Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20
21#define CREATE_TRACE_POINTS
22#include "trace.h"
23
24#include "internal.h"
25
26/*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32#undef LOG_DEVICE
33
34#ifdef LOG_DEVICE
35static inline bool regmap_should_log(struct regmap *map)
36{
37 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
38}
39#else
40static inline bool regmap_should_log(struct regmap *map) { return false; }
41#endif
42
43
44static int _regmap_update_bits(struct regmap *map, unsigned int reg,
45 unsigned int mask, unsigned int val,
46 bool *change, bool force_write);
47
48static int _regmap_bus_reg_read(void *context, unsigned int reg,
49 unsigned int *val);
50static int _regmap_bus_read(void *context, unsigned int reg,
51 unsigned int *val);
52static int _regmap_bus_formatted_write(void *context, unsigned int reg,
53 unsigned int val);
54static int _regmap_bus_reg_write(void *context, unsigned int reg,
55 unsigned int val);
56static int _regmap_bus_raw_write(void *context, unsigned int reg,
57 unsigned int val);
58
59bool regmap_reg_in_ranges(unsigned int reg,
60 const struct regmap_range *ranges,
61 unsigned int nranges)
62{
63 const struct regmap_range *r;
64 int i;
65
66 for (i = 0, r = ranges; i < nranges; i++, r++)
67 if (regmap_reg_in_range(reg, r))
68 return true;
69 return false;
70}
71EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
72
73bool regmap_check_range_table(struct regmap *map, unsigned int reg,
74 const struct regmap_access_table *table)
75{
76 /* Check "no ranges" first */
77 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
78 return false;
79
80 /* In case zero "yes ranges" are supplied, any reg is OK */
81 if (!table->n_yes_ranges)
82 return true;
83
84 return regmap_reg_in_ranges(reg, table->yes_ranges,
85 table->n_yes_ranges);
86}
87EXPORT_SYMBOL_GPL(regmap_check_range_table);
88
89bool regmap_writeable(struct regmap *map, unsigned int reg)
90{
91 if (map->max_register && reg > map->max_register)
92 return false;
93
94 if (map->writeable_reg)
95 return map->writeable_reg(map->dev, reg);
96
97 if (map->wr_table)
98 return regmap_check_range_table(map, reg, map->wr_table);
99
100 return true;
101}
102
103bool regmap_cached(struct regmap *map, unsigned int reg)
104{
105 int ret;
106 unsigned int val;
107
108 if (map->cache_type == REGCACHE_NONE)
109 return false;
110
111 if (!map->cache_ops)
112 return false;
113
114 if (map->max_register && reg > map->max_register)
115 return false;
116
117 map->lock(map->lock_arg);
118 ret = regcache_read(map, reg, &val);
119 map->unlock(map->lock_arg);
120 if (ret)
121 return false;
122
123 return true;
124}
125
126bool regmap_readable(struct regmap *map, unsigned int reg)
127{
128 if (!map->reg_read)
129 return false;
130
131 if (map->max_register && reg > map->max_register)
132 return false;
133
134 if (map->format.format_write)
135 return false;
136
137 if (map->readable_reg)
138 return map->readable_reg(map->dev, reg);
139
140 if (map->rd_table)
141 return regmap_check_range_table(map, reg, map->rd_table);
142
143 return true;
144}
145
146bool regmap_volatile(struct regmap *map, unsigned int reg)
147{
148 if (!map->format.format_write && !regmap_readable(map, reg))
149 return false;
150
151 if (map->volatile_reg)
152 return map->volatile_reg(map->dev, reg);
153
154 if (map->volatile_table)
155 return regmap_check_range_table(map, reg, map->volatile_table);
156
157 if (map->cache_ops)
158 return false;
159 else
160 return true;
161}
162
163bool regmap_precious(struct regmap *map, unsigned int reg)
164{
165 if (!regmap_readable(map, reg))
166 return false;
167
168 if (map->precious_reg)
169 return map->precious_reg(map->dev, reg);
170
171 if (map->precious_table)
172 return regmap_check_range_table(map, reg, map->precious_table);
173
174 return false;
175}
176
177bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
178{
179 if (map->writeable_noinc_reg)
180 return map->writeable_noinc_reg(map->dev, reg);
181
182 if (map->wr_noinc_table)
183 return regmap_check_range_table(map, reg, map->wr_noinc_table);
184
185 return true;
186}
187
188bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
189{
190 if (map->readable_noinc_reg)
191 return map->readable_noinc_reg(map->dev, reg);
192
193 if (map->rd_noinc_table)
194 return regmap_check_range_table(map, reg, map->rd_noinc_table);
195
196 return true;
197}
198
199static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
200 size_t num)
201{
202 unsigned int i;
203
204 for (i = 0; i < num; i++)
205 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
206 return false;
207
208 return true;
209}
210
211static void regmap_format_2_6_write(struct regmap *map,
212 unsigned int reg, unsigned int val)
213{
214 u8 *out = map->work_buf;
215
216 *out = (reg << 6) | val;
217}
218
219static void regmap_format_4_12_write(struct regmap *map,
220 unsigned int reg, unsigned int val)
221{
222 __be16 *out = map->work_buf;
223 *out = cpu_to_be16((reg << 12) | val);
224}
225
226static void regmap_format_7_9_write(struct regmap *map,
227 unsigned int reg, unsigned int val)
228{
229 __be16 *out = map->work_buf;
230 *out = cpu_to_be16((reg << 9) | val);
231}
232
233static void regmap_format_10_14_write(struct regmap *map,
234 unsigned int reg, unsigned int val)
235{
236 u8 *out = map->work_buf;
237
238 out[2] = val;
239 out[1] = (val >> 8) | (reg << 6);
240 out[0] = reg >> 2;
241}
242
243static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
244{
245 u8 *b = buf;
246
247 b[0] = val << shift;
248}
249
250static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
251{
252 __be16 *b = buf;
253
254 b[0] = cpu_to_be16(val << shift);
255}
256
257static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
258{
259 __le16 *b = buf;
260
261 b[0] = cpu_to_le16(val << shift);
262}
263
264static void regmap_format_16_native(void *buf, unsigned int val,
265 unsigned int shift)
266{
267 *(u16 *)buf = val << shift;
268}
269
270static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
271{
272 u8 *b = buf;
273
274 val <<= shift;
275
276 b[0] = val >> 16;
277 b[1] = val >> 8;
278 b[2] = val;
279}
280
281static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
282{
283 __be32 *b = buf;
284
285 b[0] = cpu_to_be32(val << shift);
286}
287
288static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
289{
290 __le32 *b = buf;
291
292 b[0] = cpu_to_le32(val << shift);
293}
294
295static void regmap_format_32_native(void *buf, unsigned int val,
296 unsigned int shift)
297{
298 *(u32 *)buf = val << shift;
299}
300
301#ifdef CONFIG_64BIT
302static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
303{
304 __be64 *b = buf;
305
306 b[0] = cpu_to_be64((u64)val << shift);
307}
308
309static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
310{
311 __le64 *b = buf;
312
313 b[0] = cpu_to_le64((u64)val << shift);
314}
315
316static void regmap_format_64_native(void *buf, unsigned int val,
317 unsigned int shift)
318{
319 *(u64 *)buf = (u64)val << shift;
320}
321#endif
322
323static void regmap_parse_inplace_noop(void *buf)
324{
325}
326
327static unsigned int regmap_parse_8(const void *buf)
328{
329 const u8 *b = buf;
330
331 return b[0];
332}
333
334static unsigned int regmap_parse_16_be(const void *buf)
335{
336 const __be16 *b = buf;
337
338 return be16_to_cpu(b[0]);
339}
340
341static unsigned int regmap_parse_16_le(const void *buf)
342{
343 const __le16 *b = buf;
344
345 return le16_to_cpu(b[0]);
346}
347
348static void regmap_parse_16_be_inplace(void *buf)
349{
350 __be16 *b = buf;
351
352 b[0] = be16_to_cpu(b[0]);
353}
354
355static void regmap_parse_16_le_inplace(void *buf)
356{
357 __le16 *b = buf;
358
359 b[0] = le16_to_cpu(b[0]);
360}
361
362static unsigned int regmap_parse_16_native(const void *buf)
363{
364 return *(u16 *)buf;
365}
366
367static unsigned int regmap_parse_24(const void *buf)
368{
369 const u8 *b = buf;
370 unsigned int ret = b[2];
371 ret |= ((unsigned int)b[1]) << 8;
372 ret |= ((unsigned int)b[0]) << 16;
373
374 return ret;
375}
376
377static unsigned int regmap_parse_32_be(const void *buf)
378{
379 const __be32 *b = buf;
380
381 return be32_to_cpu(b[0]);
382}
383
384static unsigned int regmap_parse_32_le(const void *buf)
385{
386 const __le32 *b = buf;
387
388 return le32_to_cpu(b[0]);
389}
390
391static void regmap_parse_32_be_inplace(void *buf)
392{
393 __be32 *b = buf;
394
395 b[0] = be32_to_cpu(b[0]);
396}
397
398static void regmap_parse_32_le_inplace(void *buf)
399{
400 __le32 *b = buf;
401
402 b[0] = le32_to_cpu(b[0]);
403}
404
405static unsigned int regmap_parse_32_native(const void *buf)
406{
407 return *(u32 *)buf;
408}
409
410#ifdef CONFIG_64BIT
411static unsigned int regmap_parse_64_be(const void *buf)
412{
413 const __be64 *b = buf;
414
415 return be64_to_cpu(b[0]);
416}
417
418static unsigned int regmap_parse_64_le(const void *buf)
419{
420 const __le64 *b = buf;
421
422 return le64_to_cpu(b[0]);
423}
424
425static void regmap_parse_64_be_inplace(void *buf)
426{
427 __be64 *b = buf;
428
429 b[0] = be64_to_cpu(b[0]);
430}
431
432static void regmap_parse_64_le_inplace(void *buf)
433{
434 __le64 *b = buf;
435
436 b[0] = le64_to_cpu(b[0]);
437}
438
439static unsigned int regmap_parse_64_native(const void *buf)
440{
441 return *(u64 *)buf;
442}
443#endif
444
445static void regmap_lock_hwlock(void *__map)
446{
447 struct regmap *map = __map;
448
449 hwspin_lock_timeout(map->hwlock, UINT_MAX);
450}
451
452static void regmap_lock_hwlock_irq(void *__map)
453{
454 struct regmap *map = __map;
455
456 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
457}
458
459static void regmap_lock_hwlock_irqsave(void *__map)
460{
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
464 &map->spinlock_flags);
465}
466
467static void regmap_unlock_hwlock(void *__map)
468{
469 struct regmap *map = __map;
470
471 hwspin_unlock(map->hwlock);
472}
473
474static void regmap_unlock_hwlock_irq(void *__map)
475{
476 struct regmap *map = __map;
477
478 hwspin_unlock_irq(map->hwlock);
479}
480
481static void regmap_unlock_hwlock_irqrestore(void *__map)
482{
483 struct regmap *map = __map;
484
485 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
486}
487
488static void regmap_lock_unlock_none(void *__map)
489{
490
491}
492
493static void regmap_lock_mutex(void *__map)
494{
495 struct regmap *map = __map;
496 mutex_lock(&map->mutex);
497}
498
499static void regmap_unlock_mutex(void *__map)
500{
501 struct regmap *map = __map;
502 mutex_unlock(&map->mutex);
503}
504
505static void regmap_lock_spinlock(void *__map)
506__acquires(&map->spinlock)
507{
508 struct regmap *map = __map;
509 unsigned long flags;
510
511 spin_lock_irqsave(&map->spinlock, flags);
512 map->spinlock_flags = flags;
513}
514
515static void regmap_unlock_spinlock(void *__map)
516__releases(&map->spinlock)
517{
518 struct regmap *map = __map;
519 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
520}
521
522static void dev_get_regmap_release(struct device *dev, void *res)
523{
524 /*
525 * We don't actually have anything to do here; the goal here
526 * is not to manage the regmap but to provide a simple way to
527 * get the regmap back given a struct device.
