Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/kcov.h>
18#include <linux/mutex.h>
19#include <linux/plist.h>
20#include <linux/hrtimer.h>
21#include <linux/seccomp.h>
22#include <linux/nodemask.h>
23#include <linux/rcupdate.h>
24#include <linux/refcount.h>
25#include <linux/resource.h>
26#include <linux/latencytop.h>
27#include <linux/sched/prio.h>
28#include <linux/sched/types.h>
29#include <linux/signal_types.h>
30#include <linux/mm_types_task.h>
31#include <linux/task_io_accounting.h>
32#include <linux/posix-timers.h>
33#include <linux/rseq.h>
34#include <linux/kcsan.h>
35
36/* task_struct member predeclarations (sorted alphabetically): */
37struct audit_context;
38struct backing_dev_info;
39struct bio_list;
40struct blk_plug;
41struct capture_control;
42struct cfs_rq;
43struct fs_struct;
44struct futex_pi_state;
45struct io_context;
46struct mempolicy;
47struct nameidata;
48struct nsproxy;
49struct perf_event_context;
50struct pid_namespace;
51struct pipe_inode_info;
52struct rcu_node;
53struct reclaim_state;
54struct robust_list_head;
55struct root_domain;
56struct rq;
57struct sched_attr;
58struct sched_param;
59struct seq_file;
60struct sighand_struct;
61struct signal_struct;
62struct task_delay_info;
63struct task_group;
64
65/*
66 * Task state bitmask. NOTE! These bits are also
67 * encoded in fs/proc/array.c: get_task_state().
68 *
69 * We have two separate sets of flags: task->state
70 * is about runnability, while task->exit_state are
71 * about the task exiting. Confusing, but this way
72 * modifying one set can't modify the other one by
73 * mistake.
74 */
75
76/* Used in tsk->state: */
77#define TASK_RUNNING 0x0000
78#define TASK_INTERRUPTIBLE 0x0001
79#define TASK_UNINTERRUPTIBLE 0x0002
80#define __TASK_STOPPED 0x0004
81#define __TASK_TRACED 0x0008
82/* Used in tsk->exit_state: */
83#define EXIT_DEAD 0x0010
84#define EXIT_ZOMBIE 0x0020
85#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
86/* Used in tsk->state again: */
87#define TASK_PARKED 0x0040
88#define TASK_DEAD 0x0080
89#define TASK_WAKEKILL 0x0100
90#define TASK_WAKING 0x0200
91#define TASK_NOLOAD 0x0400
92#define TASK_NEW 0x0800
93#define TASK_STATE_MAX 0x1000
94
95/* Convenience macros for the sake of set_current_state: */
96#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
97#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
98#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
99
100#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
101
102/* Convenience macros for the sake of wake_up(): */
103#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
104
105/* get_task_state(): */
106#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
107 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
108 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
109 TASK_PARKED)
110
111#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
112
113#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
114
115#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
116
117#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \
118 (task->flags & PF_FROZEN) == 0 && \
119 (task->state & TASK_NOLOAD) == 0)
120
121#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
122
123/*
124 * Special states are those that do not use the normal wait-loop pattern. See
125 * the comment with set_special_state().
126 */
127#define is_special_task_state(state) \
128 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
129
130#define __set_current_state(state_value) \
131 do { \
132 WARN_ON_ONCE(is_special_task_state(state_value));\
133 current->task_state_change = _THIS_IP_; \
134 current->state = (state_value); \
135 } while (0)
136
137#define set_current_state(state_value) \
138 do { \
139 WARN_ON_ONCE(is_special_task_state(state_value));\
140 current->task_state_change = _THIS_IP_; \
141 smp_store_mb(current->state, (state_value)); \
142 } while (0)
143
144#define set_special_state(state_value) \
145 do { \
146 unsigned long flags; /* may shadow */ \
147 WARN_ON_ONCE(!is_special_task_state(state_value)); \
148 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
149 current->task_state_change = _THIS_IP_; \
150 current->state = (state_value); \
151 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
152 } while (0)
153#else
154/*
155 * set_current_state() includes a barrier so that the write of current->state
156 * is correctly serialised wrt the caller's subsequent test of whether to
157 * actually sleep:
158 *
159 * for (;;) {
160 * set_current_state(TASK_UNINTERRUPTIBLE);
161 * if (!need_sleep)
162 * break;
163 *
164 * schedule();
165 * }
166 * __set_current_state(TASK_RUNNING);
167 *
168 * If the caller does not need such serialisation (because, for instance, the
169 * condition test and condition change and wakeup are under the same lock) then
170 * use __set_current_state().
171 *
172 * The above is typically ordered against the wakeup, which does:
173 *
174 * need_sleep = false;
175 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
176 *
177 * where wake_up_state() executes a full memory barrier before accessing the
178 * task state.
179 *
180 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
181 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
182 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
183 *
184 * However, with slightly different timing the wakeup TASK_RUNNING store can
185 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
186 * a problem either because that will result in one extra go around the loop
187 * and our @cond test will save the day.
188 *
189 * Also see the comments of try_to_wake_up().
190 */
191#define __set_current_state(state_value) \
192 current->state = (state_value)
193
194#define set_current_state(state_value) \
195 smp_store_mb(current->state, (state_value))
196
197/*
198 * set_special_state() should be used for those states when the blocking task
199 * can not use the regular condition based wait-loop. In that case we must
200 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
201 * will not collide with our state change.
202 */
203#define set_special_state(state_value) \
204 do { \
205 unsigned long flags; /* may shadow */ \
206 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
207 current->state = (state_value); \
208 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
209 } while (0)
210
211#endif
212
213/* Task command name length: */
214#define TASK_COMM_LEN 16
215
216extern void scheduler_tick(void);
217
218#define MAX_SCHEDULE_TIMEOUT LONG_MAX
219
220extern long schedule_timeout(long timeout);
221extern long schedule_timeout_interruptible(long timeout);
222extern long schedule_timeout_killable(long timeout);
223extern long schedule_timeout_uninterruptible(long timeout);
224extern long schedule_timeout_idle(long timeout);
225asmlinkage void schedule(void);
226extern void schedule_preempt_disabled(void);
227asmlinkage void preempt_schedule_irq(void);
228
229extern int __must_check io_schedule_prepare(void);
230extern void io_schedule_finish(int token);
231extern long io_schedule_timeout(long timeout);
232extern void io_schedule(void);
233
234/**
235 * struct prev_cputime - snapshot of system and user cputime
236 * @utime: time spent in user mode
237 * @stime: time spent in system mode
238 * @lock: protects the above two fields
239 *
240 * Stores previous user/system time values such that we can guarantee
241 * monotonicity.
242 */
243struct prev_cputime {
244#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
245 u64 utime;
246 u64 stime;
247 raw_spinlock_t lock;
248#endif
249};
250
251enum vtime_state {
252 /* Task is sleeping or running in a CPU with VTIME inactive: */
253 VTIME_INACTIVE = 0,
254 /* Task is idle */
255 VTIME_IDLE,
256 /* Task runs in kernelspace in a CPU with VTIME active: */
257 VTIME_SYS,
258 /* Task runs in userspace in a CPU with VTIME active: */
259 VTIME_USER,
260 /* Task runs as guests in a CPU with VTIME active: */
261 VTIME_GUEST,
262};
263
264struct vtime {
265 seqcount_t seqcount;
266 unsigned long long starttime;
267 enum vtime_state state;
268 unsigned int cpu;
269 u64 utime;
270 u64 stime;
271 u64 gtime;
272};
273
274/*
275 * Utilization clamp constraints.
