Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13#include <linux/fs.h>
14#include <linux/mm.h>
15#include <linux/err.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/vmstat.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
24#include <linux/sched.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include <linux/compaction.h>
28#include <linux/mm_inline.h>
29#include <linux/page_ext.h>
30#include <linux/page_owner.h>
31
32#include "internal.h"
33
34#define NUMA_STATS_THRESHOLD (U16_MAX - 2)
35
36#ifdef CONFIG_NUMA
37int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38
39/* zero numa counters within a zone */
40static void zero_zone_numa_counters(struct zone *zone)
41{
42 int item, cpu;
43
44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_stat[item], 0);
46 for_each_online_cpu(cpu)
47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
48 = 0;
49 }
50}
51
52/* zero numa counters of all the populated zones */
53static void zero_zones_numa_counters(void)
54{
55 struct zone *zone;
56
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
59}
60
61/* zero global numa counters */
62static void zero_global_numa_counters(void)
63{
64 int item;
65
66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 atomic_long_set(&vm_numa_stat[item], 0);
68}
69
70static void invalid_numa_statistics(void)
71{
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
74}
75
76static DEFINE_MUTEX(vm_numa_stat_lock);
77
78int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void *buffer, size_t *length, loff_t *ppos)
80{
81 int ret, oldval;
82
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
89
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
99 }
100
101out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
104}
105#endif
106
107#ifdef CONFIG_VM_EVENT_COUNTERS
108DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109EXPORT_PER_CPU_SYMBOL(vm_event_states);
110
111static void sum_vm_events(unsigned long *ret)
112{
113 int cpu;
114 int i;
115
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
123 }
124}
125
126/*
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
130*/
131void all_vm_events(unsigned long *ret)
132{
133 get_online_cpus();
134 sum_vm_events(ret);
135 put_online_cpus();
136}
137EXPORT_SYMBOL_GPL(all_vm_events);
138
139/*
140 * Fold the foreign cpu events into our own.
141 *
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
144 */
145void vm_events_fold_cpu(int cpu)
146{
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
149
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
153 }
154}
155
156#endif /* CONFIG_VM_EVENT_COUNTERS */
157
158/*
159 * Manage combined zone based / global counters
160 *
161 * vm_stat contains the global counters
162 */
163atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166EXPORT_SYMBOL(vm_zone_stat);
167EXPORT_SYMBOL(vm_numa_stat);
168EXPORT_SYMBOL(vm_node_stat);
169
170#ifdef CONFIG_SMP
171
172int calculate_pressure_threshold(struct zone *zone)
173{
174 int threshold;
175 int watermark_distance;
176
177 /*
178 * As vmstats are not up to date, there is drift between the estimated
179 * and real values. For high thresholds and a high number of CPUs, it
180 * is possible for the min watermark to be breached while the estimated
181 * value looks fine. The pressure threshold is a reduced value such
182 * that even the maximum amount of drift will not accidentally breach
183 * the min watermark
184 */
185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
187
188 /*
189 * Maximum threshold is 125
190 */
191 threshold = min(125, threshold);
192
193 return threshold;
194}
195
196int calculate_normal_threshold(struct zone *zone)
197{
198 int threshold;
199 int mem; /* memory in 128 MB units */
200
201 /*
202 * The threshold scales with the number of processors and the amount
203 * of memory per zone. More memory means that we can defer updates for
204 * longer, more processors could lead to more contention.
205 * fls() is used to have a cheap way of logarithmic scaling.
206 *
207 * Some sample thresholds:
208 *
209 * Threshold Processors (fls) Zonesize fls(mem+1)
210 * ------------------------------------------------------------------
211 * 8 1 1 0.9-1 GB 4
212 * 16 2 2 0.9-1 GB 4
213 * 20 2 2 1-2 GB 5
214 * 24 2 2 2-4 GB 6
215 * 28 2 2 4-8 GB 7
216 * 32 2 2 8-16 GB 8
217 * 4 2 2 <128M 1
218 * 30 4 3 2-4 GB 5
219 * 48 4 3 8-16 GB 8
220 * 32 8 4 1-2 GB 4
221 * 32 8 4 0.9-1GB 4
222 * 10 16 5 <128M 1
223 * 40 16 5 900M 4
224 * 70 64 7 2-4 GB 5
225 * 84 64 7 4-8 GB 6
226 * 108 512 9 4-8 GB 6
227 * 125 1024 10 8-16 GB 8
228 * 125 1024 10 16-32 GB 9
229 */
230
231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
232
233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
234
235 /*
236 * Maximum threshold is 125
237 */
238 threshold = min(125, threshold);
239
240 return threshold;
241}
242
243/*
244 * Refresh the thresholds for each zone.
245 */
246void refresh_zone_stat_thresholds(void)
247{
248 struct pglist_data *pgdat;
249 struct zone *zone;
250 int cpu;
251 int threshold;
252
253 /* Zero current pgdat thresholds */
254 for_each_online_pgdat(pgdat) {
255 for_each_online_cpu(cpu) {
256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
257 }
258 }
259
260 for_each_populated_zone(zone) {
261 struct pglist_data *pgdat = zone->zone_pgdat;
262 unsigned long max_drift, tolerate_drift;
263
264 threshold = calculate_normal_threshold(zone);
265
266 for_each_online_cpu(cpu) {
267 int pgdat_threshold;
268
269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
270 = threshold;
271
272 /* Base nodestat threshold on the largest populated zone. */
273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 = max(threshold, pgdat_threshold);
276 }
277
278 /*
279 * Only set percpu_drift_mark if there is a danger that
280 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 * the min watermark could be breached by an allocation
282 */
283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 max_drift = num_online_cpus() * threshold;
285 if (max_drift > tolerate_drift)
286 zone->percpu_drift_mark = high_wmark_pages(zone) +
287 max_drift;
288 }
289}
290
291void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 int (*calculate_pressure)(struct zone *))
293{
294 struct zone *zone;
295 int cpu;
296 int threshold;
297 int i;
298
299 for (i = 0; i < pgdat->nr_zones; i++) {
300 zone = &pgdat->node_zones[i];
301 if (!zone->percpu_drift_mark)
302 continue;
303
304 threshold = (*calculate_pressure)(zone);
305 for_each_online_cpu(cpu)
306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
307 = threshold;
308 }
309}
310
311/*
312 * For use when we know that interrupts are disabled,
313 * or when we know that preemption is disabled and that
314 * particular counter cannot be updated from interrupt context.
315 */
316void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317 long delta)
318{
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
321 long x;
322 long t;
323
324 x = delta + __this_cpu_read(*p);
325
326 t = __this_cpu_read(pcp->stat_threshold);
327
328 if (unlikely(x > t || x < -t)) {
329 zone_page_state_add(x, zone, item);
330 x = 0;
331 }
332 __this_cpu_write(*p, x);
333}
334EXPORT_SYMBOL(__mod_zone_page_state);
335
336void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
337 long delta)
338{
339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 s8 __percpu *p = pcp->vm_node_stat_diff + item;
341 long x;
342 long t;
343
344 x = delta + __this_cpu_read(*p);
345
346 t = __this_cpu_read(pcp->stat_threshold);
347
348 if (unlikely(x > t || x < -t)) {
349 node_page_state_add(x, pgdat, item);
350 x = 0;
351 }
352 __this_cpu_write(*p, x);
353}
354EXPORT_SYMBOL(__mod_node_page_state);
355
356/*
357 * Optimized increment and decrement functions.
