Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
44#include <linux/sched/mm.h>
45#include <linux/sched/coredump.h>
46#include <linux/sched/numa_balancing.h>
47#include <linux/sched/task.h>
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
53#include <linux/memremap.h>
54#include <linux/ksm.h>
55#include <linux/rmap.h>
56#include <linux/export.h>
57#include <linux/delayacct.h>
58#include <linux/init.h>
59#include <linux/pfn_t.h>
60#include <linux/writeback.h>
61#include <linux/memcontrol.h>
62#include <linux/mmu_notifier.h>
63#include <linux/swapops.h>
64#include <linux/elf.h>
65#include <linux/gfp.h>
66#include <linux/migrate.h>
67#include <linux/string.h>
68#include <linux/dma-debug.h>
69#include <linux/debugfs.h>
70#include <linux/userfaultfd_k.h>
71#include <linux/dax.h>
72#include <linux/oom.h>
73#include <linux/numa.h>
74
75#include <trace/events/kmem.h>
76
77#include <asm/io.h>
78#include <asm/mmu_context.h>
79#include <asm/pgalloc.h>
80#include <linux/uaccess.h>
81#include <asm/tlb.h>
82#include <asm/tlbflush.h>
83
84#include "internal.h"
85
86#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
87#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
88#endif
89
90#ifndef CONFIG_NEED_MULTIPLE_NODES
91/* use the per-pgdat data instead for discontigmem - mbligh */
92unsigned long max_mapnr;
93EXPORT_SYMBOL(max_mapnr);
94
95struct page *mem_map;
96EXPORT_SYMBOL(mem_map);
97#endif
98
99/*
100 * A number of key systems in x86 including ioremap() rely on the assumption
101 * that high_memory defines the upper bound on direct map memory, then end
102 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
103 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104 * and ZONE_HIGHMEM.
105 */
106void *high_memory;
107EXPORT_SYMBOL(high_memory);
108
109/*
110 * Randomize the address space (stacks, mmaps, brk, etc.).
111 *
112 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
113 * as ancient (libc5 based) binaries can segfault. )
114 */
115int randomize_va_space __read_mostly =
116#ifdef CONFIG_COMPAT_BRK
117 1;
118#else
119 2;
120#endif
121
122#ifndef arch_faults_on_old_pte
123static inline bool arch_faults_on_old_pte(void)
124{
125 /*
126 * Those arches which don't have hw access flag feature need to
127 * implement their own helper. By default, "true" means pagefault
128 * will be hit on old pte.
129 */
130 return true;
131}
132#endif
133
134static int __init disable_randmaps(char *s)
135{
136 randomize_va_space = 0;
137 return 1;
138}
139__setup("norandmaps", disable_randmaps);
140
141unsigned long zero_pfn __read_mostly;
142EXPORT_SYMBOL(zero_pfn);
143
144unsigned long highest_memmap_pfn __read_mostly;
145
146/*
147 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
148 */
149static int __init init_zero_pfn(void)
150{
151 zero_pfn = page_to_pfn(ZERO_PAGE(0));
152 return 0;
153}
154core_initcall(init_zero_pfn);
155
156void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
157{
158 trace_rss_stat(mm, member, count);
159}
160
161#if defined(SPLIT_RSS_COUNTING)
162
163void sync_mm_rss(struct mm_struct *mm)
164{
165 int i;
166
167 for (i = 0; i < NR_MM_COUNTERS; i++) {
168 if (current->rss_stat.count[i]) {
169 add_mm_counter(mm, i, current->rss_stat.count[i]);
170 current->rss_stat.count[i] = 0;
171 }
172 }
173 current->rss_stat.events = 0;
174}
175
176static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
177{
178 struct task_struct *task = current;
179
180 if (likely(task->mm == mm))
181 task->rss_stat.count[member] += val;
182 else
183 add_mm_counter(mm, member, val);
184}
185#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
186#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
187
188/* sync counter once per 64 page faults */
189#define TASK_RSS_EVENTS_THRESH (64)
190static void check_sync_rss_stat(struct task_struct *task)
191{
192 if (unlikely(task != current))
193 return;
194 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
195 sync_mm_rss(task->mm);
196}
197#else /* SPLIT_RSS_COUNTING */
198
199#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
200#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
201
202static void check_sync_rss_stat(struct task_struct *task)
203{
204}
205
206#endif /* SPLIT_RSS_COUNTING */
207
208/*
209 * Note: this doesn't free the actual pages themselves. That
210 * has been handled earlier when unmapping all the memory regions.
211 */
212static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
213 unsigned long addr)
214{
215 pgtable_t token = pmd_pgtable(*pmd);
216 pmd_clear(pmd);
217 pte_free_tlb(tlb, token, addr);
218 mm_dec_nr_ptes(tlb->mm);
219}
220
221static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
222 unsigned long addr, unsigned long end,
223 unsigned long floor, unsigned long ceiling)
224{
225 pmd_t *pmd;
226 unsigned long next;
227 unsigned long start;
228
229 start = addr;
230 pmd = pmd_offset(pud, addr);
231 do {
232 next = pmd_addr_end(addr, end);
233 if (pmd_none_or_clear_bad(pmd))
234 continue;
235 free_pte_range(tlb, pmd, addr);
236 } while (pmd++, addr = next, addr != end);
237
238 start &= PUD_MASK;
239 if (start < floor)
240 return;
241 if (ceiling) {
242 ceiling &= PUD_MASK;
243 if (!ceiling)
244 return;
245 }
246 if (end - 1 > ceiling - 1)
247 return;
248
249 pmd = pmd_offset(pud, start);
250 pud_clear(pud);
251 pmd_free_tlb(tlb, pmd, start);
252 mm_dec_nr_pmds(tlb->mm);
253}
254
255static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
256 unsigned long addr, unsigned long end,
257 unsigned long floor, unsigned long ceiling)
258{
259 pud_t *pud;
260 unsigned long next;
261 unsigned long start;
262
263 start = addr;
264 pud = pud_offset(p4d, addr);
265 do {
266 next = pud_addr_end(addr, end);
267 if (pud_none_or_clear_bad(pud))
268 continue;
269 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
270 } while (pud++, addr = next, addr != end);
271
272 start &= P4D_MASK;
273 if (start < floor)
274 return;
275 if (ceiling) {
276 ceiling &= P4D_MASK;
277 if (!ceiling)
278 return;
279 }
280 if (end - 1 > ceiling - 1)
281 return;
282
283 pud = pud_offset(p4d, start);
284 p4d_clear(p4d);
285 pud_free_tlb(tlb, pud, start);
286 mm_dec_nr_puds(tlb->mm);
287}
288
289static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
290 unsigned long addr, unsigned long end,
291 unsigned long floor, unsigned long ceiling)
292{
293 p4d_t *p4d;
294 unsigned long next;
295 unsigned long start;
296
297 start = addr;
298 p4d = p4d_offset(pgd, addr);
299 do {
300 next = p4d_addr_end(addr, end);
301 if (p4d_none_or_clear_bad(p4d))
302 continue;
303 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
304 } while (p4d++, addr = next, addr != end);
305
306 start &= PGDIR_MASK;
307 if (start < floor)
308 return;
309 if (ceiling) {
310 ceiling &= PGDIR_MASK;
311 if (!ceiling)
312 return;
313 }
314 if (end - 1 > ceiling - 1)
315 return;
316
317 p4d = p4d_offset(pgd, start);
318 pgd_clear(pgd);
319 p4d_free_tlb(tlb, p4d, start);
320}
321
322/*
323 * This function frees user-level page tables of a process.
324 */
325void free_pgd_range(struct mmu_gather *tlb,
326 unsigned long addr, unsigned long end,
327 unsigned long floor, unsigned long ceiling)
328{
329 pgd_t *pgd;
330 unsigned long next;
331
332 /*
333 * The next few lines have given us lots of grief...
334 *
335 * Why are we testing PMD* at this top level? Because often
336 * there will be no work to do at all, and we'd prefer not to
337 * go all the way down to the bottom just to discover that.
338 *
339 * Why all these "- 1"s? Because 0 represents both the bottom
340 * of the address space and the top of it (using -1 for the
341 * top wouldn't help much: the masks would do the wrong thing).
342 * The rule is that addr 0 and floor 0 refer to the bottom of
343 * the address space, but end 0 and ceiling 0 refer to the top
344 * Comparisons need to use "end - 1" and "ceiling - 1" (though
345 * that end 0 case should be mythical).
346 *
347 * Wherever addr is brought up or ceiling brought down, we must
348 * be careful to reject "the opposite 0" before it confuses the
349 * subsequent tests. But what about where end is brought down
350 * by PMD_SIZE below? no, end can't go down to 0 there.
351 *
352 * Whereas we round start (addr) and ceiling down, by different
353 * masks at different levels, in order to test whether a table
354 * now has no other vmas using it, so can be freed, we don't
355 * bother to round floor or end up - the tests don't need that.
356 */
357
358 addr &= PMD_MASK;
359 if (addr < floor) {
360 addr += PMD_SIZE;
361 if (!addr)
362 return;
363 }
364 if (ceiling) {
365 ceiling &= PMD_MASK;
366 if (!ceiling)
367 return;
368 }
369 if (end - 1 > ceiling - 1)
370 end -= PMD_SIZE;
371 if (addr > end - 1)
372 return;
373 /*
374 * We add page table cache pages with PAGE_SIZE,
375 * (see pte_free_tlb()), flush the tlb if we need
376 */
377 tlb_change_page_size(tlb, PAGE_SIZE);
378 pgd = pgd_offset(tlb->mm, addr);
379 do {
380 next = pgd_addr_end(addr, end);
381 if (pgd_none_or_clear_bad(pgd))
382 continue;
383 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
384 } while (pgd++, addr = next, addr != end);
385}
386
387void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
388 unsigned long floor, unsigned long ceiling)
389{
390 while (vma) {
391 struct vm_area_struct *next = vma->vm_next;
392 unsigned long addr = vma->vm_start;
393
394 /*
395 * Hide vma from rmap and truncate_pagecache before freeing
396 * pgtables
397 */
398 unlink_anon_vmas(vma);
399 unlink_file_vma(vma);
400
401 if (is_vm_hugetlb_page(vma)) {
402 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
403 floor, next ? next->vm_start : ceiling);
404 } else {
405 /*
406 * Optimization: gather nearby vmas into one call down
407 */
408 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
409 && !is_vm_hugetlb_page(next)) {
410 vma = next;
411 next = vma->vm_next;
412 unlink_anon_vmas(vma);
413 unlink_file_vma(vma);
414 }
415 free_pgd_range(tlb, addr, vma->vm_end,
416 floor, next ? next->vm_start : ceiling);
417 }
418 vma = next;
419 }
420}
421
422int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
423{
424 spinlock_t *ptl;
425 pgtable_t new = pte_alloc_one(mm);
426 if (!new)
427 return -ENOMEM;
428
429 /*
430 * Ensure all pte setup (eg. pte page lock and page clearing) are
431 * visible before the pte is made visible to other CPUs by being
432 * put into page tables.
433 *
434 * The other side of the story is the pointer chasing in the page
435 * table walking code (when walking the page table without locking;
436 * ie. most of the time). Fortunately, these data accesses consist
437 * of a chain of data-dependent loads, meaning most CPUs (alpha
438 * being the notable exception) will already guarantee loads are
439 * seen in-order. See the alpha page table accessors for the
440 * smp_read_barrier_depends() barriers in page table walking code.
441 */
442 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
443
444 ptl = pmd_lock(mm, pmd);
445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
446 mm_inc_nr_ptes(mm);
447 pmd_populate(mm, pmd, new);
448 new = NULL;
449 }
450 spin_unlock(ptl);
451 if (new)
452 pte_free(mm, new);
453 return 0;
454}
455
456int __pte_alloc_kernel(pmd_t *pmd)
457{
458 pte_t *new = pte_alloc_one_kernel(&init_mm);
459 if (!new)
460 return -ENOMEM;
461
462 smp_wmb(); /* See comment in __pte_alloc */
463
464 spin_lock(&init_mm.page_table_lock);
465 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
466 pmd_populate_kernel(&init_mm, pmd, new);
467 new = NULL;
468 }
469 spin_unlock(&init_mm.page_table_lock);
470 if (new)
471 pte_free_kernel(&init_mm, new);
472 return 0;
473}
474
475static inline void init_rss_vec(int *rss)
476{
477 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
478}
479
480static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
481{
482 int i;
483
484 if (current->mm == mm)
485 sync_mm_rss(mm);
486 for (i = 0; i < NR_MM_COUNTERS; i++)
487 if (rss[i])
488 add_mm_counter(mm, i, rss[i]);
489}
490
491/*
492 * This function is called to print an error when a bad pte
493 * is found. For example, we might have a PFN-mapped pte in
494 * a region that doesn't allow it.
495 *
496 * The calling function must still handle the error.
497 */
498static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
499 pte_t pte, struct page *page)
500{
501 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
502 p4d_t *p4d = p4d_offset(pgd, addr);
503 pud_t *pud = pud_offset(p4d, addr);
504 pmd_t *pmd = pmd_offset(pud, addr);
505 struct address_space *mapping;
506 pgoff_t index;
507 static unsigned long resume;
508 static unsigned long nr_shown;
509 static unsigned long nr_unshown;
510
511 /*
512 * Allow a burst of 60 reports, then keep quiet for that minute;
513 * or allow a steady drip of one report per second.
514 */
515 if (nr_shown == 60) {
516 if (time_before(jiffies, resume)) {
517 nr_unshown++;
518 return;
519 }
520 if (nr_unshown) {
521 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
522 nr_unshown);
523 nr_unshown = 0;
524 }
525 nr_shown = 0;
526 }
527 if (nr_shown++ == 0)
528 resume = jiffies + 60 * HZ;
529
530 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
531 index = linear_page_index(vma, addr);
532
533 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
534 current->comm,
535 (long long)pte_val(pte), (long long)pmd_val(*pmd));
536 if (page)
537 dump_page(page, "bad pte");
538 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
539 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
540 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
541 vma->vm_file,
542 vma->vm_ops ? vma->vm_ops->fault : NULL,
543 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
544 mapping ? mapping->a_ops->readpage : NULL);
545 dump_stack();
546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
547}
548
549/*
550 * vm_normal_page -- This function gets the "struct page" associated with a pte.
551 *
552 * "Special" mappings do not wish to be associated with a "struct page" (either
553 * it doesn't exist, or it exists but they don't want to touch it). In this
554 * case, NULL is returned here. "Normal" mappings do have a struct page.
555 *
556 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
557 * pte bit, in which case this function is trivial. Secondly, an architecture
558 * may not have a spare pte bit, which requires a more complicated scheme,
559 * described below.
560 *
561 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
562 * special mapping (even if there are underlying and valid "struct pages").
563 * COWed pages of a VM_PFNMAP are always normal.
564 *
565 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
566 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
567 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
568 * mapping will always honor the rule
569 *
570 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
571 *
572 * And for normal mappings this is false.
573 *
574 * This restricts such mappings to be a linear translation from virtual address
575 * to pfn. To get around this restriction, we allow arbitrary mappings so long
576 * as the vma is not a COW mapping; in that case, we know that all ptes are
577 * special (because none can have been COWed).
578 *
579 *
580 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
581 *
582 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
583 * page" backing, however the difference is that _all_ pages with a struct
584 * page (that is, those where pfn_valid is true) are refcounted and considered
585 * normal pages by the VM. The disadvantage is that pages are refcounted
586 * (which can be slower and simply not an option for some PFNMAP users). The
587 * advantage is that we don't have to follow the strict linearity rule of
588 * PFNMAP mappings in order to support COWable mappings.
589 *
590 */
591struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 pte_t pte)
593{
594 unsigned long pfn = pte_pfn(pte);
595
596 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 if (likely(!pte_special(pte)))
598 goto check_pfn;
599 if (vma->vm_ops && vma->vm_ops->find_special_page)
600 return vma->vm_ops->find_special_page(vma, addr);
601 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 return NULL;
603 if (is_zero_pfn(pfn))
604 return NULL;
605 if (pte_devmap(pte))
606 return NULL;
607
608 print_bad_pte(vma, addr, pte, NULL);
609 return NULL;
610 }
611
612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
626 }
627 }
628
629 if (is_zero_pfn(pfn))
630 return NULL;
631
632check_pfn:
633 if (unlikely(pfn > highest_memmap_pfn)) {
634 print_bad_pte(vma, addr, pte, NULL);
635 return NULL;
636 }
637
638 /*
639 * NOTE! We still have PageReserved() pages in the page tables.
640 * eg. VDSO mappings can cause them to exist.
641 */
642out:
643 return pfn_to_page(pfn);
644}
645
646#ifdef CONFIG_TRANSPARENT_HUGEPAGE
647struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
648 pmd_t pmd)
649{
650 unsigned long pfn = pmd_pfn(pmd);
651
652 /*
653 * There is no pmd_special() but there may be special pmds, e.g.
654 * in a direct-access (dax) mapping, so let's just replicate the
655 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
656 */
657 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
658 if (vma->vm_flags & VM_MIXEDMAP) {
659 if (!pfn_valid(pfn))
660 return NULL;
661 goto out;
662 } else {
663 unsigned long off;
664 off = (addr - vma->vm_start) >> PAGE_SHIFT;
665 if (pfn == vma->vm_pgoff + off)
666 return NULL;
667 if (!is_cow_mapping(vma->vm_flags))
668 return NULL;
669 }
670 }
671
672 if (pmd_devmap(pmd))
673 return NULL;
674 if (is_huge_zero_pmd(pmd))
675 return NULL;
676 if (unlikely(pfn > highest_memmap_pfn))
677 return NULL;
678
679 /*
680 * NOTE! We still have PageReserved() pages in the page tables.
681 * eg. VDSO mappings can cause them to exist.
682 */
683out:
684 return pfn_to_page(pfn);
685}
686#endif
687
688/*
689 * copy one vm_area from one task to the other. Assumes the page tables
690 * already present in the new task to be cleared in the whole range
691 * covered by this vma.
692 */
693
694static inline unsigned long
695copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
696 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
697 unsigned long addr, int *rss)
698{
699 unsigned long vm_flags = vma->vm_flags;
700 pte_t pte = *src_pte;
701 struct page *page;
702
703 /* pte contains position in swap or file, so copy. */
704 if (unlikely(!pte_present(pte))) {
705 swp_entry_t entry = pte_to_swp_entry(pte);
706
707 if (likely(!non_swap_entry(entry))) {
708 if (swap_duplicate(entry) < 0)
709 return entry.val;
710
711 /* make sure dst_mm is on swapoff's mmlist. */
712 if (unlikely(list_empty(&dst_mm->mmlist))) {
713 spin_lock(&mmlist_lock);
714 if (list_empty(&dst_mm->mmlist))
715 list_add(&dst_mm->mmlist,
716 &src_mm->mmlist);
717 spin_unlock(&mmlist_lock);
718 }
719 rss[MM_SWAPENTS]++;
720 } else if (is_migration_entry(entry)) {
721 page = migration_entry_to_page(entry);
722
723 rss[mm_counter(page)]++;
724
725 if (is_write_migration_entry(entry) &&
726 is_cow_mapping(vm_flags)) {
727 /*
728 * COW mappings require pages in both
729 * parent and child to be set to read.