276 * @UCLAMP_MIN: Minimum utilization
277 * @UCLAMP_MAX: Maximum utilization
278 * @UCLAMP_CNT: Utilization clamp constraints count
279 */
280enum uclamp_id {
281 UCLAMP_MIN = 0,
282 UCLAMP_MAX,
283 UCLAMP_CNT
284};
285
286#ifdef CONFIG_SMP
287extern struct root_domain def_root_domain;
288extern struct mutex sched_domains_mutex;
289#endif
290
291struct sched_info {
292#ifdef CONFIG_SCHED_INFO
293 /* Cumulative counters: */
294
295 /* # of times we have run on this CPU: */
296 unsigned long pcount;
297
298 /* Time spent waiting on a runqueue: */
299 unsigned long long run_delay;
300
301 /* Timestamps: */
302
303 /* When did we last run on a CPU? */
304 unsigned long long last_arrival;
305
306 /* When were we last queued to run? */
307 unsigned long long last_queued;
308
309#endif /* CONFIG_SCHED_INFO */
310};
311
312/*
313 * Integer metrics need fixed point arithmetic, e.g., sched/fair
314 * has a few: load, load_avg, util_avg, freq, and capacity.
315 *
316 * We define a basic fixed point arithmetic range, and then formalize
317 * all these metrics based on that basic range.
318 */
319# define SCHED_FIXEDPOINT_SHIFT 10
320# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
321
322/* Increase resolution of cpu_capacity calculations */
323# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
324# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
325
326struct load_weight {
327 unsigned long weight;
328 u32 inv_weight;
329};
330
331/**
332 * struct util_est - Estimation utilization of FAIR tasks
333 * @enqueued: instantaneous estimated utilization of a task/cpu
334 * @ewma: the Exponential Weighted Moving Average (EWMA)
335 * utilization of a task
336 *
337 * Support data structure to track an Exponential Weighted Moving Average
338 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
339 * average each time a task completes an activation. Sample's weight is chosen
340 * so that the EWMA will be relatively insensitive to transient changes to the
341 * task's workload.
342 *
343 * The enqueued attribute has a slightly different meaning for tasks and cpus:
344 * - task: the task's util_avg at last task dequeue time
345 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
346 * Thus, the util_est.enqueued of a task represents the contribution on the
347 * estimated utilization of the CPU where that task is currently enqueued.
348 *
349 * Only for tasks we track a moving average of the past instantaneous
350 * estimated utilization. This allows to absorb sporadic drops in utilization
351 * of an otherwise almost periodic task.
352 */
353struct util_est {
354 unsigned int enqueued;
355 unsigned int ewma;
356#define UTIL_EST_WEIGHT_SHIFT 2
357} __attribute__((__aligned__(sizeof(u64))));
358
359/*
360 * The load/runnable/util_avg accumulates an infinite geometric series
361 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
362 *
363 * [load_avg definition]
364 *
365 * load_avg = runnable% * scale_load_down(load)
366 *
367 * [runnable_avg definition]
368 *
369 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
370 *
371 * [util_avg definition]
372 *
373 * util_avg = running% * SCHED_CAPACITY_SCALE
374 *
375 * where runnable% is the time ratio that a sched_entity is runnable and
376 * running% the time ratio that a sched_entity is running.
377 *
378 * For cfs_rq, they are the aggregated values of all runnable and blocked
379 * sched_entities.
380 *
381 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU
382 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
383 * for computing those signals (see update_rq_clock_pelt())
384 *
385 * N.B., the above ratios (runnable% and running%) themselves are in the
386 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
387 * to as large a range as necessary. This is for example reflected by
388 * util_avg's SCHED_CAPACITY_SCALE.
389 *
390 * [Overflow issue]
391 *
392 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
393 * with the highest load (=88761), always runnable on a single cfs_rq,
394 * and should not overflow as the number already hits PID_MAX_LIMIT.
395 *
396 * For all other cases (including 32-bit kernels), struct load_weight's
397 * weight will overflow first before we do, because:
398 *
399 * Max(load_avg) <= Max(load.weight)
400 *
401 * Then it is the load_weight's responsibility to consider overflow
402 * issues.
403 */
404struct sched_avg {
405 u64 last_update_time;
406 u64 load_sum;
407 u64 runnable_sum;
408 u32 util_sum;
409 u32 period_contrib;
410 unsigned long load_avg;
411 unsigned long runnable_avg;
412 unsigned long util_avg;
413 struct util_est util_est;
414} ____cacheline_aligned;
415
416struct sched_statistics {
417#ifdef CONFIG_SCHEDSTATS
418 u64 wait_start;
419 u64 wait_max;
420 u64 wait_count;
421 u64 wait_sum;
422 u64 iowait_count;
423 u64 iowait_sum;
424
425 u64 sleep_start;
426 u64 sleep_max;
427 s64 sum_sleep_runtime;
428
429 u64 block_start;
430 u64 block_max;
431 u64 exec_max;
432 u64 slice_max;
433
434 u64 nr_migrations_cold;
435 u64 nr_failed_migrations_affine;
436 u64 nr_failed_migrations_running;
437 u64 nr_failed_migrations_hot;
438 u64 nr_forced_migrations;
439
440 u64 nr_wakeups;
441 u64 nr_wakeups_sync;
442 u64 nr_wakeups_migrate;
443 u64 nr_wakeups_local;
444 u64 nr_wakeups_remote;
445 u64 nr_wakeups_affine;
446 u64 nr_wakeups_affine_attempts;
447 u64 nr_wakeups_passive;
448 u64 nr_wakeups_idle;
449#endif
450};
451
452struct sched_entity {
453 /* For load-balancing: */
454 struct load_weight load;
455 struct rb_node run_node;
456 struct list_head group_node;
457 unsigned int on_rq;
458
459 u64 exec_start;
460 u64 sum_exec_runtime;
461 u64 vruntime;
462 u64 prev_sum_exec_runtime;
463
464 u64 nr_migrations;
465
466 struct sched_statistics statistics;
467
468#ifdef CONFIG_FAIR_GROUP_SCHED
469 int depth;
470 struct sched_entity *parent;
471 /* rq on which this entity is (to be) queued: */
472 struct cfs_rq *cfs_rq;
473 /* rq "owned" by this entity/group: */
474 struct cfs_rq *my_q;
475 /* cached value of my_q->h_nr_running */
476 unsigned long runnable_weight;
477#endif
478
479#ifdef CONFIG_SMP
480 /*
481 * Per entity load average tracking.
482 *
483 * Put into separate cache line so it does not
484 * collide with read-mostly values above.
485 */
486 struct sched_avg avg;
487#endif
488};
489
490struct sched_rt_entity {
491 struct list_head run_list;
492 unsigned long timeout;
493 unsigned long watchdog_stamp;
494 unsigned int time_slice;
495 unsigned short on_rq;
496 unsigned short on_list;
497
498 struct sched_rt_entity *back;
499#ifdef CONFIG_RT_GROUP_SCHED
500 struct sched_rt_entity *parent;
501 /* rq on which this entity is (to be) queued: */
502 struct rt_rq *rt_rq;
503 /* rq "owned" by this entity/group: */
504 struct rt_rq *my_q;
505#endif
506} __randomize_layout;
507
508struct sched_dl_entity {
509 struct rb_node rb_node;
510
511 /*
512 * Original scheduling parameters. Copied here from sched_attr
513 * during sched_setattr(), they will remain the same until
514 * the next sched_setattr().