528 */
529}
530
531static bool _regmap_range_add(struct regmap *map,
532 struct regmap_range_node *data)
533{
534 struct rb_root *root = &map->range_tree;
535 struct rb_node **new = &(root->rb_node), *parent = NULL;
536
537 while (*new) {
538 struct regmap_range_node *this =
539 rb_entry(*new, struct regmap_range_node, node);
540
541 parent = *new;
542 if (data->range_max < this->range_min)
543 new = &((*new)->rb_left);
544 else if (data->range_min > this->range_max)
545 new = &((*new)->rb_right);
546 else
547 return false;
548 }
549
550 rb_link_node(&data->node, parent, new);
551 rb_insert_color(&data->node, root);
552
553 return true;
554}
555
556static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
557 unsigned int reg)
558{
559 struct rb_node *node = map->range_tree.rb_node;
560
561 while (node) {
562 struct regmap_range_node *this =
563 rb_entry(node, struct regmap_range_node, node);
564
565 if (reg < this->range_min)
566 node = node->rb_left;
567 else if (reg > this->range_max)
568 node = node->rb_right;
569 else
570 return this;
571 }
572
573 return NULL;
574}
575
576static void regmap_range_exit(struct regmap *map)
577{
578 struct rb_node *next;
579 struct regmap_range_node *range_node;
580
581 next = rb_first(&map->range_tree);
582 while (next) {
583 range_node = rb_entry(next, struct regmap_range_node, node);
584 next = rb_next(&range_node->node);
585 rb_erase(&range_node->node, &map->range_tree);
586 kfree(range_node);
587 }
588
589 kfree(map->selector_work_buf);
590}
591
592int regmap_attach_dev(struct device *dev, struct regmap *map,
593 const struct regmap_config *config)
594{
595 struct regmap **m;
596
597 map->dev = dev;
598
599 regmap_debugfs_init(map, config->name);
600
601 /* Add a devres resource for dev_get_regmap() */
602 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
603 if (!m) {
604 regmap_debugfs_exit(map);
605 return -ENOMEM;
606 }
607 *m = map;
608 devres_add(dev, m);
609
610 return 0;
611}
612EXPORT_SYMBOL_GPL(regmap_attach_dev);
613
614static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
615 const struct regmap_config *config)
616{
617 enum regmap_endian endian;
618
619 /* Retrieve the endianness specification from the regmap config */
620 endian = config->reg_format_endian;
621
622 /* If the regmap config specified a non-default value, use that */
623 if (endian != REGMAP_ENDIAN_DEFAULT)
624 return endian;
625
626 /* Retrieve the endianness specification from the bus config */
627 if (bus && bus->reg_format_endian_default)
628 endian = bus->reg_format_endian_default;
629
630 /* If the bus specified a non-default value, use that */
631 if (endian != REGMAP_ENDIAN_DEFAULT)
632 return endian;
633
634 /* Use this if no other value was found */
635 return REGMAP_ENDIAN_BIG;
636}
637
638enum regmap_endian regmap_get_val_endian(struct device *dev,
639 const struct regmap_bus *bus,
640 const struct regmap_config *config)
641{
642 struct device_node *np;
643 enum regmap_endian endian;
644
645 /* Retrieve the endianness specification from the regmap config */
646 endian = config->val_format_endian;
647
648 /* If the regmap config specified a non-default value, use that */
649 if (endian != REGMAP_ENDIAN_DEFAULT)
650 return endian;
651
652 /* If the dev and dev->of_node exist try to get endianness from DT */
653 if (dev && dev->of_node) {
654 np = dev->of_node;
655
656 /* Parse the device's DT node for an endianness specification */
657 if (of_property_read_bool(np, "big-endian"))
658 endian = REGMAP_ENDIAN_BIG;
659 else if (of_property_read_bool(np, "little-endian"))
660 endian = REGMAP_ENDIAN_LITTLE;
661 else if (of_property_read_bool(np, "native-endian"))
662 endian = REGMAP_ENDIAN_NATIVE;
663
664 /* If the endianness was specified in DT, use that */
665 if (endian != REGMAP_ENDIAN_DEFAULT)
666 return endian;
667 }
668
669 /* Retrieve the endianness specification from the bus config */
670 if (bus && bus->val_format_endian_default)
671 endian = bus->val_format_endian_default;
672
673 /* If the bus specified a non-default value, use that */
674 if (endian != REGMAP_ENDIAN_DEFAULT)
675 return endian;
676
677 /* Use this if no other value was found */
678 return REGMAP_ENDIAN_BIG;
679}
680EXPORT_SYMBOL_GPL(regmap_get_val_endian);
681
682struct regmap *__regmap_init(struct device *dev,
683 const struct regmap_bus *bus,
684 void *bus_context,
685 const struct regmap_config *config,
686 struct lock_class_key *lock_key,
687 const char *lock_name)
688{
689 struct regmap *map;
690 int ret = -EINVAL;
691 enum regmap_endian reg_endian, val_endian;
692 int i, j;
693
694 if (!config)
695 goto err;
696
697 map = kzalloc(sizeof(*map), GFP_KERNEL);
698 if (map == NULL) {
699 ret = -ENOMEM;
700 goto err;
701 }
702
703 if (config->name) {
704 map->name = kstrdup_const(config->name, GFP_KERNEL);
705 if (!map->name) {
706 ret = -ENOMEM;
707 goto err_map;
708 }
709 }
710
711 if (config->disable_locking) {
712 map->lock = map->unlock = regmap_lock_unlock_none;
713 regmap_debugfs_disable(map);
714 } else if (config->lock && config->unlock) {
715 map->lock = config->lock;
716 map->unlock = config->unlock;
717 map->lock_arg = config->lock_arg;
718 } else if (config->use_hwlock) {
719 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
720 if (!map->hwlock) {
721 ret = -ENXIO;
722 goto err_name;
723 }
724
725 switch (config->hwlock_mode) {
726 case HWLOCK_IRQSTATE:
727 map->lock = regmap_lock_hwlock_irqsave;
728 map->unlock = regmap_unlock_hwlock_irqrestore;
729 break;
730 case HWLOCK_IRQ:
731 map->lock = regmap_lock_hwlock_irq;
732 map->unlock = regmap_unlock_hwlock_irq;
733 break;
734 default:
735 map->lock = regmap_lock_hwlock;
736 map->unlock = regmap_unlock_hwlock;
737 break;
738 }
739
740 map->lock_arg = map;
741 } else {
742 if ((bus && bus->fast_io) ||
743 config->fast_io) {
744 spin_lock_init(&map->spinlock);
745 map->lock = regmap_lock_spinlock;
746 map->unlock = regmap_unlock_spinlock;
747 lockdep_set_class_and_name(&map->spinlock,
748 lock_key, lock_name);
749 } else {
750 mutex_init(&map->mutex);
751 map->lock = regmap_lock_mutex;
752 map->unlock = regmap_unlock_mutex;
753 lockdep_set_class_and_name(&map->mutex,
754 lock_key, lock_name);
755 }
756 map->lock_arg = map;
757 }
758
759 /*
760 * When we write in fast-paths with regmap_bulk_write() don't allocate
761 * scratch buffers with sleeping allocations.
762 */
763 if ((bus && bus->fast_io) || config->fast_io)
764 map->alloc_flags = GFP_ATOMIC;
765 else
766 map->alloc_flags = GFP_KERNEL;
767
768 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
769 map->format.pad_bytes = config->pad_bits / 8;
770 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
771 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
772 config->val_bits + config->pad_bits, 8);
773 map->reg_shift = config->pad_bits % 8;
774 if (config->reg_stride)
775 map->reg_stride = config->reg_stride;
776 else
777 map->reg_stride = 1;
778 if (is_power_of_2(map->reg_stride))
779 map->reg_stride_order = ilog2(map->reg_stride);
780 else
781 map->reg_stride_order = -1;
782 map->use_single_read = config->use_single_read || !bus || !bus->read;
783 map->use_single_write = config->use_single_write || !bus || !bus->write;
784 map->can_multi_write = config->can_multi_write && bus && bus->write;
785 if (bus) {
786 map->max_raw_read = bus->max_raw_read;
787 map->max_raw_write = bus->max_raw_write;
788 }
789 map->dev = dev;
790 map->bus = bus;
791 map->bus_context = bus_context;
792 map->max_register = config->max_register;
793 map->wr_table = config->wr_table;
794 map->rd_table = config->rd_table;
795 map->volatile_table = config->volatile_table;
796 map->precious_table = config->precious_table;
797 map->wr_noinc_table = config->wr_noinc_table;
798 map->rd_noinc_table = config->rd_noinc_table;
799 map->writeable_reg = config->writeable_reg;
800 map->readable_reg = config->readable_reg;
801 map->volatile_reg = config->volatile_reg;
802 map->precious_reg = config->precious_reg;
803 map->writeable_noinc_reg = config->writeable_noinc_reg;
804 map->readable_noinc_reg = config->readable_noinc_reg;
805 map->cache_type = config->cache_type;
806
807 spin_lock_init(&map->async_lock);
808 INIT_LIST_HEAD(&map->async_list);
809 INIT_LIST_HEAD(&map->async_free);
810 init_waitqueue_head(&map->async_waitq);
811
812 if (config->read_flag_mask ||
813 config->write_flag_mask ||
814 config->zero_flag_mask) {
815 map->read_flag_mask = config->read_flag_mask;
816 map->write_flag_mask = config->write_flag_mask;
817 } else if (bus) {
818 map->read_flag_mask = bus->read_flag_mask;
819 }
820
821 if (!bus) {
822 map->reg_read = config->reg_read;
823 map->reg_write = config->reg_write;
824
825 map->defer_caching = false;
826 goto skip_format_initialization;
827 } else if (!bus->read || !bus->write) {
828 map->reg_read = _regmap_bus_reg_read;
829 map->reg_write = _regmap_bus_reg_write;
830 map->reg_update_bits = bus->reg_update_bits;
831
832 map->defer_caching = false;
833 goto skip_format_initialization;
834 } else {
835 map->reg_read = _regmap_bus_read;
836 map->reg_update_bits = bus->reg_update_bits;
837 }
838
839 reg_endian = regmap_get_reg_endian(bus, config);
840 val_endian = regmap_get_val_endian(dev, bus, config);
841
842 switch (config->reg_bits + map->reg_shift) {
843 case 2:
844 switch (config->val_bits) {
845 case 6:
846 map->format.format_write = regmap_format_2_6_write;
847 break;
848 default:
849 goto err_hwlock;
850 }
851 break;
852
853 case 4:
854 switch (config->val_bits) {
855 case 12:
856 map->format.format_write = regmap_format_4_12_write;
857 break;
858 default:
859 goto err_hwlock;
860 }
861 break;
862
