Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/string.h>
83#include <linux/mm.h>
84#include <linux/socket.h>
85#include <linux/sockios.h>
86#include <linux/errno.h>
87#include <linux/interrupt.h>
88#include <linux/if_ether.h>
89#include <linux/netdevice.h>
90#include <linux/etherdevice.h>
91#include <linux/ethtool.h>
92#include <linux/skbuff.h>
93#include <linux/bpf.h>
94#include <linux/bpf_trace.h>
95#include <net/net_namespace.h>
96#include <net/sock.h>
97#include <net/busy_poll.h>
98#include <linux/rtnetlink.h>
99#include <linux/stat.h>
100#include <net/dst.h>
101#include <net/dst_metadata.h>
102#include <net/pkt_sched.h>
103#include <net/pkt_cls.h>
104#include <net/checksum.h>
105#include <net/xfrm.h>
106#include <linux/highmem.h>
107#include <linux/init.h>
108#include <linux/module.h>
109#include <linux/netpoll.h>
110#include <linux/rcupdate.h>
111#include <linux/delay.h>
112#include <net/iw_handler.h>
113#include <asm/current.h>
114#include <linux/audit.h>
115#include <linux/dmaengine.h>
116#include <linux/err.h>
117#include <linux/ctype.h>
118#include <linux/if_arp.h>
119#include <linux/if_vlan.h>
120#include <linux/ip.h>
121#include <net/ip.h>
122#include <net/mpls.h>
123#include <linux/ipv6.h>
124#include <linux/in.h>
125#include <linux/jhash.h>
126#include <linux/random.h>
127#include <trace/events/napi.h>
128#include <trace/events/net.h>
129#include <trace/events/skb.h>
130#include <linux/inetdevice.h>
131#include <linux/cpu_rmap.h>
132#include <linux/static_key.h>
133#include <linux/hashtable.h>
134#include <linux/vmalloc.h>
135#include <linux/if_macvlan.h>
136#include <linux/errqueue.h>
137#include <linux/hrtimer.h>
138#include <linux/netfilter_ingress.h>
139#include <linux/crash_dump.h>
140#include <linux/sctp.h>
141#include <net/udp_tunnel.h>
142#include <linux/net_namespace.h>
143#include <linux/indirect_call_wrapper.h>
144#include <net/devlink.h>
145
146#include "net-sysfs.h"
147
148#define MAX_GRO_SKBS 8
149
150/* This should be increased if a protocol with a bigger head is added. */
151#define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153static DEFINE_SPINLOCK(ptype_lock);
154static DEFINE_SPINLOCK(offload_lock);
155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156struct list_head ptype_all __read_mostly; /* Taps */
157static struct list_head offload_base __read_mostly;
158
159static int netif_rx_internal(struct sk_buff *skb);
160static int call_netdevice_notifiers_info(unsigned long val,
161 struct netdev_notifier_info *info);
162static int call_netdevice_notifiers_extack(unsigned long val,
163 struct net_device *dev,
164 struct netlink_ext_ack *extack);
165static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167/*
168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169 * semaphore.
170 *
171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172 *
173 * Writers must hold the rtnl semaphore while they loop through the
174 * dev_base_head list, and hold dev_base_lock for writing when they do the
175 * actual updates. This allows pure readers to access the list even
176 * while a writer is preparing to update it.
177 *
178 * To put it another way, dev_base_lock is held for writing only to
179 * protect against pure readers; the rtnl semaphore provides the
180 * protection against other writers.
181 *
182 * See, for example usages, register_netdevice() and
183 * unregister_netdevice(), which must be called with the rtnl
184 * semaphore held.