515 */
516 u64 dl_runtime; /* Maximum runtime for each instance */
517 u64 dl_deadline; /* Relative deadline of each instance */
518 u64 dl_period; /* Separation of two instances (period) */
519 u64 dl_bw; /* dl_runtime / dl_period */
520 u64 dl_density; /* dl_runtime / dl_deadline */
521
522 /*
523 * Actual scheduling parameters. Initialized with the values above,
524 * they are continuously updated during task execution. Note that
525 * the remaining runtime could be < 0 in case we are in overrun.
526 */
527 s64 runtime; /* Remaining runtime for this instance */
528 u64 deadline; /* Absolute deadline for this instance */
529 unsigned int flags; /* Specifying the scheduler behaviour */
530
531 /*
532 * Some bool flags:
533 *
534 * @dl_throttled tells if we exhausted the runtime. If so, the
535 * task has to wait for a replenishment to be performed at the
536 * next firing of dl_timer.
537 *
538 * @dl_boosted tells if we are boosted due to DI. If so we are
539 * outside bandwidth enforcement mechanism (but only until we
540 * exit the critical section);
541 *
542 * @dl_yielded tells if task gave up the CPU before consuming
543 * all its available runtime during the last job.
544 *
545 * @dl_non_contending tells if the task is inactive while still
546 * contributing to the active utilization. In other words, it
547 * indicates if the inactive timer has been armed and its handler
548 * has not been executed yet. This flag is useful to avoid race
549 * conditions between the inactive timer handler and the wakeup
550 * code.
551 *
552 * @dl_overrun tells if the task asked to be informed about runtime
553 * overruns.
554 */
555 unsigned int dl_throttled : 1;
556 unsigned int dl_boosted : 1;
557 unsigned int dl_yielded : 1;
558 unsigned int dl_non_contending : 1;
559 unsigned int dl_overrun : 1;
560
561 /*
562 * Bandwidth enforcement timer. Each -deadline task has its
563 * own bandwidth to be enforced, thus we need one timer per task.
564 */
565 struct hrtimer dl_timer;
566
567 /*
568 * Inactive timer, responsible for decreasing the active utilization
569 * at the "0-lag time". When a -deadline task blocks, it contributes
570 * to GRUB's active utilization until the "0-lag time", hence a
571 * timer is needed to decrease the active utilization at the correct
572 * time.
573 */
574 struct hrtimer inactive_timer;
575};
576
577#ifdef CONFIG_UCLAMP_TASK
578/* Number of utilization clamp buckets (shorter alias) */
579#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
580
581/*
582 * Utilization clamp for a scheduling entity
583 * @value: clamp value "assigned" to a se
584 * @bucket_id: bucket index corresponding to the "assigned" value
585 * @active: the se is currently refcounted in a rq's bucket
586 * @user_defined: the requested clamp value comes from user-space
587 *
588 * The bucket_id is the index of the clamp bucket matching the clamp value
589 * which is pre-computed and stored to avoid expensive integer divisions from
590 * the fast path.
591 *
592 * The active bit is set whenever a task has got an "effective" value assigned,
593 * which can be different from the clamp value "requested" from user-space.
594 * This allows to know a task is refcounted in the rq's bucket corresponding
595 * to the "effective" bucket_id.
596 *
597 * The user_defined bit is set whenever a task has got a task-specific clamp
598 * value requested from userspace, i.e. the system defaults apply to this task
599 * just as a restriction. This allows to relax default clamps when a less
600 * restrictive task-specific value has been requested, thus allowing to
601 * implement a "nice" semantic. For example, a task running with a 20%
602 * default boost can still drop its own boosting to 0%.
603 */
604struct uclamp_se {
605 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
606 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
607 unsigned int active : 1;
608 unsigned int user_defined : 1;
609};
610#endif /* CONFIG_UCLAMP_TASK */
611
612union rcu_special {
613 struct {
614 u8 blocked;
615 u8 need_qs;
616 u8 exp_hint; /* Hint for performance. */
617 u8 need_mb; /* Readers need smp_mb(). */
618 } b; /* Bits. */
619 u32 s; /* Set of bits. */
620};
621
622enum perf_event_task_context {
623 perf_invalid_context = -1,
624 perf_hw_context = 0,
625 perf_sw_context,
626 perf_nr_task_contexts,
627};
628
629struct wake_q_node {
630 struct wake_q_node *next;
631};
632
633struct task_struct {
634#ifdef CONFIG_THREAD_INFO_IN_TASK
635 /*
636 * For reasons of header soup (see current_thread_info()), this
637 * must be the first element of task_struct.
638 */
639 struct thread_info thread_info;
640#endif
641 /* -1 unrunnable, 0 runnable, >0 stopped: */
642 volatile long state;
643
644 /*
645 * This begins the randomizable portion of task_struct. Only
646 * scheduling-critical items should be added above here.
647 */
648 randomized_struct_fields_start
649
650 void *stack;
651 refcount_t usage;
652 /* Per task flags (PF_*), defined further below: */
653 unsigned int flags;
654 unsigned int ptrace;
655
656#ifdef CONFIG_SMP
657 struct llist_node wake_entry;
658 unsigned int wake_entry_type;
659 int on_cpu;
660#ifdef CONFIG_THREAD_INFO_IN_TASK
661 /* Current CPU: */
662 unsigned int cpu;
663#endif
664 unsigned int wakee_flips;
665 unsigned long wakee_flip_decay_ts;
666 struct task_struct *last_wakee;
667
668 /*
669 * recent_used_cpu is initially set as the last CPU used by a task
670 * that wakes affine another task. Waker/wakee relationships can
671 * push tasks around a CPU where each wakeup moves to the next one.
672 * Tracking a recently used CPU allows a quick search for a recently
673 * used CPU that may be idle.