863 case 7:
864 switch (config->val_bits) {
865 case 9:
866 map->format.format_write = regmap_format_7_9_write;
867 break;
868 default:
869 goto err_hwlock;
870 }
871 break;
872
873 case 10:
874 switch (config->val_bits) {
875 case 14:
876 map->format.format_write = regmap_format_10_14_write;
877 break;
878 default:
879 goto err_hwlock;
880 }
881 break;
882
883 case 8:
884 map->format.format_reg = regmap_format_8;
885 break;
886
887 case 16:
888 switch (reg_endian) {
889 case REGMAP_ENDIAN_BIG:
890 map->format.format_reg = regmap_format_16_be;
891 break;
892 case REGMAP_ENDIAN_LITTLE:
893 map->format.format_reg = regmap_format_16_le;
894 break;
895 case REGMAP_ENDIAN_NATIVE:
896 map->format.format_reg = regmap_format_16_native;
897 break;
898 default:
899 goto err_hwlock;
900 }
901 break;
902
903 case 24:
904 if (reg_endian != REGMAP_ENDIAN_BIG)
905 goto err_hwlock;
906 map->format.format_reg = regmap_format_24;
907 break;
908
909 case 32:
910 switch (reg_endian) {
911 case REGMAP_ENDIAN_BIG:
912 map->format.format_reg = regmap_format_32_be;
913 break;
914 case REGMAP_ENDIAN_LITTLE:
915 map->format.format_reg = regmap_format_32_le;
916 break;
917 case REGMAP_ENDIAN_NATIVE:
918 map->format.format_reg = regmap_format_32_native;
919 break;
920 default:
921 goto err_hwlock;
922 }
923 break;
924
925#ifdef CONFIG_64BIT
926 case 64:
927 switch (reg_endian) {
928 case REGMAP_ENDIAN_BIG:
929 map->format.format_reg = regmap_format_64_be;
930 break;
931 case REGMAP_ENDIAN_LITTLE:
932 map->format.format_reg = regmap_format_64_le;
933 break;
934 case REGMAP_ENDIAN_NATIVE:
935 map->format.format_reg = regmap_format_64_native;
936 break;
937 default:
938 goto err_hwlock;
939 }
940 break;
941#endif
942
943 default:
944 goto err_hwlock;
945 }
946
947 if (val_endian == REGMAP_ENDIAN_NATIVE)
948 map->format.parse_inplace = regmap_parse_inplace_noop;
949
950 switch (config->val_bits) {
951 case 8:
952 map->format.format_val = regmap_format_8;
953 map->format.parse_val = regmap_parse_8;
954 map->format.parse_inplace = regmap_parse_inplace_noop;
955 break;
956 case 16:
957 switch (val_endian) {
958 case REGMAP_ENDIAN_BIG:
959 map->format.format_val = regmap_format_16_be;
960 map->format.parse_val = regmap_parse_16_be;
961 map->format.parse_inplace = regmap_parse_16_be_inplace;
962 break;
963 case REGMAP_ENDIAN_LITTLE:
964 map->format.format_val = regmap_format_16_le;
965 map->format.parse_val = regmap_parse_16_le;
966 map->format.parse_inplace = regmap_parse_16_le_inplace;
967 break;
968 case REGMAP_ENDIAN_NATIVE:
969 map->format.format_val = regmap_format_16_native;
970 map->format.parse_val = regmap_parse_16_native;
971 break;
972 default:
973 goto err_hwlock;
974 }
975 break;
976 case 24:
977 if (val_endian != REGMAP_ENDIAN_BIG)
978 goto err_hwlock;
979 map->format.format_val = regmap_format_24;
980 map->format.parse_val = regmap_parse_24;
981 break;
982 case 32:
983 switch (val_endian) {
984 case REGMAP_ENDIAN_BIG:
985 map->format.format_val = regmap_format_32_be;
986 map->format.parse_val = regmap_parse_32_be;
987 map->format.parse_inplace = regmap_parse_32_be_inplace;
988 break;
989 case REGMAP_ENDIAN_LITTLE:
990 map->format.format_val = regmap_format_32_le;
991 map->format.parse_val = regmap_parse_32_le;
992 map->format.parse_inplace = regmap_parse_32_le_inplace;
993 break;
994 case REGMAP_ENDIAN_NATIVE:
995 map->format.format_val = regmap_format_32_native;
996 map->format.parse_val = regmap_parse_32_native;
997 break;
998 default:
999 goto err_hwlock;
1000 }
1001 break;
1002#ifdef CONFIG_64BIT
1003 case 64:
1004 switch (val_endian) {
1005 case REGMAP_ENDIAN_BIG:
1006 map->format.format_val = regmap_format_64_be;
1007 map->format.parse_val = regmap_parse_64_be;
1008 map->format.parse_inplace = regmap_parse_64_be_inplace;
1009 break;
1010 case REGMAP_ENDIAN_LITTLE:
1011 map->format.format_val = regmap_format_64_le;
1012 map->format.parse_val = regmap_parse_64_le;
1013 map->format.parse_inplace = regmap_parse_64_le_inplace;
1014 break;
1015 case REGMAP_ENDIAN_NATIVE:
1016 map->format.format_val = regmap_format_64_native;
1017 map->format.parse_val = regmap_parse_64_native;
1018 break;
1019 default:
1020 goto err_hwlock;
1021 }
1022 break;
1023#endif
1024 }
1025
1026 if (map->format.format_write) {
1027 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1028 (val_endian != REGMAP_ENDIAN_BIG))
1029 goto err_hwlock;
1030 map->use_single_write = true;
1031 }
1032
1033 if (!map->format.format_write &&
1034 !(map->format.format_reg && map->format.format_val))
1035 goto err_hwlock;
1036
1037 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1038 if (map->work_buf == NULL) {
1039 ret = -ENOMEM;
1040 goto err_hwlock;
1041 }
1042
1043 if (map->format.format_write) {
1044 map->defer_caching = false;
1045 map->reg_write = _regmap_bus_formatted_write;
1046 } else if (map->format.format_val) {
1047 map->defer_caching = true;
1048 map->reg_write = _regmap_bus_raw_write;
1049 }
1050
1051skip_format_initialization:
1052
1053 map->range_tree = RB_ROOT;
1054 for (i = 0; i < config->num_ranges; i++) {
1055 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1056 struct regmap_range_node *new;
1057
1058 /* Sanity check */
1059 if (range_cfg->range_max < range_cfg->range_min) {
1060 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1061 range_cfg->range_max, range_cfg->range_min);
1062 goto err_range;
1063 }
1064
1065 if (range_cfg->range_max > map->max_register) {
1066 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1067 range_cfg->range_max, map->max_register);
1068 goto err_range;
1069 }
1070
1071 if (range_cfg->selector_reg > map->max_register) {
1072 dev_err(map->dev,
1073 "Invalid range %d: selector out of map\n", i);
1074 goto err_range;
1075 }
1076
1077 if (range_cfg->window_len == 0) {
1078 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1079 i);
1080 goto err_range;
1081 }
1082
1083 /* Make sure, that this register range has no selector
1084 or data window within its boundary */
1085 for (j = 0; j < config->num_ranges; j++) {
1086 unsigned sel_reg = config->ranges[j].selector_reg;
1087 unsigned win_min = config->ranges[j].window_start;
1088 unsigned win_max = win_min +
1089 config->ranges[j].window_len - 1;
1090
1091 /* Allow data window inside its own virtual range */
1092 if (j == i)
1093 continue;
1094
1095 if (range_cfg->range_min <= sel_reg &&
1096 sel_reg <= range_cfg->range_max) {
1097 dev_err(map->dev,
1098 "Range %d: selector for %d in window\n",
1099 i, j);
1100 goto err_range;
1101 }
1102
1103 if (!(win_max < range_cfg->range_min ||
1104 win_min > range_cfg->range_max)) {
1105 dev_err(map->dev,
1106 "Range %d: window for %d in window\n",
1107 i, j);
1108 goto err_range;
1109 }
1110 }
1111
1112 new = kzalloc(sizeof(*new), GFP_KERNEL);
1113 if (new == NULL) {
1114 ret = -ENOMEM;
1115 goto err_range;
1116 }
1117
1118 new->map = map;
1119 new->name = range_cfg->name;
1120 new->range_min = range_cfg->range_min;
1121 new->range_max = range_cfg->range_max;
1122 new->selector_reg = range_cfg->selector_reg;
1123 new->selector_mask = range_cfg->selector_mask;
1124 new->selector_shift = range_cfg->selector_shift;
1125 new->window_start = range_cfg->window_start;
1126 new->window_len = range_cfg->window_len;
1127
1128 if (!_regmap_range_add(map, new)) {
1129 dev_err(map->dev, "Failed to add range %d\n", i);
1130 kfree(new);
1131 goto err_range;
1132 }
1133
1134 if (map->selector_work_buf == NULL) {
1135 map->selector_work_buf =
1136 kzalloc(map->format.buf_size, GFP_KERNEL);
1137 if (map->selector_work_buf == NULL) {
1138 ret = -ENOMEM;
1139 goto err_range;
1140 }
1141 }
1142 }
1143
1144 ret = regcache_init(map, config);
1145 if (ret != 0)
1146 goto err_range;
1147
1148 if (dev) {
1149 ret = regmap_attach_dev(dev, map, config);
1150 if (ret != 0)
1151 goto err_regcache;
1152 } else {
1153 regmap_debugfs_init(map, config->name);
1154 }
1155
1156 return map;
1157
1158err_regcache:
1159 regcache_exit(map);
1160err_range:
1161 regmap_range_exit(map);
1162 kfree(map->work_buf);
1163err_hwlock:
1164 if (map->hwlock)
1165 hwspin_lock_free(map->hwlock);
1166err_name:
1167 kfree_const(map->name);
1168err_map:
1169 kfree(map);
1170err:
1171 return ERR_PTR(ret);
1172}
1173EXPORT_SYMBOL_GPL(__regmap_init);
1174
1175static void devm_regmap_release(struct device *dev, void *res)
1176{
1177 regmap_exit(*(struct regmap **)res);
1178}
1179
1180struct regmap *__devm_regmap_init(struct device *dev,
1181 const struct regmap_bus *bus,
1182 void *bus_context,
1183 const struct regmap_config *config,
1184 struct lock_class_key *lock_key,
1185 const char *lock_name)
1186{
1187 struct regmap **ptr, *regmap;
1188
1189 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1190 if (!ptr)
1191 return ERR_PTR(-ENOMEM);
1192
1193 regmap = __regmap_init(dev, bus, bus_context, config,
1194 lock_key, lock_name);
1195 if (!IS_ERR(regmap)) {
1196 *ptr = regmap;
1197 devres_add(dev, ptr);
1198 } else {
1199 devres_free(ptr);
1200 }
1201
1202 return regmap;
1203}
1204EXPORT_SYMBOL_GPL(__devm_regmap_init);
1205
1206static void regmap_field_init(struct regmap_field *rm_field,
1207 struct regmap *regmap, struct reg_field reg_field)
1208{
1209 rm_field->regmap = regmap;
1210 rm_field->reg = reg_field.reg;
1211 rm_field->shift = reg_field.lsb;
1212 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1213 rm_field->id_size = reg_field.id_size;
1214 rm_field->id_offset = reg_field.id_offset;
1215}
1216
1217/**
1218 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1219 *
1220 * @dev: Device that will be interacted with
1221 * @regmap: regmap bank in which this register field is located.
