Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * CPPC (Collaborative Processor Performance Control) driver for
4 * interfacing with the CPUfreq layer and governors. See
5 * cppc_acpi.c for CPPC specific methods.
6 *
7 * (C) Copyright 2014, 2015 Linaro Ltd.
8 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9 */
10
11#define pr_fmt(fmt) "CPPC Cpufreq:" fmt
12
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/delay.h>
16#include <linux/cpu.h>
17#include <linux/cpufreq.h>
18#include <linux/dmi.h>
19#include <linux/time.h>
20#include <linux/vmalloc.h>
21
22#include <asm/unaligned.h>
23
24#include <acpi/cppc_acpi.h>
25
26/* Minimum struct length needed for the DMI processor entry we want */
27#define DMI_ENTRY_PROCESSOR_MIN_LENGTH 48
28
29/* Offest in the DMI processor structure for the max frequency */
30#define DMI_PROCESSOR_MAX_SPEED 0x14
31
32/*
33 * These structs contain information parsed from per CPU
34 * ACPI _CPC structures.
35 * e.g. For each CPU the highest, lowest supported
36 * performance capabilities, desired performance level
37 * requested etc.
38 */
39static struct cppc_cpudata **all_cpu_data;
40static bool boost_supported;
41
42struct cppc_workaround_oem_info {
43 char oem_id[ACPI_OEM_ID_SIZE + 1];
44 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
45 u32 oem_revision;
46};
47
48static bool apply_hisi_workaround;
49
50static struct cppc_workaround_oem_info wa_info[] = {
51 {
52 .oem_id = "HISI ",
53 .oem_table_id = "HIP07 ",
54 .oem_revision = 0,
55 }, {
56 .oem_id = "HISI ",
57 .oem_table_id = "HIP08 ",
58 .oem_revision = 0,
59 }
60};
61
62static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
63 unsigned int perf);
64
65/*
66 * HISI platform does not support delivered performance counter and
67 * reference performance counter. It can calculate the performance using the
68 * platform specific mechanism. We reuse the desired performance register to
69 * store the real performance calculated by the platform.
70 */
71static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
72{
73 struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
74 u64 desired_perf;
75 int ret;
76
77 ret = cppc_get_desired_perf(cpunum, &desired_perf);
78 if (ret < 0)
79 return -EIO;
80
81 return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
82}
83
84static void cppc_check_hisi_workaround(void)
85{
86 struct acpi_table_header *tbl;
87 acpi_status status = AE_OK;
88 int i;
89
90 status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
91 if (ACPI_FAILURE(status) || !tbl)
92 return;
93
94 for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
95 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
96 !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
97 wa_info[i].oem_revision == tbl->oem_revision) {
98 apply_hisi_workaround = true;
99 break;
100 }
101 }
102
103 acpi_put_table(tbl);
104}
105
106/* Callback function used to retrieve the max frequency from DMI */
107static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
108{
109 const u8 *dmi_data = (const u8 *)dm;
110 u16 *mhz = (u16 *)private;
111
112 if (dm->type == DMI_ENTRY_PROCESSOR &&
113 dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
114 u16 val = (u16)get_unaligned((const u16 *)
115 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
116 *mhz = val > *mhz ? val : *mhz;
117 }
118}
119
120/* Look up the max frequency in DMI */
121static u64 cppc_get_dmi_max_khz(void)
122{
123 u16 mhz = 0;
124
125 dmi_walk(cppc_find_dmi_mhz, &mhz);
126
127 /*
128 * Real stupid fallback value, just in case there is no
129 * actual value set.