730 */
731 make_migration_entry_read(&entry);
732 pte = swp_entry_to_pte(entry);
733 if (pte_swp_soft_dirty(*src_pte))
734 pte = pte_swp_mksoft_dirty(pte);
735 if (pte_swp_uffd_wp(*src_pte))
736 pte = pte_swp_mkuffd_wp(pte);
737 set_pte_at(src_mm, addr, src_pte, pte);
738 }
739 } else if (is_device_private_entry(entry)) {
740 page = device_private_entry_to_page(entry);
741
742 /*
743 * Update rss count even for unaddressable pages, as
744 * they should treated just like normal pages in this
745 * respect.
746 *
747 * We will likely want to have some new rss counters
748 * for unaddressable pages, at some point. But for now
749 * keep things as they are.
750 */
751 get_page(page);
752 rss[mm_counter(page)]++;
753 page_dup_rmap(page, false);
754
755 /*
756 * We do not preserve soft-dirty information, because so
757 * far, checkpoint/restore is the only feature that
758 * requires that. And checkpoint/restore does not work
759 * when a device driver is involved (you cannot easily
760 * save and restore device driver state).
761 */
762 if (is_write_device_private_entry(entry) &&
763 is_cow_mapping(vm_flags)) {
764 make_device_private_entry_read(&entry);
765 pte = swp_entry_to_pte(entry);
766 if (pte_swp_uffd_wp(*src_pte))
767 pte = pte_swp_mkuffd_wp(pte);
768 set_pte_at(src_mm, addr, src_pte, pte);
769 }
770 }
771 goto out_set_pte;
772 }
773
774 /*
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
777 */
778 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779 ptep_set_wrprotect(src_mm, addr, src_pte);
780 pte = pte_wrprotect(pte);
781 }
782
783 /*
784 * If it's a shared mapping, mark it clean in
785 * the child
786 */
787 if (vm_flags & VM_SHARED)
788 pte = pte_mkclean(pte);
789 pte = pte_mkold(pte);
790
791 /*
792 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
793 * does not have the VM_UFFD_WP, which means that the uffd
794 * fork event is not enabled.
795 */
796 if (!(vm_flags & VM_UFFD_WP))
797 pte = pte_clear_uffd_wp(pte);
798
799 page = vm_normal_page(vma, addr, pte);
800 if (page) {
801 get_page(page);
802 page_dup_rmap(page, false);
803 rss[mm_counter(page)]++;
804 }
805
806out_set_pte:
807 set_pte_at(dst_mm, addr, dst_pte, pte);
808 return 0;
809}
810
811static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
812 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
813 unsigned long addr, unsigned long end)
814{
815 pte_t *orig_src_pte, *orig_dst_pte;
816 pte_t *src_pte, *dst_pte;
817 spinlock_t *src_ptl, *dst_ptl;
818 int progress = 0;
819 int rss[NR_MM_COUNTERS];
820 swp_entry_t entry = (swp_entry_t){0};
821
822again:
823 init_rss_vec(rss);
824
825 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
826 if (!dst_pte)
827 return -ENOMEM;
828 src_pte = pte_offset_map(src_pmd, addr);
829 src_ptl = pte_lockptr(src_mm, src_pmd);
830 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
831 orig_src_pte = src_pte;
832 orig_dst_pte = dst_pte;
833 arch_enter_lazy_mmu_mode();
834
835 do {
836 /*
837 * We are holding two locks at this point - either of them
838 * could generate latencies in another task on another CPU.
839 */
840 if (progress >= 32) {
841 progress = 0;
842 if (need_resched() ||
843 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
844 break;
845 }
846 if (pte_none(*src_pte)) {
847 progress++;
848 continue;
849 }
850 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
851 vma, addr, rss);
852 if (entry.val)
853 break;
854 progress += 8;
855 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
856
857 arch_leave_lazy_mmu_mode();
858 spin_unlock(src_ptl);
859 pte_unmap(orig_src_pte);
860 add_mm_rss_vec(dst_mm, rss);
861 pte_unmap_unlock(orig_dst_pte, dst_ptl);
862 cond_resched();
863
864 if (entry.val) {
865 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
866 return -ENOMEM;
867 progress = 0;
868 }
869 if (addr != end)
870 goto again;
871 return 0;
872}
873
874static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
876 unsigned long addr, unsigned long end)
877{
878 pmd_t *src_pmd, *dst_pmd;
879 unsigned long next;
880
881 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
882 if (!dst_pmd)
883 return -ENOMEM;
884 src_pmd = pmd_offset(src_pud, addr);
885 do {
886 next = pmd_addr_end(addr, end);
887 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
888 || pmd_devmap(*src_pmd)) {
889 int err;
890 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
891 err = copy_huge_pmd(dst_mm, src_mm,
892 dst_pmd, src_pmd, addr, vma);
893 if (err == -ENOMEM)
894 return -ENOMEM;
895 if (!err)
896 continue;
897 /* fall through */
898 }
899 if (pmd_none_or_clear_bad(src_pmd))
900 continue;
901 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
902 vma, addr, next))
903 return -ENOMEM;
904 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
905 return 0;
906}
907
908static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
909 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
910 unsigned long addr, unsigned long end)
911{
912 pud_t *src_pud, *dst_pud;
913 unsigned long next;
914
915 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
916 if (!dst_pud)
917 return -ENOMEM;
918 src_pud = pud_offset(src_p4d, addr);
919 do {
920 next = pud_addr_end(addr, end);
921 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
922 int err;
923
924 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
925 err = copy_huge_pud(dst_mm, src_mm,
926 dst_pud, src_pud, addr, vma);
927 if (err == -ENOMEM)
928 return -ENOMEM;
929 if (!err)
930 continue;
931 /* fall through */
932 }
933 if (pud_none_or_clear_bad(src_pud))
934 continue;
935 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
936 vma, addr, next))
937 return -ENOMEM;
938 } while (dst_pud++, src_pud++, addr = next, addr != end);
939 return 0;
940}
941
942static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
944 unsigned long addr, unsigned long end)
945{
946 p4d_t *src_p4d, *dst_p4d;
947 unsigned long next;
948
949 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
950 if (!dst_p4d)
951 return -ENOMEM;
952 src_p4d = p4d_offset(src_pgd, addr);
953 do {
954 next = p4d_addr_end(addr, end);
955 if (p4d_none_or_clear_bad(src_p4d))
956 continue;
957 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
958 vma, addr, next))
959 return -ENOMEM;
960 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
961 return 0;
962}
963
964int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
965 struct vm_area_struct *vma)
966{
967 pgd_t *src_pgd, *dst_pgd;
968 unsigned long next;
969 unsigned long addr = vma->vm_start;
970 unsigned long end = vma->vm_end;
971 struct mmu_notifier_range range;
972 bool is_cow;
973 int ret;
974
975 /*
976 * Don't copy ptes where a page fault will fill them correctly.
977 * Fork becomes much lighter when there are big shared or private
978 * readonly mappings. The tradeoff is that copy_page_range is more
979 * efficient than faulting.
980 */
981 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
982 !vma->anon_vma)
983 return 0;
984
985 if (is_vm_hugetlb_page(vma))
986 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
987
988 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
989 /*
990 * We do not free on error cases below as remove_vma
991 * gets called on error from higher level routine
992 */
993 ret = track_pfn_copy(vma);
994 if (ret)
995 return ret;
996 }
997
998 /*
999 * We need to invalidate the secondary MMU mappings only when
1000 * there could be a permission downgrade on the ptes of the
1001 * parent mm. And a permission downgrade will only happen if
1002 * is_cow_mapping() returns true.
1003 */
1004 is_cow = is_cow_mapping(vma->vm_flags);
1005
1006 if (is_cow) {
1007 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1008 0, vma, src_mm, addr, end);
1009 mmu_notifier_invalidate_range_start(&range);
1010 }
1011
1012 ret = 0;
1013 dst_pgd = pgd_offset(dst_mm, addr);
1014 src_pgd = pgd_offset(src_mm, addr);
1015 do {
1016 next = pgd_addr_end(addr, end);
1017 if (pgd_none_or_clear_bad(src_pgd))
1018 continue;
1019 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1020 vma, addr, next))) {
1021 ret = -ENOMEM;
1022 break;
1023 }
1024 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1025
1026 if (is_cow)
1027 mmu_notifier_invalidate_range_end(&range);
1028 return ret;
1029}
1030
1031static unsigned long zap_pte_range(struct mmu_gather *tlb,
1032 struct vm_area_struct *vma, pmd_t *pmd,
1033 unsigned long addr, unsigned long end,
1034 struct zap_details *details)
1035{
1036 struct mm_struct *mm = tlb->mm;
1037 int force_flush = 0;
1038 int rss[NR_MM_COUNTERS];
1039 spinlock_t *ptl;
1040 pte_t *start_pte;
1041 pte_t *pte;
1042 swp_entry_t entry;
1043
1044 tlb_change_page_size(tlb, PAGE_SIZE);
1045again:
1046 init_rss_vec(rss);
1047 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1048 pte = start_pte;
1049 flush_tlb_batched_pending(mm);
1050 arch_enter_lazy_mmu_mode();
1051 do {
1052 pte_t ptent = *pte;
1053 if (pte_none(ptent))
1054 continue;
1055
1056 if (need_resched())
1057 break;
1058
1059 if (pte_present(ptent)) {
1060 struct page *page;
1061
1062 page = vm_normal_page(vma, addr, ptent);
1063 if (unlikely(details) && page) {
1064 /*
1065 * unmap_shared_mapping_pages() wants to
1066 * invalidate cache without truncating:
1067 * unmap shared but keep private pages.
1068 */
1069 if (details->check_mapping &&
1070 details->check_mapping != page_rmapping(page))
1071 continue;
1072 }
1073 ptent = ptep_get_and_clear_full(mm, addr, pte,
1074 tlb->fullmm);
1075 tlb_remove_tlb_entry(tlb, pte, addr);
1076 if (unlikely(!page))
1077 continue;
1078
1079 if (!PageAnon(page)) {
1080 if (pte_dirty(ptent)) {
1081 force_flush = 1;
1082 set_page_dirty(page);
1083 }
1084 if (pte_young(ptent) &&
1085 likely(!(vma->vm_flags & VM_SEQ_READ)))
1086 mark_page_accessed(page);
1087 }
1088 rss[mm_counter(page)]--;
1089 page_remove_rmap(page, false);
1090 if (unlikely(page_mapcount(page) < 0))
1091 print_bad_pte(vma, addr, ptent, page);
1092 if (unlikely(__tlb_remove_page(tlb, page))) {
1093 force_flush = 1;
1094 addr += PAGE_SIZE;
1095 break;
1096 }
1097 continue;
1098 }
1099
1100 entry = pte_to_swp_entry(ptent);
1101 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1102 struct page *page = device_private_entry_to_page(entry);
1103
1104 if (unlikely(details && details->check_mapping)) {
1105 /*
1106 * unmap_shared_mapping_pages() wants to
1107 * invalidate cache without truncating:
1108 * unmap shared but keep private pages.
1109 */
1110 if (details->check_mapping !=
1111 page_rmapping(page))
1112 continue;
1113 }
1114
1115 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1116 rss[mm_counter(page)]--;
1117 page_remove_rmap(page, false);
1118 put_page(page);
1119 continue;
1120 }
1121
1122 /* If details->check_mapping, we leave swap entries. */
1123 if (unlikely(details))
1124 continue;
1125
1126 if (!non_swap_entry(entry))
1127 rss[MM_SWAPENTS]--;
1128 else if (is_migration_entry(entry)) {
1129 struct page *page;
1130
1131 page = migration_entry_to_page(entry);
1132 rss[mm_counter(page)]--;
1133 }
1134 if (unlikely(!free_swap_and_cache(entry)))
1135 print_bad_pte(vma, addr, ptent, NULL);
1136 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1137 } while (pte++, addr += PAGE_SIZE, addr != end);
1138
1139 add_mm_rss_vec(mm, rss);
1140 arch_leave_lazy_mmu_mode();
1141
1142 /* Do the actual TLB flush before dropping ptl */
1143 if (force_flush)
1144 tlb_flush_mmu_tlbonly(tlb);
1145 pte_unmap_unlock(start_pte, ptl);
1146
1147 /*
1148 * If we forced a TLB flush (either due to running out of
1149 * batch buffers or because we needed to flush dirty TLB
1150 * entries before releasing the ptl), free the batched
1151 * memory too. Restart if we didn't do everything.
1152 */
1153 if (force_flush) {
1154 force_flush = 0;
1155 tlb_flush_mmu(tlb);
1156 }
1157
1158 if (addr != end) {
1159 cond_resched();
1160 goto again;
1161 }
1162
1163 return addr;
1164}
1165
1166static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167 struct vm_area_struct *vma, pud_t *pud,
1168 unsigned long addr, unsigned long end,
1169 struct zap_details *details)
1170{
1171 pmd_t *pmd;
1172 unsigned long next;
1173
1174 pmd = pmd_offset(pud, addr);
1175 do {
1176 next = pmd_addr_end(addr, end);
1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178 if (next - addr != HPAGE_PMD_SIZE)
1179 __split_huge_pmd(vma, pmd, addr, false, NULL);
1180 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181 goto next;
1182 /* fall through */
1183 }
1184 /*
1185 * Here there can be other concurrent MADV_DONTNEED or
1186 * trans huge page faults running, and if the pmd is
1187 * none or trans huge it can change under us. This is
1188 * because MADV_DONTNEED holds the mmap_lock in read
1189 * mode.
1190 */
1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 goto next;
1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194next:
1195 cond_resched();
1196 } while (pmd++, addr = next, addr != end);
1197
1198 return addr;
1199}
1200
1201static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202 struct vm_area_struct *vma, p4d_t *p4d,
1203 unsigned long addr, unsigned long end,
1204 struct zap_details *details)
1205{
1206 pud_t *pud;
1207 unsigned long next;
1208
1209 pud = pud_offset(p4d, addr);
1210 do {
1211 next = pud_addr_end(addr, end);
1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 if (next - addr != HPAGE_PUD_SIZE) {
1214 mmap_assert_locked(tlb->mm);
1215 split_huge_pud(vma, pud, addr);
1216 } else if (zap_huge_pud(tlb, vma, pud, addr))
1217 goto next;
1218 /* fall through */
1219 }
1220 if (pud_none_or_clear_bad(pud))
1221 continue;
1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223next:
1224 cond_resched();
1225 } while (pud++, addr = next, addr != end);
1226
1227 return addr;
1228}
1229
1230static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 struct vm_area_struct *vma, pgd_t *pgd,
1232 unsigned long addr, unsigned long end,
1233 struct zap_details *details)
1234{
1235 p4d_t *p4d;
1236 unsigned long next;
1237
1238 p4d = p4d_offset(pgd, addr);
1239 do {
1240 next = p4d_addr_end(addr, end);
1241 if (p4d_none_or_clear_bad(p4d))
1242 continue;
1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 } while (p4d++, addr = next, addr != end);
1245
1246 return addr;
1247}
1248
1249void unmap_page_range(struct mmu_gather *tlb,
1250 struct vm_area_struct *vma,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1253{
1254 pgd_t *pgd;
1255 unsigned long next;
1256
1257 BUG_ON(addr >= end);
1258 tlb_start_vma(tlb, vma);
1259 pgd = pgd_offset(vma->vm_mm, addr);
1260 do {
1261 next = pgd_addr_end(addr, end);
1262 if (pgd_none_or_clear_bad(pgd))
1263 continue;
1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265 } while (pgd++, addr = next, addr != end);
1266 tlb_end_vma(tlb, vma);
1267}
1268
1269
1270static void unmap_single_vma(struct mmu_gather *tlb,
1271 struct vm_area_struct *vma, unsigned long start_addr,
1272 unsigned long end_addr,
1273 struct zap_details *details)
1274{
1275 unsigned long start = max(vma->vm_start, start_addr);
1276 unsigned long end;
1277
1278 if (start >= vma->vm_end)
1279 return;
1280 end = min(vma->vm_end, end_addr);
1281 if (end <= vma->vm_start)
1282 return;
1283
1284 if (vma->vm_file)
1285 uprobe_munmap(vma, start, end);
1286
1287 if (unlikely(vma->vm_flags & VM_PFNMAP))
1288 untrack_pfn(vma, 0, 0);
1289
1290 if (start != end) {
1291 if (unlikely(is_vm_hugetlb_page(vma))) {
1292 /*
1293 * It is undesirable to test vma->vm_file as it
1294 * should be non-null for valid hugetlb area.
1295 * However, vm_file will be NULL in the error
1296 * cleanup path of mmap_region. When
1297 * hugetlbfs ->mmap method fails,
1298 * mmap_region() nullifies vma->vm_file
1299 * before calling this function to clean up.
1300 * Since no pte has actually been setup, it is
1301 * safe to do nothing in this case.
1302 */
1303 if (vma->vm_file) {
1304 i_mmap_lock_write(vma->vm_file->f_mapping);
1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306 i_mmap_unlock_write(vma->vm_file->f_mapping);
1307 }
1308 } else
1309 unmap_page_range(tlb, vma, start, end, details);
1310 }
1311}
1312
1313/**
1314 * unmap_vmas - unmap a range of memory covered by a list of vma's
1315 * @tlb: address of the caller's struct mmu_gather
1316 * @vma: the starting vma
1317 * @start_addr: virtual address at which to start unmapping
1318 * @end_addr: virtual address at which to end unmapping
1319 *
1320 * Unmap all pages in the vma list.
1321 *
1322 * Only addresses between `start' and `end' will be unmapped.
1323 *
1324 * The VMA list must be sorted in ascending virtual address order.
1325 *
1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327 * range after unmap_vmas() returns. So the only responsibility here is to
1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329 * drops the lock and schedules.