1222 * @reg_field: Register field with in the bank.
1223 *
1224 * The return value will be an ERR_PTR() on error or a valid pointer
1225 * to a struct regmap_field. The regmap_field will be automatically freed
1226 * by the device management code.
1227 */
1228struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1229 struct regmap *regmap, struct reg_field reg_field)
1230{
1231 struct regmap_field *rm_field = devm_kzalloc(dev,
1232 sizeof(*rm_field), GFP_KERNEL);
1233 if (!rm_field)
1234 return ERR_PTR(-ENOMEM);
1235
1236 regmap_field_init(rm_field, regmap, reg_field);
1237
1238 return rm_field;
1239
1240}
1241EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1242
1243/**
1244 * devm_regmap_field_free() - Free a register field allocated using
1245 * devm_regmap_field_alloc.
1246 *
1247 * @dev: Device that will be interacted with
1248 * @field: regmap field which should be freed.
1249 *
1250 * Free register field allocated using devm_regmap_field_alloc(). Usually
1251 * drivers need not call this function, as the memory allocated via devm
1252 * will be freed as per device-driver life-cyle.
1253 */
1254void devm_regmap_field_free(struct device *dev,
1255 struct regmap_field *field)
1256{
1257 devm_kfree(dev, field);
1258}
1259EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1260
1261/**
1262 * regmap_field_alloc() - Allocate and initialise a register field.
1263 *
1264 * @regmap: regmap bank in which this register field is located.
1265 * @reg_field: Register field with in the bank.
1266 *
1267 * The return value will be an ERR_PTR() on error or a valid pointer
1268 * to a struct regmap_field. The regmap_field should be freed by the
1269 * user once its finished working with it using regmap_field_free().
1270 */
1271struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1272 struct reg_field reg_field)
1273{
1274 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1275
1276 if (!rm_field)
1277 return ERR_PTR(-ENOMEM);
1278
1279 regmap_field_init(rm_field, regmap, reg_field);
1280
1281 return rm_field;
1282}
1283EXPORT_SYMBOL_GPL(regmap_field_alloc);
1284
1285/**
1286 * regmap_field_free() - Free register field allocated using
1287 * regmap_field_alloc.
1288 *
1289 * @field: regmap field which should be freed.
1290 */
1291void regmap_field_free(struct regmap_field *field)
1292{
1293 kfree(field);
1294}
1295EXPORT_SYMBOL_GPL(regmap_field_free);
1296
1297/**
1298 * regmap_reinit_cache() - Reinitialise the current register cache
1299 *
1300 * @map: Register map to operate on.
1301 * @config: New configuration. Only the cache data will be used.
1302 *
1303 * Discard any existing register cache for the map and initialize a
1304 * new cache. This can be used to restore the cache to defaults or to
1305 * update the cache configuration to reflect runtime discovery of the
1306 * hardware.
1307 *
1308 * No explicit locking is done here, the user needs to ensure that
1309 * this function will not race with other calls to regmap.
1310 */
1311int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1312{
1313 regcache_exit(map);
1314 regmap_debugfs_exit(map);
1315
1316 map->max_register = config->max_register;
1317 map->writeable_reg = config->writeable_reg;
1318 map->readable_reg = config->readable_reg;
1319 map->volatile_reg = config->volatile_reg;
1320 map->precious_reg = config->precious_reg;
1321 map->writeable_noinc_reg = config->writeable_noinc_reg;
1322 map->readable_noinc_reg = config->readable_noinc_reg;
1323 map->cache_type = config->cache_type;
1324
1325 regmap_debugfs_init(map, config->name);
1326
1327 map->cache_bypass = false;
1328 map->cache_only = false;
1329
1330 return regcache_init(map, config);
1331}
1332EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1333
1334/**
1335 * regmap_exit() - Free a previously allocated register map
1336 *
1337 * @map: Register map to operate on.
1338 */
1339void regmap_exit(struct regmap *map)
1340{
1341 struct regmap_async *async;
1342
1343 regcache_exit(map);
1344 regmap_debugfs_exit(map);
1345 regmap_range_exit(map);
1346 if (map->bus && map->bus->free_context)
1347 map->bus->free_context(map->bus_context);
1348 kfree(map->work_buf);
1349 while (!list_empty(&map->async_free)) {
1350 async = list_first_entry_or_null(&map->async_free,
1351 struct regmap_async,
1352 list);
1353 list_del(&async->list);
1354 kfree(async->work_buf);
1355 kfree(async);
1356 }
1357 if (map->hwlock)
1358 hwspin_lock_free(map->hwlock);
1359 kfree_const(map->name);
1360 kfree(map);
1361}
1362EXPORT_SYMBOL_GPL(regmap_exit);
1363
1364static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1365{
1366 struct regmap **r = res;
1367 if (!r || !*r) {
1368 WARN_ON(!r || !*r);
1369 return 0;
1370 }
1371
1372 /* If the user didn't specify a name match any */
1373 if (data)
1374 return (*r)->name == data;
1375 else
1376 return 1;
1377}
1378
1379/**
1380 * dev_get_regmap() - Obtain the regmap (if any) for a device
1381 *
1382 * @dev: Device to retrieve the map for
1383 * @name: Optional name for the register map, usually NULL.
1384 *
1385 * Returns the regmap for the device if one is present, or NULL. If
1386 * name is specified then it must match the name specified when
1387 * registering the device, if it is NULL then the first regmap found
1388 * will be used. Devices with multiple register maps are very rare,
1389 * generic code should normally not need to specify a name.
1390 */
1391struct regmap *dev_get_regmap(struct device *dev, const char *name)
1392{
1393 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1394 dev_get_regmap_match, (void *)name);
1395
1396 if (!r)
1397 return NULL;
1398 return *r;
1399}
1400EXPORT_SYMBOL_GPL(dev_get_regmap);
1401
1402/**
1403 * regmap_get_device() - Obtain the device from a regmap
1404 *
1405 * @map: Register map to operate on.
1406 *
1407 * Returns the underlying device that the regmap has been created for.
1408 */
1409struct device *regmap_get_device(struct regmap *map)
1410{
1411 return map->dev;
1412}
1413EXPORT_SYMBOL_GPL(regmap_get_device);
1414
1415static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1416 struct regmap_range_node *range,
1417 unsigned int val_num)
1418{
1419 void *orig_work_buf;
1420 unsigned int win_offset;
1421 unsigned int win_page;
1422 bool page_chg;
1423 int ret;
1424
1425 win_offset = (*reg - range->range_min) % range->window_len;
1426 win_page = (*reg - range->range_min) / range->window_len;
1427
1428 if (val_num > 1) {
1429 /* Bulk write shouldn't cross range boundary */
1430 if (*reg + val_num - 1 > range->range_max)
1431 return -EINVAL;
1432
1433 /* ... or single page boundary */
1434 if (val_num > range->window_len - win_offset)
1435 return -EINVAL;
1436 }
1437
1438 /* It is possible to have selector register inside data window.
1439 In that case, selector register is located on every page and
1440 it needs no page switching, when accessed alone. */
1441 if (val_num > 1 ||
1442 range->window_start + win_offset != range->selector_reg) {
1443 /* Use separate work_buf during page switching */
1444 orig_work_buf = map->work_buf;
1445 map->work_buf = map->selector_work_buf;
1446
1447 ret = _regmap_update_bits(map, range->selector_reg,
1448 range->selector_mask,
1449 win_page << range->selector_shift,
1450 &page_chg, false);
1451
1452 map->work_buf = orig_work_buf;
1453
1454 if (ret != 0)
1455 return ret;
1456 }
1457
1458 *reg = range->window_start + win_offset;
1459
1460 return 0;
1461}
1462
1463static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1464 unsigned long mask)
1465{
1466 u8 *buf;
1467 int i;
1468
1469 if (!mask || !map->work_buf)
1470 return;
1471
1472 buf = map->work_buf;
1473
1474 for (i = 0; i < max_bytes; i++)
1475 buf[i] |= (mask >> (8 * i)) & 0xff;
1476}
1477
1478static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1479 const void *val, size_t val_len)
1480{
1481 struct regmap_range_node *range;
1482 unsigned long flags;
1483 void *work_val = map->work_buf + map->format.reg_bytes +
1484 map->format.pad_bytes;
1485 void *buf;
1486 int ret = -ENOTSUPP;
1487 size_t len;
1488 int i;
1489
1490 WARN_ON(!map->bus);
1491
1492 /* Check for unwritable or noinc registers in range
1493 * before we start
1494 */
1495 if (!regmap_writeable_noinc(map, reg)) {
1496 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1497 unsigned int element =
1498 reg + regmap_get_offset(map, i);
1499 if (!regmap_writeable(map, element) ||
1500 regmap_writeable_noinc(map, element))
1501 return -EINVAL;
1502 }
1503 }
1504
1505 if (!map->cache_bypass && map->format.parse_val) {
1506 unsigned int ival;
1507 int val_bytes = map->format.val_bytes;
1508 for (i = 0; i < val_len / val_bytes; i++) {
1509 ival = map->format.parse_val(val + (i * val_bytes));
1510 ret = regcache_write(map,
1511 reg + regmap_get_offset(map, i),
1512 ival);
1513 if (ret) {
1514 dev_err(map->dev,
1515 "Error in caching of register: %x ret: %d\n",
1516 reg + i, ret);
1517 return ret;
1518 }
1519 }
1520 if (map->cache_only) {
1521 map->cache_dirty = true;
1522 return 0;
1523 }
1524 }
1525
1526 range = _regmap_range_lookup(map, reg);
1527 if (range) {
1528 int val_num = val_len / map->format.val_bytes;
1529 int win_offset = (reg - range->range_min) % range->window_len;
1530 int win_residue = range->window_len - win_offset;
1531
1532 /* If the write goes beyond the end of the window split it */
1533 while (val_num > win_residue) {
1534 dev_dbg(map->dev, "Writing window %d/%zu\n",
1535 win_residue, val_len / map->format.val_bytes);
1536 ret = _regmap_raw_write_impl(map, reg, val,
1537 win_residue *
1538 map->format.val_bytes);
1539 if (ret != 0)
1540 return ret;
1541
1542 reg += win_residue;
1543 val_num -= win_residue;
1544 val += win_residue * map->format.val_bytes;
1545 val_len -= win_residue * map->format.val_bytes;
1546
1547 win_offset = (reg - range->range_min) %
1548 range->window_len;
1549 win_residue = range->window_len - win_offset;
1550 }
1551
1552 ret = _regmap_select_page(map, ®, range, val_num);
1553 if (ret != 0)
1554 return ret;
1555 }
1556
1557 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1558 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1559 map->write_flag_mask);
1560
1561 /*
1562 * Essentially all I/O mechanisms will be faster with a single
1563 * buffer to write. Since register syncs often generate raw
1564 * writes of single registers optimise that case.