358 *
359 * These are only for a single page and therefore can take a struct page *
360 * argument instead of struct zone *. This allows the inclusion of the code
361 * generated for page_zone(page) into the optimized functions.
362 *
363 * No overflow check is necessary and therefore the differential can be
364 * incremented or decremented in place which may allow the compilers to
365 * generate better code.
366 * The increment or decrement is known and therefore one boundary check can
367 * be omitted.
368 *
369 * NOTE: These functions are very performance sensitive. Change only
370 * with care.
371 *
372 * Some processors have inc/dec instructions that are atomic vs an interrupt.
373 * However, the code must first determine the differential location in a zone
374 * based on the processor number and then inc/dec the counter. There is no
375 * guarantee without disabling preemption that the processor will not change
376 * in between and therefore the atomicity vs. interrupt cannot be exploited
377 * in a useful way here.
378 */
379void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
380{
381 struct per_cpu_pageset __percpu *pcp = zone->pageset;
382 s8 __percpu *p = pcp->vm_stat_diff + item;
383 s8 v, t;
384
385 v = __this_cpu_inc_return(*p);
386 t = __this_cpu_read(pcp->stat_threshold);
387 if (unlikely(v > t)) {
388 s8 overstep = t >> 1;
389
390 zone_page_state_add(v + overstep, zone, item);
391 __this_cpu_write(*p, -overstep);
392 }
393}
394
395void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
396{
397 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
398 s8 __percpu *p = pcp->vm_node_stat_diff + item;
399 s8 v, t;
400
401 v = __this_cpu_inc_return(*p);
402 t = __this_cpu_read(pcp->stat_threshold);
403 if (unlikely(v > t)) {
404 s8 overstep = t >> 1;
405
406 node_page_state_add(v + overstep, pgdat, item);
407 __this_cpu_write(*p, -overstep);
408 }
409}
410
411void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
412{
413 __inc_zone_state(page_zone(page), item);
414}
415EXPORT_SYMBOL(__inc_zone_page_state);
416
417void __inc_node_page_state(struct page *page, enum node_stat_item item)
418{
419 __inc_node_state(page_pgdat(page), item);
420}
421EXPORT_SYMBOL(__inc_node_page_state);
422
423void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
424{
425 struct per_cpu_pageset __percpu *pcp = zone->pageset;
426 s8 __percpu *p = pcp->vm_stat_diff + item;
427 s8 v, t;
428
429 v = __this_cpu_dec_return(*p);
430 t = __this_cpu_read(pcp->stat_threshold);
431 if (unlikely(v < - t)) {
432 s8 overstep = t >> 1;
433
434 zone_page_state_add(v - overstep, zone, item);
435 __this_cpu_write(*p, overstep);
436 }
437}
438
439void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
440{
441 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
442 s8 __percpu *p = pcp->vm_node_stat_diff + item;
443 s8 v, t;
444
445 v = __this_cpu_dec_return(*p);
446 t = __this_cpu_read(pcp->stat_threshold);
447 if (unlikely(v < - t)) {
448 s8 overstep = t >> 1;
449
450 node_page_state_add(v - overstep, pgdat, item);
451 __this_cpu_write(*p, overstep);
452 }
453}
454
455void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
456{
457 __dec_zone_state(page_zone(page), item);
458}
459EXPORT_SYMBOL(__dec_zone_page_state);
460
461void __dec_node_page_state(struct page *page, enum node_stat_item item)
462{
463 __dec_node_state(page_pgdat(page), item);
464}
465EXPORT_SYMBOL(__dec_node_page_state);
466
467#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
468/*
469 * If we have cmpxchg_local support then we do not need to incur the overhead
470 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
471 *
472 * mod_state() modifies the zone counter state through atomic per cpu
473 * operations.
474 *
475 * Overstep mode specifies how overstep should handled:
476 * 0 No overstepping
477 * 1 Overstepping half of threshold
478 * -1 Overstepping minus half of threshold
479*/
480static inline void mod_zone_state(struct zone *zone,
481 enum zone_stat_item item, long delta, int overstep_mode)
482{
483 struct per_cpu_pageset __percpu *pcp = zone->pageset;
484 s8 __percpu *p = pcp->vm_stat_diff + item;
485 long o, n, t, z;
486
487 do {
488 z = 0; /* overflow to zone counters */
489
490 /*
491 * The fetching of the stat_threshold is racy. We may apply
492 * a counter threshold to the wrong the cpu if we get
493 * rescheduled while executing here. However, the next
494 * counter update will apply the threshold again and
495 * therefore bring the counter under the threshold again.
496 *
497 * Most of the time the thresholds are the same anyways
498 * for all cpus in a zone.
499 */
500 t = this_cpu_read(pcp->stat_threshold);
501
502 o = this_cpu_read(*p);
503 n = delta + o;
504
505 if (n > t || n < -t) {
506 int os = overstep_mode * (t >> 1) ;
507
508 /* Overflow must be added to zone counters */
509 z = n + os;
510 n = -os;
511 }
512 } while (this_cpu_cmpxchg(*p, o, n) != o);
513
514 if (z)
515 zone_page_state_add(z, zone, item);
516}
517
518void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
519 long delta)
520{
521 mod_zone_state(zone, item, delta, 0);
522}
523EXPORT_SYMBOL(mod_zone_page_state);
524
525void inc_zone_page_state(struct page *page, enum zone_stat_item item)
526{
527 mod_zone_state(page_zone(page), item, 1, 1);
528}
529EXPORT_SYMBOL(inc_zone_page_state);
530
531void dec_zone_page_state(struct page *page, enum zone_stat_item item)
532{
533 mod_zone_state(page_zone(page), item, -1, -1);
534}
535EXPORT_SYMBOL(dec_zone_page_state);
536
537static inline void mod_node_state(struct pglist_data *pgdat,
538 enum node_stat_item item, int delta, int overstep_mode)
539{
540 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
541 s8 __percpu *p = pcp->vm_node_stat_diff + item;
542 long o, n, t, z;
543
544 do {
545 z = 0; /* overflow to node counters */
546
547 /*
548 * The fetching of the stat_threshold is racy. We may apply
549 * a counter threshold to the wrong the cpu if we get
550 * rescheduled while executing here. However, the next
551 * counter update will apply the threshold again and
552 * therefore bring the counter under the threshold again.
553 *
554 * Most of the time the thresholds are the same anyways
555 * for all cpus in a node.