1330 */
1331void unmap_vmas(struct mmu_gather *tlb,
1332 struct vm_area_struct *vma, unsigned long start_addr,
1333 unsigned long end_addr)
1334{
1335 struct mmu_notifier_range range;
1336
1337 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1338 start_addr, end_addr);
1339 mmu_notifier_invalidate_range_start(&range);
1340 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342 mmu_notifier_invalidate_range_end(&range);
1343}
1344
1345/**
1346 * zap_page_range - remove user pages in a given range
1347 * @vma: vm_area_struct holding the applicable pages
1348 * @start: starting address of pages to zap
1349 * @size: number of bytes to zap
1350 *
1351 * Caller must protect the VMA list
1352 */
1353void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354 unsigned long size)
1355{
1356 struct mmu_notifier_range range;
1357 struct mmu_gather tlb;
1358
1359 lru_add_drain();
1360 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361 start, start + size);
1362 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1363 update_hiwater_rss(vma->vm_mm);
1364 mmu_notifier_invalidate_range_start(&range);
1365 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1366 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1367 mmu_notifier_invalidate_range_end(&range);
1368 tlb_finish_mmu(&tlb, start, range.end);
1369}
1370
1371/**
1372 * zap_page_range_single - remove user pages in a given range
1373 * @vma: vm_area_struct holding the applicable pages
1374 * @address: starting address of pages to zap
1375 * @size: number of bytes to zap
1376 * @details: details of shared cache invalidation
1377 *
1378 * The range must fit into one VMA.
1379 */
1380static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381 unsigned long size, struct zap_details *details)
1382{
1383 struct mmu_notifier_range range;
1384 struct mmu_gather tlb;
1385
1386 lru_add_drain();
1387 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1388 address, address + size);
1389 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1390 update_hiwater_rss(vma->vm_mm);
1391 mmu_notifier_invalidate_range_start(&range);
1392 unmap_single_vma(&tlb, vma, address, range.end, details);
1393 mmu_notifier_invalidate_range_end(&range);
1394 tlb_finish_mmu(&tlb, address, range.end);
1395}
1396
1397/**
1398 * zap_vma_ptes - remove ptes mapping the vma
1399 * @vma: vm_area_struct holding ptes to be zapped
1400 * @address: starting address of pages to zap
1401 * @size: number of bytes to zap
1402 *
1403 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404 *
1405 * The entire address range must be fully contained within the vma.
1406 *
1407 */
1408void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409 unsigned long size)
1410{
1411 if (address < vma->vm_start || address + size > vma->vm_end ||
1412 !(vma->vm_flags & VM_PFNMAP))
1413 return;
1414
1415 zap_page_range_single(vma, address, size, NULL);
1416}
1417EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418
1419static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1420{
1421 pgd_t *pgd;
1422 p4d_t *p4d;
1423 pud_t *pud;
1424 pmd_t *pmd;
1425
1426 pgd = pgd_offset(mm, addr);
1427 p4d = p4d_alloc(mm, pgd, addr);
1428 if (!p4d)
1429 return NULL;
1430 pud = pud_alloc(mm, p4d, addr);
1431 if (!pud)
1432 return NULL;
1433 pmd = pmd_alloc(mm, pud, addr);
1434 if (!pmd)
1435 return NULL;
1436
1437 VM_BUG_ON(pmd_trans_huge(*pmd));
1438 return pmd;
1439}
1440
1441pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1442 spinlock_t **ptl)
1443{
1444 pmd_t *pmd = walk_to_pmd(mm, addr);
1445
1446 if (!pmd)
1447 return NULL;
1448 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1449}
1450
1451static int validate_page_before_insert(struct page *page)
1452{
1453 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1454 return -EINVAL;
1455 flush_dcache_page(page);
1456 return 0;
1457}
1458
1459static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1460 unsigned long addr, struct page *page, pgprot_t prot)
1461{
1462 if (!pte_none(*pte))
1463 return -EBUSY;
1464 /* Ok, finally just insert the thing.. */
1465 get_page(page);
1466 inc_mm_counter_fast(mm, mm_counter_file(page));
1467 page_add_file_rmap(page, false);
1468 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1469 return 0;
1470}
1471
1472/*
1473 * This is the old fallback for page remapping.
1474 *
1475 * For historical reasons, it only allows reserved pages. Only
1476 * old drivers should use this, and they needed to mark their
1477 * pages reserved for the old functions anyway.
1478 */
1479static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1480 struct page *page, pgprot_t prot)
1481{
1482 struct mm_struct *mm = vma->vm_mm;
1483 int retval;
1484 pte_t *pte;
1485 spinlock_t *ptl;
1486
1487 retval = validate_page_before_insert(page);
1488 if (retval)
1489 goto out;
1490 retval = -ENOMEM;
1491 pte = get_locked_pte(mm, addr, &ptl);
1492 if (!pte)
1493 goto out;
1494 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1495 pte_unmap_unlock(pte, ptl);
1496out:
1497 return retval;
1498}
1499
1500#ifdef pte_index
1501static int insert_page_in_batch_locked(struct mm_struct *mm, pmd_t *pmd,
1502 unsigned long addr, struct page *page, pgprot_t prot)
1503{
1504 int err;
1505
1506 if (!page_count(page))
1507 return -EINVAL;
1508 err = validate_page_before_insert(page);
1509 return err ? err : insert_page_into_pte_locked(
1510 mm, pte_offset_map(pmd, addr), addr, page, prot);
1511}
1512
1513/* insert_pages() amortizes the cost of spinlock operations
1514 * when inserting pages in a loop. Arch *must* define pte_index.
1515 */
1516static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1517 struct page **pages, unsigned long *num, pgprot_t prot)
1518{
1519 pmd_t *pmd = NULL;
1520 spinlock_t *pte_lock = NULL;
1521 struct mm_struct *const mm = vma->vm_mm;
1522 unsigned long curr_page_idx = 0;
1523 unsigned long remaining_pages_total = *num;
1524 unsigned long pages_to_write_in_pmd;
1525 int ret;
1526more:
1527 ret = -EFAULT;
1528 pmd = walk_to_pmd(mm, addr);
1529 if (!pmd)
1530 goto out;
1531
1532 pages_to_write_in_pmd = min_t(unsigned long,
1533 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1534
1535 /* Allocate the PTE if necessary; takes PMD lock once only. */
1536 ret = -ENOMEM;
1537 if (pte_alloc(mm, pmd))
1538 goto out;
1539 pte_lock = pte_lockptr(mm, pmd);
1540
1541 while (pages_to_write_in_pmd) {
1542 int pte_idx = 0;
1543 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1544
1545 spin_lock(pte_lock);
1546 for (; pte_idx < batch_size; ++pte_idx) {
1547 int err = insert_page_in_batch_locked(mm, pmd,
1548 addr, pages[curr_page_idx], prot);
1549 if (unlikely(err)) {
1550 spin_unlock(pte_lock);
1551 ret = err;
1552 remaining_pages_total -= pte_idx;
1553 goto out;
1554 }
1555 addr += PAGE_SIZE;
1556 ++curr_page_idx;
1557 }
1558 spin_unlock(pte_lock);
1559 pages_to_write_in_pmd -= batch_size;
1560 remaining_pages_total -= batch_size;
1561 }
1562 if (remaining_pages_total)
1563 goto more;
1564 ret = 0;
1565out:
1566 *num = remaining_pages_total;
1567 return ret;
1568}
1569#endif /* ifdef pte_index */
1570
1571/**
1572 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1573 * @vma: user vma to map to
1574 * @addr: target start user address of these pages
1575 * @pages: source kernel pages
1576 * @num: in: number of pages to map. out: number of pages that were *not*
1577 * mapped. (0 means all pages were successfully mapped).
1578 *
1579 * Preferred over vm_insert_page() when inserting multiple pages.
1580 *
1581 * In case of error, we may have mapped a subset of the provided
1582 * pages. It is the caller's responsibility to account for this case.
1583 *
1584 * The same restrictions apply as in vm_insert_page().
1585 */
1586int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1587 struct page **pages, unsigned long *num)
1588{
1589#ifdef pte_index
1590 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1591
1592 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1593 return -EFAULT;
1594 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1595 BUG_ON(mmap_read_trylock(vma->vm_mm));
1596 BUG_ON(vma->vm_flags & VM_PFNMAP);
1597 vma->vm_flags |= VM_MIXEDMAP;
1598 }
1599 /* Defer page refcount checking till we're about to map that page. */
1600 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1601#else
1602 unsigned long idx = 0, pgcount = *num;
1603 int err;
1604
1605 for (; idx < pgcount; ++idx) {
1606 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1607 if (err)
1608 break;
1609 }
1610 *num = pgcount - idx;
1611 return err;
1612#endif /* ifdef pte_index */
1613}
1614EXPORT_SYMBOL(vm_insert_pages);
1615
1616/**
1617 * vm_insert_page - insert single page into user vma
1618 * @vma: user vma to map to
1619 * @addr: target user address of this page
1620 * @page: source kernel page
1621 *
1622 * This allows drivers to insert individual pages they've allocated
1623 * into a user vma.
1624 *
1625 * The page has to be a nice clean _individual_ kernel allocation.
1626 * If you allocate a compound page, you need to have marked it as
1627 * such (__GFP_COMP), or manually just split the page up yourself
1628 * (see split_page()).
1629 *
1630 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1631 * took an arbitrary page protection parameter. This doesn't allow
1632 * that. Your vma protection will have to be set up correctly, which
1633 * means that if you want a shared writable mapping, you'd better
1634 * ask for a shared writable mapping!
1635 *
1636 * The page does not need to be reserved.
1637 *
1638 * Usually this function is called from f_op->mmap() handler
1639 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1640 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1641 * function from other places, for example from page-fault handler.
1642 *
1643 * Return: %0 on success, negative error code otherwise.
1644 */
1645int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1646 struct page *page)
1647{
1648 if (addr < vma->vm_start || addr >= vma->vm_end)
1649 return -EFAULT;
1650 if (!page_count(page))
1651 return -EINVAL;
1652 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1653 BUG_ON(mmap_read_trylock(vma->vm_mm));
1654 BUG_ON(vma->vm_flags & VM_PFNMAP);
1655 vma->vm_flags |= VM_MIXEDMAP;
1656 }
1657 return insert_page(vma, addr, page, vma->vm_page_prot);
1658}
1659EXPORT_SYMBOL(vm_insert_page);
1660
1661/*
1662 * __vm_map_pages - maps range of kernel pages into user vma
1663 * @vma: user vma to map to
1664 * @pages: pointer to array of source kernel pages
1665 * @num: number of pages in page array
1666 * @offset: user's requested vm_pgoff
1667 *
1668 * This allows drivers to map range of kernel pages into a user vma.
1669 *
1670 * Return: 0 on success and error code otherwise.
1671 */
1672static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1673 unsigned long num, unsigned long offset)
1674{
1675 unsigned long count = vma_pages(vma);
1676 unsigned long uaddr = vma->vm_start;
1677 int ret, i;
1678
1679 /* Fail if the user requested offset is beyond the end of the object */
1680 if (offset >= num)
1681 return -ENXIO;
1682
1683 /* Fail if the user requested size exceeds available object size */
1684 if (count > num - offset)
1685 return -ENXIO;
1686
1687 for (i = 0; i < count; i++) {
1688 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1689 if (ret < 0)
1690 return ret;
1691 uaddr += PAGE_SIZE;
1692 }
1693
1694 return 0;
1695}
1696
1697/**
1698 * vm_map_pages - maps range of kernel pages starts with non zero offset
1699 * @vma: user vma to map to
1700 * @pages: pointer to array of source kernel pages
1701 * @num: number of pages in page array
1702 *
1703 * Maps an object consisting of @num pages, catering for the user's
1704 * requested vm_pgoff
1705 *
1706 * If we fail to insert any page into the vma, the function will return
1707 * immediately leaving any previously inserted pages present. Callers
1708 * from the mmap handler may immediately return the error as their caller
1709 * will destroy the vma, removing any successfully inserted pages. Other
1710 * callers should make their own arrangements for calling unmap_region().
1711 *
1712 * Context: Process context. Called by mmap handlers.
1713 * Return: 0 on success and error code otherwise.
1714 */
1715int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1716 unsigned long num)
1717{
1718 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1719}
1720EXPORT_SYMBOL(vm_map_pages);
1721
1722/**
1723 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1724 * @vma: user vma to map to
1725 * @pages: pointer to array of source kernel pages
1726 * @num: number of pages in page array
1727 *
1728 * Similar to vm_map_pages(), except that it explicitly sets the offset
1729 * to 0. This function is intended for the drivers that did not consider
1730 * vm_pgoff.
1731 *
1732 * Context: Process context. Called by mmap handlers.
1733 * Return: 0 on success and error code otherwise.
1734 */
1735int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1736 unsigned long num)
1737{
1738 return __vm_map_pages(vma, pages, num, 0);
1739}
1740EXPORT_SYMBOL(vm_map_pages_zero);
1741
1742static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1743 pfn_t pfn, pgprot_t prot, bool mkwrite)
1744{
1745 struct mm_struct *mm = vma->vm_mm;
1746 pte_t *pte, entry;
1747 spinlock_t *ptl;
1748
1749 pte = get_locked_pte(mm, addr, &ptl);
1750 if (!pte)
1751 return VM_FAULT_OOM;
1752 if (!pte_none(*pte)) {
1753 if (mkwrite) {
1754 /*
1755 * For read faults on private mappings the PFN passed
1756 * in may not match the PFN we have mapped if the
1757 * mapped PFN is a writeable COW page. In the mkwrite
1758 * case we are creating a writable PTE for a shared
1759 * mapping and we expect the PFNs to match. If they
1760 * don't match, we are likely racing with block
1761 * allocation and mapping invalidation so just skip the
1762 * update.
1763 */
1764 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1765 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1766 goto out_unlock;
1767 }
1768 entry = pte_mkyoung(*pte);
1769 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1770 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1771 update_mmu_cache(vma, addr, pte);
1772 }
1773 goto out_unlock;
1774 }
1775
1776 /* Ok, finally just insert the thing.. */
1777 if (pfn_t_devmap(pfn))
1778 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1779 else
1780 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1781
1782 if (mkwrite) {
1783 entry = pte_mkyoung(entry);
1784 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1785 }
1786
1787 set_pte_at(mm, addr, pte, entry);
1788 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1789
1790out_unlock:
1791 pte_unmap_unlock(pte, ptl);
1792 return VM_FAULT_NOPAGE;
1793}
1794
1795/**
1796 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1797 * @vma: user vma to map to
1798 * @addr: target user address of this page
1799 * @pfn: source kernel pfn
1800 * @pgprot: pgprot flags for the inserted page
1801 *
1802 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1803 * to override pgprot on a per-page basis.
1804 *
1805 * This only makes sense for IO mappings, and it makes no sense for
1806 * COW mappings. In general, using multiple vmas is preferable;
1807 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1808 * impractical.
1809 *
1810 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1811 * a value of @pgprot different from that of @vma->vm_page_prot.
1812 *
1813 * Context: Process context. May allocate using %GFP_KERNEL.
1814 * Return: vm_fault_t value.
1815 */
1816vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1817 unsigned long pfn, pgprot_t pgprot)
1818{
1819 /*
1820 * Technically, architectures with pte_special can avoid all these
1821 * restrictions (same for remap_pfn_range). However we would like
1822 * consistency in testing and feature parity among all, so we should
1823 * try to keep these invariants in place for everybody.
1824 */
1825 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1826 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1827 (VM_PFNMAP|VM_MIXEDMAP));
1828 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1829 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1830
1831 if (addr < vma->vm_start || addr >= vma->vm_end)
1832 return VM_FAULT_SIGBUS;
1833
1834 if (!pfn_modify_allowed(pfn, pgprot))
1835 return VM_FAULT_SIGBUS;
1836
1837 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1838
1839 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1840 false);
1841}
1842EXPORT_SYMBOL(vmf_insert_pfn_prot);
1843
1844/**
1845 * vmf_insert_pfn - insert single pfn into user vma
1846 * @vma: user vma to map to
1847 * @addr: target user address of this page
1848 * @pfn: source kernel pfn
1849 *
1850 * Similar to vm_insert_page, this allows drivers to insert individual pages
1851 * they've allocated into a user vma. Same comments apply.
1852 *
1853 * This function should only be called from a vm_ops->fault handler, and
1854 * in that case the handler should return the result of this function.
1855 *
1856 * vma cannot be a COW mapping.
1857 *
1858 * As this is called only for pages that do not currently exist, we
1859 * do not need to flush old virtual caches or the TLB.
1860 *
1861 * Context: Process context. May allocate using %GFP_KERNEL.
1862 * Return: vm_fault_t value.
1863 */
1864vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1865 unsigned long pfn)
1866{
1867 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1868}
1869EXPORT_SYMBOL(vmf_insert_pfn);
1870
1871static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1872{
1873 /* these checks mirror the abort conditions in vm_normal_page */
1874 if (vma->vm_flags & VM_MIXEDMAP)
1875 return true;
1876 if (pfn_t_devmap(pfn))
1877 return true;
1878 if (pfn_t_special(pfn))
1879 return true;
1880 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1881 return true;
1882 return false;
1883}
1884
1885static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1886 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1887 bool mkwrite)
1888{
1889 int err;
1890
1891 BUG_ON(!vm_mixed_ok(vma, pfn));
1892
1893 if (addr < vma->vm_start || addr >= vma->vm_end)
1894 return VM_FAULT_SIGBUS;
1895
1896 track_pfn_insert(vma, &pgprot, pfn);
1897
1898 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1899 return VM_FAULT_SIGBUS;
1900
1901 /*
1902 * If we don't have pte special, then we have to use the pfn_valid()
1903 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1904 * refcount the page if pfn_valid is true (hence insert_page rather
1905 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1906 * without pte special, it would there be refcounted as a normal page.
1907 */
1908 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1909 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1910 struct page *page;
1911
1912 /*
1913 * At this point we are committed to insert_page()
1914 * regardless of whether the caller specified flags that
1915 * result in pfn_t_has_page() == false.
1916 */
1917 page = pfn_to_page(pfn_t_to_pfn(pfn));
1918 err = insert_page(vma, addr, page, pgprot);
1919 } else {
1920 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1921 }
1922
1923 if (err == -ENOMEM)
1924 return VM_FAULT_OOM;
1925 if (err < 0 && err != -EBUSY)
1926 return VM_FAULT_SIGBUS;
1927
1928 return VM_FAULT_NOPAGE;
1929}
1930
1931/**
1932 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1933 * @vma: user vma to map to
1934 * @addr: target user address of this page
1935 * @pfn: source kernel pfn
1936 * @pgprot: pgprot flags for the inserted page
1937 *
1938 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1939 * to override pgprot on a per-page basis.
1940 *
1941 * Typically this function should be used by drivers to set caching- and
1942 * encryption bits different than those of @vma->vm_page_prot, because
1943 * the caching- or encryption mode may not be known at mmap() time.
