5054 int *ret, struct net_device *orig_dev)
5055{
5056 if (nf_hook_ingress_active(skb)) {
5057 int ingress_retval;
5058
5059 if (*pt_prev) {
5060 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5061 *pt_prev = NULL;
5062 }
5063
5064 rcu_read_lock();
5065 ingress_retval = nf_hook_ingress(skb);
5066 rcu_read_unlock();
5067 return ingress_retval;
5068 }
5069 return 0;
5070}
5071
5072static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5073 struct packet_type **ppt_prev)
5074{
5075 struct packet_type *ptype, *pt_prev;
5076 rx_handler_func_t *rx_handler;
5077 struct sk_buff *skb = *pskb;
5078 struct net_device *orig_dev;
5079 bool deliver_exact = false;
5080 int ret = NET_RX_DROP;
5081 __be16 type;
5082
5083 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5084
5085 trace_netif_receive_skb(skb);
5086
5087 orig_dev = skb->dev;
5088
5089 skb_reset_network_header(skb);
5090 if (!skb_transport_header_was_set(skb))
5091 skb_reset_transport_header(skb);
5092 skb_reset_mac_len(skb);
5093
5094 pt_prev = NULL;
5095
5096another_round:
5097 skb->skb_iif = skb->dev->ifindex;
5098
5099 __this_cpu_inc(softnet_data.processed);
5100
5101 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5102 int ret2;
5103
5104 preempt_disable();
5105 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5106 preempt_enable();
5107
5108 if (ret2 != XDP_PASS) {
5109 ret = NET_RX_DROP;
5110 goto out;
5111 }
5112 skb_reset_mac_len(skb);
5113 }
5114
5115 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5116 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5117 skb = skb_vlan_untag(skb);
5118 if (unlikely(!skb))
5119 goto out;
5120 }
5121
5122 if (skb_skip_tc_classify(skb))
5123 goto skip_classify;
5124
5125 if (pfmemalloc)
5126 goto skip_taps;
5127
5128 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5129 if (pt_prev)
5130 ret = deliver_skb(skb, pt_prev, orig_dev);
5131 pt_prev = ptype;
5132 }
5133
5134 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5135 if (pt_prev)
5136 ret = deliver_skb(skb, pt_prev, orig_dev);
5137 pt_prev = ptype;
5138 }
5139
5140skip_taps:
5141#ifdef CONFIG_NET_INGRESS
5142 if (static_branch_unlikely(&ingress_needed_key)) {
5143 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5144 if (!skb)
5145 goto out;
5146
5147 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5148 goto out;
5149 }
5150#endif
5151 skb_reset_redirect(skb);
5152skip_classify:
5153 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5154 goto drop;
5155
5156 if (skb_vlan_tag_present(skb)) {
5157 if (pt_prev) {
5158 ret = deliver_skb(skb, pt_prev, orig_dev);
5159 pt_prev = NULL;
5160 }
5161 if (vlan_do_receive(&skb))
5162 goto another_round;
5163 else if (unlikely(!skb))
5164 goto out;
5165 }
5166
5167 rx_handler = rcu_dereference(skb->dev->rx_handler);
5168 if (rx_handler) {
5169 if (pt_prev) {
5170 ret = deliver_skb(skb, pt_prev, orig_dev);
5171 pt_prev = NULL;
5172 }
5173 switch (rx_handler(&skb)) {
5174 case RX_HANDLER_CONSUMED:
5175 ret = NET_RX_SUCCESS;
5176 goto out;
5177 case RX_HANDLER_ANOTHER:
5178 goto another_round;
5179 case RX_HANDLER_EXACT:
5180 deliver_exact = true;
5181 case RX_HANDLER_PASS:
5182 break;
5183 default:
5184 BUG();
5185 }
5186 }
5187
5188 if (unlikely(skb_vlan_tag_present(skb))) {
5189check_vlan_id:
5190 if (skb_vlan_tag_get_id(skb)) {
5191 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5192 * find vlan device.
5193 */
5194 skb->pkt_type = PACKET_OTHERHOST;
5195 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5196 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5197 /* Outer header is 802.1P with vlan 0, inner header is
5198 * 802.1Q or 802.1AD and vlan_do_receive() above could
5199 * not find vlan dev for vlan id 0.
5200 */
5201 __vlan_hwaccel_clear_tag(skb);
5202 skb = skb_vlan_untag(skb);
5203 if (unlikely(!skb))
5204 goto out;
5205 if (vlan_do_receive(&skb))
5206 /* After stripping off 802.1P header with vlan 0
5207 * vlan dev is found for inner header.
5208 */
5209 goto another_round;
5210 else if (unlikely(!skb))
5211 goto out;
5212 else
5213 /* We have stripped outer 802.1P vlan 0 header.
5214 * But could not find vlan dev.
5215 * check again for vlan id to set OTHERHOST.
5216 */
5217 goto check_vlan_id;
5218 }
5219 /* Note: we might in the future use prio bits
5220 * and set skb->priority like in vlan_do_receive()
5221 * For the time being, just ignore Priority Code Point
5222 */
5223 __vlan_hwaccel_clear_tag(skb);
5224 }
5225
5226 type = skb->protocol;
5227
5228 /* deliver only exact match when indicated */
5229 if (likely(!deliver_exact)) {
5230 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5231 &ptype_base[ntohs(type) &
5232 PTYPE_HASH_MASK]);
5233 }
5234
5235 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5236 &orig_dev->ptype_specific);
5237
5238 if (unlikely(skb->dev != orig_dev)) {
5239 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5240 &skb->dev->ptype_specific);
5241 }
5242
5243 if (pt_prev) {
5244 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5245 goto drop;
5246 *ppt_prev = pt_prev;
5247 } else {
5248drop:
5249 if (!deliver_exact)
5250 atomic_long_inc(&skb->dev->rx_dropped);
5251 else
5252 atomic_long_inc(&skb->dev->rx_nohandler);
5253 kfree_skb(skb);
5254 /* Jamal, now you will not able to escape explaining
5255 * me how you were going to use this. :-)
5256 */
5257 ret = NET_RX_DROP;
5258 }
5259
5260out:
5261 /* The invariant here is that if *ppt_prev is not NULL
5262 * then skb should also be non-NULL.
5263 *
5264 * Apparently *ppt_prev assignment above holds this invariant due to
5265 * skb dereferencing near it.
5266 */
5267 *pskb = skb;
5268 return ret;
5269}
5270
5271static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5272{
5273 struct net_device *orig_dev = skb->dev;
5274 struct packet_type *pt_prev = NULL;
5275 int ret;
5276
5277 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5278 if (pt_prev)
5279 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5280 skb->dev, pt_prev, orig_dev);
5281 return ret;
5282}
5283
5284/**
5285 * netif_receive_skb_core - special purpose version of netif_receive_skb
5286 * @skb: buffer to process
5287 *
5288 * More direct receive version of netif_receive_skb(). It should
5289 * only be used by callers that have a need to skip RPS and Generic XDP.
5290 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5291 *
5292 * This function may only be called from softirq context and interrupts
5293 * should be enabled.
5294 *
5295 * Return values (usually ignored):
5296 * NET_RX_SUCCESS: no congestion
5297 * NET_RX_DROP: packet was dropped
5298 */
5299int netif_receive_skb_core(struct sk_buff *skb)
5300{
5301 int ret;
5302
5303 rcu_read_lock();
5304 ret = __netif_receive_skb_one_core(skb, false);
5305 rcu_read_unlock();
5306
5307 return ret;
5308}
5309EXPORT_SYMBOL(netif_receive_skb_core);
5310
5311static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5312 struct packet_type *pt_prev,
5313 struct net_device *orig_dev)
5314{
5315 struct sk_buff *skb, *next;
5316
5317 if (!pt_prev)
5318 return;
5319 if (list_empty(head))
5320 return;
5321 if (pt_prev->list_func != NULL)
5322 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5323 ip_list_rcv, head, pt_prev, orig_dev);
5324 else
5325 list_for_each_entry_safe(skb, next, head, list) {
5326 skb_list_del_init(skb);
5327 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5328 }
5329}
5330
5331static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5332{
5333 /* Fast-path assumptions:
5334 * - There is no RX handler.
5335 * - Only one packet_type matches.
5336 * If either of these fails, we will end up doing some per-packet
5337 * processing in-line, then handling the 'last ptype' for the whole
5338 * sublist. This can't cause out-of-order delivery to any single ptype,
5339 * because the 'last ptype' must be constant across the sublist, and all
5340 * other ptypes are handled per-packet.
5341 */
5342 /* Current (common) ptype of sublist */
5343 struct packet_type *pt_curr = NULL;
5344 /* Current (common) orig_dev of sublist */
5345 struct net_device *od_curr = NULL;
5346 struct list_head sublist;
5347 struct sk_buff *skb, *next;
5348
5349 INIT_LIST_HEAD(&sublist);
5350 list_for_each_entry_safe(skb, next, head, list) {
5351 struct net_device *orig_dev = skb->dev;
5352 struct packet_type *pt_prev = NULL;
5353
5354 skb_list_del_init(skb);
5355 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5356 if (!pt_prev)
5357 continue;
5358 if (pt_curr != pt_prev || od_curr != orig_dev) {
5359 /* dispatch old sublist */
5360 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5361 /* start new sublist */
5362 INIT_LIST_HEAD(&sublist);
5363 pt_curr = pt_prev;
5364 od_curr = orig_dev;
5365 }
5366 list_add_tail(&skb->list, &sublist);
5367 }
5368
5369 /* dispatch final sublist */
5370 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5371}
5372
5373static int __netif_receive_skb(struct sk_buff *skb)
5374{
5375 int ret;
5376
5377 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5378 unsigned int noreclaim_flag;
5379
5380 /*
5381 * PFMEMALLOC skbs are special, they should
5382 * - be delivered to SOCK_MEMALLOC sockets only
5383 * - stay away from userspace
5384 * - have bounded memory usage
5385 *
5386 * Use PF_MEMALLOC as this saves us from propagating the allocation
5387 * context down to all allocation sites.
5388 */
5389 noreclaim_flag = memalloc_noreclaim_save();
5390 ret = __netif_receive_skb_one_core(skb, true);
5391 memalloc_noreclaim_restore(noreclaim_flag);
5392 } else
5393 ret = __netif_receive_skb_one_core(skb, false);
5394
5395 return ret;
5396}
5397
5398static void __netif_receive_skb_list(struct list_head *head)
5399{
5400 unsigned long noreclaim_flag = 0;
5401 struct sk_buff *skb, *next;
5402 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5403
5404 list_for_each_entry_safe(skb, next, head, list) {
5405 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5406 struct list_head sublist;
5407
5408 /* Handle the previous sublist */
5409 list_cut_before(&sublist, head, &skb->list);
5410 if (!list_empty(&sublist))
5411 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5412 pfmemalloc = !pfmemalloc;
5413 /* See comments in __netif_receive_skb */
5414 if (pfmemalloc)
5415 noreclaim_flag = memalloc_noreclaim_save();
5416 else
5417 memalloc_noreclaim_restore(noreclaim_flag);
5418 }
5419 }
5420 /* Handle the remaining sublist */
5421 if (!list_empty(head))
5422 __netif_receive_skb_list_core(head, pfmemalloc);
5423 /* Restore pflags */
5424 if (pfmemalloc)
5425 memalloc_noreclaim_restore(noreclaim_flag);
5426}
5427
5428static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5429{
5430 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5431 struct bpf_prog *new = xdp->prog;
5432 int ret = 0;
5433
5434 if (new) {
5435 u32 i;
5436
5437 /* generic XDP does not work with DEVMAPs that can
5438 * have a bpf_prog installed on an entry
5439 */
5440 for (i = 0; i < new->aux->used_map_cnt; i++) {
5441 if (dev_map_can_have_prog(new->aux->used_maps[i]))
5442 return -EINVAL;
5443 }
5444 }
5445
5446 switch (xdp->command) {
5447 case XDP_SETUP_PROG:
5448 rcu_assign_pointer(dev->xdp_prog, new);
5449 if (old)
5450 bpf_prog_put(old);
5451
5452 if (old && !new) {
5453 static_branch_dec(&generic_xdp_needed_key);
5454 } else if (new && !old) {
5455 static_branch_inc(&generic_xdp_needed_key);
5456 dev_disable_lro(dev);
5457 dev_disable_gro_hw(dev);
5458 }
5459 break;
5460
5461 case XDP_QUERY_PROG:
5462 xdp->prog_id = old ? old->aux->id : 0;
5463 break;
5464
5465 default:
5466 ret = -EINVAL;
5467 break;
5468 }
5469
5470 return ret;
5471}
5472
5473static int netif_receive_skb_internal(struct sk_buff *skb)
5474{
5475 int ret;
5476
5477 net_timestamp_check(netdev_tstamp_prequeue, skb);
5478
5479 if (skb_defer_rx_timestamp(skb))
5480 return NET_RX_SUCCESS;
5481
5482 rcu_read_lock();
5483#ifdef CONFIG_RPS
5484 if (static_branch_unlikely(&rps_needed)) {
5485 struct rps_dev_flow voidflow, *rflow = &voidflow;
5486 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5487
5488 if (cpu >= 0) {
5489 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5490 rcu_read_unlock();
5491 return ret;
5492 }
5493 }
5494#endif
5495 ret = __netif_receive_skb(skb);
5496 rcu_read_unlock();
5497 return ret;
5498}
5499
5500static void netif_receive_skb_list_internal(struct list_head *head)
5501{
5502 struct sk_buff *skb, *next;
5503 struct list_head sublist;
5504
5505 INIT_LIST_HEAD(&sublist);
5506 list_for_each_entry_safe(skb, next, head, list) {
5507 net_timestamp_check(netdev_tstamp_prequeue, skb);
5508 skb_list_del_init(skb);
5509 if (!skb_defer_rx_timestamp(skb))
5510 list_add_tail(&skb->list, &sublist);
5511 }
5512 list_splice_init(&sublist, head);
5513
5514 rcu_read_lock();
5515#ifdef CONFIG_RPS
5516 if (static_branch_unlikely(&rps_needed)) {
5517 list_for_each_entry_safe(skb, next, head, list) {
5518 struct rps_dev_flow voidflow, *rflow = &voidflow;
5519 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5520
5521 if (cpu >= 0) {
5522 /* Will be handled, remove from list */
5523 skb_list_del_init(skb);
5524 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5525 }
5526 }
5527 }
5528#endif
5529 __netif_receive_skb_list(head);
5530 rcu_read_unlock();
5531}
5532
5533/**
5534 * netif_receive_skb - process receive buffer from network
5535 * @skb: buffer to process
5536 *
5537 * netif_receive_skb() is the main receive data processing function.
5538 * It always succeeds. The buffer may be dropped during processing
5539 * for congestion control or by the protocol layers.
5540 *
5541 * This function may only be called from softirq context and interrupts
5542 * should be enabled.
5543 *
5544 * Return values (usually ignored):
5545 * NET_RX_SUCCESS: no congestion
5546 * NET_RX_DROP: packet was dropped
5547 */
5548int netif_receive_skb(struct sk_buff *skb)
5549{
5550 int ret;
5551
5552 trace_netif_receive_skb_entry(skb);
5553
5554 ret = netif_receive_skb_internal(skb);
5555 trace_netif_receive_skb_exit(ret);
5556
5557 return ret;
5558}
5559EXPORT_SYMBOL(netif_receive_skb);
5560
5561/**
5562 * netif_receive_skb_list - process many receive buffers from network
5563 * @head: list of skbs to process.
5564 *
5565 * Since return value of netif_receive_skb() is normally ignored, and
5566 * wouldn't be meaningful for a list, this function returns void.
5567 *
5568 * This function may only be called from softirq context and interrupts
5569 * should be enabled.
5570 */
5571void netif_receive_skb_list(struct list_head *head)
5572{
5573 struct sk_buff *skb;
5574
5575 if (list_empty(head))
5576 return;
5577 if (trace_netif_receive_skb_list_entry_enabled()) {
5578 list_for_each_entry(skb, head, list)
5579 trace_netif_receive_skb_list_entry(skb);
5580 }
5581 netif_receive_skb_list_internal(head);
5582 trace_netif_receive_skb_list_exit(0);
5583}
5584EXPORT_SYMBOL(netif_receive_skb_list);
5585
5586DEFINE_PER_CPU(struct work_struct, flush_works);
5587
5588/* Network device is going away, flush any packets still pending */
5589static void flush_backlog(struct work_struct *work)
5590{
5591 struct sk_buff *skb, *tmp;
5592 struct softnet_data *sd;
5593
5594 local_bh_disable();
5595 sd = this_cpu_ptr(&softnet_data);
5596
5597 local_irq_disable();
5598 rps_lock(sd);
5599 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5600 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5601 __skb_unlink(skb, &sd->input_pkt_queue);
5602 kfree_skb(skb);
5603 input_queue_head_incr(sd);
5604 }
5605 }
5606 rps_unlock(sd);
5607 local_irq_enable();
5608
5609 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5610 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5611 __skb_unlink(skb, &sd->process_queue);
5612 kfree_skb(skb);
5613 input_queue_head_incr(sd);
5614 }
5615 }
5616 local_bh_enable();
5617}
5618
5619static void flush_all_backlogs(void)
5620{
5621 unsigned int cpu;
5622
5623 get_online_cpus();
5624
5625 for_each_online_cpu(cpu)
5626 queue_work_on(cpu, system_highpri_wq,
5627 per_cpu_ptr(&flush_works, cpu));
5628
5629 for_each_online_cpu(cpu)
5630 flush_work(per_cpu_ptr(&flush_works, cpu));
5631
5632 put_online_cpus();
5633}
5634
5635/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5636static void gro_normal_list(struct napi_struct *napi)
5637{
5638 if (!napi->rx_count)
5639 return;
5640 netif_receive_skb_list_internal(&napi->rx_list);
5641 INIT_LIST_HEAD(&napi->rx_list);
5642 napi->rx_count = 0;
5643}
5644
5645/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5646 * pass the whole batch up to the stack.
5647 */
5648static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5649{
5650 list_add_tail(&skb->list, &napi->rx_list);
5651 if (++napi->rx_count >= gro_normal_batch)
5652 gro_normal_list(napi);
5653}
5654
5655INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5656INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5657static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5658{
5659 struct packet_offload *ptype;
5660 __be16 type = skb->protocol;
5661 struct list_head *head = &offload_base;
5662 int err = -ENOENT;
5663
5664 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5665
5666 if (NAPI_GRO_CB(skb)->count == 1) {
5667 skb_shinfo(skb)->gso_size = 0;
5668 goto out;
5669 }
5670
5671 rcu_read_lock();
5672 list_for_each_entry_rcu(ptype, head, list) {
5673 if (ptype->type != type || !ptype->callbacks.gro_complete)
5674 continue;
5675
5676 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5677 ipv6_gro_complete, inet_gro_complete,
5678 skb, 0);
5679 break;
5680 }
5681 rcu_read_unlock();
5682
5683 if (err) {
5684 WARN_ON(&ptype->list == head);
5685 kfree_skb(skb);
5686 return NET_RX_SUCCESS;
5687 }
5688
5689out:
5690 gro_normal_one(napi, skb);
5691 return NET_RX_SUCCESS;
5692}
5693
5694static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5695 bool flush_old)
5696{
5697 struct list_head *head = &napi->gro_hash[index].list;
5698 struct sk_buff *skb, *p;
5699
5700 list_for_each_entry_safe_reverse(skb, p, head, list) {
5701 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5702 return;
5703 skb_list_del_init(skb);
5704 napi_gro_complete(napi, skb);
5705 napi->gro_hash[index].count--;
5706 }
5707
5708 if (!napi->gro_hash[index].count)
5709 __clear_bit(index, &napi->gro_bitmask);
5710}
5711
5712/* napi->gro_hash[].list contains packets ordered by age.
5713 * youngest packets at the head of it.
5714 * Complete skbs in reverse order to reduce latencies.