185 */
186DEFINE_RWLOCK(dev_base_lock);
187EXPORT_SYMBOL(dev_base_lock);
188
189static DEFINE_MUTEX(ifalias_mutex);
190
191/* protects napi_hash addition/deletion and napi_gen_id */
192static DEFINE_SPINLOCK(napi_hash_lock);
193
194static unsigned int napi_gen_id = NR_CPUS;
195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197static seqcount_t devnet_rename_seq;
198
199static inline void dev_base_seq_inc(struct net *net)
200{
201 while (++net->dev_base_seq == 0)
202 ;
203}
204
205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206{
207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210}
211
212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213{
214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215}
216
217static inline void rps_lock(struct softnet_data *sd)
218{
219#ifdef CONFIG_RPS
220 spin_lock(&sd->input_pkt_queue.lock);
221#endif
222}
223
224static inline void rps_unlock(struct softnet_data *sd)
225{
226#ifdef CONFIG_RPS
227 spin_unlock(&sd->input_pkt_queue.lock);
228#endif
229}
230
231static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
232 const char *name)
233{
234 struct netdev_name_node *name_node;
235
236 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
237 if (!name_node)
238 return NULL;
239 INIT_HLIST_NODE(&name_node->hlist);
240 name_node->dev = dev;
241 name_node->name = name;
242 return name_node;
243}
244
245static struct netdev_name_node *
246netdev_name_node_head_alloc(struct net_device *dev)
247{
248 struct netdev_name_node *name_node;
249
250 name_node = netdev_name_node_alloc(dev, dev->name);
251 if (!name_node)
252 return NULL;
253 INIT_LIST_HEAD(&name_node->list);
254 return name_node;
255}
256
257static void netdev_name_node_free(struct netdev_name_node *name_node)
258{
259 kfree(name_node);
260}
261
262static void netdev_name_node_add(struct net *net,
263 struct netdev_name_node *name_node)
264{
265 hlist_add_head_rcu(&name_node->hlist,
266 dev_name_hash(net, name_node->name));
267}
268
269static void netdev_name_node_del(struct netdev_name_node *name_node)
270{
271 hlist_del_rcu(&name_node->hlist);
272}
273
274static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
275 const char *name)
276{
277 struct hlist_head *head = dev_name_hash(net, name);
278 struct netdev_name_node *name_node;
279
280 hlist_for_each_entry(name_node, head, hlist)
281 if (!strcmp(name_node->name, name))
282 return name_node;
283 return NULL;
284}
285
286static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
287 const char *name)
288{
289 struct hlist_head *head = dev_name_hash(net, name);
290 struct netdev_name_node *name_node;
291
292 hlist_for_each_entry_rcu(name_node, head, hlist)
293 if (!strcmp(name_node->name, name))
294 return name_node;
295 return NULL;
296}
297
298int netdev_name_node_alt_create(struct net_device *dev, const char *name)
299{
300 struct netdev_name_node *name_node;
301 struct net *net = dev_net(dev);
302
303 name_node = netdev_name_node_lookup(net, name);
304 if (name_node)
305 return -EEXIST;
306 name_node = netdev_name_node_alloc(dev, name);
307 if (!name_node)
308 return -ENOMEM;
309 netdev_name_node_add(net, name_node);
310 /* The node that holds dev->name acts as a head of per-device list. */
311 list_add_tail(&name_node->list, &dev->name_node->list);
312
313 return 0;
314}
315EXPORT_SYMBOL(netdev_name_node_alt_create);
316
317static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
318{
319 list_del(&name_node->list);
320 netdev_name_node_del(name_node);
321 kfree(name_node->name);
322 netdev_name_node_free(name_node);
323}
324
325int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
326{
327 struct netdev_name_node *name_node;
328 struct net *net = dev_net(dev);
329
330 name_node = netdev_name_node_lookup(net, name);
331 if (!name_node)
332 return -ENOENT;
333 /* lookup might have found our primary name or a name belonging
334 * to another device.