1944 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1945 * to set caching and encryption bits for those vmas (except for COW pages).
1946 * This is ensured by core vm only modifying these page table entries using
1947 * functions that don't touch caching- or encryption bits, using pte_modify()
1948 * if needed. (See for example mprotect()).
1949 * Also when new page-table entries are created, this is only done using the
1950 * fault() callback, and never using the value of vma->vm_page_prot,
1951 * except for page-table entries that point to anonymous pages as the result
1952 * of COW.
1953 *
1954 * Context: Process context. May allocate using %GFP_KERNEL.
1955 * Return: vm_fault_t value.
1956 */
1957vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1958 pfn_t pfn, pgprot_t pgprot)
1959{
1960 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1961}
1962EXPORT_SYMBOL(vmf_insert_mixed_prot);
1963
1964vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1965 pfn_t pfn)
1966{
1967 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1968}
1969EXPORT_SYMBOL(vmf_insert_mixed);
1970
1971/*
1972 * If the insertion of PTE failed because someone else already added a
1973 * different entry in the mean time, we treat that as success as we assume
1974 * the same entry was actually inserted.
1975 */
1976vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1977 unsigned long addr, pfn_t pfn)
1978{
1979 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1980}
1981EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1982
1983/*
1984 * maps a range of physical memory into the requested pages. the old
1985 * mappings are removed. any references to nonexistent pages results
1986 * in null mappings (currently treated as "copy-on-access")
1987 */
1988static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1989 unsigned long addr, unsigned long end,
1990 unsigned long pfn, pgprot_t prot)
1991{
1992 pte_t *pte;
1993 spinlock_t *ptl;
1994 int err = 0;
1995
1996 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1997 if (!pte)
1998 return -ENOMEM;
1999 arch_enter_lazy_mmu_mode();
2000 do {
2001 BUG_ON(!pte_none(*pte));
2002 if (!pfn_modify_allowed(pfn, prot)) {
2003 err = -EACCES;
2004 break;
2005 }
2006 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2007 pfn++;
2008 } while (pte++, addr += PAGE_SIZE, addr != end);
2009 arch_leave_lazy_mmu_mode();
2010 pte_unmap_unlock(pte - 1, ptl);
2011 return err;
2012}
2013
2014static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2015 unsigned long addr, unsigned long end,
2016 unsigned long pfn, pgprot_t prot)
2017{
2018 pmd_t *pmd;
2019 unsigned long next;
2020 int err;
2021
2022 pfn -= addr >> PAGE_SHIFT;
2023 pmd = pmd_alloc(mm, pud, addr);
2024 if (!pmd)
2025 return -ENOMEM;
2026 VM_BUG_ON(pmd_trans_huge(*pmd));
2027 do {
2028 next = pmd_addr_end(addr, end);
2029 err = remap_pte_range(mm, pmd, addr, next,
2030 pfn + (addr >> PAGE_SHIFT), prot);
2031 if (err)
2032 return err;
2033 } while (pmd++, addr = next, addr != end);
2034 return 0;
2035}
2036
2037static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2038 unsigned long addr, unsigned long end,
2039 unsigned long pfn, pgprot_t prot)
2040{
2041 pud_t *pud;
2042 unsigned long next;
2043 int err;
2044
2045 pfn -= addr >> PAGE_SHIFT;
2046 pud = pud_alloc(mm, p4d, addr);
2047 if (!pud)
2048 return -ENOMEM;
2049 do {
2050 next = pud_addr_end(addr, end);
2051 err = remap_pmd_range(mm, pud, addr, next,
2052 pfn + (addr >> PAGE_SHIFT), prot);
2053 if (err)
2054 return err;
2055 } while (pud++, addr = next, addr != end);
2056 return 0;
2057}
2058
2059static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2060 unsigned long addr, unsigned long end,
2061 unsigned long pfn, pgprot_t prot)
2062{
2063 p4d_t *p4d;
2064 unsigned long next;
2065 int err;
2066
2067 pfn -= addr >> PAGE_SHIFT;
2068 p4d = p4d_alloc(mm, pgd, addr);
2069 if (!p4d)
2070 return -ENOMEM;
2071 do {
2072 next = p4d_addr_end(addr, end);
2073 err = remap_pud_range(mm, p4d, addr, next,
2074 pfn + (addr >> PAGE_SHIFT), prot);
2075 if (err)
2076 return err;
2077 } while (p4d++, addr = next, addr != end);
2078 return 0;
2079}
2080
2081/**
2082 * remap_pfn_range - remap kernel memory to userspace
2083 * @vma: user vma to map to
2084 * @addr: target user address to start at
2085 * @pfn: page frame number of kernel physical memory address
2086 * @size: size of mapping area
2087 * @prot: page protection flags for this mapping
2088 *
2089 * Note: this is only safe if the mm semaphore is held when called.
2090 *
2091 * Return: %0 on success, negative error code otherwise.
2092 */
2093int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2094 unsigned long pfn, unsigned long size, pgprot_t prot)
2095{
2096 pgd_t *pgd;
2097 unsigned long next;
2098 unsigned long end = addr + PAGE_ALIGN(size);
2099 struct mm_struct *mm = vma->vm_mm;
2100 unsigned long remap_pfn = pfn;
2101 int err;
2102
2103 /*
2104 * Physically remapped pages are special. Tell the
2105 * rest of the world about it:
2106 * VM_IO tells people not to look at these pages
2107 * (accesses can have side effects).
2108 * VM_PFNMAP tells the core MM that the base pages are just
2109 * raw PFN mappings, and do not have a "struct page" associated
2110 * with them.
2111 * VM_DONTEXPAND
2112 * Disable vma merging and expanding with mremap().
2113 * VM_DONTDUMP
2114 * Omit vma from core dump, even when VM_IO turned off.
2115 *
2116 * There's a horrible special case to handle copy-on-write
2117 * behaviour that some programs depend on. We mark the "original"
2118 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2119 * See vm_normal_page() for details.
2120 */
2121 if (is_cow_mapping(vma->vm_flags)) {
2122 if (addr != vma->vm_start || end != vma->vm_end)
2123 return -EINVAL;
2124 vma->vm_pgoff = pfn;
2125 }
2126
2127 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2128 if (err)
2129 return -EINVAL;
2130
2131 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2132
2133 BUG_ON(addr >= end);
2134 pfn -= addr >> PAGE_SHIFT;
2135 pgd = pgd_offset(mm, addr);
2136 flush_cache_range(vma, addr, end);
2137 do {
2138 next = pgd_addr_end(addr, end);
2139 err = remap_p4d_range(mm, pgd, addr, next,
2140 pfn + (addr >> PAGE_SHIFT), prot);
2141 if (err)
2142 break;
2143 } while (pgd++, addr = next, addr != end);
2144
2145 if (err)
2146 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2147
2148 return err;
2149}
2150EXPORT_SYMBOL(remap_pfn_range);
2151
2152/**
2153 * vm_iomap_memory - remap memory to userspace
2154 * @vma: user vma to map to
2155 * @start: start of the physical memory to be mapped
2156 * @len: size of area
2157 *
2158 * This is a simplified io_remap_pfn_range() for common driver use. The
2159 * driver just needs to give us the physical memory range to be mapped,
2160 * we'll figure out the rest from the vma information.
2161 *
2162 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2163 * whatever write-combining details or similar.
2164 *
2165 * Return: %0 on success, negative error code otherwise.
2166 */
2167int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2168{
2169 unsigned long vm_len, pfn, pages;
2170
2171 /* Check that the physical memory area passed in looks valid */
2172 if (start + len < start)
2173 return -EINVAL;
2174 /*
2175 * You *really* shouldn't map things that aren't page-aligned,
2176 * but we've historically allowed it because IO memory might
2177 * just have smaller alignment.
2178 */
2179 len += start & ~PAGE_MASK;
2180 pfn = start >> PAGE_SHIFT;
2181 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2182 if (pfn + pages < pfn)
2183 return -EINVAL;
2184
2185 /* We start the mapping 'vm_pgoff' pages into the area */
2186 if (vma->vm_pgoff > pages)
2187 return -EINVAL;
2188 pfn += vma->vm_pgoff;
2189 pages -= vma->vm_pgoff;
2190
2191 /* Can we fit all of the mapping? */
2192 vm_len = vma->vm_end - vma->vm_start;
2193 if (vm_len >> PAGE_SHIFT > pages)
2194 return -EINVAL;
2195
2196 /* Ok, let it rip */
2197 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2198}
2199EXPORT_SYMBOL(vm_iomap_memory);
2200
2201static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2202 unsigned long addr, unsigned long end,
2203 pte_fn_t fn, void *data, bool create)
2204{
2205 pte_t *pte;
2206 int err = 0;
2207 spinlock_t *uninitialized_var(ptl);
2208
2209 if (create) {
2210 pte = (mm == &init_mm) ?
2211 pte_alloc_kernel(pmd, addr) :
2212 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2213 if (!pte)
2214 return -ENOMEM;
2215 } else {
2216 pte = (mm == &init_mm) ?
2217 pte_offset_kernel(pmd, addr) :
2218 pte_offset_map_lock(mm, pmd, addr, &ptl);
2219 }
2220
2221 BUG_ON(pmd_huge(*pmd));
2222
2223 arch_enter_lazy_mmu_mode();
2224
2225 do {
2226 if (create || !pte_none(*pte)) {
2227 err = fn(pte++, addr, data);
2228 if (err)
2229 break;
2230 }
2231 } while (addr += PAGE_SIZE, addr != end);
2232
2233 arch_leave_lazy_mmu_mode();
2234
2235 if (mm != &init_mm)
2236 pte_unmap_unlock(pte-1, ptl);
2237 return err;
2238}
2239
2240static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2241 unsigned long addr, unsigned long end,
2242 pte_fn_t fn, void *data, bool create)
2243{
2244 pmd_t *pmd;
2245 unsigned long next;
2246 int err = 0;
2247
2248 BUG_ON(pud_huge(*pud));
2249
2250 if (create) {
2251 pmd = pmd_alloc(mm, pud, addr);
2252 if (!pmd)
2253 return -ENOMEM;
2254 } else {
2255 pmd = pmd_offset(pud, addr);
2256 }
2257 do {
2258 next = pmd_addr_end(addr, end);
2259 if (create || !pmd_none_or_clear_bad(pmd)) {
2260 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2261 create);
2262 if (err)
2263 break;
2264 }
2265 } while (pmd++, addr = next, addr != end);
2266 return err;
2267}
2268
2269static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2270 unsigned long addr, unsigned long end,
2271 pte_fn_t fn, void *data, bool create)
2272{
2273 pud_t *pud;
2274 unsigned long next;
2275 int err = 0;
2276
2277 if (create) {
2278 pud = pud_alloc(mm, p4d, addr);
2279 if (!pud)
2280 return -ENOMEM;
2281 } else {
2282 pud = pud_offset(p4d, addr);
2283 }
2284 do {
2285 next = pud_addr_end(addr, end);
2286 if (create || !pud_none_or_clear_bad(pud)) {
2287 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2288 create);
2289 if (err)
2290 break;
2291 }
2292 } while (pud++, addr = next, addr != end);
2293 return err;
2294}
2295
2296static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2297 unsigned long addr, unsigned long end,
2298 pte_fn_t fn, void *data, bool create)
2299{
2300 p4d_t *p4d;
2301 unsigned long next;
2302 int err = 0;
2303
2304 if (create) {
2305 p4d = p4d_alloc(mm, pgd, addr);
2306 if (!p4d)
2307 return -ENOMEM;
2308 } else {
2309 p4d = p4d_offset(pgd, addr);
2310 }
2311 do {
2312 next = p4d_addr_end(addr, end);
2313 if (create || !p4d_none_or_clear_bad(p4d)) {
2314 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2315 create);
2316 if (err)
2317 break;
2318 }
2319 } while (p4d++, addr = next, addr != end);
2320 return err;
2321}
2322
2323static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2324 unsigned long size, pte_fn_t fn,
2325 void *data, bool create)
2326{
2327 pgd_t *pgd;
2328 unsigned long next;
2329 unsigned long end = addr + size;
2330 int err = 0;
2331
2332 if (WARN_ON(addr >= end))
2333 return -EINVAL;
2334
2335 pgd = pgd_offset(mm, addr);
2336 do {
2337 next = pgd_addr_end(addr, end);
2338 if (!create && pgd_none_or_clear_bad(pgd))
2339 continue;
2340 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2341 if (err)
2342 break;
2343 } while (pgd++, addr = next, addr != end);
2344
2345 return err;
2346}
2347
2348/*
2349 * Scan a region of virtual memory, filling in page tables as necessary
2350 * and calling a provided function on each leaf page table.
2351 */
2352int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2353 unsigned long size, pte_fn_t fn, void *data)
2354{
2355 return __apply_to_page_range(mm, addr, size, fn, data, true);
2356}
2357EXPORT_SYMBOL_GPL(apply_to_page_range);
2358
2359/*
2360 * Scan a region of virtual memory, calling a provided function on
2361 * each leaf page table where it exists.
2362 *
2363 * Unlike apply_to_page_range, this does _not_ fill in page tables
2364 * where they are absent.
2365 */
2366int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2367 unsigned long size, pte_fn_t fn, void *data)
2368{
2369 return __apply_to_page_range(mm, addr, size, fn, data, false);
2370}
2371EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2372
2373/*
2374 * handle_pte_fault chooses page fault handler according to an entry which was
2375 * read non-atomically. Before making any commitment, on those architectures
2376 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2377 * parts, do_swap_page must check under lock before unmapping the pte and
2378 * proceeding (but do_wp_page is only called after already making such a check;
2379 * and do_anonymous_page can safely check later on).
2380 */
2381static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2382 pte_t *page_table, pte_t orig_pte)
2383{
2384 int same = 1;
2385#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2386 if (sizeof(pte_t) > sizeof(unsigned long)) {
2387 spinlock_t *ptl = pte_lockptr(mm, pmd);
2388 spin_lock(ptl);
2389 same = pte_same(*page_table, orig_pte);
2390 spin_unlock(ptl);
2391 }
2392#endif
2393 pte_unmap(page_table);
2394 return same;
2395}
2396
2397static inline bool cow_user_page(struct page *dst, struct page *src,
2398 struct vm_fault *vmf)
2399{
2400 bool ret;
2401 void *kaddr;
2402 void __user *uaddr;
2403 bool locked = false;
2404 struct vm_area_struct *vma = vmf->vma;
2405 struct mm_struct *mm = vma->vm_mm;
2406 unsigned long addr = vmf->address;
2407
2408 debug_dma_assert_idle(src);
2409
2410 if (likely(src)) {
2411 copy_user_highpage(dst, src, addr, vma);
2412 return true;
2413 }
2414
2415 /*
2416 * If the source page was a PFN mapping, we don't have
2417 * a "struct page" for it. We do a best-effort copy by
2418 * just copying from the original user address. If that
2419 * fails, we just zero-fill it. Live with it.
2420 */
2421 kaddr = kmap_atomic(dst);
2422 uaddr = (void __user *)(addr & PAGE_MASK);
2423
2424 /*
2425 * On architectures with software "accessed" bits, we would
2426 * take a double page fault, so mark it accessed here.
2427 */
2428 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2429 pte_t entry;
2430
2431 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2432 locked = true;
2433 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2434 /*
2435 * Other thread has already handled the fault
2436 * and update local tlb only
2437 */
2438 update_mmu_tlb(vma, addr, vmf->pte);
2439 ret = false;
2440 goto pte_unlock;
2441 }
2442
2443 entry = pte_mkyoung(vmf->orig_pte);
2444 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2445 update_mmu_cache(vma, addr, vmf->pte);
2446 }
2447
2448 /*
2449 * This really shouldn't fail, because the page is there
2450 * in the page tables. But it might just be unreadable,
2451 * in which case we just give up and fill the result with
2452 * zeroes.
2453 */
2454 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2455 if (locked)
2456 goto warn;
2457
2458 /* Re-validate under PTL if the page is still mapped */
2459 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2460 locked = true;
2461 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2462 /* The PTE changed under us, update local tlb */
2463 update_mmu_tlb(vma, addr, vmf->pte);
2464 ret = false;
2465 goto pte_unlock;
2466 }
2467
2468 /*
2469 * The same page can be mapped back since last copy attempt.
2470 * Try to copy again under PTL.
2471 */
2472 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2473 /*
2474 * Give a warn in case there can be some obscure
2475 * use-case
2476 */
2477warn:
2478 WARN_ON_ONCE(1);
2479 clear_page(kaddr);
2480 }
2481 }
2482
2483 ret = true;
2484
2485pte_unlock:
2486 if (locked)
2487 pte_unmap_unlock(vmf->pte, vmf->ptl);
2488 kunmap_atomic(kaddr);
2489 flush_dcache_page(dst);
2490
2491 return ret;
2492}
2493
2494static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2495{
2496 struct file *vm_file = vma->vm_file;
2497
2498 if (vm_file)
2499 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2500
2501 /*
2502 * Special mappings (e.g. VDSO) do not have any file so fake
2503 * a default GFP_KERNEL for them.
2504 */
2505 return GFP_KERNEL;
2506}
2507
2508/*
2509 * Notify the address space that the page is about to become writable so that
2510 * it can prohibit this or wait for the page to get into an appropriate state.
2511 *
2512 * We do this without the lock held, so that it can sleep if it needs to.
2513 */
2514static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2515{
2516 vm_fault_t ret;
2517 struct page *page = vmf->page;
2518 unsigned int old_flags = vmf->flags;
2519
2520 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2521
2522 if (vmf->vma->vm_file &&
2523 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2524 return VM_FAULT_SIGBUS;
2525
2526 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2527 /* Restore original flags so that caller is not surprised */
2528 vmf->flags = old_flags;
2529 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2530 return ret;
2531 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2532 lock_page(page);
2533 if (!page->mapping) {
2534 unlock_page(page);
2535 return 0; /* retry */
2536 }
2537 ret |= VM_FAULT_LOCKED;
2538 } else
2539 VM_BUG_ON_PAGE(!PageLocked(page), page);
2540 return ret;
2541}
2542
2543/*
2544 * Handle dirtying of a page in shared file mapping on a write fault.
2545 *
2546 * The function expects the page to be locked and unlocks it.
2547 */
2548static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2549{
2550 struct vm_area_struct *vma = vmf->vma;
2551 struct address_space *mapping;
2552 struct page *page = vmf->page;
2553 bool dirtied;
2554 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2555
2556 dirtied = set_page_dirty(page);
2557 VM_BUG_ON_PAGE(PageAnon(page), page);
2558 /*
2559 * Take a local copy of the address_space - page.mapping may be zeroed
2560 * by truncate after unlock_page(). The address_space itself remains
2561 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2562 * release semantics to prevent the compiler from undoing this copying.