5715 */
5716void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5717{
5718 unsigned long bitmask = napi->gro_bitmask;
5719 unsigned int i, base = ~0U;
5720
5721 while ((i = ffs(bitmask)) != 0) {
5722 bitmask >>= i;
5723 base += i;
5724 __napi_gro_flush_chain(napi, base, flush_old);
5725 }
5726}
5727EXPORT_SYMBOL(napi_gro_flush);
5728
5729static struct list_head *gro_list_prepare(struct napi_struct *napi,
5730 struct sk_buff *skb)
5731{
5732 unsigned int maclen = skb->dev->hard_header_len;
5733 u32 hash = skb_get_hash_raw(skb);
5734 struct list_head *head;
5735 struct sk_buff *p;
5736
5737 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5738 list_for_each_entry(p, head, list) {
5739 unsigned long diffs;
5740
5741 NAPI_GRO_CB(p)->flush = 0;
5742
5743 if (hash != skb_get_hash_raw(p)) {
5744 NAPI_GRO_CB(p)->same_flow = 0;
5745 continue;
5746 }
5747
5748 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5749 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5750 if (skb_vlan_tag_present(p))
5751 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5752 diffs |= skb_metadata_dst_cmp(p, skb);
5753 diffs |= skb_metadata_differs(p, skb);
5754 if (maclen == ETH_HLEN)
5755 diffs |= compare_ether_header(skb_mac_header(p),
5756 skb_mac_header(skb));
5757 else if (!diffs)
5758 diffs = memcmp(skb_mac_header(p),
5759 skb_mac_header(skb),
5760 maclen);
5761 NAPI_GRO_CB(p)->same_flow = !diffs;
5762 }
5763
5764 return head;
5765}
5766
5767static void skb_gro_reset_offset(struct sk_buff *skb)
5768{
5769 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5770 const skb_frag_t *frag0 = &pinfo->frags[0];
5771
5772 NAPI_GRO_CB(skb)->data_offset = 0;
5773 NAPI_GRO_CB(skb)->frag0 = NULL;
5774 NAPI_GRO_CB(skb)->frag0_len = 0;
5775
5776 if (!skb_headlen(skb) && pinfo->nr_frags &&
5777 !PageHighMem(skb_frag_page(frag0))) {
5778 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5779 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5780 skb_frag_size(frag0),
5781 skb->end - skb->tail);
5782 }
5783}
5784
5785static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5786{
5787 struct skb_shared_info *pinfo = skb_shinfo(skb);
5788
5789 BUG_ON(skb->end - skb->tail < grow);
5790
5791 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5792
5793 skb->data_len -= grow;
5794 skb->tail += grow;
5795
5796 skb_frag_off_add(&pinfo->frags[0], grow);
5797 skb_frag_size_sub(&pinfo->frags[0], grow);
5798
5799 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5800 skb_frag_unref(skb, 0);
5801 memmove(pinfo->frags, pinfo->frags + 1,
5802 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5803 }
5804}
5805
5806static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5807{
5808 struct sk_buff *oldest;
5809
5810 oldest = list_last_entry(head, struct sk_buff, list);
5811
5812 /* We are called with head length >= MAX_GRO_SKBS, so this is
5813 * impossible.
5814 */
5815 if (WARN_ON_ONCE(!oldest))
5816 return;
5817
5818 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5819 * SKB to the chain.
5820 */
5821 skb_list_del_init(oldest);
5822 napi_gro_complete(napi, oldest);
5823}
5824
5825INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5826 struct sk_buff *));
5827INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5828 struct sk_buff *));
5829static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5830{
5831 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5832 struct list_head *head = &offload_base;
5833 struct packet_offload *ptype;
5834 __be16 type = skb->protocol;
5835 struct list_head *gro_head;
5836 struct sk_buff *pp = NULL;
5837 enum gro_result ret;
5838 int same_flow;
5839 int grow;
5840
5841 if (netif_elide_gro(skb->dev))
5842 goto normal;
5843
5844 gro_head = gro_list_prepare(napi, skb);
5845
5846 rcu_read_lock();
5847 list_for_each_entry_rcu(ptype, head, list) {
5848 if (ptype->type != type || !ptype->callbacks.gro_receive)
5849 continue;
5850
5851 skb_set_network_header(skb, skb_gro_offset(skb));
5852 skb_reset_mac_len(skb);
5853 NAPI_GRO_CB(skb)->same_flow = 0;
5854 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5855 NAPI_GRO_CB(skb)->free = 0;
5856 NAPI_GRO_CB(skb)->encap_mark = 0;
5857 NAPI_GRO_CB(skb)->recursion_counter = 0;
5858 NAPI_GRO_CB(skb)->is_fou = 0;
5859 NAPI_GRO_CB(skb)->is_atomic = 1;
5860 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5861
5862 /* Setup for GRO checksum validation */
5863 switch (skb->ip_summed) {
5864 case CHECKSUM_COMPLETE:
5865 NAPI_GRO_CB(skb)->csum = skb->csum;
5866 NAPI_GRO_CB(skb)->csum_valid = 1;
5867 NAPI_GRO_CB(skb)->csum_cnt = 0;
5868 break;
5869 case CHECKSUM_UNNECESSARY:
5870 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5871 NAPI_GRO_CB(skb)->csum_valid = 0;
5872 break;
5873 default:
5874 NAPI_GRO_CB(skb)->csum_cnt = 0;
5875 NAPI_GRO_CB(skb)->csum_valid = 0;
5876 }
5877
5878 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5879 ipv6_gro_receive, inet_gro_receive,
5880 gro_head, skb);
5881 break;
5882 }
5883 rcu_read_unlock();
5884
5885 if (&ptype->list == head)
5886 goto normal;
5887
5888 if (PTR_ERR(pp) == -EINPROGRESS) {
5889 ret = GRO_CONSUMED;
5890 goto ok;
5891 }
5892
5893 same_flow = NAPI_GRO_CB(skb)->same_flow;
5894 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5895
5896 if (pp) {
5897 skb_list_del_init(pp);
5898 napi_gro_complete(napi, pp);
5899 napi->gro_hash[hash].count--;
5900 }
5901
5902 if (same_flow)
5903 goto ok;
5904
5905 if (NAPI_GRO_CB(skb)->flush)
5906 goto normal;
5907
5908 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5909 gro_flush_oldest(napi, gro_head);
5910 } else {
5911 napi->gro_hash[hash].count++;
5912 }
5913 NAPI_GRO_CB(skb)->count = 1;
5914 NAPI_GRO_CB(skb)->age = jiffies;
5915 NAPI_GRO_CB(skb)->last = skb;
5916 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5917 list_add(&skb->list, gro_head);
5918 ret = GRO_HELD;
5919
5920pull:
5921 grow = skb_gro_offset(skb) - skb_headlen(skb);
5922 if (grow > 0)
5923 gro_pull_from_frag0(skb, grow);
5924ok:
5925 if (napi->gro_hash[hash].count) {
5926 if (!test_bit(hash, &napi->gro_bitmask))
5927 __set_bit(hash, &napi->gro_bitmask);
5928 } else if (test_bit(hash, &napi->gro_bitmask)) {
5929 __clear_bit(hash, &napi->gro_bitmask);
5930 }
5931
5932 return ret;
5933
5934normal:
5935 ret = GRO_NORMAL;
5936 goto pull;
5937}
5938
5939struct packet_offload *gro_find_receive_by_type(__be16 type)
5940{
5941 struct list_head *offload_head = &offload_base;
5942 struct packet_offload *ptype;
5943
5944 list_for_each_entry_rcu(ptype, offload_head, list) {
5945 if (ptype->type != type || !ptype->callbacks.gro_receive)
5946 continue;
5947 return ptype;
5948 }
5949 return NULL;
5950}
5951EXPORT_SYMBOL(gro_find_receive_by_type);
5952
5953struct packet_offload *gro_find_complete_by_type(__be16 type)
5954{
5955 struct list_head *offload_head = &offload_base;
5956 struct packet_offload *ptype;
5957
5958 list_for_each_entry_rcu(ptype, offload_head, list) {
5959 if (ptype->type != type || !ptype->callbacks.gro_complete)
5960 continue;
5961 return ptype;
5962 }
5963 return NULL;
5964}
5965EXPORT_SYMBOL(gro_find_complete_by_type);
5966
5967static void napi_skb_free_stolen_head(struct sk_buff *skb)
5968{
5969 skb_dst_drop(skb);
5970 skb_ext_put(skb);
5971 kmem_cache_free(skbuff_head_cache, skb);
5972}
5973
5974static gro_result_t napi_skb_finish(struct napi_struct *napi,
5975 struct sk_buff *skb,
5976 gro_result_t ret)
5977{
5978 switch (ret) {
5979 case GRO_NORMAL:
5980 gro_normal_one(napi, skb);
5981 break;
5982
5983 case GRO_DROP:
5984 kfree_skb(skb);
5985 break;
5986
5987 case GRO_MERGED_FREE:
5988 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5989 napi_skb_free_stolen_head(skb);
5990 else
5991 __kfree_skb(skb);
5992 break;
5993
5994 case GRO_HELD:
5995 case GRO_MERGED:
5996 case GRO_CONSUMED:
5997 break;
5998 }
5999
6000 return ret;
6001}
6002
6003gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6004{
6005 gro_result_t ret;
6006
6007 skb_mark_napi_id(skb, napi);
6008 trace_napi_gro_receive_entry(skb);
6009
6010 skb_gro_reset_offset(skb);
6011
6012 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6013 trace_napi_gro_receive_exit(ret);
6014
6015 return ret;
6016}
6017EXPORT_SYMBOL(napi_gro_receive);
6018
6019static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6020{
6021 if (unlikely(skb->pfmemalloc)) {
6022 consume_skb(skb);
6023 return;
6024 }
6025 __skb_pull(skb, skb_headlen(skb));
6026 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6027 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6028 __vlan_hwaccel_clear_tag(skb);
6029 skb->dev = napi->dev;
6030 skb->skb_iif = 0;
6031
6032 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6033 skb->pkt_type = PACKET_HOST;
6034
6035 skb->encapsulation = 0;
6036 skb_shinfo(skb)->gso_type = 0;
6037 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6038 skb_ext_reset(skb);
6039
6040 napi->skb = skb;
6041}
6042
6043struct sk_buff *napi_get_frags(struct napi_struct *napi)
6044{
6045 struct sk_buff *skb = napi->skb;
6046
6047 if (!skb) {
6048 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6049 if (skb) {
6050 napi->skb = skb;
6051 skb_mark_napi_id(skb, napi);
6052 }
6053 }
6054 return skb;
6055}
6056EXPORT_SYMBOL(napi_get_frags);
6057
6058static gro_result_t napi_frags_finish(struct napi_struct *napi,
6059 struct sk_buff *skb,
6060 gro_result_t ret)
6061{
6062 switch (ret) {
6063 case GRO_NORMAL:
6064 case GRO_HELD:
6065 __skb_push(skb, ETH_HLEN);
6066 skb->protocol = eth_type_trans(skb, skb->dev);
6067 if (ret == GRO_NORMAL)
6068 gro_normal_one(napi, skb);
6069 break;
6070
6071 case GRO_DROP:
6072 napi_reuse_skb(napi, skb);
6073 break;
6074
6075 case GRO_MERGED_FREE:
6076 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6077 napi_skb_free_stolen_head(skb);
6078 else
6079 napi_reuse_skb(napi, skb);
6080 break;
6081
6082 case GRO_MERGED:
6083 case GRO_CONSUMED:
6084 break;
6085 }
6086
6087 return ret;
6088}
6089
6090/* Upper GRO stack assumes network header starts at gro_offset=0
6091 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6092 * We copy ethernet header into skb->data to have a common layout.
6093 */
6094static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6095{
6096 struct sk_buff *skb = napi->skb;
6097 const struct ethhdr *eth;
6098 unsigned int hlen = sizeof(*eth);
6099
6100 napi->skb = NULL;
6101
6102 skb_reset_mac_header(skb);
6103 skb_gro_reset_offset(skb);
6104
6105 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6106 eth = skb_gro_header_slow(skb, hlen, 0);
6107 if (unlikely(!eth)) {
6108 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6109 __func__, napi->dev->name);
6110 napi_reuse_skb(napi, skb);
6111 return NULL;
6112 }
6113 } else {
6114 eth = (const struct ethhdr *)skb->data;
6115 gro_pull_from_frag0(skb, hlen);
6116 NAPI_GRO_CB(skb)->frag0 += hlen;
6117 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6118 }
6119 __skb_pull(skb, hlen);
6120
6121 /*
6122 * This works because the only protocols we care about don't require
6123 * special handling.
6124 * We'll fix it up properly in napi_frags_finish()
6125 */
6126 skb->protocol = eth->h_proto;
6127
6128 return skb;
6129}
6130
6131gro_result_t napi_gro_frags(struct napi_struct *napi)
6132{
6133 gro_result_t ret;
6134 struct sk_buff *skb = napi_frags_skb(napi);
6135
6136 if (!skb)
6137 return GRO_DROP;
6138
6139 trace_napi_gro_frags_entry(skb);
6140
6141 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6142 trace_napi_gro_frags_exit(ret);
6143
6144 return ret;
6145}
6146EXPORT_SYMBOL(napi_gro_frags);
6147
6148/* Compute the checksum from gro_offset and return the folded value
6149 * after adding in any pseudo checksum.
6150 */
6151__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6152{
6153 __wsum wsum;
6154 __sum16 sum;
6155
6156 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6157
6158 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6159 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6160 /* See comments in __skb_checksum_complete(). */
6161 if (likely(!sum)) {
6162 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6163 !skb->csum_complete_sw)
6164 netdev_rx_csum_fault(skb->dev, skb);
6165 }
6166
6167 NAPI_GRO_CB(skb)->csum = wsum;
6168 NAPI_GRO_CB(skb)->csum_valid = 1;
6169
6170 return sum;
6171}
6172EXPORT_SYMBOL(__skb_gro_checksum_complete);
6173
6174static void net_rps_send_ipi(struct softnet_data *remsd)
6175{
6176#ifdef CONFIG_RPS
6177 while (remsd) {
6178 struct softnet_data *next = remsd->rps_ipi_next;
6179
6180 if (cpu_online(remsd->cpu))
6181 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6182 remsd = next;
6183 }
6184#endif
6185}
6186
6187/*
6188 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6189 * Note: called with local irq disabled, but exits with local irq enabled.
6190 */
6191static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6192{
6193#ifdef CONFIG_RPS
6194 struct softnet_data *remsd = sd->rps_ipi_list;
6195
6196 if (remsd) {
6197 sd->rps_ipi_list = NULL;
6198
6199 local_irq_enable();
6200
6201 /* Send pending IPI's to kick RPS processing on remote cpus. */
6202 net_rps_send_ipi(remsd);
6203 } else
6204#endif
6205 local_irq_enable();
6206}
6207
6208static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6209{
6210#ifdef CONFIG_RPS
6211 return sd->rps_ipi_list != NULL;
6212#else
6213 return false;
6214#endif
6215}
6216
6217static int process_backlog(struct napi_struct *napi, int quota)
6218{
6219 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6220 bool again = true;
6221 int work = 0;
6222
6223 /* Check if we have pending ipi, its better to send them now,
6224 * not waiting net_rx_action() end.
6225 */
6226 if (sd_has_rps_ipi_waiting(sd)) {
6227 local_irq_disable();
6228 net_rps_action_and_irq_enable(sd);
6229 }
6230
6231 napi->weight = dev_rx_weight;
6232 while (again) {
6233 struct sk_buff *skb;
6234
6235 while ((skb = __skb_dequeue(&sd->process_queue))) {
6236 rcu_read_lock();
6237 __netif_receive_skb(skb);
6238 rcu_read_unlock();
6239 input_queue_head_incr(sd);
6240 if (++work >= quota)
6241 return work;
6242
6243 }
6244
6245 local_irq_disable();
6246 rps_lock(sd);
6247 if (skb_queue_empty(&sd->input_pkt_queue)) {
6248 /*
6249 * Inline a custom version of __napi_complete().
6250 * only current cpu owns and manipulates this napi,
6251 * and NAPI_STATE_SCHED is the only possible flag set
6252 * on backlog.
6253 * We can use a plain write instead of clear_bit(),
6254 * and we dont need an smp_mb() memory barrier.
6255 */
6256 napi->state = 0;
6257 again = false;
6258 } else {
6259 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6260 &sd->process_queue);
6261 }
6262 rps_unlock(sd);
6263 local_irq_enable();
6264 }
6265
6266 return work;
6267}
6268
6269/**
6270 * __napi_schedule - schedule for receive
6271 * @n: entry to schedule
6272 *
6273 * The entry's receive function will be scheduled to run.
6274 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6275 */
6276void __napi_schedule(struct napi_struct *n)
6277{
6278 unsigned long flags;
6279
6280 local_irq_save(flags);
6281 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6282 local_irq_restore(flags);
6283}
6284EXPORT_SYMBOL(__napi_schedule);
6285
6286/**
6287 * napi_schedule_prep - check if napi can be scheduled
6288 * @n: napi context
6289 *
6290 * Test if NAPI routine is already running, and if not mark
6291 * it as running. This is used as a condition variable
6292 * insure only one NAPI poll instance runs. We also make
6293 * sure there is no pending NAPI disable.
6294 */
6295bool napi_schedule_prep(struct napi_struct *n)
6296{
6297 unsigned long val, new;
6298
6299 do {
6300 val = READ_ONCE(n->state);
6301 if (unlikely(val & NAPIF_STATE_DISABLE))
6302 return false;
6303 new = val | NAPIF_STATE_SCHED;
6304
6305 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6306 * This was suggested by Alexander Duyck, as compiler
6307 * emits better code than :
6308 * if (val & NAPIF_STATE_SCHED)
6309 * new |= NAPIF_STATE_MISSED;
6310 */
6311 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6312 NAPIF_STATE_MISSED;
6313 } while (cmpxchg(&n->state, val, new) != val);
6314
6315 return !(val & NAPIF_STATE_SCHED);
6316}
6317EXPORT_SYMBOL(napi_schedule_prep);
6318
6319/**
6320 * __napi_schedule_irqoff - schedule for receive
6321 * @n: entry to schedule
6322 *
6323 * Variant of __napi_schedule() assuming hard irqs are masked
6324 */
6325void __napi_schedule_irqoff(struct napi_struct *n)
6326{
6327 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6328}
6329EXPORT_SYMBOL(__napi_schedule_irqoff);
6330
6331bool napi_complete_done(struct napi_struct *n, int work_done)
6332{
6333 unsigned long flags, val, new, timeout = 0;
6334 bool ret = true;
6335
6336 /*
6337 * 1) Don't let napi dequeue from the cpu poll list
6338 * just in case its running on a different cpu.
6339 * 2) If we are busy polling, do nothing here, we have
6340 * the guarantee we will be called later.
6341 */
6342 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6343 NAPIF_STATE_IN_BUSY_POLL)))
6344 return false;
6345
6346 if (work_done) {
6347 if (n->gro_bitmask)
6348 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6349 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6350 }
6351 if (n->defer_hard_irqs_count > 0) {
6352 n->defer_hard_irqs_count--;
6353 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6354 if (timeout)
6355 ret = false;
6356 }
6357 if (n->gro_bitmask) {
6358 /* When the NAPI instance uses a timeout and keeps postponing
6359 * it, we need to bound somehow the time packets are kept in
6360 * the GRO layer
6361 */
6362 napi_gro_flush(n, !!timeout);
6363 }
6364
6365 gro_normal_list(n);
6366
6367 if (unlikely(!list_empty(&n->poll_list))) {
6368 /* If n->poll_list is not empty, we need to mask irqs */
6369 local_irq_save(flags);
6370 list_del_init(&n->poll_list);
6371 local_irq_restore(flags);
6372 }
6373
6374 do {
6375 val = READ_ONCE(n->state);
6376
6377 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6378
6379 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6380
6381 /* If STATE_MISSED was set, leave STATE_SCHED set,
6382 * because we will call napi->poll() one more time.
6383 * This C code was suggested by Alexander Duyck to help gcc.
6384 */
6385 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6386 NAPIF_STATE_SCHED;
6387 } while (cmpxchg(&n->state, val, new) != val);
6388
6389 if (unlikely(val & NAPIF_STATE_MISSED)) {
6390 __napi_schedule(n);
6391 return false;
6392 }
6393
6394 if (timeout)
6395 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6396 HRTIMER_MODE_REL_PINNED);
6397 return ret;
6398}
6399EXPORT_SYMBOL(napi_complete_done);
6400
6401/* must be called under rcu_read_lock(), as we dont take a reference */
6402static struct napi_struct *napi_by_id(unsigned int napi_id)
6403{
6404 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6405 struct napi_struct *napi;
6406
6407 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6408 if (napi->napi_id == napi_id)
6409 return napi;
6410
6411 return NULL;
6412}
6413
6414#if defined(CONFIG_NET_RX_BUSY_POLL)
6415
6416#define BUSY_POLL_BUDGET 8
6417
6418static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6419{
6420 int rc;
6421
6422 /* Busy polling means there is a high chance device driver hard irq
6423 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6424 * set in napi_schedule_prep().