130 */
131 mhz = mhz ? mhz : 1;
132
133 return (1000 * mhz);
134}
135
136/*
137 * If CPPC lowest_freq and nominal_freq registers are exposed then we can
138 * use them to convert perf to freq and vice versa
139 *
140 * If the perf/freq point lies between Nominal and Lowest, we can treat
141 * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
142 * and extrapolate the rest
143 * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
144 */
145static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
146 unsigned int perf)
147{
148 static u64 max_khz;
149 struct cppc_perf_caps *caps = &cpu->perf_caps;
150 u64 mul, div;
151
152 if (caps->lowest_freq && caps->nominal_freq) {
153 if (perf >= caps->nominal_perf) {
154 mul = caps->nominal_freq;
155 div = caps->nominal_perf;
156 } else {
157 mul = caps->nominal_freq - caps->lowest_freq;
158 div = caps->nominal_perf - caps->lowest_perf;
159 }
160 } else {
161 if (!max_khz)
162 max_khz = cppc_get_dmi_max_khz();
163 mul = max_khz;
164 div = cpu->perf_caps.highest_perf;
165 }
166 return (u64)perf * mul / div;
167}
168
169static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
170 unsigned int freq)
171{
172 static u64 max_khz;
173 struct cppc_perf_caps *caps = &cpu->perf_caps;
174 u64 mul, div;
175
176 if (caps->lowest_freq && caps->nominal_freq) {
177 if (freq >= caps->nominal_freq) {
178 mul = caps->nominal_perf;
179 div = caps->nominal_freq;
180 } else {
181 mul = caps->lowest_perf;
182 div = caps->lowest_freq;
183 }
184 } else {
185 if (!max_khz)
186 max_khz = cppc_get_dmi_max_khz();
187 mul = cpu->perf_caps.highest_perf;
188 div = max_khz;
189 }
190
191 return (u64)freq * mul / div;
192}
193
194static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
195 unsigned int target_freq,
196 unsigned int relation)
197{
198 struct cppc_cpudata *cpu;
199 struct cpufreq_freqs freqs;
200 u32 desired_perf;
201 int ret = 0;
202
203 cpu = all_cpu_data[policy->cpu];
204
205 desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
206 /* Return if it is exactly the same perf */
207 if (desired_perf == cpu->perf_ctrls.desired_perf)
208 return ret;
209
210 cpu->perf_ctrls.desired_perf = desired_perf;
211 freqs.old = policy->cur;
212 freqs.new = target_freq;
213
214 cpufreq_freq_transition_begin(policy, &freqs);
215 ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
216 cpufreq_freq_transition_end(policy, &freqs, ret != 0);
217
218 if (ret)
219 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
220 cpu->cpu, ret);
221
222 return ret;
223}
224
225static int cppc_verify_policy(struct cpufreq_policy_data *policy)
226{
227 cpufreq_verify_within_cpu_limits(policy);
228 return 0;
229}
230
231static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
232{
233 int cpu_num = policy->cpu;
234 struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
235 int ret;
236
237 cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
238
239 ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
240 if (ret)
241 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
242 cpu->perf_caps.lowest_perf, cpu_num, ret);
243}
244
245/*
246 * The PCC subspace describes the rate at which platform can accept commands
247 * on the shared PCC channel (including READs which do not count towards freq
248 * trasition requests), so ideally we need to use the PCC values as a fallback
249 * if we don't have a platform specific transition_delay_us
250 */
251#ifdef CONFIG_ARM64
252#include <asm/cputype.h>
253
254static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
255{
256 unsigned long implementor = read_cpuid_implementor();
257 unsigned long part_num = read_cpuid_part_number();
258 unsigned int delay_us = 0;
259
260 switch (implementor) {
261 case ARM_CPU_IMP_QCOM:
262 switch (part_num) {
263 case QCOM_CPU_PART_FALKOR_V1:
264 case QCOM_CPU_PART_FALKOR:
265 delay_us = 10000;
266 break;
267 default:
268 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
269 break;
270 }
271 break;
272 default:
273 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
274 break;
275 }
276
277 return delay_us;
278}
279
280#else
281
282static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
283{
284 return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
285}
286#endif
287
288static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
289{
290 struct cppc_cpudata *cpu;
291 unsigned int cpu_num = policy->cpu;
292 int ret = 0;
293
294 cpu = all_cpu_data[policy->cpu];
295
296 cpu->cpu = cpu_num;
297 ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
298
299 if (ret) {
300 pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
301 cpu_num, ret);
302 return ret;
303 }
304
305 /* Convert the lowest and nominal freq from MHz to KHz */
306 cpu->perf_caps.lowest_freq *= 1000;
307 cpu->perf_caps.nominal_freq *= 1000;
308
309 /*
310 * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
311 * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
312 */
313 policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
314 policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.nominal_perf);
315
316 /*
317 * Set cpuinfo.min_freq to Lowest to make the full range of performance
318 * available if userspace wants to use any perf between lowest & lowest
319 * nonlinear perf
320 */
321 policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
322 policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.nominal_perf);
323
324 policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
325 policy->shared_type = cpu->shared_type;
326
327 if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
328 int i;
329
330 cpumask_copy(policy->cpus, cpu->shared_cpu_map);
331
332 for_each_cpu(i, policy->cpus) {
333 if (unlikely(i == policy->cpu))
334 continue;
335
336 memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
337 sizeof(cpu->perf_caps));
338 }
339 } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
340 /* Support only SW_ANY for now. */
341 pr_debug("Unsupported CPU co-ord type\n");
342 return -EFAULT;
343 }
344
345 cpu->cur_policy = policy;
346
347 /*
348 * If 'highest_perf' is greater than 'nominal_perf', we assume CPU Boost
349 * is supported.