335 */
336 if (name_node == dev->name_node || name_node->dev != dev)
337 return -EINVAL;
338
339 __netdev_name_node_alt_destroy(name_node);
340
341 return 0;
342}
343EXPORT_SYMBOL(netdev_name_node_alt_destroy);
344
345static void netdev_name_node_alt_flush(struct net_device *dev)
346{
347 struct netdev_name_node *name_node, *tmp;
348
349 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
350 __netdev_name_node_alt_destroy(name_node);
351}
352
353/* Device list insertion */
354static void list_netdevice(struct net_device *dev)
355{
356 struct net *net = dev_net(dev);
357
358 ASSERT_RTNL();
359
360 write_lock_bh(&dev_base_lock);
361 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
362 netdev_name_node_add(net, dev->name_node);
363 hlist_add_head_rcu(&dev->index_hlist,
364 dev_index_hash(net, dev->ifindex));
365 write_unlock_bh(&dev_base_lock);
366
367 dev_base_seq_inc(net);
368}
369
370/* Device list removal
371 * caller must respect a RCU grace period before freeing/reusing dev
372 */
373static void unlist_netdevice(struct net_device *dev)
374{
375 ASSERT_RTNL();
376
377 /* Unlink dev from the device chain */
378 write_lock_bh(&dev_base_lock);
379 list_del_rcu(&dev->dev_list);
380 netdev_name_node_del(dev->name_node);
381 hlist_del_rcu(&dev->index_hlist);
382 write_unlock_bh(&dev_base_lock);
383
384 dev_base_seq_inc(dev_net(dev));
385}
386
387/*
388 * Our notifier list
389 */
390
391static RAW_NOTIFIER_HEAD(netdev_chain);
392
393/*
394 * Device drivers call our routines to queue packets here. We empty the
395 * queue in the local softnet handler.
396 */
397
398DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
399EXPORT_PER_CPU_SYMBOL(softnet_data);
400
401/*******************************************************************************
402 *
403 * Protocol management and registration routines
404 *
405 *******************************************************************************/
406
407
408/*
409 * Add a protocol ID to the list. Now that the input handler is
410 * smarter we can dispense with all the messy stuff that used to be
411 * here.
412 *
413 * BEWARE!!! Protocol handlers, mangling input packets,
414 * MUST BE last in hash buckets and checking protocol handlers
415 * MUST start from promiscuous ptype_all chain in net_bh.
416 * It is true now, do not change it.
417 * Explanation follows: if protocol handler, mangling packet, will
418 * be the first on list, it is not able to sense, that packet
419 * is cloned and should be copied-on-write, so that it will
420 * change it and subsequent readers will get broken packet.
421 * --ANK (980803)
422 */
423
424static inline struct list_head *ptype_head(const struct packet_type *pt)
425{
426 if (pt->type == htons(ETH_P_ALL))
427 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
428 else
429 return pt->dev ? &pt->dev->ptype_specific :
430 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
431}
432
433/**
434 * dev_add_pack - add packet handler
435 * @pt: packet type declaration
436 *
437 * Add a protocol handler to the networking stack. The passed &packet_type
438 * is linked into kernel lists and may not be freed until it has been
439 * removed from the kernel lists.
440 *
441 * This call does not sleep therefore it can not
442 * guarantee all CPU's that are in middle of receiving packets
443 * will see the new packet type (until the next received packet).
444 */
445
446void dev_add_pack(struct packet_type *pt)
447{
448 struct list_head *head = ptype_head(pt);
449
450 spin_lock(&ptype_lock);
451 list_add_rcu(&pt->list, head);
452 spin_unlock(&ptype_lock);
453}
454EXPORT_SYMBOL(dev_add_pack);
455
456/**
457 * __dev_remove_pack - remove packet handler
458 * @pt: packet type declaration
459 *
460 * Remove a protocol handler that was previously added to the kernel
461 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
462 * from the kernel lists and can be freed or reused once this function
463 * returns.
464 *
465 * The packet type might still be in use by receivers
466 * and must not be freed until after all the CPU's have gone
467 * through a quiescent state.
468 */
469void __dev_remove_pack(struct packet_type *pt)
470{
471 struct list_head *head = ptype_head(pt);
472 struct packet_type *pt1;
473
474 spin_lock(&ptype_lock);
475
476 list_for_each_entry(pt1, head, list) {
477 if (pt == pt1) {
478 list_del_rcu(&pt->list);
479 goto out;
480 }
481 }
482
483 pr_warn("dev_remove_pack: %p not found\n", pt);
484out:
485 spin_unlock(&ptype_lock);
486}
487EXPORT_SYMBOL(__dev_remove_pack);
488
489/**
490 * dev_remove_pack - remove packet handler
491 * @pt: packet type declaration
492 *
493 * Remove a protocol handler that was previously added to the kernel
494 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
495 * from the kernel lists and can be freed or reused once this function
496 * returns.