6425 * Since we are about to call napi->poll() once more, we can safely
6426 * clear NAPI_STATE_MISSED.
6427 *
6428 * Note: x86 could use a single "lock and ..." instruction
6429 * to perform these two clear_bit()
6430 */
6431 clear_bit(NAPI_STATE_MISSED, &napi->state);
6432 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6433
6434 local_bh_disable();
6435
6436 /* All we really want here is to re-enable device interrupts.
6437 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6438 */
6439 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6440 /* We can't gro_normal_list() here, because napi->poll() might have
6441 * rearmed the napi (napi_complete_done()) in which case it could
6442 * already be running on another CPU.
6443 */
6444 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6445 netpoll_poll_unlock(have_poll_lock);
6446 if (rc == BUSY_POLL_BUDGET) {
6447 /* As the whole budget was spent, we still own the napi so can
6448 * safely handle the rx_list.
6449 */
6450 gro_normal_list(napi);
6451 __napi_schedule(napi);
6452 }
6453 local_bh_enable();
6454}
6455
6456void napi_busy_loop(unsigned int napi_id,
6457 bool (*loop_end)(void *, unsigned long),
6458 void *loop_end_arg)
6459{
6460 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6461 int (*napi_poll)(struct napi_struct *napi, int budget);
6462 void *have_poll_lock = NULL;
6463 struct napi_struct *napi;
6464
6465restart:
6466 napi_poll = NULL;
6467
6468 rcu_read_lock();
6469
6470 napi = napi_by_id(napi_id);
6471 if (!napi)
6472 goto out;
6473
6474 preempt_disable();
6475 for (;;) {
6476 int work = 0;
6477
6478 local_bh_disable();
6479 if (!napi_poll) {
6480 unsigned long val = READ_ONCE(napi->state);
6481
6482 /* If multiple threads are competing for this napi,
6483 * we avoid dirtying napi->state as much as we can.
6484 */
6485 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6486 NAPIF_STATE_IN_BUSY_POLL))
6487 goto count;
6488 if (cmpxchg(&napi->state, val,
6489 val | NAPIF_STATE_IN_BUSY_POLL |
6490 NAPIF_STATE_SCHED) != val)
6491 goto count;
6492 have_poll_lock = netpoll_poll_lock(napi);
6493 napi_poll = napi->poll;
6494 }
6495 work = napi_poll(napi, BUSY_POLL_BUDGET);
6496 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6497 gro_normal_list(napi);
6498count:
6499 if (work > 0)
6500 __NET_ADD_STATS(dev_net(napi->dev),
6501 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6502 local_bh_enable();
6503
6504 if (!loop_end || loop_end(loop_end_arg, start_time))
6505 break;
6506
6507 if (unlikely(need_resched())) {
6508 if (napi_poll)
6509 busy_poll_stop(napi, have_poll_lock);
6510 preempt_enable();
6511 rcu_read_unlock();
6512 cond_resched();
6513 if (loop_end(loop_end_arg, start_time))
6514 return;
6515 goto restart;
6516 }
6517 cpu_relax();
6518 }
6519 if (napi_poll)
6520 busy_poll_stop(napi, have_poll_lock);
6521 preempt_enable();
6522out:
6523 rcu_read_unlock();
6524}
6525EXPORT_SYMBOL(napi_busy_loop);
6526
6527#endif /* CONFIG_NET_RX_BUSY_POLL */
6528
6529static void napi_hash_add(struct napi_struct *napi)
6530{
6531 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6532 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6533 return;
6534
6535 spin_lock(&napi_hash_lock);
6536
6537 /* 0..NR_CPUS range is reserved for sender_cpu use */
6538 do {
6539 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6540 napi_gen_id = MIN_NAPI_ID;
6541 } while (napi_by_id(napi_gen_id));
6542 napi->napi_id = napi_gen_id;
6543
6544 hlist_add_head_rcu(&napi->napi_hash_node,
6545 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6546
6547 spin_unlock(&napi_hash_lock);
6548}
6549
6550/* Warning : caller is responsible to make sure rcu grace period
6551 * is respected before freeing memory containing @napi
6552 */
6553bool napi_hash_del(struct napi_struct *napi)
6554{
6555 bool rcu_sync_needed = false;
6556
6557 spin_lock(&napi_hash_lock);
6558
6559 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6560 rcu_sync_needed = true;
6561 hlist_del_rcu(&napi->napi_hash_node);
6562 }
6563 spin_unlock(&napi_hash_lock);
6564 return rcu_sync_needed;
6565}
6566EXPORT_SYMBOL_GPL(napi_hash_del);
6567
6568static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6569{
6570 struct napi_struct *napi;
6571
6572 napi = container_of(timer, struct napi_struct, timer);
6573
6574 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6575 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6576 */
6577 if (!napi_disable_pending(napi) &&
6578 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6579 __napi_schedule_irqoff(napi);
6580
6581 return HRTIMER_NORESTART;
6582}
6583
6584static void init_gro_hash(struct napi_struct *napi)
6585{
6586 int i;
6587
6588 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6589 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6590 napi->gro_hash[i].count = 0;
6591 }
6592 napi->gro_bitmask = 0;
6593}
6594
6595void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6596 int (*poll)(struct napi_struct *, int), int weight)
6597{
6598 INIT_LIST_HEAD(&napi->poll_list);
6599 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6600 napi->timer.function = napi_watchdog;
6601 init_gro_hash(napi);
6602 napi->skb = NULL;
6603 INIT_LIST_HEAD(&napi->rx_list);
6604 napi->rx_count = 0;
6605 napi->poll = poll;
6606 if (weight > NAPI_POLL_WEIGHT)
6607 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6608 weight);
6609 napi->weight = weight;
6610 list_add(&napi->dev_list, &dev->napi_list);
6611 napi->dev = dev;
6612#ifdef CONFIG_NETPOLL
6613 napi->poll_owner = -1;
6614#endif
6615 set_bit(NAPI_STATE_SCHED, &napi->state);
6616 napi_hash_add(napi);
6617}
6618EXPORT_SYMBOL(netif_napi_add);
6619
6620void napi_disable(struct napi_struct *n)
6621{
6622 might_sleep();
6623 set_bit(NAPI_STATE_DISABLE, &n->state);
6624
6625 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6626 msleep(1);
6627 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6628 msleep(1);
6629
6630 hrtimer_cancel(&n->timer);
6631
6632 clear_bit(NAPI_STATE_DISABLE, &n->state);
6633}
6634EXPORT_SYMBOL(napi_disable);
6635
6636static void flush_gro_hash(struct napi_struct *napi)
6637{
6638 int i;
6639
6640 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6641 struct sk_buff *skb, *n;
6642
6643 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6644 kfree_skb(skb);
6645 napi->gro_hash[i].count = 0;
6646 }
6647}
6648
6649/* Must be called in process context */
6650void netif_napi_del(struct napi_struct *napi)
6651{
6652 might_sleep();
6653 if (napi_hash_del(napi))
6654 synchronize_net();
6655 list_del_init(&napi->dev_list);
6656 napi_free_frags(napi);
6657
6658 flush_gro_hash(napi);
6659 napi->gro_bitmask = 0;
6660}
6661EXPORT_SYMBOL(netif_napi_del);
6662
6663static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6664{
6665 void *have;
6666 int work, weight;
6667
6668 list_del_init(&n->poll_list);
6669
6670 have = netpoll_poll_lock(n);
6671
6672 weight = n->weight;
6673
6674 /* This NAPI_STATE_SCHED test is for avoiding a race
6675 * with netpoll's poll_napi(). Only the entity which
6676 * obtains the lock and sees NAPI_STATE_SCHED set will
6677 * actually make the ->poll() call. Therefore we avoid
6678 * accidentally calling ->poll() when NAPI is not scheduled.
6679 */
6680 work = 0;
6681 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6682 work = n->poll(n, weight);
6683 trace_napi_poll(n, work, weight);
6684 }
6685
6686 WARN_ON_ONCE(work > weight);
6687
6688 if (likely(work < weight))
6689 goto out_unlock;
6690
6691 /* Drivers must not modify the NAPI state if they
6692 * consume the entire weight. In such cases this code
6693 * still "owns" the NAPI instance and therefore can
6694 * move the instance around on the list at-will.
6695 */
6696 if (unlikely(napi_disable_pending(n))) {
6697 napi_complete(n);
6698 goto out_unlock;
6699 }
6700
6701 if (n->gro_bitmask) {
6702 /* flush too old packets
6703 * If HZ < 1000, flush all packets.
6704 */
6705 napi_gro_flush(n, HZ >= 1000);
6706 }
6707
6708 gro_normal_list(n);
6709
6710 /* Some drivers may have called napi_schedule
6711 * prior to exhausting their budget.
6712 */
6713 if (unlikely(!list_empty(&n->poll_list))) {
6714 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6715 n->dev ? n->dev->name : "backlog");
6716 goto out_unlock;
6717 }
6718
6719 list_add_tail(&n->poll_list, repoll);
6720
6721out_unlock:
6722 netpoll_poll_unlock(have);
6723
6724 return work;
6725}
6726
6727static __latent_entropy void net_rx_action(struct softirq_action *h)
6728{
6729 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6730 unsigned long time_limit = jiffies +
6731 usecs_to_jiffies(netdev_budget_usecs);
6732 int budget = netdev_budget;
6733 LIST_HEAD(list);
6734 LIST_HEAD(repoll);
6735
6736 local_irq_disable();
6737 list_splice_init(&sd->poll_list, &list);
6738 local_irq_enable();
6739
6740 for (;;) {
6741 struct napi_struct *n;
6742
6743 if (list_empty(&list)) {
6744 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6745 goto out;
6746 break;
6747 }
6748
6749 n = list_first_entry(&list, struct napi_struct, poll_list);
6750 budget -= napi_poll(n, &repoll);
6751
6752 /* If softirq window is exhausted then punt.
6753 * Allow this to run for 2 jiffies since which will allow
6754 * an average latency of 1.5/HZ.
6755 */
6756 if (unlikely(budget <= 0 ||
6757 time_after_eq(jiffies, time_limit))) {
6758 sd->time_squeeze++;
6759 break;
6760 }
6761 }
6762
6763 local_irq_disable();
6764
6765 list_splice_tail_init(&sd->poll_list, &list);
6766 list_splice_tail(&repoll, &list);
6767 list_splice(&list, &sd->poll_list);
6768 if (!list_empty(&sd->poll_list))
6769 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6770
6771 net_rps_action_and_irq_enable(sd);
6772out:
6773 __kfree_skb_flush();
6774}
6775
6776struct netdev_adjacent {
6777 struct net_device *dev;
6778
6779 /* upper master flag, there can only be one master device per list */
6780 bool master;
6781
6782 /* lookup ignore flag */
6783 bool ignore;
6784
6785 /* counter for the number of times this device was added to us */
6786 u16 ref_nr;
6787
6788 /* private field for the users */
6789 void *private;
6790
6791 struct list_head list;
6792 struct rcu_head rcu;
6793};
6794
6795static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6796 struct list_head *adj_list)
6797{
6798 struct netdev_adjacent *adj;
6799
6800 list_for_each_entry(adj, adj_list, list) {
6801 if (adj->dev == adj_dev)
6802 return adj;
6803 }
6804 return NULL;
6805}
6806
6807static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6808{
6809 struct net_device *dev = data;
6810
6811 return upper_dev == dev;
6812}
6813
6814/**
6815 * netdev_has_upper_dev - Check if device is linked to an upper device
6816 * @dev: device
6817 * @upper_dev: upper device to check
6818 *
6819 * Find out if a device is linked to specified upper device and return true
6820 * in case it is. Note that this checks only immediate upper device,
6821 * not through a complete stack of devices. The caller must hold the RTNL lock.
6822 */
6823bool netdev_has_upper_dev(struct net_device *dev,
6824 struct net_device *upper_dev)
6825{
6826 ASSERT_RTNL();
6827
6828 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6829 upper_dev);
6830}
6831EXPORT_SYMBOL(netdev_has_upper_dev);
6832
6833/**
6834 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6835 * @dev: device
6836 * @upper_dev: upper device to check
6837 *
6838 * Find out if a device is linked to specified upper device and return true
6839 * in case it is. Note that this checks the entire upper device chain.
6840 * The caller must hold rcu lock.
6841 */
6842
6843bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6844 struct net_device *upper_dev)
6845{
6846 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6847 upper_dev);
6848}
6849EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6850
6851/**
6852 * netdev_has_any_upper_dev - Check if device is linked to some device
6853 * @dev: device
6854 *
6855 * Find out if a device is linked to an upper device and return true in case
6856 * it is. The caller must hold the RTNL lock.
6857 */
6858bool netdev_has_any_upper_dev(struct net_device *dev)
6859{
6860 ASSERT_RTNL();
6861
6862 return !list_empty(&dev->adj_list.upper);
6863}
6864EXPORT_SYMBOL(netdev_has_any_upper_dev);
6865
6866/**
6867 * netdev_master_upper_dev_get - Get master upper device
6868 * @dev: device
6869 *
6870 * Find a master upper device and return pointer to it or NULL in case
6871 * it's not there. The caller must hold the RTNL lock.
6872 */
6873struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6874{
6875 struct netdev_adjacent *upper;
6876
6877 ASSERT_RTNL();
6878
6879 if (list_empty(&dev->adj_list.upper))
6880 return NULL;
6881
6882 upper = list_first_entry(&dev->adj_list.upper,
6883 struct netdev_adjacent, list);
6884 if (likely(upper->master))
6885 return upper->dev;
6886 return NULL;
6887}
6888EXPORT_SYMBOL(netdev_master_upper_dev_get);
6889
6890static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6891{
6892 struct netdev_adjacent *upper;
6893
6894 ASSERT_RTNL();
6895
6896 if (list_empty(&dev->adj_list.upper))
6897 return NULL;
6898
6899 upper = list_first_entry(&dev->adj_list.upper,
6900 struct netdev_adjacent, list);
6901 if (likely(upper->master) && !upper->ignore)
6902 return upper->dev;
6903 return NULL;
6904}
6905
6906/**
6907 * netdev_has_any_lower_dev - Check if device is linked to some device
6908 * @dev: device
6909 *
6910 * Find out if a device is linked to a lower device and return true in case
6911 * it is. The caller must hold the RTNL lock.
6912 */
6913static bool netdev_has_any_lower_dev(struct net_device *dev)
6914{
6915 ASSERT_RTNL();
6916
6917 return !list_empty(&dev->adj_list.lower);
6918}
6919
6920void *netdev_adjacent_get_private(struct list_head *adj_list)
6921{
6922 struct netdev_adjacent *adj;
6923
6924 adj = list_entry(adj_list, struct netdev_adjacent, list);
6925
6926 return adj->private;
6927}
6928EXPORT_SYMBOL(netdev_adjacent_get_private);
6929
6930/**
6931 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6932 * @dev: device
6933 * @iter: list_head ** of the current position
6934 *
6935 * Gets the next device from the dev's upper list, starting from iter
6936 * position. The caller must hold RCU read lock.
6937 */
6938struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6939 struct list_head **iter)
6940{
6941 struct netdev_adjacent *upper;
6942
6943 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6944
6945 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6946
6947 if (&upper->list == &dev->adj_list.upper)
6948 return NULL;
6949
6950 *iter = &upper->list;
6951
6952 return upper->dev;
6953}
6954EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6955
6956static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6957 struct list_head **iter,
6958 bool *ignore)
6959{
6960 struct netdev_adjacent *upper;
6961
6962 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6963
6964 if (&upper->list == &dev->adj_list.upper)
6965 return NULL;
6966
6967 *iter = &upper->list;
6968 *ignore = upper->ignore;
6969
6970 return upper->dev;
6971}
6972
6973static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6974 struct list_head **iter)
6975{
6976 struct netdev_adjacent *upper;
6977
6978 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6979
6980 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6981
6982 if (&upper->list == &dev->adj_list.upper)
6983 return NULL;
6984
6985 *iter = &upper->list;
6986
6987 return upper->dev;
6988}
6989
6990static int __netdev_walk_all_upper_dev(struct net_device *dev,
6991 int (*fn)(struct net_device *dev,
6992 void *data),
6993 void *data)
6994{
6995 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6996 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6997 int ret, cur = 0;
6998 bool ignore;
6999
7000 now = dev;
7001 iter = &dev->adj_list.upper;
7002
7003 while (1) {
7004 if (now != dev) {
7005 ret = fn(now, data);
7006 if (ret)
7007 return ret;
7008 }
7009
7010 next = NULL;
7011 while (1) {
7012 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7013 if (!udev)
7014 break;
7015 if (ignore)
7016 continue;
7017
7018 next = udev;
7019 niter = &udev->adj_list.upper;
7020 dev_stack[cur] = now;
7021 iter_stack[cur++] = iter;
7022 break;
7023 }
7024
7025 if (!next) {
7026 if (!cur)
7027 return 0;
7028 next = dev_stack[--cur];
7029 niter = iter_stack[cur];
7030 }
7031
7032 now = next;
7033 iter = niter;
7034 }
7035
7036 return 0;
7037}
7038
7039int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7040 int (*fn)(struct net_device *dev,
7041 void *data),
7042 void *data)
7043{
7044 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7045 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7046 int ret, cur = 0;
7047
7048 now = dev;
7049 iter = &dev->adj_list.upper;
7050
7051 while (1) {
7052 if (now != dev) {
7053 ret = fn(now, data);
7054 if (ret)
7055 return ret;
7056 }
7057
7058 next = NULL;
7059 while (1) {
7060 udev = netdev_next_upper_dev_rcu(now, &iter);
7061 if (!udev)
7062 break;
7063
7064 next = udev;
7065 niter = &udev->adj_list.upper;
7066 dev_stack[cur] = now;
7067 iter_stack[cur++] = iter;
7068 break;
7069 }
7070
7071 if (!next) {
7072 if (!cur)
7073 return 0;
7074 next = dev_stack[--cur];
7075 niter = iter_stack[cur];
7076 }
7077
7078 now = next;
7079 iter = niter;
7080 }
7081
7082 return 0;
7083}
7084EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7085
7086static bool __netdev_has_upper_dev(struct net_device *dev,
7087 struct net_device *upper_dev)
7088{
7089 ASSERT_RTNL();
7090
7091 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7092 upper_dev);
7093}
7094
7095/**
7096 * netdev_lower_get_next_private - Get the next ->private from the
7097 * lower neighbour list
7098 * @dev: device
7099 * @iter: list_head ** of the current position
7100 *
7101 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7102 * list, starting from iter position. The caller must hold either hold the
7103 * RTNL lock or its own locking that guarantees that the neighbour lower
7104 * list will remain unchanged.
7105 */
7106void *netdev_lower_get_next_private(struct net_device *dev,
7107 struct list_head **iter)
7108{
7109 struct netdev_adjacent *lower;
7110
7111 lower = list_entry(*iter, struct netdev_adjacent, list);
7112
7113 if (&lower->list == &dev->adj_list.lower)
7114 return NULL;
7115
7116 *iter = lower->list.next;
7117
7118 return lower->private;
7119}
7120EXPORT_SYMBOL(netdev_lower_get_next_private);
7121
7122/**
7123 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7124 * lower neighbour list, RCU
7125 * variant
7126 * @dev: device
7127 * @iter: list_head ** of the current position
7128 *
7129 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7130 * list, starting from iter position. The caller must hold RCU read lock.
7131 */
7132void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7133 struct list_head **iter)
7134{
7135 struct netdev_adjacent *lower;
7136
7137 WARN_ON_ONCE(!rcu_read_lock_held());
7138
7139 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7140
7141 if (&lower->list == &dev->adj_list.lower)
7142 return NULL;
7143
7144 *iter = &lower->list;
7145
7146 return lower->private;
7147}
7148EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7149
7150/**
7151 * netdev_lower_get_next - Get the next device from the lower neighbour
7152 * list
7153 * @dev: device
7154 * @iter: list_head ** of the current position
7155 *
7156 * Gets the next netdev_adjacent from the dev's lower neighbour
7157 * list, starting from iter position. The caller must hold RTNL lock or
7158 * its own locking that guarantees that the neighbour lower
7159 * list will remain unchanged.