556 */
557 t = this_cpu_read(pcp->stat_threshold);
558
559 o = this_cpu_read(*p);
560 n = delta + o;
561
562 if (n > t || n < -t) {
563 int os = overstep_mode * (t >> 1) ;
564
565 /* Overflow must be added to node counters */
566 z = n + os;
567 n = -os;
568 }
569 } while (this_cpu_cmpxchg(*p, o, n) != o);
570
571 if (z)
572 node_page_state_add(z, pgdat, item);
573}
574
575void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
576 long delta)
577{
578 mod_node_state(pgdat, item, delta, 0);
579}
580EXPORT_SYMBOL(mod_node_page_state);
581
582void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
583{
584 mod_node_state(pgdat, item, 1, 1);
585}
586
587void inc_node_page_state(struct page *page, enum node_stat_item item)
588{
589 mod_node_state(page_pgdat(page), item, 1, 1);
590}
591EXPORT_SYMBOL(inc_node_page_state);
592
593void dec_node_page_state(struct page *page, enum node_stat_item item)
594{
595 mod_node_state(page_pgdat(page), item, -1, -1);
596}
597EXPORT_SYMBOL(dec_node_page_state);
598#else
599/*
600 * Use interrupt disable to serialize counter updates
601 */
602void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
603 long delta)
604{
605 unsigned long flags;
606
607 local_irq_save(flags);
608 __mod_zone_page_state(zone, item, delta);
609 local_irq_restore(flags);
610}
611EXPORT_SYMBOL(mod_zone_page_state);
612
613void inc_zone_page_state(struct page *page, enum zone_stat_item item)
614{
615 unsigned long flags;
616 struct zone *zone;
617
618 zone = page_zone(page);
619 local_irq_save(flags);
620 __inc_zone_state(zone, item);
621 local_irq_restore(flags);
622}
623EXPORT_SYMBOL(inc_zone_page_state);
624
625void dec_zone_page_state(struct page *page, enum zone_stat_item item)
626{
627 unsigned long flags;
628
629 local_irq_save(flags);
630 __dec_zone_page_state(page, item);
631 local_irq_restore(flags);
632}
633EXPORT_SYMBOL(dec_zone_page_state);
634
635void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
636{
637 unsigned long flags;
638
639 local_irq_save(flags);
640 __inc_node_state(pgdat, item);
641 local_irq_restore(flags);
642}
643EXPORT_SYMBOL(inc_node_state);
644
645void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
646 long delta)
647{
648 unsigned long flags;
649
650 local_irq_save(flags);
651 __mod_node_page_state(pgdat, item, delta);
652 local_irq_restore(flags);
653}
654EXPORT_SYMBOL(mod_node_page_state);
655
656void inc_node_page_state(struct page *page, enum node_stat_item item)
657{
658 unsigned long flags;
659 struct pglist_data *pgdat;
660
661 pgdat = page_pgdat(page);
662 local_irq_save(flags);
663 __inc_node_state(pgdat, item);
664 local_irq_restore(flags);
665}
666EXPORT_SYMBOL(inc_node_page_state);
667
668void dec_node_page_state(struct page *page, enum node_stat_item item)
669{
670 unsigned long flags;
671
672 local_irq_save(flags);
673 __dec_node_page_state(page, item);
674 local_irq_restore(flags);
675}
676EXPORT_SYMBOL(dec_node_page_state);
677#endif
678
679/*
680 * Fold a differential into the global counters.
681 * Returns the number of counters updated.
682 */
683#ifdef CONFIG_NUMA
684static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
685{
686 int i;
687 int changes = 0;
688
689 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
690 if (zone_diff[i]) {
691 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
692 changes++;
693 }
694
695 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
696 if (numa_diff[i]) {
697 atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
698 changes++;
699 }
700
701 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
702 if (node_diff[i]) {
703 atomic_long_add(node_diff[i], &vm_node_stat[i]);
704 changes++;
705 }
706 return changes;
707}
708#else
709static int fold_diff(int *zone_diff, int *node_diff)
710{
711 int i;
712 int changes = 0;
713
714 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
715 if (zone_diff[i]) {
716 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
717 changes++;
718 }
719
720 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
721 if (node_diff[i]) {
722 atomic_long_add(node_diff[i], &vm_node_stat[i]);
723 changes++;
724 }
725 return changes;
726}
727#endif /* CONFIG_NUMA */
728
729/*
730 * Update the zone counters for the current cpu.
731 *
732 * Note that refresh_cpu_vm_stats strives to only access
733 * node local memory. The per cpu pagesets on remote zones are placed
734 * in the memory local to the processor using that pageset. So the
735 * loop over all zones will access a series of cachelines local to
736 * the processor.
737 *
738 * The call to zone_page_state_add updates the cachelines with the
739 * statistics in the remote zone struct as well as the global cachelines
740 * with the global counters. These could cause remote node cache line
741 * bouncing and will have to be only done when necessary.
742 *
743 * The function returns the number of global counters updated.
744 */
745static int refresh_cpu_vm_stats(bool do_pagesets)
746{
747 struct pglist_data *pgdat;
748 struct zone *zone;
749 int i;
750 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
751#ifdef CONFIG_NUMA
752 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
753#endif
754 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
755 int changes = 0;
756
757 for_each_populated_zone(zone) {
758 struct per_cpu_pageset __percpu *p = zone->pageset;
759
760 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
761 int v;
762
763 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
764 if (v) {
765
766 atomic_long_add(v, &zone->vm_stat[i]);
767 global_zone_diff[i] += v;
768#ifdef CONFIG_NUMA
769 /* 3 seconds idle till flush */
770 __this_cpu_write(p->expire, 3);
771#endif
772 }
773 }
774#ifdef CONFIG_NUMA
775 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
776 int v;
777
778 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
779 if (v) {
780
781 atomic_long_add(v, &zone->vm_numa_stat[i]);
782 global_numa_diff[i] += v;
783 __this_cpu_write(p->expire, 3);
784 }
785 }
786
787 if (do_pagesets) {
788 cond_resched();
789 /*
790 * Deal with draining the remote pageset of this
791 * processor
792 *
793 * Check if there are pages remaining in this pageset
794 * if not then there is nothing to expire.
795 */
796 if (!__this_cpu_read(p->expire) ||
797 !__this_cpu_read(p->pcp.count))
798 continue;
799
800 /*
801 * We never drain zones local to this processor.
802 */
803 if (zone_to_nid(zone) == numa_node_id()) {
804 __this_cpu_write(p->expire, 0);
805 continue;
806 }
807
808 if (__this_cpu_dec_return(p->expire))
809 continue;
810
811 if (__this_cpu_read(p->pcp.count)) {
812 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
813 changes++;
814 }
815 }
816#endif
817 }
818
819 for_each_online_pgdat(pgdat) {
820 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
821
822 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
823 int v;
824
825 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
826 if (v) {
827 atomic_long_add(v, &pgdat->vm_stat[i]);
828 global_node_diff[i] += v;
829 }
830 }
831 }
832
833#ifdef CONFIG_NUMA
834 changes += fold_diff(global_zone_diff, global_numa_diff,
835 global_node_diff);
836#else
837 changes += fold_diff(global_zone_diff, global_node_diff);
838#endif
839 return changes;
840}
841
842/*
843 * Fold the data for an offline cpu into the global array.
844 * There cannot be any access by the offline cpu and therefore
845 * synchronization is simplified.
846 */
847void cpu_vm_stats_fold(int cpu)
848{
849 struct pglist_data *pgdat;
850 struct zone *zone;
851 int i;
852 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
853#ifdef CONFIG_NUMA
854 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
855#endif
856 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
857
858 for_each_populated_zone(zone) {
859 struct per_cpu_pageset *p;
860
861 p = per_cpu_ptr(zone->pageset, cpu);
862
863 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
864 if (p->vm_stat_diff[i]) {
865 int v;
866
867 v = p->vm_stat_diff[i];
868 p->vm_stat_diff[i] = 0;
869 atomic_long_add(v, &zone->vm_stat[i]);
870 global_zone_diff[i] += v;
871 }
872
873#ifdef CONFIG_NUMA
874 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
875 if (p->vm_numa_stat_diff[i]) {
876 int v;
877
878 v = p->vm_numa_stat_diff[i];
879 p->vm_numa_stat_diff[i] = 0;
880 atomic_long_add(v, &zone->vm_numa_stat[i]);
881 global_numa_diff[i] += v;
882 }
883#endif
884 }
885
886 for_each_online_pgdat(pgdat) {
887 struct per_cpu_nodestat *p;
888
889 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
890
891 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
892 if (p->vm_node_stat_diff[i]) {
893 int v;
894
895 v = p->vm_node_stat_diff[i];
896 p->vm_node_stat_diff[i] = 0;
897 atomic_long_add(v, &pgdat->vm_stat[i]);
898 global_node_diff[i] += v;
899 }
900 }
901
902#ifdef CONFIG_NUMA
903 fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
904#else
905 fold_diff(global_zone_diff, global_node_diff);
906#endif
907}
908
909/*
910 * this is only called if !populated_zone(zone), which implies no other users of
911 * pset->vm_stat_diff[] exsist.