674 */
675 int recent_used_cpu;
676 int wake_cpu;
677#endif
678 int on_rq;
679
680 int prio;
681 int static_prio;
682 int normal_prio;
683 unsigned int rt_priority;
684
685 const struct sched_class *sched_class;
686 struct sched_entity se;
687 struct sched_rt_entity rt;
688#ifdef CONFIG_CGROUP_SCHED
689 struct task_group *sched_task_group;
690#endif
691 struct sched_dl_entity dl;
692
693#ifdef CONFIG_UCLAMP_TASK
694 /* Clamp values requested for a scheduling entity */
695 struct uclamp_se uclamp_req[UCLAMP_CNT];
696 /* Effective clamp values used for a scheduling entity */
697 struct uclamp_se uclamp[UCLAMP_CNT];
698#endif
699
700#ifdef CONFIG_PREEMPT_NOTIFIERS
701 /* List of struct preempt_notifier: */
702 struct hlist_head preempt_notifiers;
703#endif
704
705#ifdef CONFIG_BLK_DEV_IO_TRACE
706 unsigned int btrace_seq;
707#endif
708
709 unsigned int policy;
710 int nr_cpus_allowed;
711 const cpumask_t *cpus_ptr;
712 cpumask_t cpus_mask;
713
714#ifdef CONFIG_PREEMPT_RCU
715 int rcu_read_lock_nesting;
716 union rcu_special rcu_read_unlock_special;
717 struct list_head rcu_node_entry;
718 struct rcu_node *rcu_blocked_node;
719#endif /* #ifdef CONFIG_PREEMPT_RCU */
720
721#ifdef CONFIG_TASKS_RCU
722 unsigned long rcu_tasks_nvcsw;
723 u8 rcu_tasks_holdout;
724 u8 rcu_tasks_idx;
725 int rcu_tasks_idle_cpu;
726 struct list_head rcu_tasks_holdout_list;
727#endif /* #ifdef CONFIG_TASKS_RCU */
728
729#ifdef CONFIG_TASKS_TRACE_RCU
730 int trc_reader_nesting;
731 int trc_ipi_to_cpu;
732 union rcu_special trc_reader_special;
733 bool trc_reader_checked;
734 struct list_head trc_holdout_list;
735#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
736
737 struct sched_info sched_info;
738
739 struct list_head tasks;
740#ifdef CONFIG_SMP
741 struct plist_node pushable_tasks;
742 struct rb_node pushable_dl_tasks;
743#endif
744
745 struct mm_struct *mm;
746 struct mm_struct *active_mm;
747
748 /* Per-thread vma caching: */
749 struct vmacache vmacache;
750
751#ifdef SPLIT_RSS_COUNTING
752 struct task_rss_stat rss_stat;
753#endif
754 int exit_state;
755 int exit_code;
756 int exit_signal;
757 /* The signal sent when the parent dies: */
758 int pdeath_signal;
759 /* JOBCTL_*, siglock protected: */
760 unsigned long jobctl;
761
762 /* Used for emulating ABI behavior of previous Linux versions: */
763 unsigned int personality;
764
765 /* Scheduler bits, serialized by scheduler locks: */
766 unsigned sched_reset_on_fork:1;
767 unsigned sched_contributes_to_load:1;
768 unsigned sched_migrated:1;
769 unsigned sched_remote_wakeup:1;
770#ifdef CONFIG_PSI
771 unsigned sched_psi_wake_requeue:1;
772#endif
773
774 /* Force alignment to the next boundary: */
775 unsigned :0;
776
777 /* Unserialized, strictly 'current' */
778
779 /* Bit to tell LSMs we're in execve(): */
780 unsigned in_execve:1;
781 unsigned in_iowait:1;
782#ifndef TIF_RESTORE_SIGMASK
783 unsigned restore_sigmask:1;
784#endif
785#ifdef CONFIG_MEMCG
786 unsigned in_user_fault:1;
787#endif
788#ifdef CONFIG_COMPAT_BRK
789 unsigned brk_randomized:1;
790#endif
791#ifdef CONFIG_CGROUPS
792 /* disallow userland-initiated cgroup migration */
793 unsigned no_cgroup_migration:1;
794 /* task is frozen/stopped (used by the cgroup freezer) */
795 unsigned frozen:1;
796#endif
797#ifdef CONFIG_BLK_CGROUP
798 unsigned use_memdelay:1;
799#endif
800#ifdef CONFIG_PSI
801 /* Stalled due to lack of memory */
802 unsigned in_memstall:1;
803#endif
804
805 unsigned long atomic_flags; /* Flags requiring atomic access. */
806
807 struct restart_block restart_block;
808
809 pid_t pid;
810 pid_t tgid;
811
812#ifdef CONFIG_STACKPROTECTOR
813 /* Canary value for the -fstack-protector GCC feature: */
814 unsigned long stack_canary;
815#endif
816 /*
817 * Pointers to the (original) parent process, youngest child, younger sibling,
818 * older sibling, respectively. (p->father can be replaced with
819 * p->real_parent->pid)
820 */
821
822 /* Real parent process: */
823 struct task_struct __rcu *real_parent;
824
825 /* Recipient of SIGCHLD, wait4() reports: */
826 struct task_struct __rcu *parent;
827
828 /*
829 * Children/sibling form the list of natural children:
830 */
831 struct list_head children;
832 struct list_head sibling;
833 struct task_struct *group_leader;
834
835 /*
836 * 'ptraced' is the list of tasks this task is using ptrace() on.
837 *
838 * This includes both natural children and PTRACE_ATTACH targets.
839 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
840 */
841 struct list_head ptraced;
842 struct list_head ptrace_entry;
843
844 /* PID/PID hash table linkage. */
845 struct pid *thread_pid;
846 struct hlist_node pid_links[PIDTYPE_MAX];
847 struct list_head thread_group;
848 struct list_head thread_node;
849
850 struct completion *vfork_done;
851
852 /* CLONE_CHILD_SETTID: */
853 int __user *set_child_tid;
854
855 /* CLONE_CHILD_CLEARTID: */
856 int __user *clear_child_tid;
857
858 u64 utime;
859 u64 stime;
860#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
861 u64 utimescaled;
862 u64 stimescaled;
863#endif
864 u64 gtime;
865 struct prev_cputime prev_cputime;
866#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
867 struct vtime vtime;
868#endif
869
870#ifdef CONFIG_NO_HZ_FULL
871 atomic_t tick_dep_mask;
872#endif
873 /* Context switch counts: */
874 unsigned long nvcsw;
875 unsigned long nivcsw;
876
877 /* Monotonic time in nsecs: */
878 u64 start_time;
879
880 /* Boot based time in nsecs: */
881 u64 start_boottime;
882
883 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
884 unsigned long min_flt;
885 unsigned long maj_flt;
886
887 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
888 struct posix_cputimers posix_cputimers;
889
890 /* Process credentials: */
891
892 /* Tracer's credentials at attach: */
893 const struct cred __rcu *ptracer_cred;
894
895 /* Objective and real subjective task credentials (COW): */
896 const struct cred __rcu *real_cred;
897
898 /* Effective (overridable) subjective task credentials (COW): */
899 const struct cred __rcu *cred;
900
901#ifdef CONFIG_KEYS
902 /* Cached requested key. */
903 struct key *cached_requested_key;
904#endif
905
906 /*
907 * executable name, excluding path.