350 */
351 if (cpu->perf_caps.highest_perf > cpu->perf_caps.nominal_perf)
352 boost_supported = true;
353
354 /* Set policy->cur to max now. The governors will adjust later. */
355 policy->cur = cppc_cpufreq_perf_to_khz(cpu,
356 cpu->perf_caps.highest_perf);
357 cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
358
359 ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
360 if (ret)
361 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
362 cpu->perf_caps.highest_perf, cpu_num, ret);
363
364 return ret;
365}
366
367static inline u64 get_delta(u64 t1, u64 t0)
368{
369 if (t1 > t0 || t0 > ~(u32)0)
370 return t1 - t0;
371
372 return (u32)t1 - (u32)t0;
373}
374
375static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
376 struct cppc_perf_fb_ctrs fb_ctrs_t0,
377 struct cppc_perf_fb_ctrs fb_ctrs_t1)
378{
379 u64 delta_reference, delta_delivered;
380 u64 reference_perf, delivered_perf;
381
382 reference_perf = fb_ctrs_t0.reference_perf;
383
384 delta_reference = get_delta(fb_ctrs_t1.reference,
385 fb_ctrs_t0.reference);
386 delta_delivered = get_delta(fb_ctrs_t1.delivered,
387 fb_ctrs_t0.delivered);
388
389 /* Check to avoid divide-by zero */
390 if (delta_reference || delta_delivered)
391 delivered_perf = (reference_perf * delta_delivered) /
392 delta_reference;
393 else
394 delivered_perf = cpu->perf_ctrls.desired_perf;
395
396 return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
397}
398
399static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
400{
401 struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
402 struct cppc_cpudata *cpu = all_cpu_data[cpunum];
403 int ret;
404
405 if (apply_hisi_workaround)
406 return hisi_cppc_cpufreq_get_rate(cpunum);
407
408 ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
409 if (ret)
410 return ret;
411
412 udelay(2); /* 2usec delay between sampling */
413
414 ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
415 if (ret)
416 return ret;
417
418 return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
419}
420
421static int cppc_cpufreq_set_boost(struct cpufreq_policy *policy, int state)
422{
423 struct cppc_cpudata *cpudata;
424 int ret;
425
426 if (!boost_supported) {
427 pr_err("BOOST not supported by CPU or firmware\n");
428 return -EINVAL;
429 }
430
431 cpudata = all_cpu_data[policy->cpu];
432 if (state)
433 policy->max = cppc_cpufreq_perf_to_khz(cpudata,
434 cpudata->perf_caps.highest_perf);
435 else
436 policy->max = cppc_cpufreq_perf_to_khz(cpudata,
437 cpudata->perf_caps.nominal_perf);
438 policy->cpuinfo.max_freq = policy->max;
439
440 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
441 if (ret < 0)
442 return ret;
443
444 return 0;
445}
446
447static struct cpufreq_driver cppc_cpufreq_driver = {
448 .flags = CPUFREQ_CONST_LOOPS,
449 .verify = cppc_verify_policy,
450 .target = cppc_cpufreq_set_target,
451 .get = cppc_cpufreq_get_rate,
452 .init = cppc_cpufreq_cpu_init,
453 .stop_cpu = cppc_cpufreq_stop_cpu,
454 .set_boost = cppc_cpufreq_set_boost,
455 .name = "cppc_cpufreq",
456};
457
458static int __init cppc_cpufreq_init(void)
459{
460 int i, ret = 0;
461 struct cppc_cpudata *cpu;
462
463 if (acpi_disabled)
464 return -ENODEV;
465
466 all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
467 GFP_KERNEL);
468 if (!all_cpu_data)
469 return -ENOMEM;
470
471 for_each_possible_cpu(i) {
472 all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
473 if (!all_cpu_data[i])
474 goto out;
475
476 cpu = all_cpu_data[i];
477 if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
478 goto out;
479 }
480
481 ret = acpi_get_psd_map(all_cpu_data);
482 if (ret) {
483 pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
484 goto out;
485 }
486
487 cppc_check_hisi_workaround();
488
489 ret = cpufreq_register_driver(&cppc_cpufreq_driver);
490 if (ret)
491 goto out;
492
493 return ret;
494
495out:
496 for_each_possible_cpu(i) {
497 cpu = all_cpu_data[i];
498 if (!cpu)
499 break;
500 free_cpumask_var(cpu->shared_cpu_map);
501 kfree(cpu);
502 }
503
504 kfree(all_cpu_data);
505 return -ENODEV;
506}
507
508static void __exit cppc_cpufreq_exit(void)
509{
510 struct cppc_cpudata *cpu;
511 int i;
512
513 cpufreq_unregister_driver(&cppc_cpufreq_driver);
514
515 for_each_possible_cpu(i) {
516 cpu = all_cpu_data[i];
517 free_cpumask_var(cpu->shared_cpu_map);
518 kfree(cpu);
519 }
520
521 kfree(all_cpu_data);
522}
523
524module_exit(cppc_cpufreq_exit);
525MODULE_AUTHOR("Ashwin Chaugule");
526MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
527MODULE_LICENSE("GPL");
528
529late_initcall(cppc_cpufreq_init);
530
531static const struct acpi_device_id cppc_acpi_ids[] __used = {
532 {ACPI_PROCESSOR_DEVICE_HID, },
533 {}
534};
535
536MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);