912 */
913void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
914{
915 int i;
916
917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
918 if (pset->vm_stat_diff[i]) {
919 int v = pset->vm_stat_diff[i];
920 pset->vm_stat_diff[i] = 0;
921 atomic_long_add(v, &zone->vm_stat[i]);
922 atomic_long_add(v, &vm_zone_stat[i]);
923 }
924
925#ifdef CONFIG_NUMA
926 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
927 if (pset->vm_numa_stat_diff[i]) {
928 int v = pset->vm_numa_stat_diff[i];
929
930 pset->vm_numa_stat_diff[i] = 0;
931 atomic_long_add(v, &zone->vm_numa_stat[i]);
932 atomic_long_add(v, &vm_numa_stat[i]);
933 }
934#endif
935}
936#endif
937
938#ifdef CONFIG_NUMA
939void __inc_numa_state(struct zone *zone,
940 enum numa_stat_item item)
941{
942 struct per_cpu_pageset __percpu *pcp = zone->pageset;
943 u16 __percpu *p = pcp->vm_numa_stat_diff + item;
944 u16 v;
945
946 v = __this_cpu_inc_return(*p);
947
948 if (unlikely(v > NUMA_STATS_THRESHOLD)) {
949 zone_numa_state_add(v, zone, item);
950 __this_cpu_write(*p, 0);
951 }
952}
953
954/*
955 * Determine the per node value of a stat item. This function
956 * is called frequently in a NUMA machine, so try to be as
957 * frugal as possible.
958 */
959unsigned long sum_zone_node_page_state(int node,
960 enum zone_stat_item item)
961{
962 struct zone *zones = NODE_DATA(node)->node_zones;
963 int i;
964 unsigned long count = 0;
965
966 for (i = 0; i < MAX_NR_ZONES; i++)
967 count += zone_page_state(zones + i, item);
968
969 return count;
970}
971
972/*
973 * Determine the per node value of a numa stat item. To avoid deviation,
974 * the per cpu stat number in vm_numa_stat_diff[] is also included.
975 */
976unsigned long sum_zone_numa_state(int node,
977 enum numa_stat_item item)
978{
979 struct zone *zones = NODE_DATA(node)->node_zones;
980 int i;
981 unsigned long count = 0;
982
983 for (i = 0; i < MAX_NR_ZONES; i++)
984 count += zone_numa_state_snapshot(zones + i, item);
985
986 return count;
987}
988
989/*
990 * Determine the per node value of a stat item.
991 */
992unsigned long node_page_state(struct pglist_data *pgdat,
993 enum node_stat_item item)
994{
995 long x = atomic_long_read(&pgdat->vm_stat[item]);
996#ifdef CONFIG_SMP
997 if (x < 0)
998 x = 0;
999#endif
1000 return x;
1001}
1002#endif
1003
1004#ifdef CONFIG_COMPACTION
1005
1006struct contig_page_info {
1007 unsigned long free_pages;
1008 unsigned long free_blocks_total;
1009 unsigned long free_blocks_suitable;
1010};
1011
1012/*
1013 * Calculate the number of free pages in a zone, how many contiguous
1014 * pages are free and how many are large enough to satisfy an allocation of
1015 * the target size. Note that this function makes no attempt to estimate
1016 * how many suitable free blocks there *might* be if MOVABLE pages were
1017 * migrated. Calculating that is possible, but expensive and can be
1018 * figured out from userspace
1019 */
1020static void fill_contig_page_info(struct zone *zone,
1021 unsigned int suitable_order,
1022 struct contig_page_info *info)
1023{
1024 unsigned int order;
1025
1026 info->free_pages = 0;
1027 info->free_blocks_total = 0;
1028 info->free_blocks_suitable = 0;
1029
1030 for (order = 0; order < MAX_ORDER; order++) {
1031 unsigned long blocks;
1032
1033 /* Count number of free blocks */
1034 blocks = zone->free_area[order].nr_free;
1035 info->free_blocks_total += blocks;
1036
1037 /* Count free base pages */
1038 info->free_pages += blocks << order;
1039
1040 /* Count the suitable free blocks */
1041 if (order >= suitable_order)
1042 info->free_blocks_suitable += blocks <<
1043 (order - suitable_order);
1044 }
1045}
1046
1047/*
1048 * A fragmentation index only makes sense if an allocation of a requested
1049 * size would fail. If that is true, the fragmentation index indicates
1050 * whether external fragmentation or a lack of memory was the problem.
1051 * The value can be used to determine if page reclaim or compaction
1052 * should be used
1053 */
1054static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1055{
1056 unsigned long requested = 1UL << order;
1057
1058 if (WARN_ON_ONCE(order >= MAX_ORDER))
1059 return 0;
1060
1061 if (!info->free_blocks_total)
1062 return 0;
1063
1064 /* Fragmentation index only makes sense when a request would fail */
1065 if (info->free_blocks_suitable)
1066 return -1000;
1067
1068 /*
1069 * Index is between 0 and 1 so return within 3 decimal places
1070 *
1071 * 0 => allocation would fail due to lack of memory
1072 * 1 => allocation would fail due to fragmentation
1073 */
1074 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1075}
1076
1077/* Same as __fragmentation index but allocs contig_page_info on stack */
1078int fragmentation_index(struct zone *zone, unsigned int order)
1079{
1080 struct contig_page_info info;
1081
1082 fill_contig_page_info(zone, order, &info);
1083 return __fragmentation_index(order, &info);
1084}
1085#endif
1086
1087#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1088 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1089#ifdef CONFIG_ZONE_DMA
1090#define TEXT_FOR_DMA(xx) xx "_dma",
1091#else
1092#define TEXT_FOR_DMA(xx)
1093#endif
1094
1095#ifdef CONFIG_ZONE_DMA32
1096#define TEXT_FOR_DMA32(xx) xx "_dma32",
1097#else
1098#define TEXT_FOR_DMA32(xx)
1099#endif
1100
1101#ifdef CONFIG_HIGHMEM
1102#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1103#else
1104#define TEXT_FOR_HIGHMEM(xx)
1105#endif
1106
1107#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1108 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1109
1110const char * const vmstat_text[] = {
1111 /* enum zone_stat_item counters */
1112 "nr_free_pages",
1113 "nr_zone_inactive_anon",
1114 "nr_zone_active_anon",
1115 "nr_zone_inactive_file",
1116 "nr_zone_active_file",
1117 "nr_zone_unevictable",
1118 "nr_zone_write_pending",
1119 "nr_mlock",
1120 "nr_page_table_pages",
1121 "nr_kernel_stack",
1122#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1123 "nr_shadow_call_stack",
1124#endif
1125 "nr_bounce",
1126#if IS_ENABLED(CONFIG_ZSMALLOC)
1127 "nr_zspages",
1128#endif
1129 "nr_free_cma",
1130