497 *
498 * This call sleeps to guarantee that no CPU is looking at the packet
499 * type after return.
500 */
501void dev_remove_pack(struct packet_type *pt)
502{
503 __dev_remove_pack(pt);
504
505 synchronize_net();
506}
507EXPORT_SYMBOL(dev_remove_pack);
508
509
510/**
511 * dev_add_offload - register offload handlers
512 * @po: protocol offload declaration
513 *
514 * Add protocol offload handlers to the networking stack. The passed
515 * &proto_offload is linked into kernel lists and may not be freed until
516 * it has been removed from the kernel lists.
517 *
518 * This call does not sleep therefore it can not
519 * guarantee all CPU's that are in middle of receiving packets
520 * will see the new offload handlers (until the next received packet).
521 */
522void dev_add_offload(struct packet_offload *po)
523{
524 struct packet_offload *elem;
525
526 spin_lock(&offload_lock);
527 list_for_each_entry(elem, &offload_base, list) {
528 if (po->priority < elem->priority)
529 break;
530 }
531 list_add_rcu(&po->list, elem->list.prev);
532 spin_unlock(&offload_lock);
533}
534EXPORT_SYMBOL(dev_add_offload);
535
536/**
537 * __dev_remove_offload - remove offload handler
538 * @po: packet offload declaration
539 *
540 * Remove a protocol offload handler that was previously added to the
541 * kernel offload handlers by dev_add_offload(). The passed &offload_type
542 * is removed from the kernel lists and can be freed or reused once this
543 * function returns.
544 *
545 * The packet type might still be in use by receivers
546 * and must not be freed until after all the CPU's have gone
547 * through a quiescent state.
548 */
549static void __dev_remove_offload(struct packet_offload *po)
550{
551 struct list_head *head = &offload_base;
552 struct packet_offload *po1;
553
554 spin_lock(&offload_lock);
555
556 list_for_each_entry(po1, head, list) {
557 if (po == po1) {
558 list_del_rcu(&po->list);
559 goto out;
560 }
561 }
562
563 pr_warn("dev_remove_offload: %p not found\n", po);
564out:
565 spin_unlock(&offload_lock);
566}
567
568/**
569 * dev_remove_offload - remove packet offload handler
570 * @po: packet offload declaration
571 *
572 * Remove a packet offload handler that was previously added to the kernel
573 * offload handlers by dev_add_offload(). The passed &offload_type is
574 * removed from the kernel lists and can be freed or reused once this
575 * function returns.
576 *
577 * This call sleeps to guarantee that no CPU is looking at the packet
578 * type after return.
579 */
580void dev_remove_offload(struct packet_offload *po)
581{
582 __dev_remove_offload(po);
583
584 synchronize_net();
585}
586EXPORT_SYMBOL(dev_remove_offload);
587
588/******************************************************************************
589 *
590 * Device Boot-time Settings Routines
591 *
592 ******************************************************************************/
593
594/* Boot time configuration table */
595static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
596
597/**
598 * netdev_boot_setup_add - add new setup entry
599 * @name: name of the device
600 * @map: configured settings for the device
601 *
602 * Adds new setup entry to the dev_boot_setup list. The function
603 * returns 0 on error and 1 on success. This is a generic routine to
604 * all netdevices.
605 */
606static int netdev_boot_setup_add(char *name, struct ifmap *map)
607{
608 struct netdev_boot_setup *s;
609 int i;
610
611 s = dev_boot_setup;
612 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
613 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
614 memset(s[i].name, 0, sizeof(s[i].name));
615 strlcpy(s[i].name, name, IFNAMSIZ);
616 memcpy(&s[i].map, map, sizeof(s[i].map));
617 break;
618 }
619 }
620
621 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
622}
623
624/**
625 * netdev_boot_setup_check - check boot time settings
626 * @dev: the netdevice
627 *
628 * Check boot time settings for the device.