1565 */
1566 if (val != work_val && val_len == map->format.val_bytes) {
1567 memcpy(work_val, val, map->format.val_bytes);
1568 val = work_val;
1569 }
1570
1571 if (map->async && map->bus->async_write) {
1572 struct regmap_async *async;
1573
1574 trace_regmap_async_write_start(map, reg, val_len);
1575
1576 spin_lock_irqsave(&map->async_lock, flags);
1577 async = list_first_entry_or_null(&map->async_free,
1578 struct regmap_async,
1579 list);
1580 if (async)
1581 list_del(&async->list);
1582 spin_unlock_irqrestore(&map->async_lock, flags);
1583
1584 if (!async) {
1585 async = map->bus->async_alloc();
1586 if (!async)
1587 return -ENOMEM;
1588
1589 async->work_buf = kzalloc(map->format.buf_size,
1590 GFP_KERNEL | GFP_DMA);
1591 if (!async->work_buf) {
1592 kfree(async);
1593 return -ENOMEM;
1594 }
1595 }
1596
1597 async->map = map;
1598
1599 /* If the caller supplied the value we can use it safely. */
1600 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1601 map->format.reg_bytes + map->format.val_bytes);
1602
1603 spin_lock_irqsave(&map->async_lock, flags);
1604 list_add_tail(&async->list, &map->async_list);
1605 spin_unlock_irqrestore(&map->async_lock, flags);
1606
1607 if (val != work_val)
1608 ret = map->bus->async_write(map->bus_context,
1609 async->work_buf,
1610 map->format.reg_bytes +
1611 map->format.pad_bytes,
1612 val, val_len, async);
1613 else
1614 ret = map->bus->async_write(map->bus_context,
1615 async->work_buf,
1616 map->format.reg_bytes +
1617 map->format.pad_bytes +
1618 val_len, NULL, 0, async);
1619
1620 if (ret != 0) {
1621 dev_err(map->dev, "Failed to schedule write: %d\n",
1622 ret);
1623
1624 spin_lock_irqsave(&map->async_lock, flags);
1625 list_move(&async->list, &map->async_free);
1626 spin_unlock_irqrestore(&map->async_lock, flags);
1627 }
1628
1629 return ret;
1630 }
1631
1632 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1633
1634 /* If we're doing a single register write we can probably just
1635 * send the work_buf directly, otherwise try to do a gather
1636 * write.
1637 */
1638 if (val == work_val)
1639 ret = map->bus->write(map->bus_context, map->work_buf,
1640 map->format.reg_bytes +
1641 map->format.pad_bytes +
1642 val_len);
1643 else if (map->bus->gather_write)
1644 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1645 map->format.reg_bytes +
1646 map->format.pad_bytes,
1647 val, val_len);
1648 else
1649 ret = -ENOTSUPP;
1650
1651 /* If that didn't work fall back on linearising by hand. */
1652 if (ret == -ENOTSUPP) {
1653 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1654 buf = kzalloc(len, GFP_KERNEL);
1655 if (!buf)
1656 return -ENOMEM;
1657
1658 memcpy(buf, map->work_buf, map->format.reg_bytes);
1659 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1660 val, val_len);
1661 ret = map->bus->write(map->bus_context, buf, len);
1662
1663 kfree(buf);
1664 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1665 /* regcache_drop_region() takes lock that we already have,
1666 * thus call map->cache_ops->drop() directly
1667 */
1668 if (map->cache_ops && map->cache_ops->drop)
1669 map->cache_ops->drop(map, reg, reg + 1);
1670 }
1671
1672 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1673
1674 return ret;
1675}
1676
1677/**
1678 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1679 *
1680 * @map: Map to check.
1681 */
1682bool regmap_can_raw_write(struct regmap *map)
1683{
1684 return map->bus && map->bus->write && map->format.format_val &&
1685 map->format.format_reg;
1686}
1687EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1688
1689/**
1690 * regmap_get_raw_read_max - Get the maximum size we can read
1691 *
1692 * @map: Map to check.
1693 */
1694size_t regmap_get_raw_read_max(struct regmap *map)
1695{
1696 return map->max_raw_read;
1697}
1698EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1699
1700/**
1701 * regmap_get_raw_write_max - Get the maximum size we can read
1702 *
1703 * @map: Map to check.
1704 */
1705size_t regmap_get_raw_write_max(struct regmap *map)
1706{
1707 return map->max_raw_write;
1708}
1709EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1710
1711static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1712 unsigned int val)
1713{
1714 int ret;
1715 struct regmap_range_node *range;
1716 struct regmap *map = context;
1717
1718 WARN_ON(!map->bus || !map->format.format_write);
1719
1720 range = _regmap_range_lookup(map, reg);
1721 if (range) {
1722 ret = _regmap_select_page(map, ®, range, 1);
1723 if (ret != 0)
1724 return ret;
1725 }
1726
1727 map->format.format_write(map, reg, val);
1728
1729 trace_regmap_hw_write_start(map, reg, 1);
1730
1731 ret = map->bus->write(map->bus_context, map->work_buf,
1732 map->format.buf_size);
1733
1734 trace_regmap_hw_write_done(map, reg, 1);
1735
1736 return ret;
1737}
1738
1739static int _regmap_bus_reg_write(void *context, unsigned int reg,
1740 unsigned int val)
1741{
1742 struct regmap *map = context;
1743
1744 return map->bus->reg_write(map->bus_context, reg, val);
1745}
1746
1747static int _regmap_bus_raw_write(void *context, unsigned int reg,
1748 unsigned int val)
1749{
1750 struct regmap *map = context;
1751
1752 WARN_ON(!map->bus || !map->format.format_val);
1753
1754 map->format.format_val(map->work_buf + map->format.reg_bytes
1755 + map->format.pad_bytes, val, 0);
1756 return _regmap_raw_write_impl(map, reg,
1757 map->work_buf +
1758 map->format.reg_bytes +
1759 map->format.pad_bytes,
1760 map->format.val_bytes);
1761}
1762
1763static inline void *_regmap_map_get_context(struct regmap *map)
1764{
1765 return (map->bus) ? map : map->bus_context;
1766}
1767
1768int _regmap_write(struct regmap *map, unsigned int reg,
1769 unsigned int val)
1770{
1771 int ret;
1772 void *context = _regmap_map_get_context(map);
1773
1774 if (!regmap_writeable(map, reg))
1775 return -EIO;
1776
1777 if (!map->cache_bypass && !map->defer_caching) {
1778 ret = regcache_write(map, reg, val);
1779 if (ret != 0)
1780 return ret;
1781 if (map->cache_only) {
1782 map->cache_dirty = true;
1783 return 0;
1784 }
1785 }
1786
1787 if (regmap_should_log(map))
1788 dev_info(map->dev, "%x <= %x\n", reg, val);
1789
1790 trace_regmap_reg_write(map, reg, val);
1791
1792 return map->reg_write(context, reg, val);
1793}
1794
1795/**
1796 * regmap_write() - Write a value to a single register
1797 *
1798 * @map: Register map to write to
1799 * @reg: Register to write to
1800 * @val: Value to be written
1801 *
1802 * A value of zero will be returned on success, a negative errno will
1803 * be returned in error cases.
1804 */
1805int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1806{
1807 int ret;
1808
1809 if (!IS_ALIGNED(reg, map->reg_stride))
1810 return -EINVAL;
1811
1812 map->lock(map->lock_arg);
1813
1814 ret = _regmap_write(map, reg, val);
1815
1816 map->unlock(map->lock_arg);
1817
1818 return ret;
1819}
1820EXPORT_SYMBOL_GPL(regmap_write);
1821
1822/**
1823 * regmap_write_async() - Write a value to a single register asynchronously
1824 *
1825 * @map: Register map to write to
1826 * @reg: Register to write to
1827 * @val: Value to be written
1828 *
1829 * A value of zero will be returned on success, a negative errno will
1830 * be returned in error cases.
1831 */
1832int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1833{
1834 int ret;
1835
1836 if (!IS_ALIGNED(reg, map->reg_stride))
1837 return -EINVAL;
1838
1839 map->lock(map->lock_arg);
1840
1841 map->async = true;
1842
1843 ret = _regmap_write(map, reg, val);
1844
1845 map->async = false;
1846
1847 map->unlock(map->lock_arg);
1848
1849 return ret;
1850}
1851EXPORT_SYMBOL_GPL(regmap_write_async);
1852
1853int _regmap_raw_write(struct regmap *map, unsigned int reg,
1854 const void *val, size_t val_len)
1855{
1856 size_t val_bytes = map->format.val_bytes;
1857 size_t val_count = val_len / val_bytes;
1858 size_t chunk_count, chunk_bytes;
1859 size_t chunk_regs = val_count;
1860 int ret, i;
1861
1862 if (!val_count)
1863 return -EINVAL;
1864
1865 if (map->use_single_write)
1866 chunk_regs = 1;
1867 else if (map->max_raw_write && val_len > map->max_raw_write)
1868 chunk_regs = map->max_raw_write / val_bytes;
1869
1870 chunk_count = val_count / chunk_regs;
1871 chunk_bytes = chunk_regs * val_bytes;
1872
1873 /* Write as many bytes as possible with chunk_size */
1874 for (i = 0; i < chunk_count; i++) {
1875 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1876 if (ret)
1877 return ret;
1878
1879 reg += regmap_get_offset(map, chunk_regs);
1880 val += chunk_bytes;
1881 val_len -= chunk_bytes;
1882 }
1883
1884 /* Write remaining bytes */
1885 if (val_len)
1886 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1887
1888 return ret;
1889}
1890
1891/**
1892 * regmap_raw_write() - Write raw values to one or more registers
1893 *
1894 * @map: Register map to write to
1895 * @reg: Initial register to write to
1896 * @val: Block of data to be written, laid out for direct transmission to the
1897 * device
1898 * @val_len: Length of data pointed to by val.
1899 *
1900 * This function is intended to be used for things like firmware
1901 * download where a large block of data needs to be transferred to the
1902 * device. No formatting will be done on the data provided.
1903 *
1904 * A value of zero will be returned on success, a negative errno will
1905 * be returned in error cases.
1906 */
1907int regmap_raw_write(struct regmap *map, unsigned int reg,
1908 const void *val, size_t val_len)
1909{
1910 int ret;
1911
1912 if (!regmap_can_raw_write(map))
1913 return -EINVAL;
1914 if (val_len % map->format.val_bytes)
1915 return -EINVAL;
1916
1917 map->lock(map->lock_arg);
1918
1919 ret = _regmap_raw_write(map, reg, val, val_len);
1920
1921 map->unlock(map->lock_arg);
1922
1923 return ret;
1924}
1925EXPORT_SYMBOL_GPL(regmap_raw_write);
1926
1927/**
1928 * regmap_noinc_write(): Write data from a register without incrementing the
1929 * register number
1930 *
1931 * @map: Register map to write to
1932 * @reg: Register to write to
1933 * @val: Pointer to data buffer
1934 * @val_len: Length of output buffer in bytes.
1935 *
1936 * The regmap API usually assumes that bulk bus write operations will write a
1937 * range of registers. Some devices have certain registers for which a write
1938 * operation can write to an internal FIFO.
1939 *
1940 * The target register must be volatile but registers after it can be
1941 * completely unrelated cacheable registers.
1942 *
1943 * This will attempt multiple writes as required to write val_len bytes.
1944 *
1945 * A value of zero will be returned on success, a negative errno will be
1946 * returned in error cases.