1131 /* enum numa_stat_item counters */
1132#ifdef CONFIG_NUMA
1133 "numa_hit",
1134 "numa_miss",
1135 "numa_foreign",
1136 "numa_interleave",
1137 "numa_local",
1138 "numa_other",
1139#endif
1140
1141 /* enum node_stat_item counters */
1142 "nr_inactive_anon",
1143 "nr_active_anon",
1144 "nr_inactive_file",
1145 "nr_active_file",
1146 "nr_unevictable",
1147 "nr_slab_reclaimable",
1148 "nr_slab_unreclaimable",
1149 "nr_isolated_anon",
1150 "nr_isolated_file",
1151 "workingset_nodes",
1152 "workingset_refault",
1153 "workingset_activate",
1154 "workingset_restore",
1155 "workingset_nodereclaim",
1156 "nr_anon_pages",
1157 "nr_mapped",
1158 "nr_file_pages",
1159 "nr_dirty",
1160 "nr_writeback",
1161 "nr_writeback_temp",
1162 "nr_shmem",
1163 "nr_shmem_hugepages",
1164 "nr_shmem_pmdmapped",
1165 "nr_file_hugepages",
1166 "nr_file_pmdmapped",
1167 "nr_anon_transparent_hugepages",
1168 "nr_vmscan_write",
1169 "nr_vmscan_immediate_reclaim",
1170 "nr_dirtied",
1171 "nr_written",
1172 "nr_kernel_misc_reclaimable",
1173 "nr_foll_pin_acquired",
1174 "nr_foll_pin_released",
1175
1176 /* enum writeback_stat_item counters */
1177 "nr_dirty_threshold",
1178 "nr_dirty_background_threshold",
1179
1180#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1181 /* enum vm_event_item counters */
1182 "pgpgin",
1183 "pgpgout",
1184 "pswpin",
1185 "pswpout",
1186
1187 TEXTS_FOR_ZONES("pgalloc")
1188 TEXTS_FOR_ZONES("allocstall")
1189 TEXTS_FOR_ZONES("pgskip")
1190
1191 "pgfree",
1192 "pgactivate",
1193 "pgdeactivate",
1194 "pglazyfree",
1195
1196 "pgfault",
1197 "pgmajfault",
1198 "pglazyfreed",
1199
1200 "pgrefill",
1201 "pgsteal_kswapd",
1202 "pgsteal_direct",
1203 "pgscan_kswapd",
1204 "pgscan_direct",
1205 "pgscan_direct_throttle",
1206 "pgscan_anon",
1207 "pgscan_file",
1208 "pgsteal_anon",
1209 "pgsteal_file",
1210
1211#ifdef CONFIG_NUMA
1212 "zone_reclaim_failed",
1213#endif
1214 "pginodesteal",
1215 "slabs_scanned",
1216 "kswapd_inodesteal",
1217 "kswapd_low_wmark_hit_quickly",
1218 "kswapd_high_wmark_hit_quickly",
1219 "pageoutrun",
1220
1221 "pgrotated",
1222
1223 "drop_pagecache",
1224 "drop_slab",
1225 "oom_kill",
1226
1227#ifdef CONFIG_NUMA_BALANCING
1228 "numa_pte_updates",
1229 "numa_huge_pte_updates",
1230 "numa_hint_faults",
1231 "numa_hint_faults_local",
1232 "numa_pages_migrated",
1233#endif
1234#ifdef CONFIG_MIGRATION
1235 "pgmigrate_success",
1236 "pgmigrate_fail",
1237#endif
1238#ifdef CONFIG_COMPACTION
1239 "compact_migrate_scanned",
1240 "compact_free_scanned",
1241 "compact_isolated",
1242 "compact_stall",
1243 "compact_fail",
1244 "compact_success",
1245 "compact_daemon_wake",
1246 "compact_daemon_migrate_scanned",
1247 "compact_daemon_free_scanned",
1248#endif
1249
1250#ifdef CONFIG_HUGETLB_PAGE
1251 "htlb_buddy_alloc_success",
1252 "htlb_buddy_alloc_fail",
1253#endif
1254 "unevictable_pgs_culled",
1255 "unevictable_pgs_scanned",
1256 "unevictable_pgs_rescued",
1257 "unevictable_pgs_mlocked",
1258 "unevictable_pgs_munlocked",
1259 "unevictable_pgs_cleared",
1260 "unevictable_pgs_stranded",
1261
1262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263 "thp_fault_alloc",
1264 "thp_fault_fallback",
1265 "thp_fault_fallback_charge",
1266 "thp_collapse_alloc",
1267 "thp_collapse_alloc_failed",
1268 "thp_file_alloc",
1269 "thp_file_fallback",
1270 "thp_file_fallback_charge",
1271 "thp_file_mapped",
1272 "thp_split_page",
1273 "thp_split_page_failed",
1274 "thp_deferred_split_page",
1275 "thp_split_pmd",
1276#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1277 "thp_split_pud",
1278#endif
1279 "thp_zero_page_alloc",
1280 "thp_zero_page_alloc_failed",
1281 "thp_swpout",
1282 "thp_swpout_fallback",
1283#endif
1284#ifdef CONFIG_MEMORY_BALLOON
1285 "balloon_inflate",
1286 "balloon_deflate",
1287#ifdef CONFIG_BALLOON_COMPACTION
1288 "balloon_migrate",
1289#endif
1290#endif /* CONFIG_MEMORY_BALLOON */
1291#ifdef CONFIG_DEBUG_TLBFLUSH
1292 "nr_tlb_remote_flush",
1293 "nr_tlb_remote_flush_received",
1294 "nr_tlb_local_flush_all",
1295 "nr_tlb_local_flush_one",
1296#endif /* CONFIG_DEBUG_TLBFLUSH */
1297
1298#ifdef CONFIG_DEBUG_VM_VMACACHE
1299 "vmacache_find_calls",
1300 "vmacache_find_hits",
1301#endif
1302#ifdef CONFIG_SWAP
1303 "swap_ra",
1304 "swap_ra_hit",
1305#endif
1306#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1307};
1308#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1309
1310#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1311 defined(CONFIG_PROC_FS)
1312static void *frag_start(struct seq_file *m, loff_t *pos)
1313{
1314 pg_data_t *pgdat;
1315 loff_t node = *pos;
1316
1317 for (pgdat = first_online_pgdat();
1318 pgdat && node;
1319 pgdat = next_online_pgdat(pgdat))
1320 --node;
1321
1322 return pgdat;
1323}
1324
1325static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1326{
1327 pg_data_t *pgdat = (pg_data_t *)arg;
1328
1329 (*pos)++;
1330 return next_online_pgdat(pgdat);
1331}
1332
1333static void frag_stop(struct seq_file *m, void *arg)
1334{
1335}
1336
1337/*
1338 * Walk zones in a node and print using a callback.
1339 * If @assert_populated is true, only use callback for zones that are populated.
1340 */
1341static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1342 bool assert_populated, bool nolock,
1343 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1344{
1345 struct zone *zone;
1346 struct zone *node_zones = pgdat->node_zones;
1347 unsigned long flags;
1348
1349 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1350 if (assert_populated && !populated_zone(zone))
1351 continue;
1352
1353 if (!nolock)
1354 spin_lock_irqsave(&zone->lock, flags);
1355 print(m, pgdat, zone);
1356 if (!nolock)
1357 spin_unlock_irqrestore(&zone->lock, flags);
1358 }
1359}
1360#endif
1361
1362#ifdef CONFIG_PROC_FS
1363static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1364 struct zone *zone)
1365{
1366 int order;
1367
1368 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1369 for (order = 0; order < MAX_ORDER; ++order)
1370 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1371 seq_putc(m, '\n');
1372}
1373
1374/*
1375 * This walks the free areas for each zone.