629 * The found settings are set for the device to be used
630 * later in the device probing.
631 * Returns 0 if no settings found, 1 if they are.
632 */
633int netdev_boot_setup_check(struct net_device *dev)
634{
635 struct netdev_boot_setup *s = dev_boot_setup;
636 int i;
637
638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
639 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
640 !strcmp(dev->name, s[i].name)) {
641 dev->irq = s[i].map.irq;
642 dev->base_addr = s[i].map.base_addr;
643 dev->mem_start = s[i].map.mem_start;
644 dev->mem_end = s[i].map.mem_end;
645 return 1;
646 }
647 }
648 return 0;
649}
650EXPORT_SYMBOL(netdev_boot_setup_check);
651
652
653/**
654 * netdev_boot_base - get address from boot time settings
655 * @prefix: prefix for network device
656 * @unit: id for network device
657 *
658 * Check boot time settings for the base address of device.
659 * The found settings are set for the device to be used
660 * later in the device probing.
661 * Returns 0 if no settings found.
662 */
663unsigned long netdev_boot_base(const char *prefix, int unit)
664{
665 const struct netdev_boot_setup *s = dev_boot_setup;
666 char name[IFNAMSIZ];
667 int i;
668
669 sprintf(name, "%s%d", prefix, unit);
670
671 /*
672 * If device already registered then return base of 1
673 * to indicate not to probe for this interface
674 */
675 if (__dev_get_by_name(&init_net, name))
676 return 1;
677
678 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
679 if (!strcmp(name, s[i].name))
680 return s[i].map.base_addr;
681 return 0;
682}
683
684/*
685 * Saves at boot time configured settings for any netdevice.
686 */
687int __init netdev_boot_setup(char *str)
688{
689 int ints[5];
690 struct ifmap map;
691
692 str = get_options(str, ARRAY_SIZE(ints), ints);
693 if (!str || !*str)
694 return 0;
695
696 /* Save settings */
697 memset(&map, 0, sizeof(map));
698 if (ints[0] > 0)
699 map.irq = ints[1];
700 if (ints[0] > 1)
701 map.base_addr = ints[2];
702 if (ints[0] > 2)
703 map.mem_start = ints[3];
704 if (ints[0] > 3)
705 map.mem_end = ints[4];
706
707 /* Add new entry to the list */
708 return netdev_boot_setup_add(str, &map);
709}
710
711__setup("netdev=", netdev_boot_setup);
712
713/*******************************************************************************
714 *
715 * Device Interface Subroutines
716 *
717 *******************************************************************************/
718
719/**
720 * dev_get_iflink - get 'iflink' value of a interface
721 * @dev: targeted interface
722 *
723 * Indicates the ifindex the interface is linked to.
724 * Physical interfaces have the same 'ifindex' and 'iflink' values.
725 */
726
727int dev_get_iflink(const struct net_device *dev)
728{
729 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
730 return dev->netdev_ops->ndo_get_iflink(dev);
731
732 return dev->ifindex;
733}
734EXPORT_SYMBOL(dev_get_iflink);
735
736/**
737 * dev_fill_metadata_dst - Retrieve tunnel egress information.
738 * @dev: targeted interface
739 * @skb: The packet.
740 *
741 * For better visibility of tunnel traffic OVS needs to retrieve
742 * egress tunnel information for a packet. Following API allows
743 * user to get this info.
744 */
745int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
746{
747 struct ip_tunnel_info *info;
748
749 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
750 return -EINVAL;
751
752 info = skb_tunnel_info_unclone(skb);
753 if (!info)
754 return -ENOMEM;
755 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
756 return -EINVAL;
757
758 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
759}
760EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
761
762/**
763 * __dev_get_by_name - find a device by its name
764 * @net: the applicable net namespace
765 * @name: name to find
766 *
767 * Find an interface by name. Must be called under RTNL semaphore
768 * or @dev_base_lock. If the name is found a pointer to the device
769 * is returned. If the name is not found then %NULL is returned. The
770 * reference counters are not incremented so the caller must be
771 * careful with locks.