7160 */
7161void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7162{
7163 struct netdev_adjacent *lower;
7164
7165 lower = list_entry(*iter, struct netdev_adjacent, list);
7166
7167 if (&lower->list == &dev->adj_list.lower)
7168 return NULL;
7169
7170 *iter = lower->list.next;
7171
7172 return lower->dev;
7173}
7174EXPORT_SYMBOL(netdev_lower_get_next);
7175
7176static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7177 struct list_head **iter)
7178{
7179 struct netdev_adjacent *lower;
7180
7181 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7182
7183 if (&lower->list == &dev->adj_list.lower)
7184 return NULL;
7185
7186 *iter = &lower->list;
7187
7188 return lower->dev;
7189}
7190
7191static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7192 struct list_head **iter,
7193 bool *ignore)
7194{
7195 struct netdev_adjacent *lower;
7196
7197 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7198
7199 if (&lower->list == &dev->adj_list.lower)
7200 return NULL;
7201
7202 *iter = &lower->list;
7203 *ignore = lower->ignore;
7204
7205 return lower->dev;
7206}
7207
7208int netdev_walk_all_lower_dev(struct net_device *dev,
7209 int (*fn)(struct net_device *dev,
7210 void *data),
7211 void *data)
7212{
7213 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7214 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7215 int ret, cur = 0;
7216
7217 now = dev;
7218 iter = &dev->adj_list.lower;
7219
7220 while (1) {
7221 if (now != dev) {
7222 ret = fn(now, data);
7223 if (ret)
7224 return ret;
7225 }
7226
7227 next = NULL;
7228 while (1) {
7229 ldev = netdev_next_lower_dev(now, &iter);
7230 if (!ldev)
7231 break;
7232
7233 next = ldev;
7234 niter = &ldev->adj_list.lower;
7235 dev_stack[cur] = now;
7236 iter_stack[cur++] = iter;
7237 break;
7238 }
7239
7240 if (!next) {
7241 if (!cur)
7242 return 0;
7243 next = dev_stack[--cur];
7244 niter = iter_stack[cur];
7245 }
7246
7247 now = next;
7248 iter = niter;
7249 }
7250
7251 return 0;
7252}
7253EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7254
7255static int __netdev_walk_all_lower_dev(struct net_device *dev,
7256 int (*fn)(struct net_device *dev,
7257 void *data),
7258 void *data)
7259{
7260 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7261 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7262 int ret, cur = 0;
7263 bool ignore;
7264
7265 now = dev;
7266 iter = &dev->adj_list.lower;
7267
7268 while (1) {
7269 if (now != dev) {
7270 ret = fn(now, data);
7271 if (ret)
7272 return ret;
7273 }
7274
7275 next = NULL;
7276 while (1) {
7277 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7278 if (!ldev)
7279 break;
7280 if (ignore)
7281 continue;
7282
7283 next = ldev;
7284 niter = &ldev->adj_list.lower;
7285 dev_stack[cur] = now;
7286 iter_stack[cur++] = iter;
7287 break;
7288 }
7289
7290 if (!next) {
7291 if (!cur)
7292 return 0;
7293 next = dev_stack[--cur];
7294 niter = iter_stack[cur];
7295 }
7296
7297 now = next;
7298 iter = niter;
7299 }
7300
7301 return 0;
7302}
7303
7304struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7305 struct list_head **iter)
7306{
7307 struct netdev_adjacent *lower;
7308
7309 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7310 if (&lower->list == &dev->adj_list.lower)
7311 return NULL;
7312
7313 *iter = &lower->list;
7314
7315 return lower->dev;
7316}
7317EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7318
7319static u8 __netdev_upper_depth(struct net_device *dev)
7320{
7321 struct net_device *udev;
7322 struct list_head *iter;
7323 u8 max_depth = 0;
7324 bool ignore;
7325
7326 for (iter = &dev->adj_list.upper,
7327 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7328 udev;
7329 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7330 if (ignore)
7331 continue;
7332 if (max_depth < udev->upper_level)
7333 max_depth = udev->upper_level;
7334 }
7335
7336 return max_depth;
7337}
7338
7339static u8 __netdev_lower_depth(struct net_device *dev)
7340{
7341 struct net_device *ldev;
7342 struct list_head *iter;
7343 u8 max_depth = 0;
7344 bool ignore;
7345
7346 for (iter = &dev->adj_list.lower,
7347 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7348 ldev;
7349 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7350 if (ignore)
7351 continue;
7352 if (max_depth < ldev->lower_level)
7353 max_depth = ldev->lower_level;
7354 }
7355
7356 return max_depth;
7357}
7358
7359static int __netdev_update_upper_level(struct net_device *dev, void *data)
7360{
7361 dev->upper_level = __netdev_upper_depth(dev) + 1;
7362 return 0;
7363}
7364
7365static int __netdev_update_lower_level(struct net_device *dev, void *data)
7366{
7367 dev->lower_level = __netdev_lower_depth(dev) + 1;
7368 return 0;
7369}
7370
7371int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7372 int (*fn)(struct net_device *dev,
7373 void *data),
7374 void *data)
7375{
7376 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7377 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7378 int ret, cur = 0;
7379
7380 now = dev;
7381 iter = &dev->adj_list.lower;
7382
7383 while (1) {
7384 if (now != dev) {
7385 ret = fn(now, data);
7386 if (ret)
7387 return ret;
7388 }
7389
7390 next = NULL;
7391 while (1) {
7392 ldev = netdev_next_lower_dev_rcu(now, &iter);
7393 if (!ldev)
7394 break;
7395
7396 next = ldev;
7397 niter = &ldev->adj_list.lower;
7398 dev_stack[cur] = now;
7399 iter_stack[cur++] = iter;
7400 break;
7401 }
7402
7403 if (!next) {
7404 if (!cur)
7405 return 0;
7406 next = dev_stack[--cur];
7407 niter = iter_stack[cur];
7408 }
7409
7410 now = next;
7411 iter = niter;
7412 }
7413
7414 return 0;
7415}
7416EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7417
7418/**
7419 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7420 * lower neighbour list, RCU
7421 * variant
7422 * @dev: device
7423 *
7424 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7425 * list. The caller must hold RCU read lock.
7426 */
7427void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7428{
7429 struct netdev_adjacent *lower;
7430
7431 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7432 struct netdev_adjacent, list);
7433 if (lower)
7434 return lower->private;
7435 return NULL;
7436}
7437EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7438
7439/**
7440 * netdev_master_upper_dev_get_rcu - Get master upper device
7441 * @dev: device
7442 *
7443 * Find a master upper device and return pointer to it or NULL in case
7444 * it's not there. The caller must hold the RCU read lock.
7445 */
7446struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7447{
7448 struct netdev_adjacent *upper;
7449
7450 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7451 struct netdev_adjacent, list);
7452 if (upper && likely(upper->master))
7453 return upper->dev;
7454 return NULL;
7455}
7456EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7457
7458static int netdev_adjacent_sysfs_add(struct net_device *dev,
7459 struct net_device *adj_dev,
7460 struct list_head *dev_list)
7461{
7462 char linkname[IFNAMSIZ+7];
7463
7464 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7465 "upper_%s" : "lower_%s", adj_dev->name);
7466 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7467 linkname);
7468}
7469static void netdev_adjacent_sysfs_del(struct net_device *dev,
7470 char *name,
7471 struct list_head *dev_list)
7472{
7473 char linkname[IFNAMSIZ+7];
7474
7475 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7476 "upper_%s" : "lower_%s", name);
7477 sysfs_remove_link(&(dev->dev.kobj), linkname);
7478}
7479
7480static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7481 struct net_device *adj_dev,
7482 struct list_head *dev_list)
7483{
7484 return (dev_list == &dev->adj_list.upper ||
7485 dev_list == &dev->adj_list.lower) &&
7486 net_eq(dev_net(dev), dev_net(adj_dev));
7487}
7488
7489static int __netdev_adjacent_dev_insert(struct net_device *dev,
7490 struct net_device *adj_dev,
7491 struct list_head *dev_list,
7492 void *private, bool master)
7493{
7494 struct netdev_adjacent *adj;
7495 int ret;
7496
7497 adj = __netdev_find_adj(adj_dev, dev_list);
7498
7499 if (adj) {
7500 adj->ref_nr += 1;
7501 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7502 dev->name, adj_dev->name, adj->ref_nr);
7503
7504 return 0;
7505 }
7506
7507 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7508 if (!adj)
7509 return -ENOMEM;
7510
7511 adj->dev = adj_dev;
7512 adj->master = master;
7513 adj->ref_nr = 1;
7514 adj->private = private;
7515 adj->ignore = false;
7516 dev_hold(adj_dev);
7517
7518 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7519 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7520
7521 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7522 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7523 if (ret)
7524 goto free_adj;
7525 }
7526
7527 /* Ensure that master link is always the first item in list. */
7528 if (master) {
7529 ret = sysfs_create_link(&(dev->dev.kobj),
7530 &(adj_dev->dev.kobj), "master");
7531 if (ret)
7532 goto remove_symlinks;
7533
7534 list_add_rcu(&adj->list, dev_list);
7535 } else {
7536 list_add_tail_rcu(&adj->list, dev_list);
7537 }
7538
7539 return 0;
7540
7541remove_symlinks:
7542 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7543 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7544free_adj:
7545 kfree(adj);
7546 dev_put(adj_dev);
7547
7548 return ret;
7549}
7550
7551static void __netdev_adjacent_dev_remove(struct net_device *dev,
7552 struct net_device *adj_dev,
7553 u16 ref_nr,
7554 struct list_head *dev_list)
7555{
7556 struct netdev_adjacent *adj;
7557
7558 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7559 dev->name, adj_dev->name, ref_nr);
7560
7561 adj = __netdev_find_adj(adj_dev, dev_list);
7562
7563 if (!adj) {
7564 pr_err("Adjacency does not exist for device %s from %s\n",
7565 dev->name, adj_dev->name);
7566 WARN_ON(1);
7567 return;
7568 }
7569
7570 if (adj->ref_nr > ref_nr) {
7571 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7572 dev->name, adj_dev->name, ref_nr,
7573 adj->ref_nr - ref_nr);
7574 adj->ref_nr -= ref_nr;
7575 return;
7576 }
7577
7578 if (adj->master)
7579 sysfs_remove_link(&(dev->dev.kobj), "master");
7580
7581 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7582 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7583
7584 list_del_rcu(&adj->list);
7585 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7586 adj_dev->name, dev->name, adj_dev->name);
7587 dev_put(adj_dev);
7588 kfree_rcu(adj, rcu);
7589}
7590
7591static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7592 struct net_device *upper_dev,
7593 struct list_head *up_list,
7594 struct list_head *down_list,
7595 void *private, bool master)
7596{
7597 int ret;
7598
7599 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7600 private, master);
7601 if (ret)
7602 return ret;
7603
7604 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7605 private, false);
7606 if (ret) {
7607 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7608 return ret;
7609 }
7610
7611 return 0;
7612}
7613
7614static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7615 struct net_device *upper_dev,
7616 u16 ref_nr,
7617 struct list_head *up_list,
7618 struct list_head *down_list)
7619{
7620 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7621 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7622}
7623
7624static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7625 struct net_device *upper_dev,
7626 void *private, bool master)
7627{
7628 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7629 &dev->adj_list.upper,
7630 &upper_dev->adj_list.lower,
7631 private, master);
7632}
7633
7634static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7635 struct net_device *upper_dev)
7636{
7637 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7638 &dev->adj_list.upper,
7639 &upper_dev->adj_list.lower);
7640}
7641
7642static int __netdev_upper_dev_link(struct net_device *dev,
7643 struct net_device *upper_dev, bool master,
7644 void *upper_priv, void *upper_info,
7645 struct netlink_ext_ack *extack)
7646{
7647 struct netdev_notifier_changeupper_info changeupper_info = {
7648 .info = {
7649 .dev = dev,
7650 .extack = extack,
7651 },
7652 .upper_dev = upper_dev,
7653 .master = master,
7654 .linking = true,
7655 .upper_info = upper_info,
7656 };
7657 struct net_device *master_dev;
7658 int ret = 0;
7659
7660 ASSERT_RTNL();
7661
7662 if (dev == upper_dev)
7663 return -EBUSY;
7664
7665 /* To prevent loops, check if dev is not upper device to upper_dev. */
7666 if (__netdev_has_upper_dev(upper_dev, dev))
7667 return -EBUSY;
7668
7669 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7670 return -EMLINK;
7671
7672 if (!master) {
7673 if (__netdev_has_upper_dev(dev, upper_dev))
7674 return -EEXIST;
7675 } else {
7676 master_dev = __netdev_master_upper_dev_get(dev);
7677 if (master_dev)
7678 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7679 }
7680
7681 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7682 &changeupper_info.info);
7683 ret = notifier_to_errno(ret);
7684 if (ret)
7685 return ret;
7686
7687 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7688 master);
7689 if (ret)
7690 return ret;
7691
7692 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7693 &changeupper_info.info);
7694 ret = notifier_to_errno(ret);
7695 if (ret)
7696 goto rollback;
7697
7698 __netdev_update_upper_level(dev, NULL);
7699 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7700
7701 __netdev_update_lower_level(upper_dev, NULL);
7702 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7703 NULL);
7704
7705 return 0;
7706
7707rollback:
7708 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7709
7710 return ret;
7711}
7712
7713/**
7714 * netdev_upper_dev_link - Add a link to the upper device
7715 * @dev: device
7716 * @upper_dev: new upper device
7717 * @extack: netlink extended ack
7718 *
7719 * Adds a link to device which is upper to this one. The caller must hold
7720 * the RTNL lock. On a failure a negative errno code is returned.
7721 * On success the reference counts are adjusted and the function
7722 * returns zero.
7723 */
7724int netdev_upper_dev_link(struct net_device *dev,
7725 struct net_device *upper_dev,
7726 struct netlink_ext_ack *extack)
7727{
7728 return __netdev_upper_dev_link(dev, upper_dev, false,
7729 NULL, NULL, extack);
7730}
7731EXPORT_SYMBOL(netdev_upper_dev_link);
7732
7733/**
7734 * netdev_master_upper_dev_link - Add a master link to the upper device
7735 * @dev: device
7736 * @upper_dev: new upper device
7737 * @upper_priv: upper device private
7738 * @upper_info: upper info to be passed down via notifier
7739 * @extack: netlink extended ack
7740 *
7741 * Adds a link to device which is upper to this one. In this case, only
7742 * one master upper device can be linked, although other non-master devices
7743 * might be linked as well. The caller must hold the RTNL lock.
7744 * On a failure a negative errno code is returned. On success the reference
7745 * counts are adjusted and the function returns zero.
7746 */
7747int netdev_master_upper_dev_link(struct net_device *dev,
7748 struct net_device *upper_dev,
7749 void *upper_priv, void *upper_info,
7750 struct netlink_ext_ack *extack)
7751{
7752 return __netdev_upper_dev_link(dev, upper_dev, true,
7753 upper_priv, upper_info, extack);
7754}
7755EXPORT_SYMBOL(netdev_master_upper_dev_link);
7756
7757/**
7758 * netdev_upper_dev_unlink - Removes a link to upper device
7759 * @dev: device
7760 * @upper_dev: new upper device
7761 *
7762 * Removes a link to device which is upper to this one. The caller must hold
7763 * the RTNL lock.
7764 */
7765void netdev_upper_dev_unlink(struct net_device *dev,
7766 struct net_device *upper_dev)
7767{
7768 struct netdev_notifier_changeupper_info changeupper_info = {
7769 .info = {
7770 .dev = dev,
7771 },
7772 .upper_dev = upper_dev,
7773 .linking = false,
7774 };
7775
7776 ASSERT_RTNL();
7777
7778 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7779
7780 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7781 &changeupper_info.info);
7782
7783 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7784
7785 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7786 &changeupper_info.info);
7787
7788 __netdev_update_upper_level(dev, NULL);
7789 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7790
7791 __netdev_update_lower_level(upper_dev, NULL);
7792 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7793 NULL);
7794}
7795EXPORT_SYMBOL(netdev_upper_dev_unlink);
7796
7797static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7798 struct net_device *lower_dev,
7799 bool val)
7800{
7801 struct netdev_adjacent *adj;
7802
7803 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7804 if (adj)
7805 adj->ignore = val;
7806
7807 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7808 if (adj)
7809 adj->ignore = val;
7810}
7811
7812static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7813 struct net_device *lower_dev)
7814{
7815 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7816}
7817
7818static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7819 struct net_device *lower_dev)
7820{
7821 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7822}
7823
7824int netdev_adjacent_change_prepare(struct net_device *old_dev,
7825 struct net_device *new_dev,
7826 struct net_device *dev,
7827 struct netlink_ext_ack *extack)
7828{
7829 int err;
7830
7831 if (!new_dev)
7832 return 0;
7833
7834 if (old_dev && new_dev != old_dev)
7835 netdev_adjacent_dev_disable(dev, old_dev);
7836
7837 err = netdev_upper_dev_link(new_dev, dev, extack);
7838 if (err) {
7839 if (old_dev && new_dev != old_dev)
7840 netdev_adjacent_dev_enable(dev, old_dev);
7841 return err;
7842 }
7843
7844 return 0;
7845}
7846EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7847
7848void netdev_adjacent_change_commit(struct net_device *old_dev,
7849 struct net_device *new_dev,
7850 struct net_device *dev)
7851{
7852 if (!new_dev || !old_dev)
7853 return;
7854
7855 if (new_dev == old_dev)
7856 return;
7857
7858 netdev_adjacent_dev_enable(dev, old_dev);
7859 netdev_upper_dev_unlink(old_dev, dev);
7860}
7861EXPORT_SYMBOL(netdev_adjacent_change_commit);
7862
7863void netdev_adjacent_change_abort(struct net_device *old_dev,
7864 struct net_device *new_dev,
7865 struct net_device *dev)
7866{
7867 if (!new_dev)
7868 return;
7869
7870 if (old_dev && new_dev != old_dev)
7871 netdev_adjacent_dev_enable(dev, old_dev);
7872
7873 netdev_upper_dev_unlink(new_dev, dev);
7874}
7875EXPORT_SYMBOL(netdev_adjacent_change_abort);
7876
7877/**
7878 * netdev_bonding_info_change - Dispatch event about slave change
7879 * @dev: device
7880 * @bonding_info: info to dispatch
7881 *
7882 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7883 * The caller must hold the RTNL lock.
7884 */
7885void netdev_bonding_info_change(struct net_device *dev,
7886 struct netdev_bonding_info *bonding_info)
7887{
7888 struct netdev_notifier_bonding_info info = {
7889 .info.dev = dev,
7890 };
7891
7892 memcpy(&info.bonding_info, bonding_info,
7893 sizeof(struct netdev_bonding_info));
7894 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7895 &info.info);
7896}
7897EXPORT_SYMBOL(netdev_bonding_info_change);
7898
7899/**
7900 * netdev_get_xmit_slave - Get the xmit slave of master device
7901 * @skb: The packet
7902 * @all_slaves: assume all the slaves are active
7903 *
7904 * The reference counters are not incremented so the caller must be
7905 * careful with locks. The caller must hold RCU lock.
7906 * %NULL is returned if no slave is found.