908 *
909 * - normally initialized setup_new_exec()
910 * - access it with [gs]et_task_comm()
911 * - lock it with task_lock()
912 */
913 char comm[TASK_COMM_LEN];
914
915 struct nameidata *nameidata;
916
917#ifdef CONFIG_SYSVIPC
918 struct sysv_sem sysvsem;
919 struct sysv_shm sysvshm;
920#endif
921#ifdef CONFIG_DETECT_HUNG_TASK
922 unsigned long last_switch_count;
923 unsigned long last_switch_time;
924#endif
925 /* Filesystem information: */
926 struct fs_struct *fs;
927
928 /* Open file information: */
929 struct files_struct *files;
930
931 /* Namespaces: */
932 struct nsproxy *nsproxy;
933
934 /* Signal handlers: */
935 struct signal_struct *signal;
936 struct sighand_struct __rcu *sighand;
937 sigset_t blocked;
938 sigset_t real_blocked;
939 /* Restored if set_restore_sigmask() was used: */
940 sigset_t saved_sigmask;
941 struct sigpending pending;
942 unsigned long sas_ss_sp;
943 size_t sas_ss_size;
944 unsigned int sas_ss_flags;
945
946 struct callback_head *task_works;
947
948#ifdef CONFIG_AUDIT
949#ifdef CONFIG_AUDITSYSCALL
950 struct audit_context *audit_context;
951#endif
952 kuid_t loginuid;
953 unsigned int sessionid;
954#endif
955 struct seccomp seccomp;
956
957 /* Thread group tracking: */
958 u64 parent_exec_id;
959 u64 self_exec_id;
960
961 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
962 spinlock_t alloc_lock;
963
964 /* Protection of the PI data structures: */
965 raw_spinlock_t pi_lock;
966
967 struct wake_q_node wake_q;
968
969#ifdef CONFIG_RT_MUTEXES
970 /* PI waiters blocked on a rt_mutex held by this task: */
971 struct rb_root_cached pi_waiters;
972 /* Updated under owner's pi_lock and rq lock */
973 struct task_struct *pi_top_task;
974 /* Deadlock detection and priority inheritance handling: */
975 struct rt_mutex_waiter *pi_blocked_on;
976#endif
977
978#ifdef CONFIG_DEBUG_MUTEXES
979 /* Mutex deadlock detection: */
980 struct mutex_waiter *blocked_on;
981#endif
982
983#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
984 int non_block_count;
985#endif
986
987#ifdef CONFIG_TRACE_IRQFLAGS
988 unsigned int irq_events;
989 unsigned int hardirq_threaded;
990 unsigned long hardirq_enable_ip;
991 unsigned long hardirq_disable_ip;
992 unsigned int hardirq_enable_event;
993 unsigned int hardirq_disable_event;
994 int hardirqs_enabled;
995 int hardirq_context;
996 u64 hardirq_chain_key;
997 unsigned long softirq_disable_ip;
998 unsigned long softirq_enable_ip;
999 unsigned int softirq_disable_event;
1000 unsigned int softirq_enable_event;
1001 int softirqs_enabled;
1002 int softirq_context;
1003 int irq_config;
1004#endif
1005
1006#ifdef CONFIG_LOCKDEP
1007# define MAX_LOCK_DEPTH 48UL
1008 u64 curr_chain_key;
1009 int lockdep_depth;
1010 unsigned int lockdep_recursion;
1011 struct held_lock held_locks[MAX_LOCK_DEPTH];
1012#endif
1013
1014#ifdef CONFIG_UBSAN
1015 unsigned int in_ubsan;
1016#endif
1017
1018 /* Journalling filesystem info: */
1019 void *journal_info;
1020
1021 /* Stacked block device info: */
1022 struct bio_list *bio_list;
1023
1024#ifdef CONFIG_BLOCK
1025 /* Stack plugging: */
1026 struct blk_plug *plug;
1027#endif
1028
1029 /* VM state: */
1030 struct reclaim_state *reclaim_state;
1031
1032 struct backing_dev_info *backing_dev_info;
1033
1034 struct io_context *io_context;
1035
1036#ifdef CONFIG_COMPACTION
1037 struct capture_control *capture_control;
1038#endif
1039 /* Ptrace state: */
1040 unsigned long ptrace_message;
1041 kernel_siginfo_t *last_siginfo;
1042
1043 struct task_io_accounting ioac;
1044#ifdef CONFIG_PSI
1045 /* Pressure stall state */
1046 unsigned int psi_flags;
1047#endif
1048#ifdef CONFIG_TASK_XACCT
1049 /* Accumulated RSS usage: */
1050 u64 acct_rss_mem1;
1051 /* Accumulated virtual memory usage: */
1052 u64 acct_vm_mem1;
1053 /* stime + utime since last update: */
1054 u64 acct_timexpd;
1055#endif
1056#ifdef CONFIG_CPUSETS
1057 /* Protected by ->alloc_lock: */
1058 nodemask_t mems_allowed;
1059 /* Seqence number to catch updates: */
1060 seqcount_t mems_allowed_seq;
1061 int cpuset_mem_spread_rotor;
1062 int cpuset_slab_spread_rotor;
1063#endif
1064#ifdef CONFIG_CGROUPS
1065 /* Control Group info protected by css_set_lock: */
1066 struct css_set __rcu *cgroups;
1067 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1068 struct list_head cg_list;
1069#endif
1070#ifdef CONFIG_X86_CPU_RESCTRL
1071 u32 closid;
1072 u32 rmid;
1073#endif
1074#ifdef CONFIG_FUTEX
1075 struct robust_list_head __user *robust_list;
1076#ifdef CONFIG_COMPAT
1077 struct compat_robust_list_head __user *compat_robust_list;
1078#endif
1079 struct list_head pi_state_list;
1080 struct futex_pi_state *pi_state_cache;
1081 struct mutex futex_exit_mutex;
1082 unsigned int futex_state;
1083#endif
1084#ifdef CONFIG_PERF_EVENTS
1085 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1086 struct mutex perf_event_mutex;
1087 struct list_head perf_event_list;
1088#endif
1089#ifdef CONFIG_DEBUG_PREEMPT
1090 unsigned long preempt_disable_ip;
1091#endif
1092#ifdef CONFIG_NUMA
1093 /* Protected by alloc_lock: */
1094 struct mempolicy *mempolicy;
1095 short il_prev;
1096 short pref_node_fork;
1097#endif
1098#ifdef CONFIG_NUMA_BALANCING
1099 int numa_scan_seq;
1100 unsigned int numa_scan_period;
1101 unsigned int numa_scan_period_max;
1102 int numa_preferred_nid;
1103 unsigned long numa_migrate_retry;
1104 /* Migration stamp: */
1105 u64 node_stamp;
1106 u64 last_task_numa_placement;
1107 u64 last_sum_exec_runtime;
1108 struct callback_head numa_work;
1109
1110 /*
1111 * This pointer is only modified for current in syscall and
1112 * pagefault context (and for tasks being destroyed), so it can be read
1113 * from any of the following contexts:
1114 * - RCU read-side critical section
1115 * - current->numa_group from everywhere
1116 * - task's runqueue locked, task not running
1117 */
1118 struct numa_group __rcu *numa_group;
1119
1120 /*
1121 * numa_faults is an array split into four regions:
1122 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1123 * in this precise order.
1124 *
1125 * faults_memory: Exponential decaying average of faults on a per-node
1126 * basis. Scheduling placement decisions are made based on these
1127 * counts. The values remain static for the duration of a PTE scan.
1128 * faults_cpu: Track the nodes the process was running on when a NUMA
1129 * hinting fault was incurred.
1130 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1131 * during the current scan window. When the scan completes, the counts
1132 * in faults_memory and faults_cpu decay and these values are copied.
1133 */
1134 unsigned long *numa_faults;
1135 unsigned long total_numa_faults;
1136
1137 /*
1138 * numa_faults_locality tracks if faults recorded during the last
1139 * scan window were remote/local or failed to migrate. The task scan
1140 * period is adapted based on the locality of the faults with different
1141 * weights depending on whether they were shared or private faults
1142 */
1143 unsigned long numa_faults_locality[3];
1144
1145 unsigned long numa_pages_migrated;
1146#endif /* CONFIG_NUMA_BALANCING */
1147
1148#ifdef CONFIG_RSEQ
1149 struct rseq __user *rseq;
1150 u32 rseq_sig;
1151 /*
1152 * RmW on rseq_event_mask must be performed atomically
1153 * with respect to preemption.
1154 */
1155 unsigned long rseq_event_mask;
1156#endif
1157
1158 struct tlbflush_unmap_batch tlb_ubc;
1159
1160 union {
1161 refcount_t rcu_users;
1162 struct rcu_head rcu;
1163 };
1164
1165 /* Cache last used pipe for splice(): */
1166 struct pipe_inode_info *splice_pipe;
1167
1168 struct page_frag task_frag;
1169
1170#ifdef CONFIG_TASK_DELAY_ACCT
1171 struct task_delay_info *delays;
1172#endif
1173
1174#ifdef CONFIG_FAULT_INJECTION
1175 int make_it_fail;
1176 unsigned int fail_nth;
1177#endif
1178 /*
1179 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1180 * balance_dirty_pages() for a dirty throttling pause:
1181 */
1182 int nr_dirtied;
1183 int nr_dirtied_pause;
1184 /* Start of a write-and-pause period: */
1185 unsigned long dirty_paused_when;
1186
1187#ifdef CONFIG_LATENCYTOP
1188 int latency_record_count;
1189 struct latency_record latency_record[LT_SAVECOUNT];
1190#endif
1191 /*
1192 * Time slack values; these are used to round up poll() and
1193 * select() etc timeout values. These are in nanoseconds.