1376 */
1377static int frag_show(struct seq_file *m, void *arg)
1378{
1379 pg_data_t *pgdat = (pg_data_t *)arg;
1380 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1381 return 0;
1382}
1383
1384static void pagetypeinfo_showfree_print(struct seq_file *m,
1385 pg_data_t *pgdat, struct zone *zone)
1386{
1387 int order, mtype;
1388
1389 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1390 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1391 pgdat->node_id,
1392 zone->name,
1393 migratetype_names[mtype]);
1394 for (order = 0; order < MAX_ORDER; ++order) {
1395 unsigned long freecount = 0;
1396 struct free_area *area;
1397 struct list_head *curr;
1398 bool overflow = false;
1399
1400 area = &(zone->free_area[order]);
1401
1402 list_for_each(curr, &area->free_list[mtype]) {
1403 /*
1404 * Cap the free_list iteration because it might
1405 * be really large and we are under a spinlock
1406 * so a long time spent here could trigger a
1407 * hard lockup detector. Anyway this is a
1408 * debugging tool so knowing there is a handful
1409 * of pages of this order should be more than
1410 * sufficient.
1411 */
1412 if (++freecount >= 100000) {
1413 overflow = true;
1414 break;
1415 }
1416 }
1417 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1418 spin_unlock_irq(&zone->lock);
1419 cond_resched();
1420 spin_lock_irq(&zone->lock);
1421 }
1422 seq_putc(m, '\n');
1423 }
1424}
1425
1426/* Print out the free pages at each order for each migatetype */
1427static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1428{
1429 int order;
1430 pg_data_t *pgdat = (pg_data_t *)arg;
1431
1432 /* Print header */
1433 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1434 for (order = 0; order < MAX_ORDER; ++order)
1435 seq_printf(m, "%6d ", order);
1436 seq_putc(m, '\n');
1437
1438 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1439
1440 return 0;
1441}
1442
1443static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1444 pg_data_t *pgdat, struct zone *zone)
1445{
1446 int mtype;
1447 unsigned long pfn;
1448 unsigned long start_pfn = zone->zone_start_pfn;
1449 unsigned long end_pfn = zone_end_pfn(zone);
1450 unsigned long count[MIGRATE_TYPES] = { 0, };
1451
1452 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1453 struct page *page;
1454
1455 page = pfn_to_online_page(pfn);
1456 if (!page)
1457 continue;
1458
1459 /* Watch for unexpected holes punched in the memmap */
1460 if (!memmap_valid_within(pfn, page, zone))
1461 continue;
1462
1463 if (page_zone(page) != zone)
1464 continue;
1465
1466 mtype = get_pageblock_migratetype(page);
1467
1468 if (mtype < MIGRATE_TYPES)
1469 count[mtype]++;
1470 }
1471
1472 /* Print counts */
1473 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1474 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1475 seq_printf(m, "%12lu ", count[mtype]);
1476 seq_putc(m, '\n');
1477}
1478
1479/* Print out the number of pageblocks for each migratetype */
1480static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1481{
1482 int mtype;
1483 pg_data_t *pgdat = (pg_data_t *)arg;
1484
1485 seq_printf(m, "\n%-23s", "Number of blocks type ");
1486 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1487 seq_printf(m, "%12s ", migratetype_names[mtype]);
1488 seq_putc(m, '\n');
1489 walk_zones_in_node(m, pgdat, true, false,
1490 pagetypeinfo_showblockcount_print);
1491
1492 return 0;
1493}
1494
1495/*
1496 * Print out the number of pageblocks for each migratetype that contain pages
1497 * of other types. This gives an indication of how well fallbacks are being
1498 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1499 * to determine what is going on
1500 */
1501static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1502{
1503#ifdef CONFIG_PAGE_OWNER
1504 int mtype;
1505
1506 if (!static_branch_unlikely(&page_owner_inited))
1507 return;
1508
1509 drain_all_pages(NULL);
1510
1511 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1512 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1513 seq_printf(m, "%12s ", migratetype_names[mtype]);
1514 seq_putc(m, '\n');
1515
1516 walk_zones_in_node(m, pgdat, true, true,
1517 pagetypeinfo_showmixedcount_print);
1518#endif /* CONFIG_PAGE_OWNER */
1519}
1520
1521/*
1522 * This prints out statistics in relation to grouping pages by mobility.
1523 * It is expensive to collect so do not constantly read the file.
1524 */
1525static int pagetypeinfo_show(struct seq_file *m, void *arg)
1526{
1527 pg_data_t *pgdat = (pg_data_t *)arg;
1528
1529 /* check memoryless node */
1530 if (!node_state(pgdat->node_id, N_MEMORY))
1531 return 0;
1532
1533 seq_printf(m, "Page block order: %d\n", pageblock_order);
1534 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1535 seq_putc(m, '\n');
1536 pagetypeinfo_showfree(m, pgdat);
1537 pagetypeinfo_showblockcount(m, pgdat);
1538 pagetypeinfo_showmixedcount(m, pgdat);
1539
1540 return 0;
1541}
1542
1543static const struct seq_operations fragmentation_op = {
1544 .start = frag_start,
1545 .next = frag_next,
1546 .stop = frag_stop,
1547 .show = frag_show,
1548};
1549
1550static const struct seq_operations pagetypeinfo_op = {
1551 .start = frag_start,
1552 .next = frag_next,
1553 .stop = frag_stop,
1554 .show = pagetypeinfo_show,
1555};
1556
1557static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1558{
1559 int zid;
1560
1561 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1562 struct zone *compare = &pgdat->node_zones[zid];
1563
1564 if (populated_zone(compare))
1565 return zone == compare;
1566 }
1567
1568 return false;
1569}
1570
1571static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1572 struct zone *zone)
1573{
1574 int i;
1575 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1576 if (is_zone_first_populated(pgdat, zone)) {
1577 seq_printf(m, "\n per-node stats");
1578 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1579 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1580 node_page_state(pgdat, i));
1581 }
1582 }
1583 seq_printf(m,
1584 "\n pages free %lu"
1585 "\n min %lu"
1586 "\n low %lu"
1587 "\n high %lu"
1588 "\n spanned %lu"
1589 "\n present %lu"
1590 "\n managed %lu",
1591 zone_page_state(zone, NR_FREE_PAGES),
1592 min_wmark_pages(zone),
1593 low_wmark_pages(zone),
1594 high_wmark_pages(zone),
1595 zone->spanned_pages,
1596 zone->present_pages,
1597 zone_managed_pages(zone));
1598
1599 /* If unpopulated, no other information is useful */
1600 if (!populated_zone(zone)) {
1601 seq_putc(m, '\n');
1602 return;
1603 }
1604
1605 seq_printf(m,
1606 "\n protection: (%ld",
1607 zone->lowmem_reserve[0]);
1608 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1609 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1610 seq_putc(m, ')');
1611
1612 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1613 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1614 zone_page_state(zone, i));
1615
1616#ifdef CONFIG_NUMA
1617 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1618 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1619 zone_numa_state_snapshot(zone, i));
1620#endif
1621
1622 seq_printf(m, "\n pagesets");
1623 for_each_online_cpu(i) {