7907 */
7908
7909struct net_device *netdev_get_xmit_slave(struct net_device *dev,
7910 struct sk_buff *skb,
7911 bool all_slaves)
7912{
7913 const struct net_device_ops *ops = dev->netdev_ops;
7914
7915 if (!ops->ndo_get_xmit_slave)
7916 return NULL;
7917 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
7918}
7919EXPORT_SYMBOL(netdev_get_xmit_slave);
7920
7921static void netdev_adjacent_add_links(struct net_device *dev)
7922{
7923 struct netdev_adjacent *iter;
7924
7925 struct net *net = dev_net(dev);
7926
7927 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7928 if (!net_eq(net, dev_net(iter->dev)))
7929 continue;
7930 netdev_adjacent_sysfs_add(iter->dev, dev,
7931 &iter->dev->adj_list.lower);
7932 netdev_adjacent_sysfs_add(dev, iter->dev,
7933 &dev->adj_list.upper);
7934 }
7935
7936 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7937 if (!net_eq(net, dev_net(iter->dev)))
7938 continue;
7939 netdev_adjacent_sysfs_add(iter->dev, dev,
7940 &iter->dev->adj_list.upper);
7941 netdev_adjacent_sysfs_add(dev, iter->dev,
7942 &dev->adj_list.lower);
7943 }
7944}
7945
7946static void netdev_adjacent_del_links(struct net_device *dev)
7947{
7948 struct netdev_adjacent *iter;
7949
7950 struct net *net = dev_net(dev);
7951
7952 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7953 if (!net_eq(net, dev_net(iter->dev)))
7954 continue;
7955 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7956 &iter->dev->adj_list.lower);
7957 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7958 &dev->adj_list.upper);
7959 }
7960
7961 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7962 if (!net_eq(net, dev_net(iter->dev)))
7963 continue;
7964 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7965 &iter->dev->adj_list.upper);
7966 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7967 &dev->adj_list.lower);
7968 }
7969}
7970
7971void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7972{
7973 struct netdev_adjacent *iter;
7974
7975 struct net *net = dev_net(dev);
7976
7977 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7978 if (!net_eq(net, dev_net(iter->dev)))
7979 continue;
7980 netdev_adjacent_sysfs_del(iter->dev, oldname,
7981 &iter->dev->adj_list.lower);
7982 netdev_adjacent_sysfs_add(iter->dev, dev,
7983 &iter->dev->adj_list.lower);
7984 }
7985
7986 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7987 if (!net_eq(net, dev_net(iter->dev)))
7988 continue;
7989 netdev_adjacent_sysfs_del(iter->dev, oldname,
7990 &iter->dev->adj_list.upper);
7991 netdev_adjacent_sysfs_add(iter->dev, dev,
7992 &iter->dev->adj_list.upper);
7993 }
7994}
7995
7996void *netdev_lower_dev_get_private(struct net_device *dev,
7997 struct net_device *lower_dev)
7998{
7999 struct netdev_adjacent *lower;
8000
8001 if (!lower_dev)
8002 return NULL;
8003 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8004 if (!lower)
8005 return NULL;
8006
8007 return lower->private;
8008}
8009EXPORT_SYMBOL(netdev_lower_dev_get_private);
8010
8011
8012/**
8013 * netdev_lower_change - Dispatch event about lower device state change
8014 * @lower_dev: device
8015 * @lower_state_info: state to dispatch
8016 *
8017 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8018 * The caller must hold the RTNL lock.
8019 */
8020void netdev_lower_state_changed(struct net_device *lower_dev,
8021 void *lower_state_info)
8022{
8023 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8024 .info.dev = lower_dev,
8025 };
8026
8027 ASSERT_RTNL();
8028 changelowerstate_info.lower_state_info = lower_state_info;
8029 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8030 &changelowerstate_info.info);
8031}
8032EXPORT_SYMBOL(netdev_lower_state_changed);
8033
8034static void dev_change_rx_flags(struct net_device *dev, int flags)
8035{
8036 const struct net_device_ops *ops = dev->netdev_ops;
8037
8038 if (ops->ndo_change_rx_flags)
8039 ops->ndo_change_rx_flags(dev, flags);
8040}
8041
8042static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8043{
8044 unsigned int old_flags = dev->flags;
8045 kuid_t uid;
8046 kgid_t gid;
8047
8048 ASSERT_RTNL();
8049
8050 dev->flags |= IFF_PROMISC;
8051 dev->promiscuity += inc;
8052 if (dev->promiscuity == 0) {
8053 /*
8054 * Avoid overflow.
8055 * If inc causes overflow, untouch promisc and return error.
8056 */
8057 if (inc < 0)
8058 dev->flags &= ~IFF_PROMISC;
8059 else {
8060 dev->promiscuity -= inc;
8061 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8062 dev->name);
8063 return -EOVERFLOW;
8064 }
8065 }
8066 if (dev->flags != old_flags) {
8067 pr_info("device %s %s promiscuous mode\n",
8068 dev->name,
8069 dev->flags & IFF_PROMISC ? "entered" : "left");
8070 if (audit_enabled) {
8071 current_uid_gid(&uid, &gid);
8072 audit_log(audit_context(), GFP_ATOMIC,
8073 AUDIT_ANOM_PROMISCUOUS,
8074 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8075 dev->name, (dev->flags & IFF_PROMISC),
8076 (old_flags & IFF_PROMISC),
8077 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8078 from_kuid(&init_user_ns, uid),
8079 from_kgid(&init_user_ns, gid),
8080 audit_get_sessionid(current));
8081 }
8082
8083 dev_change_rx_flags(dev, IFF_PROMISC);
8084 }
8085 if (notify)
8086 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8087 return 0;
8088}
8089
8090/**
8091 * dev_set_promiscuity - update promiscuity count on a device
8092 * @dev: device
8093 * @inc: modifier
8094 *
8095 * Add or remove promiscuity from a device. While the count in the device
8096 * remains above zero the interface remains promiscuous. Once it hits zero
8097 * the device reverts back to normal filtering operation. A negative inc
8098 * value is used to drop promiscuity on the device.
8099 * Return 0 if successful or a negative errno code on error.
8100 */
8101int dev_set_promiscuity(struct net_device *dev, int inc)
8102{
8103 unsigned int old_flags = dev->flags;
8104 int err;
8105
8106 err = __dev_set_promiscuity(dev, inc, true);
8107 if (err < 0)
8108 return err;
8109 if (dev->flags != old_flags)
8110 dev_set_rx_mode(dev);
8111 return err;
8112}
8113EXPORT_SYMBOL(dev_set_promiscuity);
8114
8115static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8116{
8117 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8118
8119 ASSERT_RTNL();
8120
8121 dev->flags |= IFF_ALLMULTI;
8122 dev->allmulti += inc;
8123 if (dev->allmulti == 0) {
8124 /*
8125 * Avoid overflow.
8126 * If inc causes overflow, untouch allmulti and return error.
8127 */
8128 if (inc < 0)
8129 dev->flags &= ~IFF_ALLMULTI;
8130 else {
8131 dev->allmulti -= inc;
8132 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8133 dev->name);
8134 return -EOVERFLOW;
8135 }
8136 }
8137 if (dev->flags ^ old_flags) {
8138 dev_change_rx_flags(dev, IFF_ALLMULTI);
8139 dev_set_rx_mode(dev);
8140 if (notify)
8141 __dev_notify_flags(dev, old_flags,
8142 dev->gflags ^ old_gflags);
8143 }
8144 return 0;
8145}
8146
8147/**
8148 * dev_set_allmulti - update allmulti count on a device
8149 * @dev: device
8150 * @inc: modifier
8151 *
8152 * Add or remove reception of all multicast frames to a device. While the
8153 * count in the device remains above zero the interface remains listening
8154 * to all interfaces. Once it hits zero the device reverts back to normal
8155 * filtering operation. A negative @inc value is used to drop the counter
8156 * when releasing a resource needing all multicasts.
8157 * Return 0 if successful or a negative errno code on error.
8158 */
8159
8160int dev_set_allmulti(struct net_device *dev, int inc)
8161{
8162 return __dev_set_allmulti(dev, inc, true);
8163}
8164EXPORT_SYMBOL(dev_set_allmulti);
8165
8166/*
8167 * Upload unicast and multicast address lists to device and
8168 * configure RX filtering. When the device doesn't support unicast
8169 * filtering it is put in promiscuous mode while unicast addresses
8170 * are present.
8171 */
8172void __dev_set_rx_mode(struct net_device *dev)
8173{
8174 const struct net_device_ops *ops = dev->netdev_ops;
8175
8176 /* dev_open will call this function so the list will stay sane. */
8177 if (!(dev->flags&IFF_UP))
8178 return;
8179
8180 if (!netif_device_present(dev))
8181 return;
8182
8183 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8184 /* Unicast addresses changes may only happen under the rtnl,
8185 * therefore calling __dev_set_promiscuity here is safe.
8186 */
8187 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8188 __dev_set_promiscuity(dev, 1, false);
8189 dev->uc_promisc = true;
8190 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8191 __dev_set_promiscuity(dev, -1, false);
8192 dev->uc_promisc = false;
8193 }
8194 }
8195
8196 if (ops->ndo_set_rx_mode)
8197 ops->ndo_set_rx_mode(dev);
8198}
8199
8200void dev_set_rx_mode(struct net_device *dev)
8201{
8202 netif_addr_lock_bh(dev);
8203 __dev_set_rx_mode(dev);
8204 netif_addr_unlock_bh(dev);
8205}
8206
8207/**
8208 * dev_get_flags - get flags reported to userspace
8209 * @dev: device
8210 *
8211 * Get the combination of flag bits exported through APIs to userspace.
8212 */
8213unsigned int dev_get_flags(const struct net_device *dev)
8214{
8215 unsigned int flags;
8216
8217 flags = (dev->flags & ~(IFF_PROMISC |
8218 IFF_ALLMULTI |
8219 IFF_RUNNING |
8220 IFF_LOWER_UP |
8221 IFF_DORMANT)) |
8222 (dev->gflags & (IFF_PROMISC |
8223 IFF_ALLMULTI));
8224
8225 if (netif_running(dev)) {
8226 if (netif_oper_up(dev))
8227 flags |= IFF_RUNNING;
8228 if (netif_carrier_ok(dev))
8229 flags |= IFF_LOWER_UP;
8230 if (netif_dormant(dev))
8231 flags |= IFF_DORMANT;
8232 }
8233
8234 return flags;
8235}
8236EXPORT_SYMBOL(dev_get_flags);
8237
8238int __dev_change_flags(struct net_device *dev, unsigned int flags,
8239 struct netlink_ext_ack *extack)
8240{
8241 unsigned int old_flags = dev->flags;
8242 int ret;
8243
8244 ASSERT_RTNL();
8245
8246 /*
8247 * Set the flags on our device.
8248 */
8249
8250 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8251 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8252 IFF_AUTOMEDIA)) |
8253 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8254 IFF_ALLMULTI));
8255
8256 /*
8257 * Load in the correct multicast list now the flags have changed.
8258 */
8259
8260 if ((old_flags ^ flags) & IFF_MULTICAST)
8261 dev_change_rx_flags(dev, IFF_MULTICAST);
8262
8263 dev_set_rx_mode(dev);
8264
8265 /*
8266 * Have we downed the interface. We handle IFF_UP ourselves
8267 * according to user attempts to set it, rather than blindly
8268 * setting it.
8269 */
8270
8271 ret = 0;
8272 if ((old_flags ^ flags) & IFF_UP) {
8273 if (old_flags & IFF_UP)
8274 __dev_close(dev);
8275 else
8276 ret = __dev_open(dev, extack);
8277 }
8278
8279 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8280 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8281 unsigned int old_flags = dev->flags;
8282
8283 dev->gflags ^= IFF_PROMISC;
8284
8285 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8286 if (dev->flags != old_flags)
8287 dev_set_rx_mode(dev);
8288 }
8289
8290 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8291 * is important. Some (broken) drivers set IFF_PROMISC, when
8292 * IFF_ALLMULTI is requested not asking us and not reporting.
8293 */
8294 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8295 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8296
8297 dev->gflags ^= IFF_ALLMULTI;
8298 __dev_set_allmulti(dev, inc, false);
8299 }
8300
8301 return ret;
8302}
8303
8304void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8305 unsigned int gchanges)
8306{
8307 unsigned int changes = dev->flags ^ old_flags;
8308
8309 if (gchanges)
8310 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8311
8312 if (changes & IFF_UP) {
8313 if (dev->flags & IFF_UP)
8314 call_netdevice_notifiers(NETDEV_UP, dev);
8315 else
8316 call_netdevice_notifiers(NETDEV_DOWN, dev);
8317 }
8318
8319 if (dev->flags & IFF_UP &&
8320 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8321 struct netdev_notifier_change_info change_info = {
8322 .info = {
8323 .dev = dev,
8324 },
8325 .flags_changed = changes,
8326 };
8327
8328 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8329 }
8330}
8331
8332/**
8333 * dev_change_flags - change device settings
8334 * @dev: device
8335 * @flags: device state flags
8336 * @extack: netlink extended ack
8337 *
8338 * Change settings on device based state flags. The flags are
8339 * in the userspace exported format.
8340 */
8341int dev_change_flags(struct net_device *dev, unsigned int flags,
8342 struct netlink_ext_ack *extack)
8343{
8344 int ret;
8345 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8346
8347 ret = __dev_change_flags(dev, flags, extack);
8348 if (ret < 0)
8349 return ret;
8350
8351 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8352 __dev_notify_flags(dev, old_flags, changes);
8353 return ret;
8354}
8355EXPORT_SYMBOL(dev_change_flags);
8356
8357int __dev_set_mtu(struct net_device *dev, int new_mtu)
8358{
8359 const struct net_device_ops *ops = dev->netdev_ops;
8360
8361 if (ops->ndo_change_mtu)
8362 return ops->ndo_change_mtu(dev, new_mtu);
8363
8364 /* Pairs with all the lockless reads of dev->mtu in the stack */
8365 WRITE_ONCE(dev->mtu, new_mtu);
8366 return 0;
8367}
8368EXPORT_SYMBOL(__dev_set_mtu);
8369
8370int dev_validate_mtu(struct net_device *dev, int new_mtu,
8371 struct netlink_ext_ack *extack)
8372{
8373 /* MTU must be positive, and in range */
8374 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8375 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8376 return -EINVAL;
8377 }
8378
8379 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8380 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8381 return -EINVAL;
8382 }
8383 return 0;
8384}
8385
8386/**
8387 * dev_set_mtu_ext - Change maximum transfer unit
8388 * @dev: device
8389 * @new_mtu: new transfer unit
8390 * @extack: netlink extended ack
8391 *
8392 * Change the maximum transfer size of the network device.
8393 */
8394int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8395 struct netlink_ext_ack *extack)
8396{
8397 int err, orig_mtu;
8398
8399 if (new_mtu == dev->mtu)
8400 return 0;
8401
8402 err = dev_validate_mtu(dev, new_mtu, extack);
8403 if (err)
8404 return err;
8405
8406 if (!netif_device_present(dev))
8407 return -ENODEV;
8408
8409 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8410 err = notifier_to_errno(err);
8411 if (err)
8412 return err;
8413
8414 orig_mtu = dev->mtu;
8415 err = __dev_set_mtu(dev, new_mtu);
8416
8417 if (!err) {
8418 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8419 orig_mtu);
8420 err = notifier_to_errno(err);
8421 if (err) {
8422 /* setting mtu back and notifying everyone again,
8423 * so that they have a chance to revert changes.
8424 */
8425 __dev_set_mtu(dev, orig_mtu);
8426 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8427 new_mtu);
8428 }
8429 }
8430 return err;
8431}
8432
8433int dev_set_mtu(struct net_device *dev, int new_mtu)
8434{
8435 struct netlink_ext_ack extack;
8436 int err;
8437
8438 memset(&extack, 0, sizeof(extack));
8439 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8440 if (err && extack._msg)
8441 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8442 return err;
8443}
8444EXPORT_SYMBOL(dev_set_mtu);
8445
8446/**
8447 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8448 * @dev: device
8449 * @new_len: new tx queue length
8450 */
8451int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8452{
8453 unsigned int orig_len = dev->tx_queue_len;
8454 int res;
8455
8456 if (new_len != (unsigned int)new_len)
8457 return -ERANGE;
8458
8459 if (new_len != orig_len) {
8460 dev->tx_queue_len = new_len;
8461 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8462 res = notifier_to_errno(res);
8463 if (res)
8464 goto err_rollback;
8465 res = dev_qdisc_change_tx_queue_len(dev);
8466 if (res)
8467 goto err_rollback;
8468 }
8469
8470 return 0;
8471
8472err_rollback:
8473 netdev_err(dev, "refused to change device tx_queue_len\n");
8474 dev->tx_queue_len = orig_len;
8475 return res;
8476}
8477
8478/**
8479 * dev_set_group - Change group this device belongs to
8480 * @dev: device
8481 * @new_group: group this device should belong to
8482 */
8483void dev_set_group(struct net_device *dev, int new_group)
8484{
8485 dev->group = new_group;
8486}
8487EXPORT_SYMBOL(dev_set_group);
8488
8489/**
8490 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8491 * @dev: device
8492 * @addr: new address
8493 * @extack: netlink extended ack
8494 */
8495int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8496 struct netlink_ext_ack *extack)
8497{
8498 struct netdev_notifier_pre_changeaddr_info info = {
8499 .info.dev = dev,
8500 .info.extack = extack,
8501 .dev_addr = addr,
8502 };
8503 int rc;
8504
8505 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8506 return notifier_to_errno(rc);
8507}
8508EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8509
8510/**
8511 * dev_set_mac_address - Change Media Access Control Address
8512 * @dev: device
8513 * @sa: new address
8514 * @extack: netlink extended ack
8515 *
8516 * Change the hardware (MAC) address of the device
8517 */
8518int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8519 struct netlink_ext_ack *extack)
8520{
8521 const struct net_device_ops *ops = dev->netdev_ops;
8522 int err;
8523
8524 if (!ops->ndo_set_mac_address)
8525 return -EOPNOTSUPP;
8526 if (sa->sa_family != dev->type)
8527 return -EINVAL;
8528 if (!netif_device_present(dev))
8529 return -ENODEV;
8530 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8531 if (err)
8532 return err;
8533 err = ops->ndo_set_mac_address(dev, sa);
8534 if (err)
8535 return err;
8536 dev->addr_assign_type = NET_ADDR_SET;
8537 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8538 add_device_randomness(dev->dev_addr, dev->addr_len);
8539 return 0;
8540}
8541EXPORT_SYMBOL(dev_set_mac_address);
8542
8543/**
8544 * dev_change_carrier - Change device carrier
8545 * @dev: device
8546 * @new_carrier: new value
8547 *
8548 * Change device carrier
8549 */
8550int dev_change_carrier(struct net_device *dev, bool new_carrier)
8551{
8552 const struct net_device_ops *ops = dev->netdev_ops;
8553
8554 if (!ops->ndo_change_carrier)
8555 return -EOPNOTSUPP;
8556 if (!netif_device_present(dev))
8557 return -ENODEV;
8558 return ops->ndo_change_carrier(dev, new_carrier);
8559}
8560EXPORT_SYMBOL(dev_change_carrier);
8561
8562/**
8563 * dev_get_phys_port_id - Get device physical port ID
8564 * @dev: device
8565 * @ppid: port ID
8566 *
8567 * Get device physical port ID
8568 */
8569int dev_get_phys_port_id(struct net_device *dev,
8570 struct netdev_phys_item_id *ppid)
8571{
8572 const struct net_device_ops *ops = dev->netdev_ops;
8573
8574 if (!ops->ndo_get_phys_port_id)
8575 return -EOPNOTSUPP;
8576 return ops->ndo_get_phys_port_id(dev, ppid);
8577}
8578EXPORT_SYMBOL(dev_get_phys_port_id);
8579
8580/**
8581 * dev_get_phys_port_name - Get device physical port name
8582 * @dev: device
8583 * @name: port name
8584 * @len: limit of bytes to copy to name
8585 *
8586 * Get device physical port name
8587 */
8588int dev_get_phys_port_name(struct net_device *dev,
8589 char *name, size_t len)
8590{
8591 const struct net_device_ops *ops = dev->netdev_ops;
8592 int err;
8593
8594 if (ops->ndo_get_phys_port_name) {
8595 err = ops->ndo_get_phys_port_name(dev, name, len);
8596 if (err != -EOPNOTSUPP)
8597 return err;
8598 }
8599 return devlink_compat_phys_port_name_get(dev, name, len);
8600}
8601EXPORT_SYMBOL(dev_get_phys_port_name);
8602
8603/**
8604 * dev_get_port_parent_id - Get the device's port parent identifier
8605 * @dev: network device
8606 * @ppid: pointer to a storage for the port's parent identifier
8607 * @recurse: allow/disallow recursion to lower devices
8608 *
8609 * Get the devices's port parent identifier
8610 */
8611int dev_get_port_parent_id(struct net_device *dev,
8612 struct netdev_phys_item_id *ppid,
8613 bool recurse)
8614{
8615 const struct net_device_ops *ops = dev->netdev_ops;
8616 struct netdev_phys_item_id first = { };
8617 struct net_device *lower_dev;
8618 struct list_head *iter;
8619 int err;
8620
8621 if (ops->ndo_get_port_parent_id) {
8622 err = ops->ndo_get_port_parent_id(dev, ppid);
8623 if (err != -EOPNOTSUPP)
8624 return err;
8625 }
8626
8627 err = devlink_compat_switch_id_get(dev, ppid);
8628 if (!err || err != -EOPNOTSUPP)
8629 return err;
8630
8631 if (!recurse)
8632 return -EOPNOTSUPP;
8633
8634 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8635 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8636 if (err)
8637 break;
8638 if (!first.id_len)
8639 first = *ppid;
8640 else if (memcmp(&first, ppid, sizeof(*ppid)))
8641 return -ENODATA;
8642 }
8643
8644 return err;
8645}
8646EXPORT_SYMBOL(dev_get_port_parent_id);
8647
8648/**
8649 * netdev_port_same_parent_id - Indicate if two network devices have
8650 * the same port parent identifier
8651 * @a: first network device
8652 * @b: second network device
8653 */
8654bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8655{
8656 struct netdev_phys_item_id a_id = { };
8657 struct netdev_phys_item_id b_id = { };
8658
8659 if (dev_get_port_parent_id(a, &a_id, true) ||
8660 dev_get_port_parent_id(b, &b_id, true))
8661 return false;
8662
8663 return netdev_phys_item_id_same(&a_id, &b_id);
8664}
8665EXPORT_SYMBOL(netdev_port_same_parent_id);
8666
8667/**
8668 * dev_change_proto_down - update protocol port state information
8669 * @dev: device
8670 * @proto_down: new value
8671 *
8672 * This info can be used by switch drivers to set the phys state of the
8673 * port.