1194 */
1195 u64 timer_slack_ns;
1196 u64 default_timer_slack_ns;
1197
1198#ifdef CONFIG_KASAN
1199 unsigned int kasan_depth;
1200#endif
1201#ifdef CONFIG_KCSAN
1202 struct kcsan_ctx kcsan_ctx;
1203#endif
1204
1205#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1206 /* Index of current stored address in ret_stack: */
1207 int curr_ret_stack;
1208 int curr_ret_depth;
1209
1210 /* Stack of return addresses for return function tracing: */
1211 struct ftrace_ret_stack *ret_stack;
1212
1213 /* Timestamp for last schedule: */
1214 unsigned long long ftrace_timestamp;
1215
1216 /*
1217 * Number of functions that haven't been traced
1218 * because of depth overrun:
1219 */
1220 atomic_t trace_overrun;
1221
1222 /* Pause tracing: */
1223 atomic_t tracing_graph_pause;
1224#endif
1225
1226#ifdef CONFIG_TRACING
1227 /* State flags for use by tracers: */
1228 unsigned long trace;
1229
1230 /* Bitmask and counter of trace recursion: */
1231 unsigned long trace_recursion;
1232#endif /* CONFIG_TRACING */
1233
1234#ifdef CONFIG_KCOV
1235 /* See kernel/kcov.c for more details. */
1236
1237 /* Coverage collection mode enabled for this task (0 if disabled): */
1238 unsigned int kcov_mode;
1239
1240 /* Size of the kcov_area: */
1241 unsigned int kcov_size;
1242
1243 /* Buffer for coverage collection: */
1244 void *kcov_area;
1245
1246 /* KCOV descriptor wired with this task or NULL: */
1247 struct kcov *kcov;
1248
1249 /* KCOV common handle for remote coverage collection: */
1250 u64 kcov_handle;
1251
1252 /* KCOV sequence number: */
1253 int kcov_sequence;
1254
1255 /* Collect coverage from softirq context: */
1256 unsigned int kcov_softirq;
1257#endif
1258
1259#ifdef CONFIG_MEMCG
1260 struct mem_cgroup *memcg_in_oom;
1261 gfp_t memcg_oom_gfp_mask;
1262 int memcg_oom_order;
1263
1264 /* Number of pages to reclaim on returning to userland: */
1265 unsigned int memcg_nr_pages_over_high;
1266
1267 /* Used by memcontrol for targeted memcg charge: */
1268 struct mem_cgroup *active_memcg;
1269#endif
1270
1271#ifdef CONFIG_BLK_CGROUP
1272 struct request_queue *throttle_queue;
1273#endif
1274
1275#ifdef CONFIG_UPROBES
1276 struct uprobe_task *utask;
1277#endif
1278#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1279 unsigned int sequential_io;
1280 unsigned int sequential_io_avg;
1281#endif
1282#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1283 unsigned long task_state_change;
1284#endif
1285 int pagefault_disabled;
1286#ifdef CONFIG_MMU
1287 struct task_struct *oom_reaper_list;
1288#endif
1289#ifdef CONFIG_VMAP_STACK
1290 struct vm_struct *stack_vm_area;
1291#endif
1292#ifdef CONFIG_THREAD_INFO_IN_TASK
1293 /* A live task holds one reference: */
1294 refcount_t stack_refcount;
1295#endif
1296#ifdef CONFIG_LIVEPATCH
1297 int patch_state;
1298#endif
1299#ifdef CONFIG_SECURITY
1300 /* Used by LSM modules for access restriction: */
1301 void *security;
1302#endif
1303
1304#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1305 unsigned long lowest_stack;
1306 unsigned long prev_lowest_stack;
1307#endif
1308
1309#ifdef CONFIG_X86_MCE
1310 u64 mce_addr;
1311 __u64 mce_ripv : 1,
1312 mce_whole_page : 1,
1313 __mce_reserved : 62;
1314 struct callback_head mce_kill_me;
1315#endif
1316
1317 /*
1318 * New fields for task_struct should be added above here, so that
1319 * they are included in the randomized portion of task_struct.
1320 */
1321 randomized_struct_fields_end
1322
1323 /* CPU-specific state of this task: */
1324 struct thread_struct thread;
1325
1326 /*
1327 * WARNING: on x86, 'thread_struct' contains a variable-sized
1328 * structure. It *MUST* be at the end of 'task_struct'.
1329 *
1330 * Do not put anything below here!
1331 */
1332};
1333
1334static inline struct pid *task_pid(struct task_struct *task)
1335{
1336 return task->thread_pid;
1337}
1338
1339/*
1340 * the helpers to get the task's different pids as they are seen
1341 * from various namespaces
1342 *
1343 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1344 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1345 * current.
1346 * task_xid_nr_ns() : id seen from the ns specified;
1347 *
1348 * see also pid_nr() etc in include/linux/pid.h
1349 */
1350pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1351
1352static inline pid_t task_pid_nr(struct task_struct *tsk)
1353{
1354 return tsk->pid;
1355}
1356
1357static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1358{
1359 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1360}
1361
1362static inline pid_t task_pid_vnr(struct task_struct *tsk)
1363{
1364 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1365}
1366
1367
1368static inline pid_t task_tgid_nr(struct task_struct *tsk)
1369{
1370 return tsk->tgid;
1371}
1372
1373/**
1374 * pid_alive - check that a task structure is not stale
1375 * @p: Task structure to be checked.
1376 *
1377 * Test if a process is not yet dead (at most zombie state)
1378 * If pid_alive fails, then pointers within the task structure
1379 * can be stale and must not be dereferenced.
1380 *
1381 * Return: 1 if the process is alive. 0 otherwise.
1382 */
1383static inline int pid_alive(const struct task_struct *p)
1384{
1385 return p->thread_pid != NULL;
1386}
1387
1388static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1389{
1390 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1391}
1392
1393static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1394{
1395 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1396}
1397
1398
1399static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1400{
1401 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1402}
1403
1404static inline pid_t task_session_vnr(struct task_struct *tsk)
1405{
1406 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1407}
1408
1409static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1410{
1411 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1412}
1413
1414static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1415{
1416 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1417}
1418
1419static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1420{
1421 pid_t pid = 0;
1422
1423 rcu_read_lock();
1424 if (pid_alive(tsk))
1425 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1426 rcu_read_unlock();
1427
1428 return pid;
1429}
1430
1431static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1432{
1433 return task_ppid_nr_ns(tsk, &init_pid_ns);
1434}
1435
1436/* Obsolete, do not use: */
1437static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1438{
1439 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1440}
1441
1442#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1443#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1444
1445static inline unsigned int task_state_index(struct task_struct *tsk)
1446{
1447 unsigned int tsk_state = READ_ONCE(tsk->state);
1448 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1449
1450 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1451
1452 if (tsk_state == TASK_IDLE)
1453 state = TASK_REPORT_IDLE;
1454
1455 return fls(state);
1456}
1457
1458static inline char task_index_to_char(unsigned int state)
1459{
1460 static const char state_char[] = "RSDTtXZPI";
1461
1462 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1463
1464 return state_char[state];
1465}
1466
1467static inline char task_state_to_char(struct task_struct *tsk)
1468{
1469 return task_index_to_char(task_state_index(tsk));
1470}
1471
1472/**
1473 * is_global_init - check if a task structure is init. Since init
1474 * is free to have sub-threads we need to check tgid.