2563 */
2564 mapping = page_rmapping(page);
2565 unlock_page(page);
2566
2567 if (!page_mkwrite)
2568 file_update_time(vma->vm_file);
2569
2570 /*
2571 * Throttle page dirtying rate down to writeback speed.
2572 *
2573 * mapping may be NULL here because some device drivers do not
2574 * set page.mapping but still dirty their pages
2575 *
2576 * Drop the mmap_lock before waiting on IO, if we can. The file
2577 * is pinning the mapping, as per above.
2578 */
2579 if ((dirtied || page_mkwrite) && mapping) {
2580 struct file *fpin;
2581
2582 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2583 balance_dirty_pages_ratelimited(mapping);
2584 if (fpin) {
2585 fput(fpin);
2586 return VM_FAULT_RETRY;
2587 }
2588 }
2589
2590 return 0;
2591}
2592
2593/*
2594 * Handle write page faults for pages that can be reused in the current vma
2595 *
2596 * This can happen either due to the mapping being with the VM_SHARED flag,
2597 * or due to us being the last reference standing to the page. In either
2598 * case, all we need to do here is to mark the page as writable and update
2599 * any related book-keeping.
2600 */
2601static inline void wp_page_reuse(struct vm_fault *vmf)
2602 __releases(vmf->ptl)
2603{
2604 struct vm_area_struct *vma = vmf->vma;
2605 struct page *page = vmf->page;
2606 pte_t entry;
2607 /*
2608 * Clear the pages cpupid information as the existing
2609 * information potentially belongs to a now completely
2610 * unrelated process.
2611 */
2612 if (page)
2613 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2614
2615 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2616 entry = pte_mkyoung(vmf->orig_pte);
2617 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2618 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2619 update_mmu_cache(vma, vmf->address, vmf->pte);
2620 pte_unmap_unlock(vmf->pte, vmf->ptl);
2621}
2622
2623/*
2624 * Handle the case of a page which we actually need to copy to a new page.
2625 *
2626 * Called with mmap_lock locked and the old page referenced, but
2627 * without the ptl held.
2628 *
2629 * High level logic flow:
2630 *
2631 * - Allocate a page, copy the content of the old page to the new one.
2632 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2633 * - Take the PTL. If the pte changed, bail out and release the allocated page
2634 * - If the pte is still the way we remember it, update the page table and all
2635 * relevant references. This includes dropping the reference the page-table
2636 * held to the old page, as well as updating the rmap.
2637 * - In any case, unlock the PTL and drop the reference we took to the old page.
2638 */
2639static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2640{
2641 struct vm_area_struct *vma = vmf->vma;
2642 struct mm_struct *mm = vma->vm_mm;
2643 struct page *old_page = vmf->page;
2644 struct page *new_page = NULL;
2645 pte_t entry;
2646 int page_copied = 0;
2647 struct mmu_notifier_range range;
2648
2649 if (unlikely(anon_vma_prepare(vma)))
2650 goto oom;
2651
2652 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2653 new_page = alloc_zeroed_user_highpage_movable(vma,
2654 vmf->address);
2655 if (!new_page)
2656 goto oom;
2657 } else {
2658 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2659 vmf->address);
2660 if (!new_page)
2661 goto oom;
2662
2663 if (!cow_user_page(new_page, old_page, vmf)) {
2664 /*
2665 * COW failed, if the fault was solved by other,
2666 * it's fine. If not, userspace would re-fault on
2667 * the same address and we will handle the fault
2668 * from the second attempt.
2669 */
2670 put_page(new_page);
2671 if (old_page)
2672 put_page(old_page);
2673 return 0;
2674 }
2675 }
2676
2677 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2678 goto oom_free_new;
2679 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2680
2681 __SetPageUptodate(new_page);
2682
2683 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2684 vmf->address & PAGE_MASK,
2685 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2686 mmu_notifier_invalidate_range_start(&range);
2687
2688 /*
2689 * Re-check the pte - we dropped the lock
2690 */
2691 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2692 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2693 if (old_page) {
2694 if (!PageAnon(old_page)) {
2695 dec_mm_counter_fast(mm,
2696 mm_counter_file(old_page));
2697 inc_mm_counter_fast(mm, MM_ANONPAGES);
2698 }
2699 } else {
2700 inc_mm_counter_fast(mm, MM_ANONPAGES);
2701 }
2702 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2703 entry = mk_pte(new_page, vma->vm_page_prot);
2704 entry = pte_sw_mkyoung(entry);
2705 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2706 /*
2707 * Clear the pte entry and flush it first, before updating the
2708 * pte with the new entry. This will avoid a race condition
2709 * seen in the presence of one thread doing SMC and another
2710 * thread doing COW.
2711 */
2712 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2713 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2714 lru_cache_add_active_or_unevictable(new_page, vma);
2715 /*
2716 * We call the notify macro here because, when using secondary
2717 * mmu page tables (such as kvm shadow page tables), we want the
2718 * new page to be mapped directly into the secondary page table.
2719 */
2720 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2721 update_mmu_cache(vma, vmf->address, vmf->pte);
2722 if (old_page) {
2723 /*
2724 * Only after switching the pte to the new page may
2725 * we remove the mapcount here. Otherwise another
2726 * process may come and find the rmap count decremented
2727 * before the pte is switched to the new page, and
2728 * "reuse" the old page writing into it while our pte
2729 * here still points into it and can be read by other
2730 * threads.
2731 *
2732 * The critical issue is to order this
2733 * page_remove_rmap with the ptp_clear_flush above.
2734 * Those stores are ordered by (if nothing else,)
2735 * the barrier present in the atomic_add_negative
2736 * in page_remove_rmap.
2737 *
2738 * Then the TLB flush in ptep_clear_flush ensures that
2739 * no process can access the old page before the
2740 * decremented mapcount is visible. And the old page
2741 * cannot be reused until after the decremented
2742 * mapcount is visible. So transitively, TLBs to
2743 * old page will be flushed before it can be reused.
2744 */
2745 page_remove_rmap(old_page, false);
2746 }
2747
2748 /* Free the old page.. */
2749 new_page = old_page;
2750 page_copied = 1;
2751 } else {
2752 update_mmu_tlb(vma, vmf->address, vmf->pte);
2753 }
2754
2755 if (new_page)
2756 put_page(new_page);
2757
2758 pte_unmap_unlock(vmf->pte, vmf->ptl);
2759 /*
2760 * No need to double call mmu_notifier->invalidate_range() callback as
2761 * the above ptep_clear_flush_notify() did already call it.
2762 */
2763 mmu_notifier_invalidate_range_only_end(&range);
2764 if (old_page) {
2765 /*
2766 * Don't let another task, with possibly unlocked vma,
2767 * keep the mlocked page.
2768 */
2769 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2770 lock_page(old_page); /* LRU manipulation */
2771 if (PageMlocked(old_page))
2772 munlock_vma_page(old_page);
2773 unlock_page(old_page);
2774 }
2775 put_page(old_page);
2776 }
2777 return page_copied ? VM_FAULT_WRITE : 0;
2778oom_free_new:
2779 put_page(new_page);
2780oom:
2781 if (old_page)
2782 put_page(old_page);
2783 return VM_FAULT_OOM;
2784}
2785
2786/**
2787 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2788 * writeable once the page is prepared
2789 *
2790 * @vmf: structure describing the fault
2791 *
2792 * This function handles all that is needed to finish a write page fault in a
2793 * shared mapping due to PTE being read-only once the mapped page is prepared.
2794 * It handles locking of PTE and modifying it.
2795 *
2796 * The function expects the page to be locked or other protection against
2797 * concurrent faults / writeback (such as DAX radix tree locks).
2798 *
2799 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2800 * we acquired PTE lock.
2801 */
2802vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2803{
2804 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2805 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2806 &vmf->ptl);
2807 /*
2808 * We might have raced with another page fault while we released the
2809 * pte_offset_map_lock.
2810 */
2811 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2812 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2813 pte_unmap_unlock(vmf->pte, vmf->ptl);
2814 return VM_FAULT_NOPAGE;
2815 }
2816 wp_page_reuse(vmf);
2817 return 0;
2818}
2819
2820/*
2821 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2822 * mapping
2823 */
2824static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2825{
2826 struct vm_area_struct *vma = vmf->vma;
2827
2828 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2829 vm_fault_t ret;
2830
2831 pte_unmap_unlock(vmf->pte, vmf->ptl);
2832 vmf->flags |= FAULT_FLAG_MKWRITE;
2833 ret = vma->vm_ops->pfn_mkwrite(vmf);
2834 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2835 return ret;
2836 return finish_mkwrite_fault(vmf);
2837 }
2838 wp_page_reuse(vmf);
2839 return VM_FAULT_WRITE;
2840}
2841
2842static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2843 __releases(vmf->ptl)
2844{
2845 struct vm_area_struct *vma = vmf->vma;
2846 vm_fault_t ret = VM_FAULT_WRITE;
2847
2848 get_page(vmf->page);
2849
2850 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2851 vm_fault_t tmp;
2852
2853 pte_unmap_unlock(vmf->pte, vmf->ptl);
2854 tmp = do_page_mkwrite(vmf);
2855 if (unlikely(!tmp || (tmp &
2856 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2857 put_page(vmf->page);
2858 return tmp;
2859 }
2860 tmp = finish_mkwrite_fault(vmf);
2861 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2862 unlock_page(vmf->page);
2863 put_page(vmf->page);
2864 return tmp;
2865 }
2866 } else {
2867 wp_page_reuse(vmf);
2868 lock_page(vmf->page);
2869 }
2870 ret |= fault_dirty_shared_page(vmf);
2871 put_page(vmf->page);
2872
2873 return ret;
2874}
2875
2876/*
2877 * This routine handles present pages, when users try to write
2878 * to a shared page. It is done by copying the page to a new address
2879 * and decrementing the shared-page counter for the old page.
2880 *
2881 * Note that this routine assumes that the protection checks have been
2882 * done by the caller (the low-level page fault routine in most cases).
2883 * Thus we can safely just mark it writable once we've done any necessary
2884 * COW.
2885 *
2886 * We also mark the page dirty at this point even though the page will
2887 * change only once the write actually happens. This avoids a few races,
2888 * and potentially makes it more efficient.
2889 *
2890 * We enter with non-exclusive mmap_lock (to exclude vma changes,
2891 * but allow concurrent faults), with pte both mapped and locked.
2892 * We return with mmap_lock still held, but pte unmapped and unlocked.
2893 */
2894static vm_fault_t do_wp_page(struct vm_fault *vmf)
2895 __releases(vmf->ptl)
2896{
2897 struct vm_area_struct *vma = vmf->vma;
2898
2899 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2900 pte_unmap_unlock(vmf->pte, vmf->ptl);
2901 return handle_userfault(vmf, VM_UFFD_WP);
2902 }
2903
2904 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2905 if (!vmf->page) {
2906 /*
2907 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2908 * VM_PFNMAP VMA.
2909 *
2910 * We should not cow pages in a shared writeable mapping.
2911 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2912 */
2913 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2914 (VM_WRITE|VM_SHARED))
2915 return wp_pfn_shared(vmf);
2916
2917 pte_unmap_unlock(vmf->pte, vmf->ptl);
2918 return wp_page_copy(vmf);
2919 }
2920
2921 /*
2922 * Take out anonymous pages first, anonymous shared vmas are
2923 * not dirty accountable.
2924 */
2925 if (PageAnon(vmf->page)) {
2926 int total_map_swapcount;
2927 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2928 page_count(vmf->page) != 1))
2929 goto copy;
2930 if (!trylock_page(vmf->page)) {
2931 get_page(vmf->page);
2932 pte_unmap_unlock(vmf->pte, vmf->ptl);
2933 lock_page(vmf->page);
2934 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2935 vmf->address, &vmf->ptl);
2936 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2937 update_mmu_tlb(vma, vmf->address, vmf->pte);
2938 unlock_page(vmf->page);
2939 pte_unmap_unlock(vmf->pte, vmf->ptl);
2940 put_page(vmf->page);
2941 return 0;
2942 }
2943 put_page(vmf->page);
2944 }
2945 if (PageKsm(vmf->page)) {
2946 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2947 vmf->address);
2948 unlock_page(vmf->page);
2949 if (!reused)
2950 goto copy;
2951 wp_page_reuse(vmf);
2952 return VM_FAULT_WRITE;
2953 }
2954 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2955 if (total_map_swapcount == 1) {
2956 /*
2957 * The page is all ours. Move it to
2958 * our anon_vma so the rmap code will
2959 * not search our parent or siblings.
2960 * Protected against the rmap code by
2961 * the page lock.
2962 */
2963 page_move_anon_rmap(vmf->page, vma);
2964 }
2965 unlock_page(vmf->page);
2966 wp_page_reuse(vmf);
2967 return VM_FAULT_WRITE;
2968 }
2969 unlock_page(vmf->page);
2970 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2971 (VM_WRITE|VM_SHARED))) {
2972 return wp_page_shared(vmf);
2973 }
2974copy:
2975 /*
2976 * Ok, we need to copy. Oh, well..
2977 */
2978 get_page(vmf->page);
2979
2980 pte_unmap_unlock(vmf->pte, vmf->ptl);
2981 return wp_page_copy(vmf);
2982}
2983
2984static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2985 unsigned long start_addr, unsigned long end_addr,
2986 struct zap_details *details)
2987{
2988 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2989}
2990
2991static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2992 struct zap_details *details)
2993{
2994 struct vm_area_struct *vma;
2995 pgoff_t vba, vea, zba, zea;
2996
2997 vma_interval_tree_foreach(vma, root,
2998 details->first_index, details->last_index) {
2999
3000 vba = vma->vm_pgoff;
3001 vea = vba + vma_pages(vma) - 1;
3002 zba = details->first_index;
3003 if (zba < vba)
3004 zba = vba;
3005 zea = details->last_index;
3006 if (zea > vea)
3007 zea = vea;
3008
3009 unmap_mapping_range_vma(vma,
3010 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3011 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3012 details);
3013 }
3014}
3015
3016/**
3017 * unmap_mapping_pages() - Unmap pages from processes.
3018 * @mapping: The address space containing pages to be unmapped.
3019 * @start: Index of first page to be unmapped.
3020 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3021 * @even_cows: Whether to unmap even private COWed pages.
3022 *
3023 * Unmap the pages in this address space from any userspace process which
3024 * has them mmaped. Generally, you want to remove COWed pages as well when
3025 * a file is being truncated, but not when invalidating pages from the page
3026 * cache.
3027 */
3028void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3029 pgoff_t nr, bool even_cows)
3030{
3031 struct zap_details details = { };
3032
3033 details.check_mapping = even_cows ? NULL : mapping;
3034 details.first_index = start;
3035 details.last_index = start + nr - 1;
3036 if (details.last_index < details.first_index)
3037 details.last_index = ULONG_MAX;
3038
3039 i_mmap_lock_write(mapping);
3040 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3041 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3042 i_mmap_unlock_write(mapping);
3043}
3044
3045/**
3046 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3047 * address_space corresponding to the specified byte range in the underlying
3048 * file.
3049 *
3050 * @mapping: the address space containing mmaps to be unmapped.
3051 * @holebegin: byte in first page to unmap, relative to the start of
3052 * the underlying file. This will be rounded down to a PAGE_SIZE
3053 * boundary. Note that this is different from truncate_pagecache(), which
3054 * must keep the partial page. In contrast, we must get rid of
3055 * partial pages.
3056 * @holelen: size of prospective hole in bytes. This will be rounded
3057 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3058 * end of the file.
3059 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3060 * but 0 when invalidating pagecache, don't throw away private data.
3061 */
3062void unmap_mapping_range(struct address_space *mapping,
3063 loff_t const holebegin, loff_t const holelen, int even_cows)
3064{
3065 pgoff_t hba = holebegin >> PAGE_SHIFT;
3066 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3067
3068 /* Check for overflow. */
3069 if (sizeof(holelen) > sizeof(hlen)) {
3070 long long holeend =
3071 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3072 if (holeend & ~(long long)ULONG_MAX)
3073 hlen = ULONG_MAX - hba + 1;
3074 }
3075
3076 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3077}
3078EXPORT_SYMBOL(unmap_mapping_range);
3079
3080/*
3081 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3082 * but allow concurrent faults), and pte mapped but not yet locked.
3083 * We return with pte unmapped and unlocked.
3084 *
3085 * We return with the mmap_lock locked or unlocked in the same cases
3086 * as does filemap_fault().
3087 */
3088vm_fault_t do_swap_page(struct vm_fault *vmf)
3089{
3090 struct vm_area_struct *vma = vmf->vma;
3091 struct page *page = NULL, *swapcache;
3092 swp_entry_t entry;
3093 pte_t pte;
3094 int locked;
3095 int exclusive = 0;
3096 vm_fault_t ret = 0;
3097
3098 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3099 goto out;
3100
3101 entry = pte_to_swp_entry(vmf->orig_pte);
3102 if (unlikely(non_swap_entry(entry))) {
3103 if (is_migration_entry(entry)) {
3104 migration_entry_wait(vma->vm_mm, vmf->pmd,
3105 vmf->address);
3106 } else if (is_device_private_entry(entry)) {
3107 vmf->page = device_private_entry_to_page(entry);
3108 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3109 } else if (is_hwpoison_entry(entry)) {
3110 ret = VM_FAULT_HWPOISON;
3111 } else {
3112 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3113 ret = VM_FAULT_SIGBUS;
3114 }
3115 goto out;
3116 }
3117
3118
3119 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3120 page = lookup_swap_cache(entry, vma, vmf->address);
3121 swapcache = page;
3122
3123 if (!page) {
3124 struct swap_info_struct *si = swp_swap_info(entry);
3125
3126 if (si->flags & SWP_SYNCHRONOUS_IO &&
3127 __swap_count(entry) == 1) {
3128 /* skip swapcache */
3129 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3130 vmf->address);
3131 if (page) {
3132 int err;
3133
3134 __SetPageLocked(page);
3135 __SetPageSwapBacked(page);
3136 set_page_private(page, entry.val);
3137
3138 /* Tell memcg to use swap ownership records */
3139 SetPageSwapCache(page);
3140 err = mem_cgroup_charge(page, vma->vm_mm,
3141 GFP_KERNEL);
3142 ClearPageSwapCache(page);
3143 if (err)
3144 goto out_page;
3145
3146 lru_cache_add(page);
3147 swap_readpage(page, true);
3148 }
3149 } else {
3150 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3151 vmf);
3152 swapcache = page;
3153 }
3154
3155 if (!page) {
3156 /*
3157 * Back out if somebody else faulted in this pte
3158 * while we released the pte lock.