1947 */
1948int regmap_noinc_write(struct regmap *map, unsigned int reg,
1949 const void *val, size_t val_len)
1950{
1951 size_t write_len;
1952 int ret;
1953
1954 if (!map->bus)
1955 return -EINVAL;
1956 if (!map->bus->write)
1957 return -ENOTSUPP;
1958 if (val_len % map->format.val_bytes)
1959 return -EINVAL;
1960 if (!IS_ALIGNED(reg, map->reg_stride))
1961 return -EINVAL;
1962 if (val_len == 0)
1963 return -EINVAL;
1964
1965 map->lock(map->lock_arg);
1966
1967 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1968 ret = -EINVAL;
1969 goto out_unlock;
1970 }
1971
1972 while (val_len) {
1973 if (map->max_raw_write && map->max_raw_write < val_len)
1974 write_len = map->max_raw_write;
1975 else
1976 write_len = val_len;
1977 ret = _regmap_raw_write(map, reg, val, write_len);
1978 if (ret)
1979 goto out_unlock;
1980 val = ((u8 *)val) + write_len;
1981 val_len -= write_len;
1982 }
1983
1984out_unlock:
1985 map->unlock(map->lock_arg);
1986 return ret;
1987}
1988EXPORT_SYMBOL_GPL(regmap_noinc_write);
1989
1990/**
1991 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1992 * register field.
1993 *
1994 * @field: Register field to write to
1995 * @mask: Bitmask to change
1996 * @val: Value to be written
1997 * @change: Boolean indicating if a write was done
1998 * @async: Boolean indicating asynchronously
1999 * @force: Boolean indicating use force update
2000 *
2001 * Perform a read/modify/write cycle on the register field with change,
2002 * async, force option.
2003 *
2004 * A value of zero will be returned on success, a negative errno will
2005 * be returned in error cases.
2006 */
2007int regmap_field_update_bits_base(struct regmap_field *field,
2008 unsigned int mask, unsigned int val,
2009 bool *change, bool async, bool force)
2010{
2011 mask = (mask << field->shift) & field->mask;
2012
2013 return regmap_update_bits_base(field->regmap, field->reg,
2014 mask, val << field->shift,
2015 change, async, force);
2016}
2017EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2018
2019/**
2020 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2021 * register field with port ID
2022 *
2023 * @field: Register field to write to
2024 * @id: port ID
2025 * @mask: Bitmask to change
2026 * @val: Value to be written
2027 * @change: Boolean indicating if a write was done
2028 * @async: Boolean indicating asynchronously
2029 * @force: Boolean indicating use force update
2030 *
2031 * A value of zero will be returned on success, a negative errno will
2032 * be returned in error cases.
2033 */
2034int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2035 unsigned int mask, unsigned int val,
2036 bool *change, bool async, bool force)
2037{
2038 if (id >= field->id_size)
2039 return -EINVAL;
2040
2041 mask = (mask << field->shift) & field->mask;
2042
2043 return regmap_update_bits_base(field->regmap,
2044 field->reg + (field->id_offset * id),
2045 mask, val << field->shift,
2046 change, async, force);
2047}
2048EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2049
2050/**
2051 * regmap_bulk_write() - Write multiple registers to the device
2052 *
2053 * @map: Register map to write to
2054 * @reg: First register to be write from
2055 * @val: Block of data to be written, in native register size for device
2056 * @val_count: Number of registers to write
2057 *
2058 * This function is intended to be used for writing a large block of
2059 * data to the device either in single transfer or multiple transfer.
2060 *
2061 * A value of zero will be returned on success, a negative errno will
2062 * be returned in error cases.
2063 */
2064int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2065 size_t val_count)
2066{
2067 int ret = 0, i;
2068 size_t val_bytes = map->format.val_bytes;
2069
2070 if (!IS_ALIGNED(reg, map->reg_stride))
2071 return -EINVAL;
2072
2073 /*
2074 * Some devices don't support bulk write, for them we have a series of
2075 * single write operations.
2076 */
2077 if (!map->bus || !map->format.parse_inplace) {
2078 map->lock(map->lock_arg);
2079 for (i = 0; i < val_count; i++) {
2080 unsigned int ival;
2081
2082 switch (val_bytes) {
2083 case 1:
2084 ival = *(u8 *)(val + (i * val_bytes));
2085 break;
2086 case 2:
2087 ival = *(u16 *)(val + (i * val_bytes));
2088 break;
2089 case 4:
2090 ival = *(u32 *)(val + (i * val_bytes));
2091 break;
2092#ifdef CONFIG_64BIT
2093 case 8:
2094 ival = *(u64 *)(val + (i * val_bytes));
2095 break;
2096#endif
2097 default:
2098 ret = -EINVAL;
2099 goto out;
2100 }
2101
2102 ret = _regmap_write(map,
2103 reg + regmap_get_offset(map, i),
2104 ival);
2105 if (ret != 0)
2106 goto out;
2107 }
2108out:
2109 map->unlock(map->lock_arg);
2110 } else {
2111 void *wval;
2112
2113 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2114 if (!wval)
2115 return -ENOMEM;
2116
2117 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2118 map->format.parse_inplace(wval + i);
2119
2120 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2121
2122 kfree(wval);
2123 }
2124 return ret;
2125}
2126EXPORT_SYMBOL_GPL(regmap_bulk_write);
2127
2128/*
2129 * _regmap_raw_multi_reg_write()
2130 *
2131 * the (register,newvalue) pairs in regs have not been formatted, but
2132 * they are all in the same page and have been changed to being page
2133 * relative. The page register has been written if that was necessary.
2134 */
2135static int _regmap_raw_multi_reg_write(struct regmap *map,
2136 const struct reg_sequence *regs,
2137 size_t num_regs)
2138{
2139 int ret;
2140 void *buf;
2141 int i;
2142 u8 *u8;
2143 size_t val_bytes = map->format.val_bytes;
2144 size_t reg_bytes = map->format.reg_bytes;
2145 size_t pad_bytes = map->format.pad_bytes;
2146 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2147 size_t len = pair_size * num_regs;
2148
2149 if (!len)
2150 return -EINVAL;
2151
2152 buf = kzalloc(len, GFP_KERNEL);
2153 if (!buf)
2154 return -ENOMEM;
2155
2156 /* We have to linearise by hand. */
2157
2158 u8 = buf;
2159
2160 for (i = 0; i < num_regs; i++) {
2161 unsigned int reg = regs[i].reg;
2162 unsigned int val = regs[i].def;
2163 trace_regmap_hw_write_start(map, reg, 1);
2164 map->format.format_reg(u8, reg, map->reg_shift);
2165 u8 += reg_bytes + pad_bytes;
2166 map->format.format_val(u8, val, 0);
2167 u8 += val_bytes;
2168 }
2169 u8 = buf;
2170 *u8 |= map->write_flag_mask;
2171
2172 ret = map->bus->write(map->bus_context, buf, len);
2173
2174 kfree(buf);
2175
2176 for (i = 0; i < num_regs; i++) {
2177 int reg = regs[i].reg;
2178 trace_regmap_hw_write_done(map, reg, 1);
2179 }
2180 return ret;
2181}
2182
2183static unsigned int _regmap_register_page(struct regmap *map,
2184 unsigned int reg,
2185 struct regmap_range_node *range)
2186{
2187 unsigned int win_page = (reg - range->range_min) / range->window_len;
2188
2189 return win_page;
2190}
2191
2192static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2193 struct reg_sequence *regs,
2194 size_t num_regs)
2195{
2196 int ret;
2197 int i, n;
2198 struct reg_sequence *base;
2199 unsigned int this_page = 0;
2200 unsigned int page_change = 0;
2201 /*
2202 * the set of registers are not neccessarily in order, but
2203 * since the order of write must be preserved this algorithm
2204 * chops the set each time the page changes. This also applies
2205 * if there is a delay required at any point in the sequence.
2206 */
2207 base = regs;
2208 for (i = 0, n = 0; i < num_regs; i++, n++) {
2209 unsigned int reg = regs[i].reg;
2210 struct regmap_range_node *range;
2211
2212 range = _regmap_range_lookup(map, reg);
2213 if (range) {
2214 unsigned int win_page = _regmap_register_page(map, reg,
2215 range);
2216
2217 if (i == 0)
2218 this_page = win_page;
2219 if (win_page != this_page) {
2220 this_page = win_page;
2221 page_change = 1;
2222 }
2223 }
2224
2225 /* If we have both a page change and a delay make sure to
2226 * write the regs and apply the delay before we change the
2227 * page.
2228 */
2229
2230 if (page_change || regs[i].delay_us) {
2231
2232 /* For situations where the first write requires
2233 * a delay we need to make sure we don't call
2234 * raw_multi_reg_write with n=0
2235 * This can't occur with page breaks as we
2236 * never write on the first iteration
2237 */
2238 if (regs[i].delay_us && i == 0)
2239 n = 1;
2240
2241 ret = _regmap_raw_multi_reg_write(map, base, n);
2242 if (ret != 0)
2243 return ret;
2244
2245 if (regs[i].delay_us)
2246 udelay(regs[i].delay_us);
2247
2248 base += n;
2249 n = 0;
2250
2251 if (page_change) {
2252 ret = _regmap_select_page(map,
2253 &base[n].reg,
2254 range, 1);
2255 if (ret != 0)
2256 return ret;
2257
2258 page_change = 0;
2259 }
2260
2261 }
2262
2263 }
2264 if (n > 0)
2265 return _regmap_raw_multi_reg_write(map, base, n);
2266 return 0;
2267}
2268
2269static int _regmap_multi_reg_write(struct regmap *map,
2270 const struct reg_sequence *regs,
2271 size_t num_regs)
2272{
2273 int i;
2274 int ret;
2275
2276 if (!map->can_multi_write) {
2277 for (i = 0; i < num_regs; i++) {
2278 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2279 if (ret != 0)
2280 return ret;
2281
2282 if (regs[i].delay_us)
2283 udelay(regs[i].delay_us);
2284 }
2285 return 0;
2286 }
2287
2288 if (!map->format.parse_inplace)
2289 return -EINVAL;
2290
2291 if (map->writeable_reg)
2292 for (i = 0; i < num_regs; i++) {
2293 int reg = regs[i].reg;
2294 if (!map->writeable_reg(map->dev, reg))
2295 return -EINVAL;
2296 if (!IS_ALIGNED(reg, map->reg_stride))
2297 return -EINVAL;
2298 }
2299
2300 if (!map->cache_bypass) {
2301 for (i = 0; i < num_regs; i++) {
2302 unsigned int val = regs[i].def;
2303 unsigned int reg = regs[i].reg;
2304 ret = regcache_write(map, reg, val);
2305 if (ret) {
2306 dev_err(map->dev,
2307 "Error in caching of register: %x ret: %d\n",
2308 reg, ret);
2309 return ret;
2310 }
2311 }
2312 if (map->cache_only) {
2313 map->cache_dirty = true;
2314 return 0;
2315 }
2316 }
2317
2318 WARN_ON(!map->bus);
2319
2320 for (i = 0; i < num_regs; i++) {
2321 unsigned int reg = regs[i].reg;
2322 struct regmap_range_node *range;
2323
2324 /* Coalesce all the writes between a page break or a delay
2325 * in a sequence
2326 */
2327 range = _regmap_range_lookup(map, reg);
2328 if (range || regs[i].delay_us) {
2329 size_t len = sizeof(struct reg_sequence)*num_regs;
2330 struct reg_sequence *base = kmemdup(regs, len,
2331 GFP_KERNEL);
2332 if (!base)
2333 return -ENOMEM;
2334 ret = _regmap_range_multi_paged_reg_write(map, base,
2335 num_regs);
2336 kfree(base);
2337
2338 return ret;
2339 }
2340 }
2341 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2342}
2343
2344/**
2345 * regmap_multi_reg_write() - Write multiple registers to the device
2346 *
2347 * @map: Register map to write to
2348 * @regs: Array of structures containing register,value to be written
2349 * @num_regs: Number of registers to write
2350 *
2351 * Write multiple registers to the device where the set of register, value
2352 * pairs are supplied in any order, possibly not all in a single range.