1475 * @tsk: Task structure to be checked.
1476 *
1477 * Check if a task structure is the first user space task the kernel created.
1478 *
1479 * Return: 1 if the task structure is init. 0 otherwise.
1480 */
1481static inline int is_global_init(struct task_struct *tsk)
1482{
1483 return task_tgid_nr(tsk) == 1;
1484}
1485
1486extern struct pid *cad_pid;
1487
1488/*
1489 * Per process flags
1490 */
1491#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1492#define PF_EXITING 0x00000004 /* Getting shut down */
1493#define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1494#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1495#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1496#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1497#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1498#define PF_DUMPCORE 0x00000200 /* Dumped core */
1499#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1500#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1501#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1502#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1503#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1504#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1505#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1506#define PF_KSWAPD 0x00020000 /* I am kswapd */
1507#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1508#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1509#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1510 * I am cleaning dirty pages from some other bdi. */
1511#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1512#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1513#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1514#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */
1515#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1516#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1517#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */
1518#define PF_IO_WORKER 0x20000000 /* Task is an IO worker */
1519#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1520#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1521
1522/*
1523 * Only the _current_ task can read/write to tsk->flags, but other
1524 * tasks can access tsk->flags in readonly mode for example
1525 * with tsk_used_math (like during threaded core dumping).
1526 * There is however an exception to this rule during ptrace
1527 * or during fork: the ptracer task is allowed to write to the
1528 * child->flags of its traced child (same goes for fork, the parent
1529 * can write to the child->flags), because we're guaranteed the
1530 * child is not running and in turn not changing child->flags
1531 * at the same time the parent does it.
1532 */
1533#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1534#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1535#define clear_used_math() clear_stopped_child_used_math(current)
1536#define set_used_math() set_stopped_child_used_math(current)
1537
1538#define conditional_stopped_child_used_math(condition, child) \
1539 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1540
1541#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1542
1543#define copy_to_stopped_child_used_math(child) \
1544 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1545
1546/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1547#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1548#define used_math() tsk_used_math(current)
1549
1550static inline bool is_percpu_thread(void)
1551{
1552#ifdef CONFIG_SMP
1553 return (current->flags & PF_NO_SETAFFINITY) &&
1554 (current->nr_cpus_allowed == 1);
1555#else
1556 return true;
1557#endif
1558}
1559
1560/* Per-process atomic flags. */
1561#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1562#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1563#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1564#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1565#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1566#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1567#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1568#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1569
1570#define TASK_PFA_TEST(name, func) \
1571 static inline bool task_##func(struct task_struct *p) \
1572 { return test_bit(PFA_##name, &p->atomic_flags); }
1573
1574#define TASK_PFA_SET(name, func) \
1575 static inline void task_set_##func(struct task_struct *p) \
1576 { set_bit(PFA_##name, &p->atomic_flags); }
1577
1578#define TASK_PFA_CLEAR(name, func) \
1579 static inline void task_clear_##func(struct task_struct *p) \
1580 { clear_bit(PFA_##name, &p->atomic_flags); }
1581
1582TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1583TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1584
1585TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1586TASK_PFA_SET(SPREAD_PAGE, spread_page)
1587TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1588
1589TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1590TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1591TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1592
1593TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1594TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1595TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1596
1597TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1598TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1599TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1600
1601TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1602TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1603
1604TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1605TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1606TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1607
1608TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1609TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1610
1611static inline void
1612current_restore_flags(unsigned long orig_flags, unsigned long flags)
1613{
1614 current->flags &= ~flags;
1615 current->flags |= orig_flags & flags;
1616}
1617
1618extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1619extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1620#ifdef CONFIG_SMP
1621extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1622extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1623#else
1624static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1625{
1626}
1627static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1628{
1629 if (!cpumask_test_cpu(0, new_mask))
1630 return -EINVAL;
1631 return 0;
1632}
1633#endif
1634
1635extern int yield_to(struct task_struct *p, bool preempt);
1636extern void set_user_nice(struct task_struct *p, long nice);
1637extern int task_prio(const struct task_struct *p);
1638
1639/**
1640 * task_nice - return the nice value of a given task.
1641 * @p: the task in question.
1642 *
1643 * Return: The nice value [ -20 ... 0 ... 19 ].
1644 */
1645static inline int task_nice(const struct task_struct *p)
1646{
1647 return PRIO_TO_NICE((p)->static_prio);
1648}
1649
1650extern int can_nice(const struct task_struct *p, const int nice);
1651extern int task_curr(const struct task_struct *p);
1652extern int idle_cpu(int cpu);
1653extern int available_idle_cpu(int cpu);
1654extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1655extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1656extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1657extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1658extern struct task_struct *idle_task(int cpu);
1659
1660/**
1661 * is_idle_task - is the specified task an idle task?
1662 * @p: the task in question.
1663 *
1664 * Return: 1 if @p is an idle task. 0 otherwise.
1665 */
1666static inline bool is_idle_task(const struct task_struct *p)
1667{
1668 return !!(p->flags & PF_IDLE);
1669}
1670
1671extern struct task_struct *curr_task(int cpu);
1672extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1673
1674void yield(void);
1675
1676union thread_union {
1677#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1678 struct task_struct task;
1679#endif
1680#ifndef CONFIG_THREAD_INFO_IN_TASK
1681 struct thread_info thread_info;
1682#endif
1683 unsigned long stack[THREAD_SIZE/sizeof(long)];
1684};
1685
1686#ifndef CONFIG_THREAD_INFO_IN_TASK
1687extern struct thread_info init_thread_info;
1688#endif
1689
1690extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1691
1692#ifdef CONFIG_THREAD_INFO_IN_TASK
1693static inline struct thread_info *task_thread_info(struct task_struct *task)
1694{
1695 return &task->thread_info;
1696}
1697#elif !defined(__HAVE_THREAD_FUNCTIONS)
1698# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1699#endif
1700
1701/*
1702 * find a task by one of its numerical ids
1703 *
1704 * find_task_by_pid_ns():
1705 * finds a task by its pid in the specified namespace
1706 * find_task_by_vpid():
1707 * finds a task by its virtual pid
1708 *
1709 * see also find_vpid() etc in include/linux/pid.h
1710 */
1711
1712extern struct task_struct *find_task_by_vpid(pid_t nr);
1713extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1714
1715/*
1716 * find a task by its virtual pid and get the task struct
1717 */
1718extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1719
1720extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1721extern int wake_up_process(struct task_struct *tsk);
1722extern void wake_up_new_task(struct task_struct *tsk);
1723
1724#ifdef CONFIG_SMP
1725extern void kick_process(struct task_struct *tsk);
1726#else
1727static inline void kick_process(struct task_struct *tsk) { }
1728#endif
1729
1730extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1731
1732static inline void set_task_comm(struct task_struct *tsk, const char *from)
1733{
1734 __set_task_comm(tsk, from, false);
1735}
1736
1737extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1738#define get_task_comm(buf, tsk) ({ \
1739 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1740 __get_task_comm(buf, sizeof(buf), tsk); \
1741})
1742
1743#ifdef CONFIG_SMP
1744static __always_inline void scheduler_ipi(void)
1745{
1746 /*
1747 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1748 * TIF_NEED_RESCHED remotely (for the first time) will also send
1749 * this IPI.