3159 */
3160 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3161 vmf->address, &vmf->ptl);
3162 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3163 ret = VM_FAULT_OOM;
3164 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3165 goto unlock;
3166 }
3167
3168 /* Had to read the page from swap area: Major fault */
3169 ret = VM_FAULT_MAJOR;
3170 count_vm_event(PGMAJFAULT);
3171 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3172 } else if (PageHWPoison(page)) {
3173 /*
3174 * hwpoisoned dirty swapcache pages are kept for killing
3175 * owner processes (which may be unknown at hwpoison time)
3176 */
3177 ret = VM_FAULT_HWPOISON;
3178 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3179 goto out_release;
3180 }
3181
3182 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3183
3184 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3185 if (!locked) {
3186 ret |= VM_FAULT_RETRY;
3187 goto out_release;
3188 }
3189
3190 /*
3191 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3192 * release the swapcache from under us. The page pin, and pte_same
3193 * test below, are not enough to exclude that. Even if it is still
3194 * swapcache, we need to check that the page's swap has not changed.
3195 */
3196 if (unlikely((!PageSwapCache(page) ||
3197 page_private(page) != entry.val)) && swapcache)
3198 goto out_page;
3199
3200 page = ksm_might_need_to_copy(page, vma, vmf->address);
3201 if (unlikely(!page)) {
3202 ret = VM_FAULT_OOM;
3203 page = swapcache;
3204 goto out_page;
3205 }
3206
3207 cgroup_throttle_swaprate(page, GFP_KERNEL);
3208
3209 /*
3210 * Back out if somebody else already faulted in this pte.
3211 */
3212 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3213 &vmf->ptl);
3214 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3215 goto out_nomap;
3216
3217 if (unlikely(!PageUptodate(page))) {
3218 ret = VM_FAULT_SIGBUS;
3219 goto out_nomap;
3220 }
3221
3222 /*
3223 * The page isn't present yet, go ahead with the fault.
3224 *
3225 * Be careful about the sequence of operations here.
3226 * To get its accounting right, reuse_swap_page() must be called
3227 * while the page is counted on swap but not yet in mapcount i.e.
3228 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3229 * must be called after the swap_free(), or it will never succeed.
3230 */
3231
3232 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3233 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3234 pte = mk_pte(page, vma->vm_page_prot);
3235 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3236 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3237 vmf->flags &= ~FAULT_FLAG_WRITE;
3238 ret |= VM_FAULT_WRITE;
3239 exclusive = RMAP_EXCLUSIVE;
3240 }
3241 flush_icache_page(vma, page);
3242 if (pte_swp_soft_dirty(vmf->orig_pte))
3243 pte = pte_mksoft_dirty(pte);
3244 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3245 pte = pte_mkuffd_wp(pte);
3246 pte = pte_wrprotect(pte);
3247 }
3248 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3249 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3250 vmf->orig_pte = pte;
3251
3252 /* ksm created a completely new copy */
3253 if (unlikely(page != swapcache && swapcache)) {
3254 page_add_new_anon_rmap(page, vma, vmf->address, false);
3255 lru_cache_add_active_or_unevictable(page, vma);
3256 } else {
3257 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3258 activate_page(page);
3259 }
3260
3261 swap_free(entry);
3262 if (mem_cgroup_swap_full(page) ||
3263 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3264 try_to_free_swap(page);
3265 unlock_page(page);
3266 if (page != swapcache && swapcache) {
3267 /*
3268 * Hold the lock to avoid the swap entry to be reused
3269 * until we take the PT lock for the pte_same() check
3270 * (to avoid false positives from pte_same). For
3271 * further safety release the lock after the swap_free
3272 * so that the swap count won't change under a
3273 * parallel locked swapcache.
3274 */
3275 unlock_page(swapcache);
3276 put_page(swapcache);
3277 }
3278
3279 if (vmf->flags & FAULT_FLAG_WRITE) {
3280 ret |= do_wp_page(vmf);
3281 if (ret & VM_FAULT_ERROR)
3282 ret &= VM_FAULT_ERROR;
3283 goto out;
3284 }
3285
3286 /* No need to invalidate - it was non-present before */
3287 update_mmu_cache(vma, vmf->address, vmf->pte);
3288unlock:
3289 pte_unmap_unlock(vmf->pte, vmf->ptl);
3290out:
3291 return ret;
3292out_nomap:
3293 pte_unmap_unlock(vmf->pte, vmf->ptl);
3294out_page:
3295 unlock_page(page);
3296out_release:
3297 put_page(page);
3298 if (page != swapcache && swapcache) {
3299 unlock_page(swapcache);
3300 put_page(swapcache);
3301 }
3302 return ret;
3303}
3304
3305/*
3306 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3307 * but allow concurrent faults), and pte mapped but not yet locked.
3308 * We return with mmap_lock still held, but pte unmapped and unlocked.
3309 */
3310static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3311{
3312 struct vm_area_struct *vma = vmf->vma;
3313 struct page *page;
3314 vm_fault_t ret = 0;
3315 pte_t entry;
3316
3317 /* File mapping without ->vm_ops ? */
3318 if (vma->vm_flags & VM_SHARED)
3319 return VM_FAULT_SIGBUS;
3320
3321 /*
3322 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3323 * pte_offset_map() on pmds where a huge pmd might be created
3324 * from a different thread.
3325 *
3326 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3327 * parallel threads are excluded by other means.
3328 *
3329 * Here we only have mmap_read_lock(mm).
3330 */
3331 if (pte_alloc(vma->vm_mm, vmf->pmd))
3332 return VM_FAULT_OOM;
3333
3334 /* See the comment in pte_alloc_one_map() */
3335 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3336 return 0;
3337
3338 /* Use the zero-page for reads */
3339 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3340 !mm_forbids_zeropage(vma->vm_mm)) {
3341 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3342 vma->vm_page_prot));
3343 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3344 vmf->address, &vmf->ptl);
3345 if (!pte_none(*vmf->pte)) {
3346 update_mmu_tlb(vma, vmf->address, vmf->pte);
3347 goto unlock;
3348 }
3349 ret = check_stable_address_space(vma->vm_mm);
3350 if (ret)
3351 goto unlock;
3352 /* Deliver the page fault to userland, check inside PT lock */
3353 if (userfaultfd_missing(vma)) {
3354 pte_unmap_unlock(vmf->pte, vmf->ptl);
3355 return handle_userfault(vmf, VM_UFFD_MISSING);
3356 }
3357 goto setpte;
3358 }
3359
3360 /* Allocate our own private page. */
3361 if (unlikely(anon_vma_prepare(vma)))
3362 goto oom;
3363 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3364 if (!page)
3365 goto oom;
3366
3367 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3368 goto oom_free_page;
3369 cgroup_throttle_swaprate(page, GFP_KERNEL);
3370
3371 /*
3372 * The memory barrier inside __SetPageUptodate makes sure that
3373 * preceding stores to the page contents become visible before
3374 * the set_pte_at() write.
3375 */
3376 __SetPageUptodate(page);
3377
3378 entry = mk_pte(page, vma->vm_page_prot);
3379 entry = pte_sw_mkyoung(entry);
3380 if (vma->vm_flags & VM_WRITE)
3381 entry = pte_mkwrite(pte_mkdirty(entry));
3382
3383 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3384 &vmf->ptl);
3385 if (!pte_none(*vmf->pte)) {
3386 update_mmu_cache(vma, vmf->address, vmf->pte);
3387 goto release;
3388 }
3389
3390 ret = check_stable_address_space(vma->vm_mm);
3391 if (ret)
3392 goto release;
3393
3394 /* Deliver the page fault to userland, check inside PT lock */
3395 if (userfaultfd_missing(vma)) {
3396 pte_unmap_unlock(vmf->pte, vmf->ptl);
3397 put_page(page);
3398 return handle_userfault(vmf, VM_UFFD_MISSING);
3399 }
3400
3401 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3402 page_add_new_anon_rmap(page, vma, vmf->address, false);
3403 lru_cache_add_active_or_unevictable(page, vma);
3404setpte:
3405 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3406
3407 /* No need to invalidate - it was non-present before */
3408 update_mmu_cache(vma, vmf->address, vmf->pte);
3409unlock:
3410 pte_unmap_unlock(vmf->pte, vmf->ptl);
3411 return ret;
3412release:
3413 put_page(page);
3414 goto unlock;
3415oom_free_page:
3416 put_page(page);
3417oom:
3418 return VM_FAULT_OOM;
3419}
3420
3421/*
3422 * The mmap_lock must have been held on entry, and may have been
3423 * released depending on flags and vma->vm_ops->fault() return value.
3424 * See filemap_fault() and __lock_page_retry().
3425 */
3426static vm_fault_t __do_fault(struct vm_fault *vmf)
3427{
3428 struct vm_area_struct *vma = vmf->vma;
3429 vm_fault_t ret;
3430
3431 /*
3432 * Preallocate pte before we take page_lock because this might lead to
3433 * deadlocks for memcg reclaim which waits for pages under writeback:
3434 * lock_page(A)
3435 * SetPageWriteback(A)
3436 * unlock_page(A)
3437 * lock_page(B)
3438 * lock_page(B)
3439 * pte_alloc_pne
3440 * shrink_page_list
3441 * wait_on_page_writeback(A)
3442 * SetPageWriteback(B)
3443 * unlock_page(B)
3444 * # flush A, B to clear the writeback
3445 */
3446 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3447 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3448 if (!vmf->prealloc_pte)
3449 return VM_FAULT_OOM;
3450 smp_wmb(); /* See comment in __pte_alloc() */
3451 }
3452
3453 ret = vma->vm_ops->fault(vmf);
3454 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3455 VM_FAULT_DONE_COW)))
3456 return ret;
3457
3458 if (unlikely(PageHWPoison(vmf->page))) {
3459 if (ret & VM_FAULT_LOCKED)
3460 unlock_page(vmf->page);
3461 put_page(vmf->page);
3462 vmf->page = NULL;
3463 return VM_FAULT_HWPOISON;
3464 }
3465
3466 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3467 lock_page(vmf->page);
3468 else
3469 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3470
3471 return ret;
3472}
3473
3474/*
3475 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3476 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3477 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3478 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3479 */
3480static int pmd_devmap_trans_unstable(pmd_t *pmd)
3481{
3482 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3483}
3484
3485static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3486{
3487 struct vm_area_struct *vma = vmf->vma;
3488
3489 if (!pmd_none(*vmf->pmd))
3490 goto map_pte;
3491 if (vmf->prealloc_pte) {
3492 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3493 if (unlikely(!pmd_none(*vmf->pmd))) {
3494 spin_unlock(vmf->ptl);
3495 goto map_pte;
3496 }
3497
3498 mm_inc_nr_ptes(vma->vm_mm);
3499 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3500 spin_unlock(vmf->ptl);
3501 vmf->prealloc_pte = NULL;
3502 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3503 return VM_FAULT_OOM;
3504 }
3505map_pte:
3506 /*
3507 * If a huge pmd materialized under us just retry later. Use
3508 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3509 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3510 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3511 * running immediately after a huge pmd fault in a different thread of
3512 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3513 * All we have to ensure is that it is a regular pmd that we can walk
3514 * with pte_offset_map() and we can do that through an atomic read in
3515 * C, which is what pmd_trans_unstable() provides.
3516 */
3517 if (pmd_devmap_trans_unstable(vmf->pmd))
3518 return VM_FAULT_NOPAGE;
3519
3520 /*
3521 * At this point we know that our vmf->pmd points to a page of ptes
3522 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3523 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3524 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3525 * be valid and we will re-check to make sure the vmf->pte isn't
3526 * pte_none() under vmf->ptl protection when we return to
3527 * alloc_set_pte().
3528 */
3529 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3530 &vmf->ptl);
3531 return 0;
3532}
3533
3534#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3535static void deposit_prealloc_pte(struct vm_fault *vmf)
3536{
3537 struct vm_area_struct *vma = vmf->vma;
3538
3539 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3540 /*
3541 * We are going to consume the prealloc table,
3542 * count that as nr_ptes.
3543 */
3544 mm_inc_nr_ptes(vma->vm_mm);
3545 vmf->prealloc_pte = NULL;
3546}
3547
3548static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3549{
3550 struct vm_area_struct *vma = vmf->vma;
3551 bool write = vmf->flags & FAULT_FLAG_WRITE;
3552 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3553 pmd_t entry;
3554 int i;
3555 vm_fault_t ret;
3556
3557 if (!transhuge_vma_suitable(vma, haddr))
3558 return VM_FAULT_FALLBACK;
3559
3560 ret = VM_FAULT_FALLBACK;
3561 page = compound_head(page);
3562
3563 /*
3564 * Archs like ppc64 need additonal space to store information
3565 * related to pte entry. Use the preallocated table for that.
3566 */
3567 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3568 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3569 if (!vmf->prealloc_pte)
3570 return VM_FAULT_OOM;
3571 smp_wmb(); /* See comment in __pte_alloc() */
3572 }
3573
3574 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3575 if (unlikely(!pmd_none(*vmf->pmd)))
3576 goto out;
3577
3578 for (i = 0; i < HPAGE_PMD_NR; i++)
3579 flush_icache_page(vma, page + i);
3580
3581 entry = mk_huge_pmd(page, vma->vm_page_prot);
3582 if (write)
3583 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3584
3585 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3586 page_add_file_rmap(page, true);
3587 /*
3588 * deposit and withdraw with pmd lock held
3589 */
3590 if (arch_needs_pgtable_deposit())
3591 deposit_prealloc_pte(vmf);
3592
3593 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3594
3595 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3596
3597 /* fault is handled */
3598 ret = 0;
3599 count_vm_event(THP_FILE_MAPPED);
3600out:
3601 spin_unlock(vmf->ptl);
3602 return ret;
3603}
3604#else
3605static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3606{
3607 BUILD_BUG();
3608 return 0;
3609}
3610#endif
3611
3612/**
3613 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3614 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3615 *
3616 * @vmf: fault environment
3617 * @page: page to map
3618 *
3619 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3620 * return.
3621 *
3622 * Target users are page handler itself and implementations of
3623 * vm_ops->map_pages.
3624 *
3625 * Return: %0 on success, %VM_FAULT_ code in case of error.
3626 */
3627vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3628{
3629 struct vm_area_struct *vma = vmf->vma;
3630 bool write = vmf->flags & FAULT_FLAG_WRITE;
3631 pte_t entry;
3632 vm_fault_t ret;
3633
3634 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3635 ret = do_set_pmd(vmf, page);
3636 if (ret != VM_FAULT_FALLBACK)
3637 return ret;
3638 }
3639
3640 if (!vmf->pte) {
3641 ret = pte_alloc_one_map(vmf);
3642 if (ret)
3643 return ret;
3644 }
3645
3646 /* Re-check under ptl */
3647 if (unlikely(!pte_none(*vmf->pte))) {
3648 update_mmu_tlb(vma, vmf->address, vmf->pte);
3649 return VM_FAULT_NOPAGE;
3650 }
3651
3652 flush_icache_page(vma, page);
3653 entry = mk_pte(page, vma->vm_page_prot);
3654 entry = pte_sw_mkyoung(entry);
3655 if (write)
3656 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3657 /* copy-on-write page */
3658 if (write && !(vma->vm_flags & VM_SHARED)) {
3659 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3660 page_add_new_anon_rmap(page, vma, vmf->address, false);
3661 lru_cache_add_active_or_unevictable(page, vma);
3662 } else {
3663 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3664 page_add_file_rmap(page, false);
3665 }
3666 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3667
3668 /* no need to invalidate: a not-present page won't be cached */
3669 update_mmu_cache(vma, vmf->address, vmf->pte);
3670
3671 return 0;
3672}
3673
3674
3675/**
3676 * finish_fault - finish page fault once we have prepared the page to fault
3677 *
3678 * @vmf: structure describing the fault
3679 *
3680 * This function handles all that is needed to finish a page fault once the
3681 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3682 * given page, adds reverse page mapping, handles memcg charges and LRU
3683 * addition.
3684 *
3685 * The function expects the page to be locked and on success it consumes a
3686 * reference of a page being mapped (for the PTE which maps it).
3687 *
3688 * Return: %0 on success, %VM_FAULT_ code in case of error.
3689 */
3690vm_fault_t finish_fault(struct vm_fault *vmf)
3691{
3692 struct page *page;
3693 vm_fault_t ret = 0;
3694
3695 /* Did we COW the page? */
3696 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3697 !(vmf->vma->vm_flags & VM_SHARED))
3698 page = vmf->cow_page;
3699 else
3700 page = vmf->page;
3701
3702 /*
3703 * check even for read faults because we might have lost our CoWed
3704 * page
3705 */
3706 if (!(vmf->vma->vm_flags & VM_SHARED))
3707 ret = check_stable_address_space(vmf->vma->vm_mm);
3708 if (!ret)
3709 ret = alloc_set_pte(vmf, page);
3710 if (vmf->pte)
3711 pte_unmap_unlock(vmf->pte, vmf->ptl);
3712 return ret;
3713}
3714
3715static unsigned long fault_around_bytes __read_mostly =
3716 rounddown_pow_of_two(65536);
3717
3718#ifdef CONFIG_DEBUG_FS
3719static int fault_around_bytes_get(void *data, u64 *val)
3720{
3721 *val = fault_around_bytes;
3722 return 0;
3723}
3724
3725/*
3726 * fault_around_bytes must be rounded down to the nearest page order as it's
3727 * what do_fault_around() expects to see.
3728 */
3729static int fault_around_bytes_set(void *data, u64 val)
3730{
3731 if (val / PAGE_SIZE > PTRS_PER_PTE)
3732 return -EINVAL;
3733 if (val > PAGE_SIZE)
3734 fault_around_bytes = rounddown_pow_of_two(val);
3735 else
3736 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3737 return 0;
3738}
3739DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3740 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3741
3742static int __init fault_around_debugfs(void)
3743{
3744 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3745 &fault_around_bytes_fops);
3746 return 0;
3747}
3748late_initcall(fault_around_debugfs);
3749#endif
3750
3751/*
3752 * do_fault_around() tries to map few pages around the fault address. The hope
3753 * is that the pages will be needed soon and this will lower the number of
3754 * faults to handle.
3755 *
3756 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3757 * not ready to be mapped: not up-to-date, locked, etc.
3758 *
3759 * This function is called with the page table lock taken. In the split ptlock
3760 * case the page table lock only protects only those entries which belong to
3761 * the page table corresponding to the fault address.
3762 *
3763 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3764 * only once.
3765 *
3766 * fault_around_bytes defines how many bytes we'll try to map.
3767 * do_fault_around() expects it to be set to a power of two less than or equal
3768 * to PTRS_PER_PTE.