772 */
773
774struct net_device *__dev_get_by_name(struct net *net, const char *name)
775{
776 struct netdev_name_node *node_name;
777
778 node_name = netdev_name_node_lookup(net, name);
779 return node_name ? node_name->dev : NULL;
780}
781EXPORT_SYMBOL(__dev_get_by_name);
782
783/**
784 * dev_get_by_name_rcu - find a device by its name
785 * @net: the applicable net namespace
786 * @name: name to find
787 *
788 * Find an interface by name.
789 * If the name is found a pointer to the device is returned.
790 * If the name is not found then %NULL is returned.
791 * The reference counters are not incremented so the caller must be
792 * careful with locks. The caller must hold RCU lock.
793 */
794
795struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
796{
797 struct netdev_name_node *node_name;
798
799 node_name = netdev_name_node_lookup_rcu(net, name);
800 return node_name ? node_name->dev : NULL;
801}
802EXPORT_SYMBOL(dev_get_by_name_rcu);
803
804/**
805 * dev_get_by_name - find a device by its name
806 * @net: the applicable net namespace
807 * @name: name to find
808 *
809 * Find an interface by name. This can be called from any
810 * context and does its own locking. The returned handle has
811 * the usage count incremented and the caller must use dev_put() to
812 * release it when it is no longer needed. %NULL is returned if no
813 * matching device is found.
814 */
815
816struct net_device *dev_get_by_name(struct net *net, const char *name)
817{
818 struct net_device *dev;
819
820 rcu_read_lock();
821 dev = dev_get_by_name_rcu(net, name);
822 if (dev)
823 dev_hold(dev);
824 rcu_read_unlock();
825 return dev;
826}
827EXPORT_SYMBOL(dev_get_by_name);
828
829/**
830 * __dev_get_by_index - find a device by its ifindex
831 * @net: the applicable net namespace
832 * @ifindex: index of device
833 *
834 * Search for an interface by index. Returns %NULL if the device
835 * is not found or a pointer to the device. The device has not
836 * had its reference counter increased so the caller must be careful
837 * about locking. The caller must hold either the RTNL semaphore
838 * or @dev_base_lock.
839 */
840
841struct net_device *__dev_get_by_index(struct net *net, int ifindex)
842{
843 struct net_device *dev;
844 struct hlist_head *head = dev_index_hash(net, ifindex);
845
846 hlist_for_each_entry(dev, head, index_hlist)
847 if (dev->ifindex == ifindex)
848 return dev;
849
850 return NULL;
851}
852EXPORT_SYMBOL(__dev_get_by_index);
853
854/**
855 * dev_get_by_index_rcu - find a device by its ifindex
856 * @net: the applicable net namespace
857 * @ifindex: index of device
858 *
859 * Search for an interface by index. Returns %NULL if the device
860 * is not found or a pointer to the device. The device has not
861 * had its reference counter increased so the caller must be careful
862 * about locking. The caller must hold RCU lock.
863 */
864
865struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
866{
867 struct net_device *dev;
868 struct hlist_head *head = dev_index_hash(net, ifindex);
869
870 hlist_for_each_entry_rcu(dev, head, index_hlist)
871 if (dev->ifindex == ifindex)
872 return dev;
873
874 return NULL;
875}
876EXPORT_SYMBOL(dev_get_by_index_rcu);
877
878
879/**
880 * dev_get_by_index - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
883 *
884 * Search for an interface by index. Returns NULL if the device
885 * is not found or a pointer to the device. The device returned has
886 * had a reference added and the pointer is safe until the user calls
887 * dev_put to indicate they have finished with it.