1624 struct per_cpu_pageset *pageset;
1625
1626 pageset = per_cpu_ptr(zone->pageset, i);
1627 seq_printf(m,
1628 "\n cpu: %i"
1629 "\n count: %i"
1630 "\n high: %i"
1631 "\n batch: %i",
1632 i,
1633 pageset->pcp.count,
1634 pageset->pcp.high,
1635 pageset->pcp.batch);
1636#ifdef CONFIG_SMP
1637 seq_printf(m, "\n vm stats threshold: %d",
1638 pageset->stat_threshold);
1639#endif
1640 }
1641 seq_printf(m,
1642 "\n node_unreclaimable: %u"
1643 "\n start_pfn: %lu",
1644 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1645 zone->zone_start_pfn);
1646 seq_putc(m, '\n');
1647}
1648
1649/*
1650 * Output information about zones in @pgdat. All zones are printed regardless
1651 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1652 * set of all zones and userspace would not be aware of such zones if they are
1653 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1654 */
1655static int zoneinfo_show(struct seq_file *m, void *arg)
1656{
1657 pg_data_t *pgdat = (pg_data_t *)arg;
1658 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1659 return 0;
1660}
1661
1662static const struct seq_operations zoneinfo_op = {
1663 .start = frag_start, /* iterate over all zones. The same as in
1664 * fragmentation. */
1665 .next = frag_next,
1666 .stop = frag_stop,
1667 .show = zoneinfo_show,
1668};
1669
1670#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1671 NR_VM_NUMA_STAT_ITEMS + \
1672 NR_VM_NODE_STAT_ITEMS + \
1673 NR_VM_WRITEBACK_STAT_ITEMS + \
1674 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1675 NR_VM_EVENT_ITEMS : 0))
1676
1677static void *vmstat_start(struct seq_file *m, loff_t *pos)
1678{
1679 unsigned long *v;
1680 int i;
1681
1682 if (*pos >= NR_VMSTAT_ITEMS)
1683 return NULL;
1684
1685 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1686 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1687 m->private = v;
1688 if (!v)
1689 return ERR_PTR(-ENOMEM);
1690 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1691 v[i] = global_zone_page_state(i);
1692 v += NR_VM_ZONE_STAT_ITEMS;
1693
1694#ifdef CONFIG_NUMA
1695 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1696 v[i] = global_numa_state(i);
1697 v += NR_VM_NUMA_STAT_ITEMS;
1698#endif
1699
1700 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
1701 v[i] = global_node_page_state(i);
1702 v += NR_VM_NODE_STAT_ITEMS;
1703
1704 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1705 v + NR_DIRTY_THRESHOLD);
1706 v += NR_VM_WRITEBACK_STAT_ITEMS;
1707
1708#ifdef CONFIG_VM_EVENT_COUNTERS
1709 all_vm_events(v);
1710 v[PGPGIN] /= 2; /* sectors -> kbytes */
1711 v[PGPGOUT] /= 2;
1712#endif
1713 return (unsigned long *)m->private + *pos;
1714}
1715
1716static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1717{
1718 (*pos)++;
1719 if (*pos >= NR_VMSTAT_ITEMS)
1720 return NULL;
1721 return (unsigned long *)m->private + *pos;
1722}
1723
1724static int vmstat_show(struct seq_file *m, void *arg)
1725{
1726 unsigned long *l = arg;
1727 unsigned long off = l - (unsigned long *)m->private;
1728
1729 seq_puts(m, vmstat_text[off]);
1730 seq_put_decimal_ull(m, " ", *l);
1731 seq_putc(m, '\n');
1732
1733 if (off == NR_VMSTAT_ITEMS - 1) {
1734 /*
1735 * We've come to the end - add any deprecated counters to avoid
1736 * breaking userspace which might depend on them being present.
1737 */
1738 seq_puts(m, "nr_unstable 0\n");
1739 }
1740 return 0;
1741}
1742
1743static void vmstat_stop(struct seq_file *m, void *arg)
1744{
1745 kfree(m->private);
1746 m->private = NULL;
1747}
1748
1749static const struct seq_operations vmstat_op = {
1750 .start = vmstat_start,
1751 .next = vmstat_next,
1752 .stop = vmstat_stop,
1753 .show = vmstat_show,
1754};
1755#endif /* CONFIG_PROC_FS */
1756
1757#ifdef CONFIG_SMP
1758static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1759int sysctl_stat_interval __read_mostly = HZ;
1760
1761#ifdef CONFIG_PROC_FS
1762static void refresh_vm_stats(struct work_struct *work)
1763{
1764 refresh_cpu_vm_stats(true);
1765}
1766
1767int vmstat_refresh(struct ctl_table *table, int write,
1768 void *buffer, size_t *lenp, loff_t *ppos)
1769{
1770 long val;
1771 int err;
1772 int i;
1773
1774 /*
1775 * The regular update, every sysctl_stat_interval, may come later
1776 * than expected: leaving a significant amount in per_cpu buckets.
1777 * This is particularly misleading when checking a quantity of HUGE
1778 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1779 * which can equally be echo'ed to or cat'ted from (by root),
1780 * can be used to update the stats just before reading them.
1781 *
1782 * Oh, and since global_zone_page_state() etc. are so careful to hide
1783 * transiently negative values, report an error here if any of
1784 * the stats is negative, so we know to go looking for imbalance.
1785 */
1786 err = schedule_on_each_cpu(refresh_vm_stats);
1787 if (err)
1788 return err;
1789 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1790 val = atomic_long_read(&vm_zone_stat[i]);
1791 if (val < 0) {
1792 pr_warn("%s: %s %ld\n",
1793 __func__, zone_stat_name(i), val);
1794 err = -EINVAL;
1795 }
1796 }
1797#ifdef CONFIG_NUMA
1798 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
1799 val = atomic_long_read(&vm_numa_stat[i]);
1800 if (val < 0) {
1801 pr_warn("%s: %s %ld\n",
1802 __func__, numa_stat_name(i), val);
1803 err = -EINVAL;
1804 }
1805 }
1806#endif
1807 if (err)
1808 return err;
1809 if (write)
1810 *ppos += *lenp;
1811 else
1812 *lenp = 0;
1813 return 0;
1814}
1815#endif /* CONFIG_PROC_FS */
1816
1817static void vmstat_update(struct work_struct *w)
1818{
1819 if (refresh_cpu_vm_stats(true)) {
1820 /*
1821 * Counters were updated so we expect more updates
1822 * to occur in the future. Keep on running the
1823 * update worker thread.
1824 */
1825 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1826 this_cpu_ptr(&vmstat_work),
1827 round_jiffies_relative(sysctl_stat_interval));
1828 }
1829}
1830
1831/*
1832 * Switch off vmstat processing and then fold all the remaining differentials
1833 * until the diffs stay at zero. The function is used by NOHZ and can only be
1834 * invoked when tick processing is not active.
1835 */
1836/*
1837 * Check if the diffs for a certain cpu indicate that
1838 * an update is needed.
1839 */
1840static bool need_update(int cpu)
1841{
1842 struct zone *zone;
1843
1844 for_each_populated_zone(zone) {
1845 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1846
1847 BUILD_BUG_ON(sizeof(p->vm_stat_diff[0]) != 1);
1848#ifdef CONFIG_NUMA
1849 BUILD_BUG_ON(sizeof(p->vm_numa_stat_diff[0]) != 2);
1850#endif
1851
1852 /*
1853 * The fast way of checking if there are any vmstat diffs.
1854 */
1855 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1856 sizeof(p->vm_stat_diff[0])))
1857 return true;
1858#ifdef CONFIG_NUMA
1859 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1860 sizeof(p->vm_numa_stat_diff[0])))
1861 return true;
1862#endif
1863 }
1864 return false;
1865}
1866
1867/*
1868 * Switch off vmstat processing and then fold all the remaining differentials
1869 * until the diffs stay at zero. The function is used by NOHZ and can only be
1870 * invoked when tick processing is not active.