3769 *
3770 * The virtual address of the area that we map is naturally aligned to
3771 * fault_around_bytes rounded down to the machine page size
3772 * (and therefore to page order). This way it's easier to guarantee
3773 * that we don't cross page table boundaries.
3774 */
3775static vm_fault_t do_fault_around(struct vm_fault *vmf)
3776{
3777 unsigned long address = vmf->address, nr_pages, mask;
3778 pgoff_t start_pgoff = vmf->pgoff;
3779 pgoff_t end_pgoff;
3780 int off;
3781 vm_fault_t ret = 0;
3782
3783 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3784 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3785
3786 vmf->address = max(address & mask, vmf->vma->vm_start);
3787 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3788 start_pgoff -= off;
3789
3790 /*
3791 * end_pgoff is either the end of the page table, the end of
3792 * the vma or nr_pages from start_pgoff, depending what is nearest.
3793 */
3794 end_pgoff = start_pgoff -
3795 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3796 PTRS_PER_PTE - 1;
3797 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3798 start_pgoff + nr_pages - 1);
3799
3800 if (pmd_none(*vmf->pmd)) {
3801 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3802 if (!vmf->prealloc_pte)
3803 goto out;
3804 smp_wmb(); /* See comment in __pte_alloc() */
3805 }
3806
3807 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3808
3809 /* Huge page is mapped? Page fault is solved */
3810 if (pmd_trans_huge(*vmf->pmd)) {
3811 ret = VM_FAULT_NOPAGE;
3812 goto out;
3813 }
3814
3815 /* ->map_pages() haven't done anything useful. Cold page cache? */
3816 if (!vmf->pte)
3817 goto out;
3818
3819 /* check if the page fault is solved */
3820 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3821 if (!pte_none(*vmf->pte))
3822 ret = VM_FAULT_NOPAGE;
3823 pte_unmap_unlock(vmf->pte, vmf->ptl);
3824out:
3825 vmf->address = address;
3826 vmf->pte = NULL;
3827 return ret;
3828}
3829
3830static vm_fault_t do_read_fault(struct vm_fault *vmf)
3831{
3832 struct vm_area_struct *vma = vmf->vma;
3833 vm_fault_t ret = 0;
3834
3835 /*
3836 * Let's call ->map_pages() first and use ->fault() as fallback
3837 * if page by the offset is not ready to be mapped (cold cache or
3838 * something).
3839 */
3840 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3841 ret = do_fault_around(vmf);
3842 if (ret)
3843 return ret;
3844 }
3845
3846 ret = __do_fault(vmf);
3847 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3848 return ret;
3849
3850 ret |= finish_fault(vmf);
3851 unlock_page(vmf->page);
3852 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3853 put_page(vmf->page);
3854 return ret;
3855}
3856
3857static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3858{
3859 struct vm_area_struct *vma = vmf->vma;
3860 vm_fault_t ret;
3861
3862 if (unlikely(anon_vma_prepare(vma)))
3863 return VM_FAULT_OOM;
3864
3865 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3866 if (!vmf->cow_page)
3867 return VM_FAULT_OOM;
3868
3869 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3870 put_page(vmf->cow_page);
3871 return VM_FAULT_OOM;
3872 }
3873 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3874
3875 ret = __do_fault(vmf);
3876 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3877 goto uncharge_out;
3878 if (ret & VM_FAULT_DONE_COW)
3879 return ret;
3880
3881 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3882 __SetPageUptodate(vmf->cow_page);
3883
3884 ret |= finish_fault(vmf);
3885 unlock_page(vmf->page);
3886 put_page(vmf->page);
3887 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3888 goto uncharge_out;
3889 return ret;
3890uncharge_out:
3891 put_page(vmf->cow_page);
3892 return ret;
3893}
3894
3895static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3896{
3897 struct vm_area_struct *vma = vmf->vma;
3898 vm_fault_t ret, tmp;
3899
3900 ret = __do_fault(vmf);
3901 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3902 return ret;
3903
3904 /*
3905 * Check if the backing address space wants to know that the page is
3906 * about to become writable
3907 */
3908 if (vma->vm_ops->page_mkwrite) {
3909 unlock_page(vmf->page);
3910 tmp = do_page_mkwrite(vmf);
3911 if (unlikely(!tmp ||
3912 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3913 put_page(vmf->page);
3914 return tmp;
3915 }
3916 }
3917
3918 ret |= finish_fault(vmf);
3919 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3920 VM_FAULT_RETRY))) {
3921 unlock_page(vmf->page);
3922 put_page(vmf->page);
3923 return ret;
3924 }
3925
3926 ret |= fault_dirty_shared_page(vmf);
3927 return ret;
3928}
3929
3930/*
3931 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3932 * but allow concurrent faults).
3933 * The mmap_lock may have been released depending on flags and our
3934 * return value. See filemap_fault() and __lock_page_or_retry().
3935 * If mmap_lock is released, vma may become invalid (for example
3936 * by other thread calling munmap()).
3937 */
3938static vm_fault_t do_fault(struct vm_fault *vmf)
3939{
3940 struct vm_area_struct *vma = vmf->vma;
3941 struct mm_struct *vm_mm = vma->vm_mm;
3942 vm_fault_t ret;
3943
3944 /*
3945 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3946 */
3947 if (!vma->vm_ops->fault) {
3948 /*
3949 * If we find a migration pmd entry or a none pmd entry, which
3950 * should never happen, return SIGBUS
3951 */
3952 if (unlikely(!pmd_present(*vmf->pmd)))
3953 ret = VM_FAULT_SIGBUS;
3954 else {
3955 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3956 vmf->pmd,
3957 vmf->address,
3958 &vmf->ptl);
3959 /*
3960 * Make sure this is not a temporary clearing of pte
3961 * by holding ptl and checking again. A R/M/W update
3962 * of pte involves: take ptl, clearing the pte so that
3963 * we don't have concurrent modification by hardware
3964 * followed by an update.
3965 */
3966 if (unlikely(pte_none(*vmf->pte)))
3967 ret = VM_FAULT_SIGBUS;
3968 else
3969 ret = VM_FAULT_NOPAGE;
3970
3971 pte_unmap_unlock(vmf->pte, vmf->ptl);
3972 }
3973 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3974 ret = do_read_fault(vmf);
3975 else if (!(vma->vm_flags & VM_SHARED))
3976 ret = do_cow_fault(vmf);
3977 else
3978 ret = do_shared_fault(vmf);
3979
3980 /* preallocated pagetable is unused: free it */
3981 if (vmf->prealloc_pte) {
3982 pte_free(vm_mm, vmf->prealloc_pte);
3983 vmf->prealloc_pte = NULL;
3984 }
3985 return ret;
3986}
3987
3988static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3989 unsigned long addr, int page_nid,
3990 int *flags)
3991{
3992 get_page(page);
3993
3994 count_vm_numa_event(NUMA_HINT_FAULTS);
3995 if (page_nid == numa_node_id()) {
3996 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3997 *flags |= TNF_FAULT_LOCAL;
3998 }
3999
4000 return mpol_misplaced(page, vma, addr);
4001}
4002
4003static vm_fault_t do_numa_page(struct vm_fault *vmf)
4004{
4005 struct vm_area_struct *vma = vmf->vma;
4006 struct page *page = NULL;
4007 int page_nid = NUMA_NO_NODE;
4008 int last_cpupid;
4009 int target_nid;
4010 bool migrated = false;
4011 pte_t pte, old_pte;
4012 bool was_writable = pte_savedwrite(vmf->orig_pte);
4013 int flags = 0;
4014
4015 /*
4016 * The "pte" at this point cannot be used safely without
4017 * validation through pte_unmap_same(). It's of NUMA type but
4018 * the pfn may be screwed if the read is non atomic.
4019 */
4020 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4021 spin_lock(vmf->ptl);
4022 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4023 pte_unmap_unlock(vmf->pte, vmf->ptl);
4024 goto out;
4025 }
4026
4027 /*
4028 * Make it present again, Depending on how arch implementes non
4029 * accessible ptes, some can allow access by kernel mode.
4030 */
4031 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4032 pte = pte_modify(old_pte, vma->vm_page_prot);
4033 pte = pte_mkyoung(pte);
4034 if (was_writable)
4035 pte = pte_mkwrite(pte);
4036 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4037 update_mmu_cache(vma, vmf->address, vmf->pte);
4038
4039 page = vm_normal_page(vma, vmf->address, pte);
4040 if (!page) {
4041 pte_unmap_unlock(vmf->pte, vmf->ptl);
4042 return 0;
4043 }
4044
4045 /* TODO: handle PTE-mapped THP */
4046 if (PageCompound(page)) {
4047 pte_unmap_unlock(vmf->pte, vmf->ptl);
4048 return 0;
4049 }
4050
4051 /*
4052 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4053 * much anyway since they can be in shared cache state. This misses
4054 * the case where a mapping is writable but the process never writes
4055 * to it but pte_write gets cleared during protection updates and
4056 * pte_dirty has unpredictable behaviour between PTE scan updates,
4057 * background writeback, dirty balancing and application behaviour.
4058 */
4059 if (!pte_write(pte))
4060 flags |= TNF_NO_GROUP;
4061
4062 /*
4063 * Flag if the page is shared between multiple address spaces. This
4064 * is later used when determining whether to group tasks together
4065 */
4066 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4067 flags |= TNF_SHARED;
4068
4069 last_cpupid = page_cpupid_last(page);
4070 page_nid = page_to_nid(page);
4071 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4072 &flags);
4073 pte_unmap_unlock(vmf->pte, vmf->ptl);
4074 if (target_nid == NUMA_NO_NODE) {
4075 put_page(page);
4076 goto out;
4077 }
4078
4079 /* Migrate to the requested node */
4080 migrated = migrate_misplaced_page(page, vma, target_nid);
4081 if (migrated) {
4082 page_nid = target_nid;
4083 flags |= TNF_MIGRATED;
4084 } else
4085 flags |= TNF_MIGRATE_FAIL;
4086
4087out:
4088 if (page_nid != NUMA_NO_NODE)
4089 task_numa_fault(last_cpupid, page_nid, 1, flags);
4090 return 0;
4091}
4092
4093static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4094{
4095 if (vma_is_anonymous(vmf->vma))
4096 return do_huge_pmd_anonymous_page(vmf);
4097 if (vmf->vma->vm_ops->huge_fault)
4098 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4099 return VM_FAULT_FALLBACK;
4100}
4101
4102/* `inline' is required to avoid gcc 4.1.2 build error */
4103static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4104{
4105 if (vma_is_anonymous(vmf->vma)) {
4106 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4107 return handle_userfault(vmf, VM_UFFD_WP);
4108 return do_huge_pmd_wp_page(vmf, orig_pmd);
4109 }
4110 if (vmf->vma->vm_ops->huge_fault) {
4111 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4112
4113 if (!(ret & VM_FAULT_FALLBACK))
4114 return ret;
4115 }
4116
4117 /* COW or write-notify handled on pte level: split pmd. */
4118 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4119
4120 return VM_FAULT_FALLBACK;
4121}
4122
4123static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4124{
4125#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4126 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4127 /* No support for anonymous transparent PUD pages yet */
4128 if (vma_is_anonymous(vmf->vma))
4129 goto split;
4130 if (vmf->vma->vm_ops->huge_fault) {
4131 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4132
4133 if (!(ret & VM_FAULT_FALLBACK))
4134 return ret;
4135 }
4136split:
4137 /* COW or write-notify not handled on PUD level: split pud.*/
4138 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4139#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4140 return VM_FAULT_FALLBACK;
4141}
4142
4143static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4144{
4145#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4146 /* No support for anonymous transparent PUD pages yet */
4147 if (vma_is_anonymous(vmf->vma))
4148 return VM_FAULT_FALLBACK;
4149 if (vmf->vma->vm_ops->huge_fault)
4150 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4151#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4152 return VM_FAULT_FALLBACK;
4153}
4154
4155/*
4156 * These routines also need to handle stuff like marking pages dirty
4157 * and/or accessed for architectures that don't do it in hardware (most
4158 * RISC architectures). The early dirtying is also good on the i386.
4159 *
4160 * There is also a hook called "update_mmu_cache()" that architectures
4161 * with external mmu caches can use to update those (ie the Sparc or
4162 * PowerPC hashed page tables that act as extended TLBs).
4163 *
4164 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4165 * concurrent faults).
4166 *
4167 * The mmap_lock may have been released depending on flags and our return value.
4168 * See filemap_fault() and __lock_page_or_retry().
4169 */
4170static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4171{
4172 pte_t entry;
4173
4174 if (unlikely(pmd_none(*vmf->pmd))) {
4175 /*
4176 * Leave __pte_alloc() until later: because vm_ops->fault may
4177 * want to allocate huge page, and if we expose page table
4178 * for an instant, it will be difficult to retract from
4179 * concurrent faults and from rmap lookups.
4180 */
4181 vmf->pte = NULL;
4182 } else {
4183 /* See comment in pte_alloc_one_map() */
4184 if (pmd_devmap_trans_unstable(vmf->pmd))
4185 return 0;
4186 /*
4187 * A regular pmd is established and it can't morph into a huge
4188 * pmd from under us anymore at this point because we hold the
4189 * mmap_lock read mode and khugepaged takes it in write mode.
4190 * So now it's safe to run pte_offset_map().
4191 */
4192 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4193 vmf->orig_pte = *vmf->pte;
4194
4195 /*
4196 * some architectures can have larger ptes than wordsize,
4197 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4198 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4199 * accesses. The code below just needs a consistent view
4200 * for the ifs and we later double check anyway with the
4201 * ptl lock held. So here a barrier will do.
4202 */
4203 barrier();
4204 if (pte_none(vmf->orig_pte)) {
4205 pte_unmap(vmf->pte);
4206 vmf->pte = NULL;
4207 }
4208 }
4209
4210 if (!vmf->pte) {
4211 if (vma_is_anonymous(vmf->vma))
4212 return do_anonymous_page(vmf);
4213 else
4214 return do_fault(vmf);
4215 }
4216
4217 if (!pte_present(vmf->orig_pte))
4218 return do_swap_page(vmf);
4219
4220 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4221 return do_numa_page(vmf);
4222
4223 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4224 spin_lock(vmf->ptl);
4225 entry = vmf->orig_pte;
4226 if (unlikely(!pte_same(*vmf->pte, entry))) {
4227 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4228 goto unlock;
4229 }
4230 if (vmf->flags & FAULT_FLAG_WRITE) {
4231 if (!pte_write(entry))
4232 return do_wp_page(vmf);
4233 entry = pte_mkdirty(entry);
4234 }
4235 entry = pte_mkyoung(entry);
4236 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4237 vmf->flags & FAULT_FLAG_WRITE)) {
4238 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4239 } else {
4240 /*
4241 * This is needed only for protection faults but the arch code
4242 * is not yet telling us if this is a protection fault or not.
4243 * This still avoids useless tlb flushes for .text page faults
4244 * with threads.
4245 */
4246 if (vmf->flags & FAULT_FLAG_WRITE)
4247 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4248 }
4249unlock:
4250 pte_unmap_unlock(vmf->pte, vmf->ptl);
4251 return 0;
4252}
4253
4254/*
4255 * By the time we get here, we already hold the mm semaphore
4256 *
4257 * The mmap_lock may have been released depending on flags and our
4258 * return value. See filemap_fault() and __lock_page_or_retry().
4259 */
4260static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4261 unsigned long address, unsigned int flags)
4262{
4263 struct vm_fault vmf = {
4264 .vma = vma,
4265 .address = address & PAGE_MASK,
4266 .flags = flags,
4267 .pgoff = linear_page_index(vma, address),
4268 .gfp_mask = __get_fault_gfp_mask(vma),
4269 };
4270 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4271 struct mm_struct *mm = vma->vm_mm;
4272 pgd_t *pgd;
4273 p4d_t *p4d;
4274 vm_fault_t ret;
4275
4276 pgd = pgd_offset(mm, address);
4277 p4d = p4d_alloc(mm, pgd, address);
4278 if (!p4d)
4279 return VM_FAULT_OOM;
4280
4281 vmf.pud = pud_alloc(mm, p4d, address);
4282 if (!vmf.pud)
4283 return VM_FAULT_OOM;
4284retry_pud:
4285 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4286 ret = create_huge_pud(&vmf);
4287 if (!(ret & VM_FAULT_FALLBACK))
4288 return ret;
4289 } else {
4290 pud_t orig_pud = *vmf.pud;
4291
4292 barrier();
4293 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4294
4295 /* NUMA case for anonymous PUDs would go here */
4296
4297 if (dirty && !pud_write(orig_pud)) {
4298 ret = wp_huge_pud(&vmf, orig_pud);
4299 if (!(ret & VM_FAULT_FALLBACK))
4300 return ret;
4301 } else {
4302 huge_pud_set_accessed(&vmf, orig_pud);
4303 return 0;
4304 }
4305 }
4306 }
4307
4308 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4309 if (!vmf.pmd)
4310 return VM_FAULT_OOM;
4311
4312 /* Huge pud page fault raced with pmd_alloc? */
4313 if (pud_trans_unstable(vmf.pud))
4314 goto retry_pud;
4315
4316 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4317 ret = create_huge_pmd(&vmf);
4318 if (!(ret & VM_FAULT_FALLBACK))
4319 return ret;
4320 } else {
4321 pmd_t orig_pmd = *vmf.pmd;
4322
4323 barrier();
4324 if (unlikely(is_swap_pmd(orig_pmd))) {
4325 VM_BUG_ON(thp_migration_supported() &&
4326 !is_pmd_migration_entry(orig_pmd));
4327 if (is_pmd_migration_entry(orig_pmd))
4328 pmd_migration_entry_wait(mm, vmf.pmd);
4329 return 0;
4330 }
4331 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4332 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4333 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4334
4335 if (dirty && !pmd_write(orig_pmd)) {
4336 ret = wp_huge_pmd(&vmf, orig_pmd);
4337 if (!(ret & VM_FAULT_FALLBACK))
4338 return ret;
4339 } else {
4340 huge_pmd_set_accessed(&vmf, orig_pmd);
4341 return 0;
4342 }
4343 }
4344 }
4345
4346 return handle_pte_fault(&vmf);
4347}
4348
4349/*
4350 * By the time we get here, we already hold the mm semaphore
4351 *
4352 * The mmap_lock may have been released depending on flags and our
4353 * return value. See filemap_fault() and __lock_page_or_retry().