8674 */
8675int dev_change_proto_down(struct net_device *dev, bool proto_down)
8676{
8677 const struct net_device_ops *ops = dev->netdev_ops;
8678
8679 if (!ops->ndo_change_proto_down)
8680 return -EOPNOTSUPP;
8681 if (!netif_device_present(dev))
8682 return -ENODEV;
8683 return ops->ndo_change_proto_down(dev, proto_down);
8684}
8685EXPORT_SYMBOL(dev_change_proto_down);
8686
8687/**
8688 * dev_change_proto_down_generic - generic implementation for
8689 * ndo_change_proto_down that sets carrier according to
8690 * proto_down.
8691 *
8692 * @dev: device
8693 * @proto_down: new value
8694 */
8695int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8696{
8697 if (proto_down)
8698 netif_carrier_off(dev);
8699 else
8700 netif_carrier_on(dev);
8701 dev->proto_down = proto_down;
8702 return 0;
8703}
8704EXPORT_SYMBOL(dev_change_proto_down_generic);
8705
8706u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8707 enum bpf_netdev_command cmd)
8708{
8709 struct netdev_bpf xdp;
8710
8711 if (!bpf_op)
8712 return 0;
8713
8714 memset(&xdp, 0, sizeof(xdp));
8715 xdp.command = cmd;
8716
8717 /* Query must always succeed. */
8718 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8719
8720 return xdp.prog_id;
8721}
8722
8723static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8724 struct netlink_ext_ack *extack, u32 flags,
8725 struct bpf_prog *prog)
8726{
8727 bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8728 struct bpf_prog *prev_prog = NULL;
8729 struct netdev_bpf xdp;
8730 int err;
8731
8732 if (non_hw) {
8733 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8734 XDP_QUERY_PROG));
8735 if (IS_ERR(prev_prog))
8736 prev_prog = NULL;
8737 }
8738
8739 memset(&xdp, 0, sizeof(xdp));
8740 if (flags & XDP_FLAGS_HW_MODE)
8741 xdp.command = XDP_SETUP_PROG_HW;
8742 else
8743 xdp.command = XDP_SETUP_PROG;
8744 xdp.extack = extack;
8745 xdp.flags = flags;
8746 xdp.prog = prog;
8747
8748 err = bpf_op(dev, &xdp);
8749 if (!err && non_hw)
8750 bpf_prog_change_xdp(prev_prog, prog);
8751
8752 if (prev_prog)
8753 bpf_prog_put(prev_prog);
8754
8755 return err;
8756}
8757
8758static void dev_xdp_uninstall(struct net_device *dev)
8759{
8760 struct netdev_bpf xdp;
8761 bpf_op_t ndo_bpf;
8762
8763 /* Remove generic XDP */
8764 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8765
8766 /* Remove from the driver */
8767 ndo_bpf = dev->netdev_ops->ndo_bpf;
8768 if (!ndo_bpf)
8769 return;
8770
8771 memset(&xdp, 0, sizeof(xdp));
8772 xdp.command = XDP_QUERY_PROG;
8773 WARN_ON(ndo_bpf(dev, &xdp));
8774 if (xdp.prog_id)
8775 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8776 NULL));
8777
8778 /* Remove HW offload */
8779 memset(&xdp, 0, sizeof(xdp));
8780 xdp.command = XDP_QUERY_PROG_HW;
8781 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8782 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8783 NULL));
8784}
8785
8786/**
8787 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8788 * @dev: device
8789 * @extack: netlink extended ack
8790 * @fd: new program fd or negative value to clear
8791 * @expected_fd: old program fd that userspace expects to replace or clear
8792 * @flags: xdp-related flags
8793 *
8794 * Set or clear a bpf program for a device
8795 */
8796int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8797 int fd, int expected_fd, u32 flags)
8798{
8799 const struct net_device_ops *ops = dev->netdev_ops;
8800 enum bpf_netdev_command query;
8801 u32 prog_id, expected_id = 0;
8802 bpf_op_t bpf_op, bpf_chk;
8803 struct bpf_prog *prog;
8804 bool offload;
8805 int err;
8806
8807 ASSERT_RTNL();
8808
8809 offload = flags & XDP_FLAGS_HW_MODE;
8810 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8811
8812 bpf_op = bpf_chk = ops->ndo_bpf;
8813 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8814 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8815 return -EOPNOTSUPP;
8816 }
8817 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8818 bpf_op = generic_xdp_install;
8819 if (bpf_op == bpf_chk)
8820 bpf_chk = generic_xdp_install;
8821
8822 prog_id = __dev_xdp_query(dev, bpf_op, query);
8823 if (flags & XDP_FLAGS_REPLACE) {
8824 if (expected_fd >= 0) {
8825 prog = bpf_prog_get_type_dev(expected_fd,
8826 BPF_PROG_TYPE_XDP,
8827 bpf_op == ops->ndo_bpf);
8828 if (IS_ERR(prog))
8829 return PTR_ERR(prog);
8830 expected_id = prog->aux->id;
8831 bpf_prog_put(prog);
8832 }
8833
8834 if (prog_id != expected_id) {
8835 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8836 return -EEXIST;
8837 }
8838 }
8839 if (fd >= 0) {
8840 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8841 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8842 return -EEXIST;
8843 }
8844
8845 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8846 NL_SET_ERR_MSG(extack, "XDP program already attached");
8847 return -EBUSY;
8848 }
8849
8850 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8851 bpf_op == ops->ndo_bpf);
8852 if (IS_ERR(prog))
8853 return PTR_ERR(prog);
8854
8855 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8856 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8857 bpf_prog_put(prog);
8858 return -EINVAL;
8859 }
8860
8861 if (prog->expected_attach_type == BPF_XDP_DEVMAP) {
8862 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
8863 bpf_prog_put(prog);
8864 return -EINVAL;
8865 }
8866
8867 /* prog->aux->id may be 0 for orphaned device-bound progs */
8868 if (prog->aux->id && prog->aux->id == prog_id) {
8869 bpf_prog_put(prog);
8870 return 0;
8871 }
8872 } else {
8873 if (!prog_id)
8874 return 0;
8875 prog = NULL;
8876 }
8877
8878 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8879 if (err < 0 && prog)
8880 bpf_prog_put(prog);
8881
8882 return err;
8883}
8884
8885/**
8886 * dev_new_index - allocate an ifindex
8887 * @net: the applicable net namespace
8888 *
8889 * Returns a suitable unique value for a new device interface
8890 * number. The caller must hold the rtnl semaphore or the
8891 * dev_base_lock to be sure it remains unique.
8892 */
8893static int dev_new_index(struct net *net)
8894{
8895 int ifindex = net->ifindex;
8896
8897 for (;;) {
8898 if (++ifindex <= 0)
8899 ifindex = 1;
8900 if (!__dev_get_by_index(net, ifindex))
8901 return net->ifindex = ifindex;
8902 }
8903}
8904
8905/* Delayed registration/unregisteration */
8906static LIST_HEAD(net_todo_list);
8907DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8908
8909static void net_set_todo(struct net_device *dev)
8910{
8911 list_add_tail(&dev->todo_list, &net_todo_list);
8912 dev_net(dev)->dev_unreg_count++;
8913}
8914
8915static void rollback_registered_many(struct list_head *head)
8916{
8917 struct net_device *dev, *tmp;
8918 LIST_HEAD(close_head);
8919
8920 BUG_ON(dev_boot_phase);
8921 ASSERT_RTNL();
8922
8923 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8924 /* Some devices call without registering
8925 * for initialization unwind. Remove those
8926 * devices and proceed with the remaining.
8927 */
8928 if (dev->reg_state == NETREG_UNINITIALIZED) {
8929 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8930 dev->name, dev);
8931
8932 WARN_ON(1);
8933 list_del(&dev->unreg_list);
8934 continue;
8935 }
8936 dev->dismantle = true;
8937 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8938 }
8939
8940 /* If device is running, close it first. */
8941 list_for_each_entry(dev, head, unreg_list)
8942 list_add_tail(&dev->close_list, &close_head);
8943 dev_close_many(&close_head, true);
8944
8945 list_for_each_entry(dev, head, unreg_list) {
8946 /* And unlink it from device chain. */
8947 unlist_netdevice(dev);
8948
8949 dev->reg_state = NETREG_UNREGISTERING;
8950 }
8951 flush_all_backlogs();
8952
8953 synchronize_net();
8954
8955 list_for_each_entry(dev, head, unreg_list) {
8956 struct sk_buff *skb = NULL;
8957
8958 /* Shutdown queueing discipline. */
8959 dev_shutdown(dev);
8960
8961 dev_xdp_uninstall(dev);
8962
8963 /* Notify protocols, that we are about to destroy
8964 * this device. They should clean all the things.
8965 */
8966 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8967
8968 if (!dev->rtnl_link_ops ||
8969 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8970 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8971 GFP_KERNEL, NULL, 0);
8972
8973 /*
8974 * Flush the unicast and multicast chains
8975 */
8976 dev_uc_flush(dev);
8977 dev_mc_flush(dev);
8978
8979 netdev_name_node_alt_flush(dev);
8980 netdev_name_node_free(dev->name_node);
8981
8982 if (dev->netdev_ops->ndo_uninit)
8983 dev->netdev_ops->ndo_uninit(dev);
8984
8985 if (skb)
8986 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8987
8988 /* Notifier chain MUST detach us all upper devices. */
8989 WARN_ON(netdev_has_any_upper_dev(dev));
8990 WARN_ON(netdev_has_any_lower_dev(dev));
8991
8992 /* Remove entries from kobject tree */
8993 netdev_unregister_kobject(dev);
8994#ifdef CONFIG_XPS
8995 /* Remove XPS queueing entries */
8996 netif_reset_xps_queues_gt(dev, 0);
8997#endif
8998 }
8999
9000 synchronize_net();
9001
9002 list_for_each_entry(dev, head, unreg_list)
9003 dev_put(dev);
9004}
9005
9006static void rollback_registered(struct net_device *dev)
9007{
9008 LIST_HEAD(single);
9009
9010 list_add(&dev->unreg_list, &single);
9011 rollback_registered_many(&single);
9012 list_del(&single);
9013}
9014
9015static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9016 struct net_device *upper, netdev_features_t features)
9017{
9018 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9019 netdev_features_t feature;
9020 int feature_bit;
9021
9022 for_each_netdev_feature(upper_disables, feature_bit) {
9023 feature = __NETIF_F_BIT(feature_bit);
9024 if (!(upper->wanted_features & feature)
9025 && (features & feature)) {
9026 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9027 &feature, upper->name);
9028 features &= ~feature;
9029 }
9030 }
9031
9032 return features;
9033}
9034
9035static void netdev_sync_lower_features(struct net_device *upper,
9036 struct net_device *lower, netdev_features_t features)
9037{
9038 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9039 netdev_features_t feature;
9040 int feature_bit;
9041
9042 for_each_netdev_feature(upper_disables, feature_bit) {
9043 feature = __NETIF_F_BIT(feature_bit);
9044 if (!(features & feature) && (lower->features & feature)) {
9045 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9046 &feature, lower->name);
9047 lower->wanted_features &= ~feature;
9048 __netdev_update_features(lower);
9049
9050 if (unlikely(lower->features & feature))
9051 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9052 &feature, lower->name);
9053 else
9054 netdev_features_change(lower);
9055 }
9056 }
9057}
9058
9059static netdev_features_t netdev_fix_features(struct net_device *dev,
9060 netdev_features_t features)
9061{
9062 /* Fix illegal checksum combinations */
9063 if ((features & NETIF_F_HW_CSUM) &&
9064 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9065 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9066 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9067 }
9068
9069 /* TSO requires that SG is present as well. */
9070 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9071 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9072 features &= ~NETIF_F_ALL_TSO;
9073 }
9074
9075 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9076 !(features & NETIF_F_IP_CSUM)) {
9077 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9078 features &= ~NETIF_F_TSO;
9079 features &= ~NETIF_F_TSO_ECN;
9080 }
9081
9082 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9083 !(features & NETIF_F_IPV6_CSUM)) {
9084 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9085 features &= ~NETIF_F_TSO6;
9086 }
9087
9088 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9089 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9090 features &= ~NETIF_F_TSO_MANGLEID;
9091
9092 /* TSO ECN requires that TSO is present as well. */
9093 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9094 features &= ~NETIF_F_TSO_ECN;
9095
9096 /* Software GSO depends on SG. */
9097 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9098 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9099 features &= ~NETIF_F_GSO;
9100 }
9101
9102 /* GSO partial features require GSO partial be set */
9103 if ((features & dev->gso_partial_features) &&
9104 !(features & NETIF_F_GSO_PARTIAL)) {
9105 netdev_dbg(dev,
9106 "Dropping partially supported GSO features since no GSO partial.\n");
9107 features &= ~dev->gso_partial_features;
9108 }
9109
9110 if (!(features & NETIF_F_RXCSUM)) {
9111 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9112 * successfully merged by hardware must also have the
9113 * checksum verified by hardware. If the user does not
9114 * want to enable RXCSUM, logically, we should disable GRO_HW.
9115 */
9116 if (features & NETIF_F_GRO_HW) {
9117 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9118 features &= ~NETIF_F_GRO_HW;
9119 }
9120 }
9121
9122 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9123 if (features & NETIF_F_RXFCS) {
9124 if (features & NETIF_F_LRO) {
9125 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9126 features &= ~NETIF_F_LRO;
9127 }
9128
9129 if (features & NETIF_F_GRO_HW) {
9130 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9131 features &= ~NETIF_F_GRO_HW;
9132 }
9133 }
9134
9135 return features;
9136}
9137
9138int __netdev_update_features(struct net_device *dev)
9139{
9140 struct net_device *upper, *lower;
9141 netdev_features_t features;
9142 struct list_head *iter;
9143 int err = -1;
9144
9145 ASSERT_RTNL();
9146
9147 features = netdev_get_wanted_features(dev);
9148
9149 if (dev->netdev_ops->ndo_fix_features)
9150 features = dev->netdev_ops->ndo_fix_features(dev, features);
9151
9152 /* driver might be less strict about feature dependencies */
9153 features = netdev_fix_features(dev, features);
9154
9155 /* some features can't be enabled if they're off an an upper device */
9156 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9157 features = netdev_sync_upper_features(dev, upper, features);
9158
9159 if (dev->features == features)
9160 goto sync_lower;
9161
9162 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9163 &dev->features, &features);
9164
9165 if (dev->netdev_ops->ndo_set_features)
9166 err = dev->netdev_ops->ndo_set_features(dev, features);
9167 else
9168 err = 0;
9169
9170 if (unlikely(err < 0)) {
9171 netdev_err(dev,
9172 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9173 err, &features, &dev->features);
9174 /* return non-0 since some features might have changed and
9175 * it's better to fire a spurious notification than miss it
9176 */
9177 return -1;
9178 }
9179
9180sync_lower:
9181 /* some features must be disabled on lower devices when disabled
9182 * on an upper device (think: bonding master or bridge)
9183 */
9184 netdev_for_each_lower_dev(dev, lower, iter)
9185 netdev_sync_lower_features(dev, lower, features);
9186
9187 if (!err) {
9188 netdev_features_t diff = features ^ dev->features;
9189
9190 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9191 /* udp_tunnel_{get,drop}_rx_info both need
9192 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9193 * device, or they won't do anything.
9194 * Thus we need to update dev->features
9195 * *before* calling udp_tunnel_get_rx_info,
9196 * but *after* calling udp_tunnel_drop_rx_info.
9197 */
9198 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9199 dev->features = features;
9200 udp_tunnel_get_rx_info(dev);
9201 } else {
9202 udp_tunnel_drop_rx_info(dev);
9203 }
9204 }
9205
9206 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9207 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9208 dev->features = features;
9209 err |= vlan_get_rx_ctag_filter_info(dev);
9210 } else {
9211 vlan_drop_rx_ctag_filter_info(dev);
9212 }
9213 }
9214
9215 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9216 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9217 dev->features = features;
9218 err |= vlan_get_rx_stag_filter_info(dev);
9219 } else {
9220 vlan_drop_rx_stag_filter_info(dev);
9221 }
9222 }
9223
9224 dev->features = features;
9225 }
9226
9227 return err < 0 ? 0 : 1;
9228}
9229
9230/**
9231 * netdev_update_features - recalculate device features
9232 * @dev: the device to check
9233 *
9234 * Recalculate dev->features set and send notifications if it
9235 * has changed. Should be called after driver or hardware dependent
9236 * conditions might have changed that influence the features.
9237 */
9238void netdev_update_features(struct net_device *dev)
9239{
9240 if (__netdev_update_features(dev))
9241 netdev_features_change(dev);
9242}
9243EXPORT_SYMBOL(netdev_update_features);
9244
9245/**
9246 * netdev_change_features - recalculate device features
9247 * @dev: the device to check
9248 *
9249 * Recalculate dev->features set and send notifications even
9250 * if they have not changed. Should be called instead of
9251 * netdev_update_features() if also dev->vlan_features might
9252 * have changed to allow the changes to be propagated to stacked
9253 * VLAN devices.
9254 */
9255void netdev_change_features(struct net_device *dev)
9256{
9257 __netdev_update_features(dev);
9258 netdev_features_change(dev);
9259}
9260EXPORT_SYMBOL(netdev_change_features);
9261
9262/**
9263 * netif_stacked_transfer_operstate - transfer operstate
9264 * @rootdev: the root or lower level device to transfer state from
9265 * @dev: the device to transfer operstate to
9266 *
9267 * Transfer operational state from root to device. This is normally
9268 * called when a stacking relationship exists between the root
9269 * device and the device(a leaf device).
9270 */
9271void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9272 struct net_device *dev)
9273{
9274 if (rootdev->operstate == IF_OPER_DORMANT)
9275 netif_dormant_on(dev);
9276 else
9277 netif_dormant_off(dev);
9278
9279 if (rootdev->operstate == IF_OPER_TESTING)
9280 netif_testing_on(dev);
9281 else
9282 netif_testing_off(dev);
9283
9284 if (netif_carrier_ok(rootdev))
9285 netif_carrier_on(dev);
9286 else
9287 netif_carrier_off(dev);
9288}
9289EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9290
9291static int netif_alloc_rx_queues(struct net_device *dev)
9292{
9293 unsigned int i, count = dev->num_rx_queues;
9294 struct netdev_rx_queue *rx;
9295 size_t sz = count * sizeof(*rx);
9296 int err = 0;
9297
9298 BUG_ON(count < 1);
9299
9300 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9301 if (!rx)
9302 return -ENOMEM;
9303
9304 dev->_rx = rx;
9305
9306 for (i = 0; i < count; i++) {
9307 rx[i].dev = dev;
9308
9309 /* XDP RX-queue setup */
9310 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9311 if (err < 0)
9312 goto err_rxq_info;
9313 }
9314 return 0;
9315
9316err_rxq_info:
9317 /* Rollback successful reg's and free other resources */
9318 while (i--)
9319 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9320 kvfree(dev->_rx);
9321 dev->_rx = NULL;
9322 return err;
9323}
9324
9325static void netif_free_rx_queues(struct net_device *dev)
9326{
9327 unsigned int i, count = dev->num_rx_queues;
9328
9329 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9330 if (!dev->_rx)
9331 return;
9332
9333 for (i = 0; i < count; i++)
9334 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9335
9336 kvfree(dev->_rx);
9337}
9338
9339static void netdev_init_one_queue(struct net_device *dev,
9340 struct netdev_queue *queue, void *_unused)
9341{
9342 /* Initialize queue lock */
9343 spin_lock_init(&queue->_xmit_lock);
9344 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9345 queue->xmit_lock_owner = -1;
9346 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9347 queue->dev = dev;
9348#ifdef CONFIG_BQL
9349 dql_init(&queue->dql, HZ);
9350#endif
9351}
9352
9353static void netif_free_tx_queues(struct net_device *dev)
9354{
9355 kvfree(dev->_tx);
9356}
9357
9358static int netif_alloc_netdev_queues(struct net_device *dev)
9359{
9360 unsigned int count = dev->num_tx_queues;
9361 struct netdev_queue *tx;
9362 size_t sz = count * sizeof(*tx);
9363
9364 if (count < 1 || count > 0xffff)
9365 return -EINVAL;
9366
9367 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9368 if (!tx)
9369 return -ENOMEM;
9370
9371 dev->_tx = tx;
9372
9373 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9374 spin_lock_init(&dev->tx_global_lock);
9375
9376 return 0;
9377}
9378
9379void netif_tx_stop_all_queues(struct net_device *dev)
9380{
9381 unsigned int i;
9382
9383 for (i = 0; i < dev->num_tx_queues; i++) {
9384 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9385
9386 netif_tx_stop_queue(txq);
9387 }
9388}
9389EXPORT_SYMBOL(netif_tx_stop_all_queues);
9390
9391/**
9392 * register_netdevice - register a network device
9393 * @dev: device to register
9394 *
9395 * Take a completed network device structure and add it to the kernel
9396 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9397 * chain. 0 is returned on success. A negative errno code is returned
9398 * on a failure to set up the device, or if the name is a duplicate.