2353 *
2354 * The 'normal' block write mode will send ultimately send data on the
2355 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2356 * addressed. However, this alternative block multi write mode will send
2357 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2358 * must of course support the mode.
2359 *
2360 * A value of zero will be returned on success, a negative errno will be
2361 * returned in error cases.
2362 */
2363int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2364 int num_regs)
2365{
2366 int ret;
2367
2368 map->lock(map->lock_arg);
2369
2370 ret = _regmap_multi_reg_write(map, regs, num_regs);
2371
2372 map->unlock(map->lock_arg);
2373
2374 return ret;
2375}
2376EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2377
2378/**
2379 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2380 * device but not the cache
2381 *
2382 * @map: Register map to write to
2383 * @regs: Array of structures containing register,value to be written
2384 * @num_regs: Number of registers to write
2385 *
2386 * Write multiple registers to the device but not the cache where the set
2387 * of register are supplied in any order.
2388 *
2389 * This function is intended to be used for writing a large block of data
2390 * atomically to the device in single transfer for those I2C client devices
2391 * that implement this alternative block write mode.
2392 *
2393 * A value of zero will be returned on success, a negative errno will
2394 * be returned in error cases.
2395 */
2396int regmap_multi_reg_write_bypassed(struct regmap *map,
2397 const struct reg_sequence *regs,
2398 int num_regs)
2399{
2400 int ret;
2401 bool bypass;
2402
2403 map->lock(map->lock_arg);
2404
2405 bypass = map->cache_bypass;
2406 map->cache_bypass = true;
2407
2408 ret = _regmap_multi_reg_write(map, regs, num_regs);
2409
2410 map->cache_bypass = bypass;
2411
2412 map->unlock(map->lock_arg);
2413
2414 return ret;
2415}
2416EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2417
2418/**
2419 * regmap_raw_write_async() - Write raw values to one or more registers
2420 * asynchronously
2421 *
2422 * @map: Register map to write to
2423 * @reg: Initial register to write to
2424 * @val: Block of data to be written, laid out for direct transmission to the
2425 * device. Must be valid until regmap_async_complete() is called.
2426 * @val_len: Length of data pointed to by val.
2427 *
2428 * This function is intended to be used for things like firmware
2429 * download where a large block of data needs to be transferred to the
2430 * device. No formatting will be done on the data provided.
2431 *
2432 * If supported by the underlying bus the write will be scheduled
2433 * asynchronously, helping maximise I/O speed on higher speed buses
2434 * like SPI. regmap_async_complete() can be called to ensure that all
2435 * asynchrnous writes have been completed.
2436 *
2437 * A value of zero will be returned on success, a negative errno will
2438 * be returned in error cases.
2439 */
2440int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2441 const void *val, size_t val_len)
2442{
2443 int ret;
2444
2445 if (val_len % map->format.val_bytes)
2446 return -EINVAL;
2447 if (!IS_ALIGNED(reg, map->reg_stride))
2448 return -EINVAL;
2449
2450 map->lock(map->lock_arg);
2451
2452 map->async = true;
2453
2454 ret = _regmap_raw_write(map, reg, val, val_len);
2455
2456 map->async = false;
2457
2458 map->unlock(map->lock_arg);
2459
2460 return ret;
2461}
2462EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2463
2464static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2465 unsigned int val_len)
2466{
2467 struct regmap_range_node *range;
2468 int ret;
2469
2470 WARN_ON(!map->bus);
2471
2472 if (!map->bus || !map->bus->read)
2473 return -EINVAL;
2474
2475 range = _regmap_range_lookup(map, reg);
2476 if (range) {
2477 ret = _regmap_select_page(map, ®, range,
2478 val_len / map->format.val_bytes);
2479 if (ret != 0)
2480 return ret;
2481 }
2482
2483 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2484 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2485 map->read_flag_mask);
2486 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2487
2488 ret = map->bus->read(map->bus_context, map->work_buf,
2489 map->format.reg_bytes + map->format.pad_bytes,
2490 val, val_len);
2491
2492 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2493
2494 return ret;
2495}
2496
2497static int _regmap_bus_reg_read(void *context, unsigned int reg,
2498 unsigned int *val)
2499{
2500 struct regmap *map = context;
2501
2502 return map->bus->reg_read(map->bus_context, reg, val);
2503}
2504
2505static int _regmap_bus_read(void *context, unsigned int reg,
2506 unsigned int *val)
2507{
2508 int ret;
2509 struct regmap *map = context;
2510 void *work_val = map->work_buf + map->format.reg_bytes +
2511 map->format.pad_bytes;
2512
2513 if (!map->format.parse_val)
2514 return -EINVAL;
2515
2516 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2517 if (ret == 0)
2518 *val = map->format.parse_val(work_val);
2519
2520 return ret;
2521}
2522
2523static int _regmap_read(struct regmap *map, unsigned int reg,
2524 unsigned int *val)
2525{
2526 int ret;
2527 void *context = _regmap_map_get_context(map);
2528
2529 if (!map->cache_bypass) {
2530 ret = regcache_read(map, reg, val);
2531 if (ret == 0)
2532 return 0;
2533 }
2534
2535 if (map->cache_only)
2536 return -EBUSY;
2537
2538 if (!regmap_readable(map, reg))
2539 return -EIO;
2540
2541 ret = map->reg_read(context, reg, val);
2542 if (ret == 0) {
2543 if (regmap_should_log(map))
2544 dev_info(map->dev, "%x => %x\n", reg, *val);
2545
2546 trace_regmap_reg_read(map, reg, *val);
2547
2548 if (!map->cache_bypass)
2549 regcache_write(map, reg, *val);
2550 }
2551
2552 return ret;
2553}
2554
2555/**
2556 * regmap_read() - Read a value from a single register
2557 *
2558 * @map: Register map to read from
2559 * @reg: Register to be read from
2560 * @val: Pointer to store read value
2561 *
2562 * A value of zero will be returned on success, a negative errno will
2563 * be returned in error cases.
2564 */
2565int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2566{
2567 int ret;
2568
2569 if (!IS_ALIGNED(reg, map->reg_stride))
2570 return -EINVAL;
2571
2572 map->lock(map->lock_arg);
2573
2574 ret = _regmap_read(map, reg, val);
2575
2576 map->unlock(map->lock_arg);
2577
2578 return ret;
2579}
2580EXPORT_SYMBOL_GPL(regmap_read);
2581
2582/**
2583 * regmap_raw_read() - Read raw data from the device
2584 *
2585 * @map: Register map to read from
2586 * @reg: First register to be read from
2587 * @val: Pointer to store read value
2588 * @val_len: Size of data to read
2589 *
2590 * A value of zero will be returned on success, a negative errno will
2591 * be returned in error cases.
2592 */
2593int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2594 size_t val_len)
2595{
2596 size_t val_bytes = map->format.val_bytes;
2597 size_t val_count = val_len / val_bytes;
2598 unsigned int v;
2599 int ret, i;
2600
2601 if (!map->bus)
2602 return -EINVAL;
2603 if (val_len % map->format.val_bytes)
2604 return -EINVAL;
2605 if (!IS_ALIGNED(reg, map->reg_stride))
2606 return -EINVAL;
2607 if (val_count == 0)
2608 return -EINVAL;
2609
2610 map->lock(map->lock_arg);
2611
2612 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2613 map->cache_type == REGCACHE_NONE) {
2614 size_t chunk_count, chunk_bytes;
2615 size_t chunk_regs = val_count;
2616
2617 if (!map->bus->read) {
2618 ret = -ENOTSUPP;
2619 goto out;
2620 }
2621
2622 if (map->use_single_read)
2623 chunk_regs = 1;
2624 else if (map->max_raw_read && val_len > map->max_raw_read)
2625 chunk_regs = map->max_raw_read / val_bytes;
2626
2627 chunk_count = val_count / chunk_regs;
2628 chunk_bytes = chunk_regs * val_bytes;
2629
2630 /* Read bytes that fit into whole chunks */
2631 for (i = 0; i < chunk_count; i++) {
2632 ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2633 if (ret != 0)
2634 goto out;
2635
2636 reg += regmap_get_offset(map, chunk_regs);
2637 val += chunk_bytes;
2638 val_len -= chunk_bytes;
2639 }
2640
2641 /* Read remaining bytes */
2642 if (val_len) {
2643 ret = _regmap_raw_read(map, reg, val, val_len);
2644 if (ret != 0)
2645 goto out;
2646 }
2647 } else {
2648 /* Otherwise go word by word for the cache; should be low
2649 * cost as we expect to hit the cache.
2650 */
2651 for (i = 0; i < val_count; i++) {
2652 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2653 &v);
2654 if (ret != 0)
2655 goto out;
2656
2657 map->format.format_val(val + (i * val_bytes), v, 0);
2658 }
2659 }
2660
2661 out:
2662 map->unlock(map->lock_arg);
2663
2664 return ret;
2665}
2666EXPORT_SYMBOL_GPL(regmap_raw_read);
2667
2668/**
2669 * regmap_noinc_read(): Read data from a register without incrementing the
2670 * register number
2671 *
2672 * @map: Register map to read from
2673 * @reg: Register to read from
2674 * @val: Pointer to data buffer
2675 * @val_len: Length of output buffer in bytes.
2676 *
2677 * The regmap API usually assumes that bulk bus read operations will read a
2678 * range of registers. Some devices have certain registers for which a read
2679 * operation read will read from an internal FIFO.
2680 *
2681 * The target register must be volatile but registers after it can be
2682 * completely unrelated cacheable registers.
2683 *
2684 * This will attempt multiple reads as required to read val_len bytes.
2685 *
2686 * A value of zero will be returned on success, a negative errno will be
2687 * returned in error cases.
2688 */
2689int regmap_noinc_read(struct regmap *map, unsigned int reg,
2690 void *val, size_t val_len)
2691{
2692 size_t read_len;
2693 int ret;
2694
2695 if (!map->bus)
2696 return -EINVAL;
2697 if (!map->bus->read)
2698 return -ENOTSUPP;
2699 if (val_len % map->format.val_bytes)
2700 return -EINVAL;
2701 if (!IS_ALIGNED(reg, map->reg_stride))
2702 return -EINVAL;
2703 if (val_len == 0)
2704 return -EINVAL;
2705
2706 map->lock(map->lock_arg);
2707
2708 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2709 ret = -EINVAL;
2710 goto out_unlock;
2711 }
2712
2713 while (val_len) {
2714 if (map->max_raw_read && map->max_raw_read < val_len)
2715 read_len = map->max_raw_read;
2716 else
2717 read_len = val_len;
2718 ret = _regmap_raw_read(map, reg, val, read_len);
2719 if (ret)
2720 goto out_unlock;
2721 val = ((u8 *)val) + read_len;
2722 val_len -= read_len;
2723 }
2724
2725out_unlock:
2726 map->unlock(map->lock_arg);
2727 return ret;
2728}
2729EXPORT_SYMBOL_GPL(regmap_noinc_read);
2730
2731/**
2732 * regmap_field_read(): Read a value to a single register field
2733 *
2734 * @field: Register field to read from
2735 * @val: Pointer to store read value
2736 *
2737 * A value of zero will be returned on success, a negative errno will
2738 * be returned in error cases.