1750 */
1751 preempt_fold_need_resched();
1752}
1753extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1754#else
1755static inline void scheduler_ipi(void) { }
1756static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1757{
1758 return 1;
1759}
1760#endif
1761
1762/*
1763 * Set thread flags in other task's structures.
1764 * See asm/thread_info.h for TIF_xxxx flags available:
1765 */
1766static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1767{
1768 set_ti_thread_flag(task_thread_info(tsk), flag);
1769}
1770
1771static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1772{
1773 clear_ti_thread_flag(task_thread_info(tsk), flag);
1774}
1775
1776static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1777 bool value)
1778{
1779 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1780}
1781
1782static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1783{
1784 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1785}
1786
1787static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1788{
1789 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1790}
1791
1792static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1793{
1794 return test_ti_thread_flag(task_thread_info(tsk), flag);
1795}
1796
1797static inline void set_tsk_need_resched(struct task_struct *tsk)
1798{
1799 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1800}
1801
1802static inline void clear_tsk_need_resched(struct task_struct *tsk)
1803{
1804 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1805}
1806
1807static inline int test_tsk_need_resched(struct task_struct *tsk)
1808{
1809 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1810}
1811
1812/*
1813 * cond_resched() and cond_resched_lock(): latency reduction via
1814 * explicit rescheduling in places that are safe. The return
1815 * value indicates whether a reschedule was done in fact.
1816 * cond_resched_lock() will drop the spinlock before scheduling,
1817 */
1818#ifndef CONFIG_PREEMPTION
1819extern int _cond_resched(void);
1820#else
1821static inline int _cond_resched(void) { return 0; }
1822#endif
1823
1824#define cond_resched() ({ \
1825 ___might_sleep(__FILE__, __LINE__, 0); \
1826 _cond_resched(); \
1827})
1828
1829extern int __cond_resched_lock(spinlock_t *lock);
1830
1831#define cond_resched_lock(lock) ({ \
1832 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1833 __cond_resched_lock(lock); \
1834})
1835
1836static inline void cond_resched_rcu(void)
1837{
1838#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1839 rcu_read_unlock();
1840 cond_resched();
1841 rcu_read_lock();
1842#endif
1843}
1844
1845/*
1846 * Does a critical section need to be broken due to another
1847 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1848 * but a general need for low latency)
1849 */
1850static inline int spin_needbreak(spinlock_t *lock)
1851{
1852#ifdef CONFIG_PREEMPTION
1853 return spin_is_contended(lock);
1854#else
1855 return 0;
1856#endif
1857}
1858
1859static __always_inline bool need_resched(void)
1860{
1861 return unlikely(tif_need_resched());
1862}
1863
1864/*
1865 * Wrappers for p->thread_info->cpu access. No-op on UP.
1866 */
1867#ifdef CONFIG_SMP
1868
1869static inline unsigned int task_cpu(const struct task_struct *p)
1870{
1871#ifdef CONFIG_THREAD_INFO_IN_TASK
1872 return READ_ONCE(p->cpu);
1873#else
1874 return READ_ONCE(task_thread_info(p)->cpu);
1875#endif
1876}
1877
1878extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1879
1880#else
1881
1882static inline unsigned int task_cpu(const struct task_struct *p)
1883{
1884 return 0;
1885}
1886
1887static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1888{
1889}
1890
1891#endif /* CONFIG_SMP */
1892
1893/*
1894 * In order to reduce various lock holder preemption latencies provide an
1895 * interface to see if a vCPU is currently running or not.
1896 *
1897 * This allows us to terminate optimistic spin loops and block, analogous to
1898 * the native optimistic spin heuristic of testing if the lock owner task is
1899 * running or not.
1900 */
1901#ifndef vcpu_is_preempted
1902static inline bool vcpu_is_preempted(int cpu)
1903{
1904 return false;
1905}
1906#endif
1907
1908extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1909extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1910
1911#ifndef TASK_SIZE_OF
1912#define TASK_SIZE_OF(tsk) TASK_SIZE
1913#endif
1914
1915#ifdef CONFIG_RSEQ
1916
1917/*
1918 * Map the event mask on the user-space ABI enum rseq_cs_flags
1919 * for direct mask checks.
1920 */
1921enum rseq_event_mask_bits {
1922 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1923 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1924 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1925};
1926
1927enum rseq_event_mask {
1928 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
1929 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
1930 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
1931};
1932
1933static inline void rseq_set_notify_resume(struct task_struct *t)
1934{
1935 if (t->rseq)
1936 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1937}
1938
1939void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1940
1941static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1942 struct pt_regs *regs)
1943{
1944 if (current->rseq)
1945 __rseq_handle_notify_resume(ksig, regs);
1946}
1947
1948static inline void rseq_signal_deliver(struct ksignal *ksig,
1949 struct pt_regs *regs)
1950{
1951 preempt_disable();
1952 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
1953 preempt_enable();
1954 rseq_handle_notify_resume(ksig, regs);
1955}
1956
1957/* rseq_preempt() requires preemption to be disabled. */
1958static inline void rseq_preempt(struct task_struct *t)
1959{
1960 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1961 rseq_set_notify_resume(t);
1962}
1963
1964/* rseq_migrate() requires preemption to be disabled. */
1965static inline void rseq_migrate(struct task_struct *t)
1966{
1967 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
1968 rseq_set_notify_resume(t);
1969}
1970
1971/*
1972 * If parent process has a registered restartable sequences area, the
1973 * child inherits. Unregister rseq for a clone with CLONE_VM set.
1974 */
1975static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
1976{
1977 if (clone_flags & CLONE_VM) {
1978 t->rseq = NULL;
1979 t->rseq_sig = 0;
1980 t->rseq_event_mask = 0;
1981 } else {
1982 t->rseq = current->rseq;
1983 t->rseq_sig = current->rseq_sig;
1984 t->rseq_event_mask = current->rseq_event_mask;
1985 }
1986}
1987
1988static inline void rseq_execve(struct task_struct *t)
1989{
1990 t->rseq = NULL;
1991 t->rseq_sig = 0;
1992 t->rseq_event_mask = 0;
1993}
1994
1995#else
1996
1997static inline void rseq_set_notify_resume(struct task_struct *t)
1998{
1999}
2000static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2001 struct pt_regs *regs)
2002{
2003}
2004static inline void rseq_signal_deliver(struct ksignal *ksig,
2005 struct pt_regs *regs)
2006{
2007}
2008static inline void rseq_preempt(struct task_struct *t)
2009{
2010}
2011static inline void rseq_migrate(struct task_struct *t)
2012{
2013}
2014static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2015{
2016}
2017static inline void rseq_execve(struct task_struct *t)
2018{
2019}
2020
2021#endif
2022
2023void __exit_umh(struct task_struct *tsk);
2024
2025static inline void exit_umh(struct task_struct *tsk)
2026{
2027 if (unlikely(tsk->flags & PF_UMH))
2028 __exit_umh(tsk);
2029}
2030
2031#ifdef CONFIG_DEBUG_RSEQ
2032
2033void rseq_syscall(struct pt_regs *regs);
2034
2035#else
2036
2037static inline void rseq_syscall(struct pt_regs *regs)
2038{
2039}
2040
2041#endif
2042
2043const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2044char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2045int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2046
2047const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2048const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2049const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2050
2051int sched_trace_rq_cpu(struct rq *rq);
2052
2053const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2054
2055#endif