9399 *
9400 * Callers must hold the rtnl semaphore. You may want
9401 * register_netdev() instead of this.
9402 *
9403 * BUGS:
9404 * The locking appears insufficient to guarantee two parallel registers
9405 * will not get the same name.
9406 */
9407
9408int register_netdevice(struct net_device *dev)
9409{
9410 int ret;
9411 struct net *net = dev_net(dev);
9412
9413 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9414 NETDEV_FEATURE_COUNT);
9415 BUG_ON(dev_boot_phase);
9416 ASSERT_RTNL();
9417
9418 might_sleep();
9419
9420 /* When net_device's are persistent, this will be fatal. */
9421 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9422 BUG_ON(!net);
9423
9424 ret = ethtool_check_ops(dev->ethtool_ops);
9425 if (ret)
9426 return ret;
9427
9428 spin_lock_init(&dev->addr_list_lock);
9429 netdev_set_addr_lockdep_class(dev);
9430
9431 ret = dev_get_valid_name(net, dev, dev->name);
9432 if (ret < 0)
9433 goto out;
9434
9435 ret = -ENOMEM;
9436 dev->name_node = netdev_name_node_head_alloc(dev);
9437 if (!dev->name_node)
9438 goto out;
9439
9440 /* Init, if this function is available */
9441 if (dev->netdev_ops->ndo_init) {
9442 ret = dev->netdev_ops->ndo_init(dev);
9443 if (ret) {
9444 if (ret > 0)
9445 ret = -EIO;
9446 goto err_free_name;
9447 }
9448 }
9449
9450 if (((dev->hw_features | dev->features) &
9451 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9452 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9453 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9454 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9455 ret = -EINVAL;
9456 goto err_uninit;
9457 }
9458
9459 ret = -EBUSY;
9460 if (!dev->ifindex)
9461 dev->ifindex = dev_new_index(net);
9462 else if (__dev_get_by_index(net, dev->ifindex))
9463 goto err_uninit;
9464
9465 /* Transfer changeable features to wanted_features and enable
9466 * software offloads (GSO and GRO).
9467 */
9468 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9469 dev->features |= NETIF_F_SOFT_FEATURES;
9470
9471 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9472 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9473 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9474 }
9475
9476 dev->wanted_features = dev->features & dev->hw_features;
9477
9478 if (!(dev->flags & IFF_LOOPBACK))
9479 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9480
9481 /* If IPv4 TCP segmentation offload is supported we should also
9482 * allow the device to enable segmenting the frame with the option
9483 * of ignoring a static IP ID value. This doesn't enable the
9484 * feature itself but allows the user to enable it later.
9485 */
9486 if (dev->hw_features & NETIF_F_TSO)
9487 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9488 if (dev->vlan_features & NETIF_F_TSO)
9489 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9490 if (dev->mpls_features & NETIF_F_TSO)
9491 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9492 if (dev->hw_enc_features & NETIF_F_TSO)
9493 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9494
9495 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9496 */
9497 dev->vlan_features |= NETIF_F_HIGHDMA;
9498
9499 /* Make NETIF_F_SG inheritable to tunnel devices.
9500 */
9501 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9502
9503 /* Make NETIF_F_SG inheritable to MPLS.
9504 */
9505 dev->mpls_features |= NETIF_F_SG;
9506
9507 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9508 ret = notifier_to_errno(ret);
9509 if (ret)
9510 goto err_uninit;
9511
9512 ret = netdev_register_kobject(dev);
9513 if (ret) {
9514 dev->reg_state = NETREG_UNREGISTERED;
9515 goto err_uninit;
9516 }
9517 dev->reg_state = NETREG_REGISTERED;
9518
9519 __netdev_update_features(dev);
9520
9521 /*
9522 * Default initial state at registry is that the
9523 * device is present.
9524 */
9525
9526 set_bit(__LINK_STATE_PRESENT, &dev->state);
9527
9528 linkwatch_init_dev(dev);
9529
9530 dev_init_scheduler(dev);
9531 dev_hold(dev);
9532 list_netdevice(dev);
9533 add_device_randomness(dev->dev_addr, dev->addr_len);
9534
9535 /* If the device has permanent device address, driver should
9536 * set dev_addr and also addr_assign_type should be set to
9537 * NET_ADDR_PERM (default value).
9538 */
9539 if (dev->addr_assign_type == NET_ADDR_PERM)
9540 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9541
9542 /* Notify protocols, that a new device appeared. */
9543 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9544 ret = notifier_to_errno(ret);
9545 if (ret) {
9546 rollback_registered(dev);
9547 rcu_barrier();
9548
9549 dev->reg_state = NETREG_UNREGISTERED;
9550 }
9551 /*
9552 * Prevent userspace races by waiting until the network
9553 * device is fully setup before sending notifications.
9554 */
9555 if (!dev->rtnl_link_ops ||
9556 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9557 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9558
9559out:
9560 return ret;
9561
9562err_uninit:
9563 if (dev->netdev_ops->ndo_uninit)
9564 dev->netdev_ops->ndo_uninit(dev);
9565 if (dev->priv_destructor)
9566 dev->priv_destructor(dev);
9567err_free_name:
9568 netdev_name_node_free(dev->name_node);
9569 goto out;
9570}
9571EXPORT_SYMBOL(register_netdevice);
9572
9573/**
9574 * init_dummy_netdev - init a dummy network device for NAPI
9575 * @dev: device to init
9576 *
9577 * This takes a network device structure and initialize the minimum
9578 * amount of fields so it can be used to schedule NAPI polls without
9579 * registering a full blown interface. This is to be used by drivers
9580 * that need to tie several hardware interfaces to a single NAPI
9581 * poll scheduler due to HW limitations.
9582 */
9583int init_dummy_netdev(struct net_device *dev)
9584{
9585 /* Clear everything. Note we don't initialize spinlocks
9586 * are they aren't supposed to be taken by any of the
9587 * NAPI code and this dummy netdev is supposed to be
9588 * only ever used for NAPI polls
9589 */
9590 memset(dev, 0, sizeof(struct net_device));
9591
9592 /* make sure we BUG if trying to hit standard
9593 * register/unregister code path
9594 */
9595 dev->reg_state = NETREG_DUMMY;
9596
9597 /* NAPI wants this */
9598 INIT_LIST_HEAD(&dev->napi_list);
9599
9600 /* a dummy interface is started by default */
9601 set_bit(__LINK_STATE_PRESENT, &dev->state);
9602 set_bit(__LINK_STATE_START, &dev->state);
9603
9604 /* napi_busy_loop stats accounting wants this */
9605 dev_net_set(dev, &init_net);
9606
9607 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9608 * because users of this 'device' dont need to change
9609 * its refcount.
9610 */
9611
9612 return 0;
9613}
9614EXPORT_SYMBOL_GPL(init_dummy_netdev);
9615
9616
9617/**
9618 * register_netdev - register a network device
9619 * @dev: device to register
9620 *
9621 * Take a completed network device structure and add it to the kernel
9622 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9623 * chain. 0 is returned on success. A negative errno code is returned
9624 * on a failure to set up the device, or if the name is a duplicate.
9625 *
9626 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9627 * and expands the device name if you passed a format string to
9628 * alloc_netdev.
9629 */
9630int register_netdev(struct net_device *dev)
9631{
9632 int err;
9633
9634 if (rtnl_lock_killable())
9635 return -EINTR;
9636 err = register_netdevice(dev);
9637 rtnl_unlock();
9638 return err;
9639}
9640EXPORT_SYMBOL(register_netdev);
9641
9642int netdev_refcnt_read(const struct net_device *dev)
9643{
9644 int i, refcnt = 0;
9645
9646 for_each_possible_cpu(i)
9647 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9648 return refcnt;
9649}
9650EXPORT_SYMBOL(netdev_refcnt_read);
9651
9652/**
9653 * netdev_wait_allrefs - wait until all references are gone.
9654 * @dev: target net_device
9655 *
9656 * This is called when unregistering network devices.
9657 *
9658 * Any protocol or device that holds a reference should register
9659 * for netdevice notification, and cleanup and put back the
9660 * reference if they receive an UNREGISTER event.
9661 * We can get stuck here if buggy protocols don't correctly
9662 * call dev_put.
9663 */
9664static void netdev_wait_allrefs(struct net_device *dev)
9665{
9666 unsigned long rebroadcast_time, warning_time;
9667 int refcnt;
9668
9669 linkwatch_forget_dev(dev);
9670
9671 rebroadcast_time = warning_time = jiffies;
9672 refcnt = netdev_refcnt_read(dev);
9673
9674 while (refcnt != 0) {
9675 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9676 rtnl_lock();
9677
9678 /* Rebroadcast unregister notification */
9679 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9680
9681 __rtnl_unlock();
9682 rcu_barrier();
9683 rtnl_lock();
9684
9685 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9686 &dev->state)) {
9687 /* We must not have linkwatch events
9688 * pending on unregister. If this
9689 * happens, we simply run the queue
9690 * unscheduled, resulting in a noop
9691 * for this device.
9692 */
9693 linkwatch_run_queue();
9694 }
9695
9696 __rtnl_unlock();
9697
9698 rebroadcast_time = jiffies;
9699 }
9700
9701 msleep(250);
9702
9703 refcnt = netdev_refcnt_read(dev);
9704
9705 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9706 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9707 dev->name, refcnt);
9708 warning_time = jiffies;
9709 }
9710 }
9711}
9712
9713/* The sequence is:
9714 *
9715 * rtnl_lock();
9716 * ...
9717 * register_netdevice(x1);
9718 * register_netdevice(x2);
9719 * ...
9720 * unregister_netdevice(y1);
9721 * unregister_netdevice(y2);
9722 * ...
9723 * rtnl_unlock();
9724 * free_netdev(y1);
9725 * free_netdev(y2);
9726 *
9727 * We are invoked by rtnl_unlock().
9728 * This allows us to deal with problems:
9729 * 1) We can delete sysfs objects which invoke hotplug
9730 * without deadlocking with linkwatch via keventd.
9731 * 2) Since we run with the RTNL semaphore not held, we can sleep
9732 * safely in order to wait for the netdev refcnt to drop to zero.
9733 *
9734 * We must not return until all unregister events added during
9735 * the interval the lock was held have been completed.
9736 */
9737void netdev_run_todo(void)
9738{
9739 struct list_head list;
9740
9741 /* Snapshot list, allow later requests */
9742 list_replace_init(&net_todo_list, &list);
9743
9744 __rtnl_unlock();
9745
9746
9747 /* Wait for rcu callbacks to finish before next phase */
9748 if (!list_empty(&list))
9749 rcu_barrier();
9750
9751 while (!list_empty(&list)) {
9752 struct net_device *dev
9753 = list_first_entry(&list, struct net_device, todo_list);
9754 list_del(&dev->todo_list);
9755
9756 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9757 pr_err("network todo '%s' but state %d\n",
9758 dev->name, dev->reg_state);
9759 dump_stack();
9760 continue;
9761 }
9762
9763 dev->reg_state = NETREG_UNREGISTERED;
9764
9765 netdev_wait_allrefs(dev);
9766
9767 /* paranoia */
9768 BUG_ON(netdev_refcnt_read(dev));
9769 BUG_ON(!list_empty(&dev->ptype_all));
9770 BUG_ON(!list_empty(&dev->ptype_specific));
9771 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9772 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9773#if IS_ENABLED(CONFIG_DECNET)
9774 WARN_ON(dev->dn_ptr);
9775#endif
9776 if (dev->priv_destructor)
9777 dev->priv_destructor(dev);
9778 if (dev->needs_free_netdev)
9779 free_netdev(dev);
9780
9781 /* Report a network device has been unregistered */
9782 rtnl_lock();
9783 dev_net(dev)->dev_unreg_count--;
9784 __rtnl_unlock();
9785 wake_up(&netdev_unregistering_wq);
9786
9787 /* Free network device */
9788 kobject_put(&dev->dev.kobj);
9789 }
9790}
9791
9792/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9793 * all the same fields in the same order as net_device_stats, with only
9794 * the type differing, but rtnl_link_stats64 may have additional fields
9795 * at the end for newer counters.
9796 */
9797void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9798 const struct net_device_stats *netdev_stats)
9799{
9800#if BITS_PER_LONG == 64
9801 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9802 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9803 /* zero out counters that only exist in rtnl_link_stats64 */
9804 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9805 sizeof(*stats64) - sizeof(*netdev_stats));
9806#else
9807 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9808 const unsigned long *src = (const unsigned long *)netdev_stats;
9809 u64 *dst = (u64 *)stats64;
9810
9811 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9812 for (i = 0; i < n; i++)
9813 dst[i] = src[i];
9814 /* zero out counters that only exist in rtnl_link_stats64 */
9815 memset((char *)stats64 + n * sizeof(u64), 0,
9816 sizeof(*stats64) - n * sizeof(u64));
9817#endif
9818}
9819EXPORT_SYMBOL(netdev_stats_to_stats64);
9820
9821/**
9822 * dev_get_stats - get network device statistics
9823 * @dev: device to get statistics from
9824 * @storage: place to store stats
9825 *
9826 * Get network statistics from device. Return @storage.
9827 * The device driver may provide its own method by setting
9828 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9829 * otherwise the internal statistics structure is used.
9830 */
9831struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9832 struct rtnl_link_stats64 *storage)
9833{
9834 const struct net_device_ops *ops = dev->netdev_ops;
9835
9836 if (ops->ndo_get_stats64) {
9837 memset(storage, 0, sizeof(*storage));
9838 ops->ndo_get_stats64(dev, storage);
9839 } else if (ops->ndo_get_stats) {
9840 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9841 } else {
9842 netdev_stats_to_stats64(storage, &dev->stats);
9843 }
9844 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9845 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9846 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9847 return storage;
9848}
9849EXPORT_SYMBOL(dev_get_stats);
9850
9851struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9852{
9853 struct netdev_queue *queue = dev_ingress_queue(dev);
9854
9855#ifdef CONFIG_NET_CLS_ACT
9856 if (queue)
9857 return queue;
9858 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9859 if (!queue)
9860 return NULL;
9861 netdev_init_one_queue(dev, queue, NULL);
9862 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9863 queue->qdisc_sleeping = &noop_qdisc;
9864 rcu_assign_pointer(dev->ingress_queue, queue);
9865#endif
9866 return queue;
9867}
9868
9869static const struct ethtool_ops default_ethtool_ops;
9870
9871void netdev_set_default_ethtool_ops(struct net_device *dev,
9872 const struct ethtool_ops *ops)
9873{
9874 if (dev->ethtool_ops == &default_ethtool_ops)
9875 dev->ethtool_ops = ops;
9876}
9877EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9878
9879void netdev_freemem(struct net_device *dev)
9880{
9881 char *addr = (char *)dev - dev->padded;
9882
9883 kvfree(addr);
9884}
9885
9886/**
9887 * alloc_netdev_mqs - allocate network device
9888 * @sizeof_priv: size of private data to allocate space for
9889 * @name: device name format string
9890 * @name_assign_type: origin of device name
9891 * @setup: callback to initialize device
9892 * @txqs: the number of TX subqueues to allocate
9893 * @rxqs: the number of RX subqueues to allocate
9894 *
9895 * Allocates a struct net_device with private data area for driver use
9896 * and performs basic initialization. Also allocates subqueue structs
9897 * for each queue on the device.
9898 */
9899struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9900 unsigned char name_assign_type,
9901 void (*setup)(struct net_device *),
9902 unsigned int txqs, unsigned int rxqs)
9903{
9904 struct net_device *dev;
9905 unsigned int alloc_size;
9906 struct net_device *p;
9907
9908 BUG_ON(strlen(name) >= sizeof(dev->name));
9909
9910 if (txqs < 1) {
9911 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9912 return NULL;
9913 }
9914
9915 if (rxqs < 1) {
9916 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9917 return NULL;
9918 }
9919
9920 alloc_size = sizeof(struct net_device);
9921 if (sizeof_priv) {
9922 /* ensure 32-byte alignment of private area */
9923 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9924 alloc_size += sizeof_priv;
9925 }
9926 /* ensure 32-byte alignment of whole construct */
9927 alloc_size += NETDEV_ALIGN - 1;
9928
9929 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9930 if (!p)
9931 return NULL;
9932
9933 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9934 dev->padded = (char *)dev - (char *)p;
9935
9936 dev->pcpu_refcnt = alloc_percpu(int);
9937 if (!dev->pcpu_refcnt)
9938 goto free_dev;
9939
9940 if (dev_addr_init(dev))
9941 goto free_pcpu;
9942
9943 dev_mc_init(dev);
9944 dev_uc_init(dev);
9945
9946 dev_net_set(dev, &init_net);
9947
9948 dev->gso_max_size = GSO_MAX_SIZE;
9949 dev->gso_max_segs = GSO_MAX_SEGS;
9950 dev->upper_level = 1;
9951 dev->lower_level = 1;
9952
9953 INIT_LIST_HEAD(&dev->napi_list);
9954 INIT_LIST_HEAD(&dev->unreg_list);
9955 INIT_LIST_HEAD(&dev->close_list);
9956 INIT_LIST_HEAD(&dev->link_watch_list);
9957 INIT_LIST_HEAD(&dev->adj_list.upper);
9958 INIT_LIST_HEAD(&dev->adj_list.lower);
9959 INIT_LIST_HEAD(&dev->ptype_all);
9960 INIT_LIST_HEAD(&dev->ptype_specific);
9961 INIT_LIST_HEAD(&dev->net_notifier_list);
9962#ifdef CONFIG_NET_SCHED
9963 hash_init(dev->qdisc_hash);
9964#endif
9965 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9966 setup(dev);
9967
9968 if (!dev->tx_queue_len) {
9969 dev->priv_flags |= IFF_NO_QUEUE;
9970 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9971 }
9972
9973 dev->num_tx_queues = txqs;
9974 dev->real_num_tx_queues = txqs;
9975 if (netif_alloc_netdev_queues(dev))
9976 goto free_all;
9977
9978 dev->num_rx_queues = rxqs;
9979 dev->real_num_rx_queues = rxqs;
9980 if (netif_alloc_rx_queues(dev))
9981 goto free_all;
9982
9983 strcpy(dev->name, name);
9984 dev->name_assign_type = name_assign_type;
9985 dev->group = INIT_NETDEV_GROUP;
9986 if (!dev->ethtool_ops)
9987 dev->ethtool_ops = &default_ethtool_ops;
9988
9989 nf_hook_ingress_init(dev);
9990
9991 return dev;
9992
9993free_all:
9994 free_netdev(dev);
9995 return NULL;
9996
9997free_pcpu:
9998 free_percpu(dev->pcpu_refcnt);
9999free_dev:
10000 netdev_freemem(dev);
10001 return NULL;
10002}
10003EXPORT_SYMBOL(alloc_netdev_mqs);
10004
10005/**
10006 * free_netdev - free network device
10007 * @dev: device
10008 *
10009 * This function does the last stage of destroying an allocated device
10010 * interface. The reference to the device object is released. If this
10011 * is the last reference then it will be freed.Must be called in process
10012 * context.