2739 */
2740int regmap_field_read(struct regmap_field *field, unsigned int *val)
2741{
2742 int ret;
2743 unsigned int reg_val;
2744 ret = regmap_read(field->regmap, field->reg, ®_val);
2745 if (ret != 0)
2746 return ret;
2747
2748 reg_val &= field->mask;
2749 reg_val >>= field->shift;
2750 *val = reg_val;
2751
2752 return ret;
2753}
2754EXPORT_SYMBOL_GPL(regmap_field_read);
2755
2756/**
2757 * regmap_fields_read() - Read a value to a single register field with port ID
2758 *
2759 * @field: Register field to read from
2760 * @id: port ID
2761 * @val: Pointer to store read value
2762 *
2763 * A value of zero will be returned on success, a negative errno will
2764 * be returned in error cases.
2765 */
2766int regmap_fields_read(struct regmap_field *field, unsigned int id,
2767 unsigned int *val)
2768{
2769 int ret;
2770 unsigned int reg_val;
2771
2772 if (id >= field->id_size)
2773 return -EINVAL;
2774
2775 ret = regmap_read(field->regmap,
2776 field->reg + (field->id_offset * id),
2777 ®_val);
2778 if (ret != 0)
2779 return ret;
2780
2781 reg_val &= field->mask;
2782 reg_val >>= field->shift;
2783 *val = reg_val;
2784
2785 return ret;
2786}
2787EXPORT_SYMBOL_GPL(regmap_fields_read);
2788
2789/**
2790 * regmap_bulk_read() - Read multiple registers from the device
2791 *
2792 * @map: Register map to read from
2793 * @reg: First register to be read from
2794 * @val: Pointer to store read value, in native register size for device
2795 * @val_count: Number of registers to read
2796 *
2797 * A value of zero will be returned on success, a negative errno will
2798 * be returned in error cases.
2799 */
2800int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2801 size_t val_count)
2802{
2803 int ret, i;
2804 size_t val_bytes = map->format.val_bytes;
2805 bool vol = regmap_volatile_range(map, reg, val_count);
2806
2807 if (!IS_ALIGNED(reg, map->reg_stride))
2808 return -EINVAL;
2809 if (val_count == 0)
2810 return -EINVAL;
2811
2812 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2813 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2814 if (ret != 0)
2815 return ret;
2816
2817 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2818 map->format.parse_inplace(val + i);
2819 } else {
2820#ifdef CONFIG_64BIT
2821 u64 *u64 = val;
2822#endif
2823 u32 *u32 = val;
2824 u16 *u16 = val;
2825 u8 *u8 = val;
2826
2827 map->lock(map->lock_arg);
2828
2829 for (i = 0; i < val_count; i++) {
2830 unsigned int ival;
2831
2832 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2833 &ival);
2834 if (ret != 0)
2835 goto out;
2836
2837 switch (map->format.val_bytes) {
2838#ifdef CONFIG_64BIT
2839 case 8:
2840 u64[i] = ival;
2841 break;
2842#endif
2843 case 4:
2844 u32[i] = ival;
2845 break;
2846 case 2:
2847 u16[i] = ival;
2848 break;
2849 case 1:
2850 u8[i] = ival;
2851 break;
2852 default:
2853 ret = -EINVAL;
2854 goto out;
2855 }
2856 }
2857
2858out:
2859 map->unlock(map->lock_arg);
2860 }
2861
2862 return ret;
2863}
2864EXPORT_SYMBOL_GPL(regmap_bulk_read);
2865
2866static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2867 unsigned int mask, unsigned int val,
2868 bool *change, bool force_write)
2869{
2870 int ret;
2871 unsigned int tmp, orig;
2872
2873 if (change)
2874 *change = false;
2875
2876 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2877 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2878 if (ret == 0 && change)
2879 *change = true;
2880 } else {
2881 ret = _regmap_read(map, reg, &orig);
2882 if (ret != 0)
2883 return ret;
2884
2885 tmp = orig & ~mask;
2886 tmp |= val & mask;
2887
2888 if (force_write || (tmp != orig)) {
2889 ret = _regmap_write(map, reg, tmp);
2890 if (ret == 0 && change)
2891 *change = true;
2892 }
2893 }
2894
2895 return ret;
2896}
2897
2898/**
2899 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2900 *
2901 * @map: Register map to update
2902 * @reg: Register to update
2903 * @mask: Bitmask to change
2904 * @val: New value for bitmask
2905 * @change: Boolean indicating if a write was done
2906 * @async: Boolean indicating asynchronously
2907 * @force: Boolean indicating use force update
2908 *
2909 * Perform a read/modify/write cycle on a register map with change, async, force
2910 * options.
2911 *
2912 * If async is true:
2913 *
2914 * With most buses the read must be done synchronously so this is most useful
2915 * for devices with a cache which do not need to interact with the hardware to
2916 * determine the current register value.
2917 *
2918 * Returns zero for success, a negative number on error.
2919 */
2920int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2921 unsigned int mask, unsigned int val,
2922 bool *change, bool async, bool force)
2923{
2924 int ret;
2925
2926 map->lock(map->lock_arg);
2927
2928 map->async = async;
2929
2930 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2931
2932 map->async = false;
2933
2934 map->unlock(map->lock_arg);
2935
2936 return ret;
2937}
2938EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2939
2940/**
2941 * regmap_test_bits() - Check if all specified bits are set in a register.
2942 *
2943 * @map: Register map to operate on
2944 * @reg: Register to read from
2945 * @bits: Bits to test
2946 *
2947 * Returns -1 if the underlying regmap_read() fails, 0 if at least one of the
2948 * tested bits is not set and 1 if all tested bits are set.
2949 */
2950int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
2951{
2952 unsigned int val, ret;
2953
2954 ret = regmap_read(map, reg, &val);
2955 if (ret)
2956 return ret;
2957
2958 return (val & bits) == bits;
2959}
2960EXPORT_SYMBOL_GPL(regmap_test_bits);
2961
2962void regmap_async_complete_cb(struct regmap_async *async, int ret)
2963{
2964 struct regmap *map = async->map;
2965 bool wake;
2966
2967 trace_regmap_async_io_complete(map);
2968
2969 spin_lock(&map->async_lock);
2970 list_move(&async->list, &map->async_free);
2971 wake = list_empty(&map->async_list);
2972
2973 if (ret != 0)
2974 map->async_ret = ret;
2975
2976 spin_unlock(&map->async_lock);
2977
2978 if (wake)
2979 wake_up(&map->async_waitq);
2980}
2981EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2982
2983static int regmap_async_is_done(struct regmap *map)
2984{
2985 unsigned long flags;
2986 int ret;
2987
2988 spin_lock_irqsave(&map->async_lock, flags);
2989 ret = list_empty(&map->async_list);
2990 spin_unlock_irqrestore(&map->async_lock, flags);
2991
2992 return ret;
2993}
2994
2995/**
2996 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2997 *
2998 * @map: Map to operate on.
2999 *
3000 * Blocks until any pending asynchronous I/O has completed. Returns
3001 * an error code for any failed I/O operations.
3002 */
3003int regmap_async_complete(struct regmap *map)
3004{
3005 unsigned long flags;
3006 int ret;
3007
3008 /* Nothing to do with no async support */
3009 if (!map->bus || !map->bus->async_write)
3010 return 0;
3011
3012 trace_regmap_async_complete_start(map);
3013
3014 wait_event(map->async_waitq, regmap_async_is_done(map));
3015
3016 spin_lock_irqsave(&map->async_lock, flags);
3017 ret = map->async_ret;
3018 map->async_ret = 0;
3019 spin_unlock_irqrestore(&map->async_lock, flags);
3020
3021 trace_regmap_async_complete_done(map);
3022
3023 return ret;
3024}
3025EXPORT_SYMBOL_GPL(regmap_async_complete);
3026
3027/**
3028 * regmap_register_patch - Register and apply register updates to be applied
3029 * on device initialistion
3030 *
3031 * @map: Register map to apply updates to.
3032 * @regs: Values to update.
3033 * @num_regs: Number of entries in regs.
3034 *
3035 * Register a set of register updates to be applied to the device
3036 * whenever the device registers are synchronised with the cache and
3037 * apply them immediately. Typically this is used to apply
3038 * corrections to be applied to the device defaults on startup, such
3039 * as the updates some vendors provide to undocumented registers.
3040 *
3041 * The caller must ensure that this function cannot be called
3042 * concurrently with either itself or regcache_sync().
3043 */
3044int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3045 int num_regs)
3046{
3047 struct reg_sequence *p;
3048 int ret;
3049 bool bypass;
3050
3051 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3052 num_regs))
3053 return 0;
3054
3055 p = krealloc(map->patch,
3056 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3057 GFP_KERNEL);
3058 if (p) {
3059 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3060 map->patch = p;
3061 map->patch_regs += num_regs;
3062 } else {
3063 return -ENOMEM;
3064 }
3065
3066 map->lock(map->lock_arg);
3067
3068 bypass = map->cache_bypass;
3069
3070 map->cache_bypass = true;
3071 map->async = true;
3072
3073 ret = _regmap_multi_reg_write(map, regs, num_regs);
3074
3075 map->async = false;
3076 map->cache_bypass = bypass;
3077
3078 map->unlock(map->lock_arg);
3079
3080 regmap_async_complete(map);
3081
3082 return ret;
3083}
3084EXPORT_SYMBOL_GPL(regmap_register_patch);
3085
3086/**
3087 * regmap_get_val_bytes() - Report the size of a register value
3088 *
3089 * @map: Register map to operate on.
3090 *
3091 * Report the size of a register value, mainly intended to for use by
3092 * generic infrastructure built on top of regmap.
3093 */
3094int regmap_get_val_bytes(struct regmap *map)
3095{
3096 if (map->format.format_write)
3097 return -EINVAL;
3098
3099 return map->format.val_bytes;
3100}
3101EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3102
3103/**
3104 * regmap_get_max_register() - Report the max register value
3105 *
3106 * @map: Register map to operate on.
3107 *
3108 * Report the max register value, mainly intended to for use by
3109 * generic infrastructure built on top of regmap.
3110 */
3111int regmap_get_max_register(struct regmap *map)
3112{
3113 return map->max_register ? map->max_register : -EINVAL;
3114}
3115EXPORT_SYMBOL_GPL(regmap_get_max_register);
3116
3117/**
3118 * regmap_get_reg_stride() - Report the register address stride
3119 *
3120 * @map: Register map to operate on.
3121 *
3122 * Report the register address stride, mainly intended to for use by
3123 * generic infrastructure built on top of regmap.
3124 */
3125int regmap_get_reg_stride(struct regmap *map)
3126{
3127 return map->reg_stride;
3128}
3129EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3130
3131int regmap_parse_val(struct regmap *map, const void *buf,
3132 unsigned int *val)
3133{
3134 if (!map->format.parse_val)
3135 return -EINVAL;
3136
3137 *val = map->format.parse_val(buf);
3138
3139 return 0;
3140}
3141EXPORT_SYMBOL_GPL(regmap_parse_val);
3142
3143static int __init regmap_initcall(void)
3144{
3145 regmap_debugfs_initcall();
3146
3147 return 0;
3148}
3149postcore_initcall(regmap_initcall);