4354 */
4355vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4356 unsigned int flags)
4357{
4358 vm_fault_t ret;
4359
4360 __set_current_state(TASK_RUNNING);
4361
4362 count_vm_event(PGFAULT);
4363 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4364
4365 /* do counter updates before entering really critical section. */
4366 check_sync_rss_stat(current);
4367
4368 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4369 flags & FAULT_FLAG_INSTRUCTION,
4370 flags & FAULT_FLAG_REMOTE))
4371 return VM_FAULT_SIGSEGV;
4372
4373 /*
4374 * Enable the memcg OOM handling for faults triggered in user
4375 * space. Kernel faults are handled more gracefully.
4376 */
4377 if (flags & FAULT_FLAG_USER)
4378 mem_cgroup_enter_user_fault();
4379
4380 if (unlikely(is_vm_hugetlb_page(vma)))
4381 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4382 else
4383 ret = __handle_mm_fault(vma, address, flags);
4384
4385 if (flags & FAULT_FLAG_USER) {
4386 mem_cgroup_exit_user_fault();
4387 /*
4388 * The task may have entered a memcg OOM situation but
4389 * if the allocation error was handled gracefully (no
4390 * VM_FAULT_OOM), there is no need to kill anything.
4391 * Just clean up the OOM state peacefully.
4392 */
4393 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4394 mem_cgroup_oom_synchronize(false);
4395 }
4396
4397 return ret;
4398}
4399EXPORT_SYMBOL_GPL(handle_mm_fault);
4400
4401#ifndef __PAGETABLE_P4D_FOLDED
4402/*
4403 * Allocate p4d page table.
4404 * We've already handled the fast-path in-line.
4405 */
4406int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4407{
4408 p4d_t *new = p4d_alloc_one(mm, address);
4409 if (!new)
4410 return -ENOMEM;
4411
4412 smp_wmb(); /* See comment in __pte_alloc */
4413
4414 spin_lock(&mm->page_table_lock);
4415 if (pgd_present(*pgd)) /* Another has populated it */
4416 p4d_free(mm, new);
4417 else
4418 pgd_populate(mm, pgd, new);
4419 spin_unlock(&mm->page_table_lock);
4420 return 0;
4421}
4422#endif /* __PAGETABLE_P4D_FOLDED */
4423
4424#ifndef __PAGETABLE_PUD_FOLDED
4425/*
4426 * Allocate page upper directory.
4427 * We've already handled the fast-path in-line.
4428 */
4429int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4430{
4431 pud_t *new = pud_alloc_one(mm, address);
4432 if (!new)
4433 return -ENOMEM;
4434
4435 smp_wmb(); /* See comment in __pte_alloc */
4436
4437 spin_lock(&mm->page_table_lock);
4438 if (!p4d_present(*p4d)) {
4439 mm_inc_nr_puds(mm);
4440 p4d_populate(mm, p4d, new);
4441 } else /* Another has populated it */
4442 pud_free(mm, new);
4443 spin_unlock(&mm->page_table_lock);
4444 return 0;
4445}
4446#endif /* __PAGETABLE_PUD_FOLDED */
4447
4448#ifndef __PAGETABLE_PMD_FOLDED
4449/*
4450 * Allocate page middle directory.
4451 * We've already handled the fast-path in-line.
4452 */
4453int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4454{
4455 spinlock_t *ptl;
4456 pmd_t *new = pmd_alloc_one(mm, address);
4457 if (!new)
4458 return -ENOMEM;
4459
4460 smp_wmb(); /* See comment in __pte_alloc */
4461
4462 ptl = pud_lock(mm, pud);
4463 if (!pud_present(*pud)) {
4464 mm_inc_nr_pmds(mm);
4465 pud_populate(mm, pud, new);
4466 } else /* Another has populated it */
4467 pmd_free(mm, new);
4468 spin_unlock(ptl);
4469 return 0;
4470}
4471#endif /* __PAGETABLE_PMD_FOLDED */
4472
4473static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4474 struct mmu_notifier_range *range,
4475 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4476{
4477 pgd_t *pgd;
4478 p4d_t *p4d;
4479 pud_t *pud;
4480 pmd_t *pmd;
4481 pte_t *ptep;
4482
4483 pgd = pgd_offset(mm, address);
4484 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4485 goto out;
4486
4487 p4d = p4d_offset(pgd, address);
4488 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4489 goto out;
4490
4491 pud = pud_offset(p4d, address);
4492 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4493 goto out;
4494
4495 pmd = pmd_offset(pud, address);
4496 VM_BUG_ON(pmd_trans_huge(*pmd));
4497
4498 if (pmd_huge(*pmd)) {
4499 if (!pmdpp)
4500 goto out;
4501
4502 if (range) {
4503 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4504 NULL, mm, address & PMD_MASK,
4505 (address & PMD_MASK) + PMD_SIZE);
4506 mmu_notifier_invalidate_range_start(range);
4507 }
4508 *ptlp = pmd_lock(mm, pmd);
4509 if (pmd_huge(*pmd)) {
4510 *pmdpp = pmd;
4511 return 0;
4512 }
4513 spin_unlock(*ptlp);
4514 if (range)
4515 mmu_notifier_invalidate_range_end(range);
4516 }
4517
4518 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4519 goto out;
4520
4521 if (range) {
4522 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4523 address & PAGE_MASK,
4524 (address & PAGE_MASK) + PAGE_SIZE);
4525 mmu_notifier_invalidate_range_start(range);
4526 }
4527 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4528 if (!pte_present(*ptep))
4529 goto unlock;
4530 *ptepp = ptep;
4531 return 0;
4532unlock:
4533 pte_unmap_unlock(ptep, *ptlp);
4534 if (range)
4535 mmu_notifier_invalidate_range_end(range);
4536out:
4537 return -EINVAL;
4538}
4539
4540static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4541 pte_t **ptepp, spinlock_t **ptlp)
4542{
4543 int res;
4544
4545 /* (void) is needed to make gcc happy */
4546 (void) __cond_lock(*ptlp,
4547 !(res = __follow_pte_pmd(mm, address, NULL,
4548 ptepp, NULL, ptlp)));
4549 return res;
4550}
4551
4552int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4553 struct mmu_notifier_range *range,
4554 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4555{
4556 int res;
4557
4558 /* (void) is needed to make gcc happy */
4559 (void) __cond_lock(*ptlp,
4560 !(res = __follow_pte_pmd(mm, address, range,
4561 ptepp, pmdpp, ptlp)));
4562 return res;
4563}
4564EXPORT_SYMBOL(follow_pte_pmd);
4565
4566/**
4567 * follow_pfn - look up PFN at a user virtual address
4568 * @vma: memory mapping
4569 * @address: user virtual address
4570 * @pfn: location to store found PFN
4571 *
4572 * Only IO mappings and raw PFN mappings are allowed.
4573 *
4574 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4575 */
4576int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4577 unsigned long *pfn)
4578{
4579 int ret = -EINVAL;
4580 spinlock_t *ptl;
4581 pte_t *ptep;
4582
4583 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4584 return ret;
4585
4586 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4587 if (ret)
4588 return ret;
4589 *pfn = pte_pfn(*ptep);
4590 pte_unmap_unlock(ptep, ptl);
4591 return 0;
4592}
4593EXPORT_SYMBOL(follow_pfn);
4594
4595#ifdef CONFIG_HAVE_IOREMAP_PROT
4596int follow_phys(struct vm_area_struct *vma,
4597 unsigned long address, unsigned int flags,
4598 unsigned long *prot, resource_size_t *phys)
4599{
4600 int ret = -EINVAL;
4601 pte_t *ptep, pte;
4602 spinlock_t *ptl;
4603
4604 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4605 goto out;
4606
4607 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4608 goto out;
4609 pte = *ptep;
4610
4611 if ((flags & FOLL_WRITE) && !pte_write(pte))
4612 goto unlock;
4613
4614 *prot = pgprot_val(pte_pgprot(pte));
4615 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4616
4617 ret = 0;
4618unlock:
4619 pte_unmap_unlock(ptep, ptl);
4620out:
4621 return ret;
4622}
4623
4624int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4625 void *buf, int len, int write)
4626{
4627 resource_size_t phys_addr;
4628 unsigned long prot = 0;
4629 void __iomem *maddr;
4630 int offset = addr & (PAGE_SIZE-1);
4631
4632 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4633 return -EINVAL;
4634
4635 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4636 if (!maddr)
4637 return -ENOMEM;
4638
4639 if (write)
4640 memcpy_toio(maddr + offset, buf, len);
4641 else
4642 memcpy_fromio(buf, maddr + offset, len);
4643 iounmap(maddr);
4644
4645 return len;
4646}
4647EXPORT_SYMBOL_GPL(generic_access_phys);
4648#endif
4649
4650/*
4651 * Access another process' address space as given in mm. If non-NULL, use the
4652 * given task for page fault accounting.
4653 */
4654int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4655 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4656{
4657 struct vm_area_struct *vma;
4658 void *old_buf = buf;
4659 int write = gup_flags & FOLL_WRITE;
4660
4661 if (mmap_read_lock_killable(mm))
4662 return 0;
4663
4664 /* ignore errors, just check how much was successfully transferred */
4665 while (len) {
4666 int bytes, ret, offset;
4667 void *maddr;
4668 struct page *page = NULL;
4669
4670 ret = get_user_pages_remote(tsk, mm, addr, 1,
4671 gup_flags, &page, &vma, NULL);
4672 if (ret <= 0) {
4673#ifndef CONFIG_HAVE_IOREMAP_PROT
4674 break;
4675#else
4676 /*
4677 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4678 * we can access using slightly different code.
4679 */
4680 vma = find_vma(mm, addr);
4681 if (!vma || vma->vm_start > addr)
4682 break;
4683 if (vma->vm_ops && vma->vm_ops->access)
4684 ret = vma->vm_ops->access(vma, addr, buf,
4685 len, write);
4686 if (ret <= 0)
4687 break;
4688 bytes = ret;
4689#endif
4690 } else {
4691 bytes = len;
4692 offset = addr & (PAGE_SIZE-1);
4693 if (bytes > PAGE_SIZE-offset)
4694 bytes = PAGE_SIZE-offset;
4695
4696 maddr = kmap(page);
4697 if (write) {
4698 copy_to_user_page(vma, page, addr,
4699 maddr + offset, buf, bytes);
4700 set_page_dirty_lock(page);
4701 } else {
4702 copy_from_user_page(vma, page, addr,
4703 buf, maddr + offset, bytes);
4704 }
4705 kunmap(page);
4706 put_page(page);
4707 }
4708 len -= bytes;
4709 buf += bytes;
4710 addr += bytes;
4711 }
4712 mmap_read_unlock(mm);
4713
4714 return buf - old_buf;
4715}
4716
4717/**
4718 * access_remote_vm - access another process' address space
4719 * @mm: the mm_struct of the target address space
4720 * @addr: start address to access
4721 * @buf: source or destination buffer
4722 * @len: number of bytes to transfer
4723 * @gup_flags: flags modifying lookup behaviour
4724 *
4725 * The caller must hold a reference on @mm.
4726 *
4727 * Return: number of bytes copied from source to destination.
4728 */
4729int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4730 void *buf, int len, unsigned int gup_flags)
4731{
4732 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4733}
4734
4735/*
4736 * Access another process' address space.
4737 * Source/target buffer must be kernel space,
4738 * Do not walk the page table directly, use get_user_pages
4739 */
4740int access_process_vm(struct task_struct *tsk, unsigned long addr,
4741 void *buf, int len, unsigned int gup_flags)
4742{
4743 struct mm_struct *mm;
4744 int ret;
4745
4746 mm = get_task_mm(tsk);
4747 if (!mm)
4748 return 0;
4749
4750 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4751
4752 mmput(mm);
4753
4754 return ret;
4755}
4756EXPORT_SYMBOL_GPL(access_process_vm);
4757
4758/*
4759 * Print the name of a VMA.
4760 */
4761void print_vma_addr(char *prefix, unsigned long ip)
4762{
4763 struct mm_struct *mm = current->mm;
4764 struct vm_area_struct *vma;
4765
4766 /*
4767 * we might be running from an atomic context so we cannot sleep
4768 */
4769 if (!mmap_read_trylock(mm))
4770 return;
4771
4772 vma = find_vma(mm, ip);
4773 if (vma && vma->vm_file) {
4774 struct file *f = vma->vm_file;
4775 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4776 if (buf) {
4777 char *p;
4778
4779 p = file_path(f, buf, PAGE_SIZE);
4780 if (IS_ERR(p))
4781 p = "?";
4782 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4783 vma->vm_start,
4784 vma->vm_end - vma->vm_start);
4785 free_page((unsigned long)buf);
4786 }
4787 }
4788 mmap_read_unlock(mm);
4789}
4790
4791#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4792void __might_fault(const char *file, int line)
4793{
4794 /*
4795 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4796 * holding the mmap_lock, this is safe because kernel memory doesn't
4797 * get paged out, therefore we'll never actually fault, and the
4798 * below annotations will generate false positives.
4799 */
4800 if (uaccess_kernel())
4801 return;
4802 if (pagefault_disabled())
4803 return;
4804 __might_sleep(file, line, 0);
4805#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4806 if (current->mm)
4807 might_lock_read(¤t->mm->mmap_lock);
4808#endif
4809}
4810EXPORT_SYMBOL(__might_fault);
4811#endif
4812
4813#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4814/*
4815 * Process all subpages of the specified huge page with the specified
4816 * operation. The target subpage will be processed last to keep its
4817 * cache lines hot.
4818 */
4819static inline void process_huge_page(
4820 unsigned long addr_hint, unsigned int pages_per_huge_page,
4821 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4822 void *arg)
4823{
4824 int i, n, base, l;
4825 unsigned long addr = addr_hint &
4826 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4827
4828 /* Process target subpage last to keep its cache lines hot */
4829 might_sleep();
4830 n = (addr_hint - addr) / PAGE_SIZE;
4831 if (2 * n <= pages_per_huge_page) {
4832 /* If target subpage in first half of huge page */
4833 base = 0;
4834 l = n;
4835 /* Process subpages at the end of huge page */
4836 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4837 cond_resched();
4838 process_subpage(addr + i * PAGE_SIZE, i, arg);
4839 }
4840 } else {
4841 /* If target subpage in second half of huge page */
4842 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4843 l = pages_per_huge_page - n;
4844 /* Process subpages at the begin of huge page */
4845 for (i = 0; i < base; i++) {
4846 cond_resched();
4847 process_subpage(addr + i * PAGE_SIZE, i, arg);
4848 }
4849 }
4850 /*
4851 * Process remaining subpages in left-right-left-right pattern
4852 * towards the target subpage
4853 */
4854 for (i = 0; i < l; i++) {
4855 int left_idx = base + i;
4856 int right_idx = base + 2 * l - 1 - i;
4857
4858 cond_resched();
4859 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4860 cond_resched();
4861 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4862 }
4863}
4864
4865static void clear_gigantic_page(struct page *page,
4866 unsigned long addr,
4867 unsigned int pages_per_huge_page)
4868{
4869 int i;
4870 struct page *p = page;
4871
4872 might_sleep();
4873 for (i = 0; i < pages_per_huge_page;
4874 i++, p = mem_map_next(p, page, i)) {
4875 cond_resched();
4876 clear_user_highpage(p, addr + i * PAGE_SIZE);
4877 }
4878}
4879
4880static void clear_subpage(unsigned long addr, int idx, void *arg)
4881{
4882 struct page *page = arg;
4883
4884 clear_user_highpage(page + idx, addr);
4885}
4886
4887void clear_huge_page(struct page *page,
4888 unsigned long addr_hint, unsigned int pages_per_huge_page)
4889{
4890 unsigned long addr = addr_hint &
4891 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4892
4893 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4894 clear_gigantic_page(page, addr, pages_per_huge_page);
4895 return;
4896 }
4897
4898 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4899}
4900
4901static void copy_user_gigantic_page(struct page *dst, struct page *src,
4902 unsigned long addr,
4903 struct vm_area_struct *vma,
4904 unsigned int pages_per_huge_page)
4905{
4906 int i;
4907 struct page *dst_base = dst;
4908 struct page *src_base = src;
4909
4910 for (i = 0; i < pages_per_huge_page; ) {
4911 cond_resched();
4912 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4913
4914 i++;
4915 dst = mem_map_next(dst, dst_base, i);
4916 src = mem_map_next(src, src_base, i);
4917 }
4918}
4919
4920struct copy_subpage_arg {
4921 struct page *dst;
4922 struct page *src;
4923 struct vm_area_struct *vma;
4924};
4925
4926static void copy_subpage(unsigned long addr, int idx, void *arg)
4927{
4928 struct copy_subpage_arg *copy_arg = arg;
4929
4930 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4931 addr, copy_arg->vma);
4932}
4933
4934void copy_user_huge_page(struct page *dst, struct page *src,
4935 unsigned long addr_hint, struct vm_area_struct *vma,
4936 unsigned int pages_per_huge_page)
4937{
4938 unsigned long addr = addr_hint &
4939 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4940 struct copy_subpage_arg arg = {
4941 .dst = dst,
4942 .src = src,
4943 .vma = vma,
4944 };
4945
4946 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4947 copy_user_gigantic_page(dst, src, addr, vma,
4948 pages_per_huge_page);
4949 return;
4950 }
4951
4952 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4953}
4954
4955long copy_huge_page_from_user(struct page *dst_page,
4956 const void __user *usr_src,
4957 unsigned int pages_per_huge_page,
4958 bool allow_pagefault)
4959{
4960 void *src = (void *)usr_src;
4961 void *page_kaddr;
4962 unsigned long i, rc = 0;
4963 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4964
4965 for (i = 0; i < pages_per_huge_page; i++) {
4966 if (allow_pagefault)
4967 page_kaddr = kmap(dst_page + i);
4968 else
4969 page_kaddr = kmap_atomic(dst_page + i);
4970 rc = copy_from_user(page_kaddr,
4971 (const void __user *)(src + i * PAGE_SIZE),
4972 PAGE_SIZE);
4973 if (allow_pagefault)
4974 kunmap(dst_page + i);
4975 else
4976 kunmap_atomic(page_kaddr);
4977
4978 ret_val -= (PAGE_SIZE - rc);
4979 if (rc)
4980 break;
4981
4982 cond_resched();
4983 }
4984 return ret_val;
4985}
4986#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4987
4988#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4989
4990static struct kmem_cache *page_ptl_cachep;
4991
4992void __init ptlock_cache_init(void)
4993{
4994 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4995 SLAB_PANIC, NULL);
4996}
4997
4998bool ptlock_alloc(struct page *page)
4999{
5000 spinlock_t *ptl;
5001
5002 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5003 if (!ptl)
5004 return false;
5005 page->ptl = ptl;
5006 return true;
5007}
5008
5009void ptlock_free(struct page *page)
5010{
5011 kmem_cache_free(page_ptl_cachep, page->ptl);
5012}
5013#endif