10013 */
10014void free_netdev(struct net_device *dev)
10015{
10016 struct napi_struct *p, *n;
10017
10018 might_sleep();
10019 netif_free_tx_queues(dev);
10020 netif_free_rx_queues(dev);
10021
10022 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10023
10024 /* Flush device addresses */
10025 dev_addr_flush(dev);
10026
10027 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10028 netif_napi_del(p);
10029
10030 free_percpu(dev->pcpu_refcnt);
10031 dev->pcpu_refcnt = NULL;
10032 free_percpu(dev->xdp_bulkq);
10033 dev->xdp_bulkq = NULL;
10034
10035 /* Compatibility with error handling in drivers */
10036 if (dev->reg_state == NETREG_UNINITIALIZED) {
10037 netdev_freemem(dev);
10038 return;
10039 }
10040
10041 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10042 dev->reg_state = NETREG_RELEASED;
10043
10044 /* will free via device release */
10045 put_device(&dev->dev);
10046}
10047EXPORT_SYMBOL(free_netdev);
10048
10049/**
10050 * synchronize_net - Synchronize with packet receive processing
10051 *
10052 * Wait for packets currently being received to be done.
10053 * Does not block later packets from starting.
10054 */
10055void synchronize_net(void)
10056{
10057 might_sleep();
10058 if (rtnl_is_locked())
10059 synchronize_rcu_expedited();
10060 else
10061 synchronize_rcu();
10062}
10063EXPORT_SYMBOL(synchronize_net);
10064
10065/**
10066 * unregister_netdevice_queue - remove device from the kernel
10067 * @dev: device
10068 * @head: list
10069 *
10070 * This function shuts down a device interface and removes it
10071 * from the kernel tables.
10072 * If head not NULL, device is queued to be unregistered later.
10073 *
10074 * Callers must hold the rtnl semaphore. You may want
10075 * unregister_netdev() instead of this.
10076 */
10077
10078void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10079{
10080 ASSERT_RTNL();
10081
10082 if (head) {
10083 list_move_tail(&dev->unreg_list, head);
10084 } else {
10085 rollback_registered(dev);
10086 /* Finish processing unregister after unlock */
10087 net_set_todo(dev);
10088 }
10089}
10090EXPORT_SYMBOL(unregister_netdevice_queue);
10091
10092/**
10093 * unregister_netdevice_many - unregister many devices
10094 * @head: list of devices
10095 *
10096 * Note: As most callers use a stack allocated list_head,
10097 * we force a list_del() to make sure stack wont be corrupted later.
10098 */
10099void unregister_netdevice_many(struct list_head *head)
10100{
10101 struct net_device *dev;
10102
10103 if (!list_empty(head)) {
10104 rollback_registered_many(head);
10105 list_for_each_entry(dev, head, unreg_list)
10106 net_set_todo(dev);
10107 list_del(head);
10108 }
10109}
10110EXPORT_SYMBOL(unregister_netdevice_many);
10111
10112/**
10113 * unregister_netdev - remove device from the kernel
10114 * @dev: device
10115 *
10116 * This function shuts down a device interface and removes it
10117 * from the kernel tables.
10118 *
10119 * This is just a wrapper for unregister_netdevice that takes
10120 * the rtnl semaphore. In general you want to use this and not
10121 * unregister_netdevice.
10122 */
10123void unregister_netdev(struct net_device *dev)
10124{
10125 rtnl_lock();
10126 unregister_netdevice(dev);
10127 rtnl_unlock();
10128}
10129EXPORT_SYMBOL(unregister_netdev);
10130
10131/**
10132 * dev_change_net_namespace - move device to different nethost namespace
10133 * @dev: device
10134 * @net: network namespace
10135 * @pat: If not NULL name pattern to try if the current device name
10136 * is already taken in the destination network namespace.
10137 *
10138 * This function shuts down a device interface and moves it
10139 * to a new network namespace. On success 0 is returned, on
10140 * a failure a netagive errno code is returned.
10141 *
10142 * Callers must hold the rtnl semaphore.
10143 */
10144
10145int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10146{
10147 struct net *net_old = dev_net(dev);
10148 int err, new_nsid, new_ifindex;
10149
10150 ASSERT_RTNL();
10151
10152 /* Don't allow namespace local devices to be moved. */
10153 err = -EINVAL;
10154 if (dev->features & NETIF_F_NETNS_LOCAL)
10155 goto out;
10156
10157 /* Ensure the device has been registrered */
10158 if (dev->reg_state != NETREG_REGISTERED)
10159 goto out;
10160
10161 /* Get out if there is nothing todo */
10162 err = 0;
10163 if (net_eq(net_old, net))
10164 goto out;
10165
10166 /* Pick the destination device name, and ensure
10167 * we can use it in the destination network namespace.
10168 */
10169 err = -EEXIST;
10170 if (__dev_get_by_name(net, dev->name)) {
10171 /* We get here if we can't use the current device name */
10172 if (!pat)
10173 goto out;
10174 err = dev_get_valid_name(net, dev, pat);
10175 if (err < 0)
10176 goto out;
10177 }
10178
10179 /*
10180 * And now a mini version of register_netdevice unregister_netdevice.
10181 */
10182
10183 /* If device is running close it first. */
10184 dev_close(dev);
10185
10186 /* And unlink it from device chain */
10187 unlist_netdevice(dev);
10188
10189 synchronize_net();
10190
10191 /* Shutdown queueing discipline. */
10192 dev_shutdown(dev);
10193
10194 /* Notify protocols, that we are about to destroy
10195 * this device. They should clean all the things.
10196 *
10197 * Note that dev->reg_state stays at NETREG_REGISTERED.
10198 * This is wanted because this way 8021q and macvlan know
10199 * the device is just moving and can keep their slaves up.
10200 */
10201 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10202 rcu_barrier();
10203
10204 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10205 /* If there is an ifindex conflict assign a new one */
10206 if (__dev_get_by_index(net, dev->ifindex))
10207 new_ifindex = dev_new_index(net);
10208 else
10209 new_ifindex = dev->ifindex;
10210
10211 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10212 new_ifindex);
10213
10214 /*
10215 * Flush the unicast and multicast chains
10216 */
10217 dev_uc_flush(dev);
10218 dev_mc_flush(dev);
10219
10220 /* Send a netdev-removed uevent to the old namespace */
10221 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10222 netdev_adjacent_del_links(dev);
10223
10224 /* Move per-net netdevice notifiers that are following the netdevice */
10225 move_netdevice_notifiers_dev_net(dev, net);
10226
10227 /* Actually switch the network namespace */
10228 dev_net_set(dev, net);
10229 dev->ifindex = new_ifindex;
10230
10231 /* Send a netdev-add uevent to the new namespace */
10232 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10233 netdev_adjacent_add_links(dev);
10234
10235 /* Fixup kobjects */
10236 err = device_rename(&dev->dev, dev->name);
10237 WARN_ON(err);
10238
10239 /* Adapt owner in case owning user namespace of target network
10240 * namespace is different from the original one.
10241 */
10242 err = netdev_change_owner(dev, net_old, net);
10243 WARN_ON(err);
10244
10245 /* Add the device back in the hashes */
10246 list_netdevice(dev);
10247
10248 /* Notify protocols, that a new device appeared. */
10249 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10250
10251 /*
10252 * Prevent userspace races by waiting until the network
10253 * device is fully setup before sending notifications.
10254 */
10255 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10256
10257 synchronize_net();
10258 err = 0;
10259out:
10260 return err;
10261}
10262EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10263
10264static int dev_cpu_dead(unsigned int oldcpu)
10265{
10266 struct sk_buff **list_skb;
10267 struct sk_buff *skb;
10268 unsigned int cpu;
10269 struct softnet_data *sd, *oldsd, *remsd = NULL;
10270
10271 local_irq_disable();
10272 cpu = smp_processor_id();
10273 sd = &per_cpu(softnet_data, cpu);
10274 oldsd = &per_cpu(softnet_data, oldcpu);
10275
10276 /* Find end of our completion_queue. */
10277 list_skb = &sd->completion_queue;
10278 while (*list_skb)
10279 list_skb = &(*list_skb)->next;
10280 /* Append completion queue from offline CPU. */
10281 *list_skb = oldsd->completion_queue;
10282 oldsd->completion_queue = NULL;
10283
10284 /* Append output queue from offline CPU. */
10285 if (oldsd->output_queue) {
10286 *sd->output_queue_tailp = oldsd->output_queue;
10287 sd->output_queue_tailp = oldsd->output_queue_tailp;
10288 oldsd->output_queue = NULL;
10289 oldsd->output_queue_tailp = &oldsd->output_queue;
10290 }
10291 /* Append NAPI poll list from offline CPU, with one exception :
10292 * process_backlog() must be called by cpu owning percpu backlog.
10293 * We properly handle process_queue & input_pkt_queue later.
10294 */
10295 while (!list_empty(&oldsd->poll_list)) {
10296 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10297 struct napi_struct,
10298 poll_list);
10299
10300 list_del_init(&napi->poll_list);
10301 if (napi->poll == process_backlog)
10302 napi->state = 0;
10303 else
10304 ____napi_schedule(sd, napi);
10305 }
10306
10307 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10308 local_irq_enable();
10309
10310#ifdef CONFIG_RPS
10311 remsd = oldsd->rps_ipi_list;
10312 oldsd->rps_ipi_list = NULL;
10313#endif
10314 /* send out pending IPI's on offline CPU */
10315 net_rps_send_ipi(remsd);
10316
10317 /* Process offline CPU's input_pkt_queue */
10318 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10319 netif_rx_ni(skb);
10320 input_queue_head_incr(oldsd);
10321 }
10322 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10323 netif_rx_ni(skb);
10324 input_queue_head_incr(oldsd);
10325 }
10326
10327 return 0;
10328}
10329
10330/**
10331 * netdev_increment_features - increment feature set by one
10332 * @all: current feature set
10333 * @one: new feature set
10334 * @mask: mask feature set
10335 *
10336 * Computes a new feature set after adding a device with feature set
10337 * @one to the master device with current feature set @all. Will not
10338 * enable anything that is off in @mask. Returns the new feature set.
10339 */
10340netdev_features_t netdev_increment_features(netdev_features_t all,
10341 netdev_features_t one, netdev_features_t mask)
10342{
10343 if (mask & NETIF_F_HW_CSUM)
10344 mask |= NETIF_F_CSUM_MASK;
10345 mask |= NETIF_F_VLAN_CHALLENGED;
10346
10347 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10348 all &= one | ~NETIF_F_ALL_FOR_ALL;
10349
10350 /* If one device supports hw checksumming, set for all. */
10351 if (all & NETIF_F_HW_CSUM)
10352 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10353
10354 return all;
10355}
10356EXPORT_SYMBOL(netdev_increment_features);
10357
10358static struct hlist_head * __net_init netdev_create_hash(void)
10359{
10360 int i;
10361 struct hlist_head *hash;
10362
10363 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10364 if (hash != NULL)
10365 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10366 INIT_HLIST_HEAD(&hash[i]);
10367
10368 return hash;
10369}
10370
10371/* Initialize per network namespace state */
10372static int __net_init netdev_init(struct net *net)
10373{
10374 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10375 8 * sizeof_field(struct napi_struct, gro_bitmask));
10376
10377 if (net != &init_net)
10378 INIT_LIST_HEAD(&net->dev_base_head);
10379
10380 net->dev_name_head = netdev_create_hash();
10381 if (net->dev_name_head == NULL)
10382 goto err_name;
10383
10384 net->dev_index_head = netdev_create_hash();
10385 if (net->dev_index_head == NULL)
10386 goto err_idx;
10387
10388 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10389
10390 return 0;
10391
10392err_idx:
10393 kfree(net->dev_name_head);
10394err_name:
10395 return -ENOMEM;
10396}
10397
10398/**
10399 * netdev_drivername - network driver for the device
10400 * @dev: network device
10401 *
10402 * Determine network driver for device.
10403 */
10404const char *netdev_drivername(const struct net_device *dev)
10405{
10406 const struct device_driver *driver;
10407 const struct device *parent;
10408 const char *empty = "";
10409
10410 parent = dev->dev.parent;
10411 if (!parent)
10412 return empty;
10413
10414 driver = parent->driver;
10415 if (driver && driver->name)
10416 return driver->name;
10417 return empty;
10418}
10419
10420static void __netdev_printk(const char *level, const struct net_device *dev,
10421 struct va_format *vaf)
10422{
10423 if (dev && dev->dev.parent) {
10424 dev_printk_emit(level[1] - '0',
10425 dev->dev.parent,
10426 "%s %s %s%s: %pV",
10427 dev_driver_string(dev->dev.parent),
10428 dev_name(dev->dev.parent),
10429 netdev_name(dev), netdev_reg_state(dev),
10430 vaf);
10431 } else if (dev) {
10432 printk("%s%s%s: %pV",
10433 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10434 } else {
10435 printk("%s(NULL net_device): %pV", level, vaf);
10436 }
10437}
10438
10439void netdev_printk(const char *level, const struct net_device *dev,
10440 const char *format, ...)
10441{
10442 struct va_format vaf;
10443 va_list args;
10444
10445 va_start(args, format);
10446
10447 vaf.fmt = format;
10448 vaf.va = &args;
10449
10450 __netdev_printk(level, dev, &vaf);
10451
10452 va_end(args);
10453}
10454EXPORT_SYMBOL(netdev_printk);
10455
10456#define define_netdev_printk_level(func, level) \
10457void func(const struct net_device *dev, const char *fmt, ...) \
10458{ \
10459 struct va_format vaf; \
10460 va_list args; \
10461 \
10462 va_start(args, fmt); \
10463 \
10464 vaf.fmt = fmt; \
10465 vaf.va = &args; \
10466 \
10467 __netdev_printk(level, dev, &vaf); \
10468 \
10469 va_end(args); \
10470} \
10471EXPORT_SYMBOL(func);
10472
10473define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10474define_netdev_printk_level(netdev_alert, KERN_ALERT);
10475define_netdev_printk_level(netdev_crit, KERN_CRIT);
10476define_netdev_printk_level(netdev_err, KERN_ERR);
10477define_netdev_printk_level(netdev_warn, KERN_WARNING);
10478define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10479define_netdev_printk_level(netdev_info, KERN_INFO);
10480
10481static void __net_exit netdev_exit(struct net *net)
10482{
10483 kfree(net->dev_name_head);
10484 kfree(net->dev_index_head);
10485 if (net != &init_net)
10486 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10487}
10488
10489static struct pernet_operations __net_initdata netdev_net_ops = {
10490 .init = netdev_init,
10491 .exit = netdev_exit,
10492};
10493
10494static void __net_exit default_device_exit(struct net *net)
10495{
10496 struct net_device *dev, *aux;
10497 /*
10498 * Push all migratable network devices back to the
10499 * initial network namespace
10500 */
10501 rtnl_lock();
10502 for_each_netdev_safe(net, dev, aux) {
10503 int err;
10504 char fb_name[IFNAMSIZ];
10505
10506 /* Ignore unmoveable devices (i.e. loopback) */
10507 if (dev->features & NETIF_F_NETNS_LOCAL)
10508 continue;
10509
10510 /* Leave virtual devices for the generic cleanup */
10511 if (dev->rtnl_link_ops)
10512 continue;
10513
10514 /* Push remaining network devices to init_net */
10515 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10516 if (__dev_get_by_name(&init_net, fb_name))
10517 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10518 err = dev_change_net_namespace(dev, &init_net, fb_name);
10519 if (err) {
10520 pr_emerg("%s: failed to move %s to init_net: %d\n",
10521 __func__, dev->name, err);
10522 BUG();
10523 }
10524 }
10525 rtnl_unlock();
10526}
10527
10528static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10529{
10530 /* Return with the rtnl_lock held when there are no network
10531 * devices unregistering in any network namespace in net_list.
10532 */
10533 struct net *net;
10534 bool unregistering;
10535 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10536
10537 add_wait_queue(&netdev_unregistering_wq, &wait);
10538 for (;;) {
10539 unregistering = false;
10540 rtnl_lock();
10541 list_for_each_entry(net, net_list, exit_list) {
10542 if (net->dev_unreg_count > 0) {
10543 unregistering = true;
10544 break;
10545 }
10546 }
10547 if (!unregistering)
10548 break;
10549 __rtnl_unlock();
10550
10551 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10552 }
10553 remove_wait_queue(&netdev_unregistering_wq, &wait);
10554}
10555
10556static void __net_exit default_device_exit_batch(struct list_head *net_list)
10557{
10558 /* At exit all network devices most be removed from a network
10559 * namespace. Do this in the reverse order of registration.
10560 * Do this across as many network namespaces as possible to
10561 * improve batching efficiency.
10562 */
10563 struct net_device *dev;
10564 struct net *net;
10565 LIST_HEAD(dev_kill_list);
10566
10567 /* To prevent network device cleanup code from dereferencing
10568 * loopback devices or network devices that have been freed
10569 * wait here for all pending unregistrations to complete,
10570 * before unregistring the loopback device and allowing the
10571 * network namespace be freed.
10572 *
10573 * The netdev todo list containing all network devices
10574 * unregistrations that happen in default_device_exit_batch
10575 * will run in the rtnl_unlock() at the end of
10576 * default_device_exit_batch.
10577 */
10578 rtnl_lock_unregistering(net_list);
10579 list_for_each_entry(net, net_list, exit_list) {
10580 for_each_netdev_reverse(net, dev) {
10581 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10582 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10583 else
10584 unregister_netdevice_queue(dev, &dev_kill_list);
10585 }
10586 }
10587 unregister_netdevice_many(&dev_kill_list);
10588 rtnl_unlock();
10589}
10590
10591static struct pernet_operations __net_initdata default_device_ops = {
10592 .exit = default_device_exit,
10593 .exit_batch = default_device_exit_batch,
10594};
10595
10596/*
10597 * Initialize the DEV module. At boot time this walks the device list and
10598 * unhooks any devices that fail to initialise (normally hardware not
10599 * present) and leaves us with a valid list of present and active devices.
10600 *
10601 */
10602
10603/*
10604 * This is called single threaded during boot, so no need
10605 * to take the rtnl semaphore.
10606 */
10607static int __init net_dev_init(void)
10608{
10609 int i, rc = -ENOMEM;
10610
10611 BUG_ON(!dev_boot_phase);
10612
10613 if (dev_proc_init())
10614 goto out;
10615
10616 if (netdev_kobject_init())
10617 goto out;
10618
10619 INIT_LIST_HEAD(&ptype_all);
10620 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10621 INIT_LIST_HEAD(&ptype_base[i]);
10622
10623 INIT_LIST_HEAD(&offload_base);
10624
10625 if (register_pernet_subsys(&netdev_net_ops))
10626 goto out;
10627
10628 /*
10629 * Initialise the packet receive queues.
10630 */
10631
10632 for_each_possible_cpu(i) {
10633 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10634 struct softnet_data *sd = &per_cpu(softnet_data, i);
10635
10636 INIT_WORK(flush, flush_backlog);
10637
10638 skb_queue_head_init(&sd->input_pkt_queue);
10639 skb_queue_head_init(&sd->process_queue);
10640#ifdef CONFIG_XFRM_OFFLOAD
10641 skb_queue_head_init(&sd->xfrm_backlog);
10642#endif
10643 INIT_LIST_HEAD(&sd->poll_list);
10644 sd->output_queue_tailp = &sd->output_queue;
10645#ifdef CONFIG_RPS
10646 sd->csd.func = rps_trigger_softirq;
10647 sd->csd.info = sd;
10648 sd->cpu = i;
10649#endif
10650
10651 init_gro_hash(&sd->backlog);
10652 sd->backlog.poll = process_backlog;
10653 sd->backlog.weight = weight_p;
10654 }
10655
10656 dev_boot_phase = 0;
10657
10658 /* The loopback device is special if any other network devices
10659 * is present in a network namespace the loopback device must
10660 * be present. Since we now dynamically allocate and free the
10661 * loopback device ensure this invariant is maintained by
10662 * keeping the loopback device as the first device on the
10663 * list of network devices. Ensuring the loopback devices
10664 * is the first device that appears and the last network device
10665 * that disappears.
10666 */
10667 if (register_pernet_device(&loopback_net_ops))
10668 goto out;
10669
10670 if (register_pernet_device(&default_device_ops))
10671 goto out;
10672
10673 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10674 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10675
10676 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10677 NULL, dev_cpu_dead);
10678 WARN_ON(rc < 0);
10679 rc = 0;
10680out:
10681 return rc;
10682}
10683
10684subsys_initcall(net_dev_init);