1871 */
1872void quiet_vmstat(void)
1873{
1874 if (system_state != SYSTEM_RUNNING)
1875 return;
1876
1877 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1878 return;
1879
1880 if (!need_update(smp_processor_id()))
1881 return;
1882
1883 /*
1884 * Just refresh counters and do not care about the pending delayed
1885 * vmstat_update. It doesn't fire that often to matter and canceling
1886 * it would be too expensive from this path.
1887 * vmstat_shepherd will take care about that for us.
1888 */
1889 refresh_cpu_vm_stats(false);
1890}
1891
1892/*
1893 * Shepherd worker thread that checks the
1894 * differentials of processors that have their worker
1895 * threads for vm statistics updates disabled because of
1896 * inactivity.
1897 */
1898static void vmstat_shepherd(struct work_struct *w);
1899
1900static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1901
1902static void vmstat_shepherd(struct work_struct *w)
1903{
1904 int cpu;
1905
1906 get_online_cpus();
1907 /* Check processors whose vmstat worker threads have been disabled */
1908 for_each_online_cpu(cpu) {
1909 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1910
1911 if (!delayed_work_pending(dw) && need_update(cpu))
1912 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
1913 }
1914 put_online_cpus();
1915
1916 schedule_delayed_work(&shepherd,
1917 round_jiffies_relative(sysctl_stat_interval));
1918}
1919
1920static void __init start_shepherd_timer(void)
1921{
1922 int cpu;
1923
1924 for_each_possible_cpu(cpu)
1925 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
1926 vmstat_update);
1927
1928 schedule_delayed_work(&shepherd,
1929 round_jiffies_relative(sysctl_stat_interval));
1930}
1931
1932static void __init init_cpu_node_state(void)
1933{
1934 int node;
1935
1936 for_each_online_node(node) {
1937 if (cpumask_weight(cpumask_of_node(node)) > 0)
1938 node_set_state(node, N_CPU);
1939 }
1940}
1941
1942static int vmstat_cpu_online(unsigned int cpu)
1943{
1944 refresh_zone_stat_thresholds();
1945 node_set_state(cpu_to_node(cpu), N_CPU);
1946 return 0;
1947}
1948
1949static int vmstat_cpu_down_prep(unsigned int cpu)
1950{
1951 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
1952 return 0;
1953}
1954
1955static int vmstat_cpu_dead(unsigned int cpu)
1956{
1957 const struct cpumask *node_cpus;
1958 int node;
1959
1960 node = cpu_to_node(cpu);
1961
1962 refresh_zone_stat_thresholds();
1963 node_cpus = cpumask_of_node(node);
1964 if (cpumask_weight(node_cpus) > 0)
1965 return 0;
1966
1967 node_clear_state(node, N_CPU);
1968 return 0;
1969}
1970
1971#endif
1972
1973struct workqueue_struct *mm_percpu_wq;
1974
1975void __init init_mm_internals(void)
1976{
1977 int ret __maybe_unused;
1978
1979 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
1980
1981#ifdef CONFIG_SMP
1982 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
1983 NULL, vmstat_cpu_dead);
1984 if (ret < 0)
1985 pr_err("vmstat: failed to register 'dead' hotplug state\n");
1986
1987 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
1988 vmstat_cpu_online,
1989 vmstat_cpu_down_prep);
1990 if (ret < 0)
1991 pr_err("vmstat: failed to register 'online' hotplug state\n");
1992
1993 get_online_cpus();
1994 init_cpu_node_state();
1995 put_online_cpus();
1996
1997 start_shepherd_timer();
1998#endif
1999#ifdef CONFIG_PROC_FS
2000 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2001 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2002 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2003 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2004#endif
2005}
2006
2007#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2008
2009/*
2010 * Return an index indicating how much of the available free memory is
2011 * unusable for an allocation of the requested size.
2012 */
2013static int unusable_free_index(unsigned int order,
2014 struct contig_page_info *info)
2015{
2016 /* No free memory is interpreted as all free memory is unusable */
2017 if (info->free_pages == 0)
2018 return 1000;
2019
2020 /*
2021 * Index should be a value between 0 and 1. Return a value to 3
2022 * decimal places.
2023 *
2024 * 0 => no fragmentation
2025 * 1 => high fragmentation
2026 */
2027 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2028
2029}
2030
2031static void unusable_show_print(struct seq_file *m,
2032 pg_data_t *pgdat, struct zone *zone)
2033{
2034 unsigned int order;
2035 int index;
2036 struct contig_page_info info;
2037
2038 seq_printf(m, "Node %d, zone %8s ",
2039 pgdat->node_id,
2040 zone->name);
2041 for (order = 0; order < MAX_ORDER; ++order) {
2042 fill_contig_page_info(zone, order, &info);
2043 index = unusable_free_index(order, &info);
2044 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2045 }
2046
2047 seq_putc(m, '\n');
2048}
2049
2050/*
2051 * Display unusable free space index
2052 *
2053 * The unusable free space index measures how much of the available free
2054 * memory cannot be used to satisfy an allocation of a given size and is a
2055 * value between 0 and 1. The higher the value, the more of free memory is
2056 * unusable and by implication, the worse the external fragmentation is. This
2057 * can be expressed as a percentage by multiplying by 100.
2058 */
2059static int unusable_show(struct seq_file *m, void *arg)
2060{
2061 pg_data_t *pgdat = (pg_data_t *)arg;
2062
2063 /* check memoryless node */
2064 if (!node_state(pgdat->node_id, N_MEMORY))
2065 return 0;
2066
2067 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2068
2069 return 0;
2070}
2071
2072static const struct seq_operations unusable_sops = {
2073 .start = frag_start,
2074 .next = frag_next,
2075 .stop = frag_stop,
2076 .show = unusable_show,
2077};
2078
2079DEFINE_SEQ_ATTRIBUTE(unusable);
2080
2081static void extfrag_show_print(struct seq_file *m,
2082 pg_data_t *pgdat, struct zone *zone)
2083{
2084 unsigned int order;
2085 int index;
2086
2087 /* Alloc on stack as interrupts are disabled for zone walk */
2088 struct contig_page_info info;
2089
2090 seq_printf(m, "Node %d, zone %8s ",
2091 pgdat->node_id,
2092 zone->name);
2093 for (order = 0; order < MAX_ORDER; ++order) {
2094 fill_contig_page_info(zone, order, &info);
2095 index = __fragmentation_index(order, &info);
2096 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2097 }
2098
2099 seq_putc(m, '\n');
2100}
2101
2102/*
2103 * Display fragmentation index for orders that allocations would fail for
2104 */
2105static int extfrag_show(struct seq_file *m, void *arg)
2106{
2107 pg_data_t *pgdat = (pg_data_t *)arg;
2108
2109 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2110
2111 return 0;
2112}
2113
2114static const struct seq_operations extfrag_sops = {
2115 .start = frag_start,
2116 .next = frag_next,
2117 .stop = frag_stop,
2118 .show = extfrag_show,
2119};
2120
2121DEFINE_SEQ_ATTRIBUTE(extfrag);
2122
2123static int __init extfrag_debug_init(void)
2124{
2125 struct dentry *extfrag_debug_root;
2126
2127 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2128
2129 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2130 &unusable_fops);
2131
2132 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2133 &extfrag_fops);
2134
2135 return 0;
2136}
2137
2138module_init(extfrag_debug_init);
2139#endif