888 */
889
890struct net_device *dev_get_by_index(struct net *net, int ifindex)
891{
892 struct net_device *dev;
893
894 rcu_read_lock();
895 dev = dev_get_by_index_rcu(net, ifindex);
896 if (dev)
897 dev_hold(dev);
898 rcu_read_unlock();
899 return dev;
900}
901EXPORT_SYMBOL(dev_get_by_index);
902
903/**
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
906 *
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
911 */
912
913struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914{
915 struct napi_struct *napi;
916
917 WARN_ON_ONCE(!rcu_read_lock_held());
918
919 if (napi_id < MIN_NAPI_ID)
920 return NULL;
921
922 napi = napi_by_id(napi_id);
923
924 return napi ? napi->dev : NULL;
925}
926EXPORT_SYMBOL(dev_get_by_napi_id);
927
928/**
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
933 *
934 * The use of raw_seqcount_begin() and cond_resched() before
935 * retrying is required as we want to give the writers a chance
936 * to complete when CONFIG_PREEMPTION is not set.
937 */
938int netdev_get_name(struct net *net, char *name, int ifindex)
939{
940 struct net_device *dev;
941 unsigned int seq;
942
943retry:
944 seq = raw_seqcount_begin(&devnet_rename_seq);
945 rcu_read_lock();
946 dev = dev_get_by_index_rcu(net, ifindex);
947 if (!dev) {
948 rcu_read_unlock();
949 return -ENODEV;
950 }
951
952 strcpy(name, dev->name);
953 rcu_read_unlock();
954 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
955 cond_resched();
956 goto retry;
957 }
958
959 return 0;
960}
961
962/**
963 * dev_getbyhwaddr_rcu - find a device by its hardware address
964 * @net: the applicable net namespace
965 * @type: media type of device
966 * @ha: hardware address
967 *
968 * Search for an interface by MAC address. Returns NULL if the device
969 * is not found or a pointer to the device.
970 * The caller must hold RCU or RTNL.
971 * The returned device has not had its ref count increased
972 * and the caller must therefore be careful about locking
973 *
974 */
975
976struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
977 const char *ha)
978{
979 struct net_device *dev;
980
981 for_each_netdev_rcu(net, dev)
982 if (dev->type == type &&
983 !memcmp(dev->dev_addr, ha, dev->addr_len))
984 return dev;
985
986 return NULL;
987}
988EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
989
990struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
991{
992 struct net_device *dev;
993
994 ASSERT_RTNL();
995 for_each_netdev(net, dev)
996 if (dev->type == type)
997 return dev;
998
999 return NULL;
1000}
1001EXPORT_SYMBOL(__dev_getfirstbyhwtype);
1002
1003struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1004{
1005 struct net_device *dev, *ret = NULL;
1006
1007 rcu_read_lock();
1008 for_each_netdev_rcu(net, dev)
1009 if (dev->type == type) {
1010 dev_hold(dev);
1011 ret = dev;
1012 break;
1013 }
1014 rcu_read_unlock();
1015 return ret;
1016}
1017EXPORT_SYMBOL(dev_getfirstbyhwtype);
1018
1019/**
1020 * __dev_get_by_flags - find any device with given flags
1021 * @net: the applicable net namespace
1022 * @if_flags: IFF_* values
1023 * @mask: bitmask of bits in if_flags to check
1024 *
1025 * Search for any interface with the given flags. Returns NULL if a device
1026 * is not found or a pointer to the device. Must be called inside
1027 * rtnl_lock(), and result refcount is unchanged.
1028 */
1029
1030struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1031 unsigned short mask)
1032{
1033 struct net_device *dev, *ret;
1034
1035 ASSERT_RTNL();
1036
1037 ret = NULL;
1038 for_each_netdev(net, dev) {
1039 if (((dev->flags ^ if_flags) & mask) == 0) {
1040 ret = dev;
1041 break;
1042 }
1043 }
1044 return ret;
1045}
1046EXPORT_SYMBOL(__dev_get_by_flags);
1047
1048/**
1049 * dev_valid_name - check if name is okay for network device
1050 * @name: name string
1051 *
1052 * Network device names need to be valid file names to
1053 * to allow sysfs to work. We also disallow any kind of
1054 * whitespace.
1055 */
1056bool dev_valid_name(const char *name)
1057{
1058 if (*name == '\0')
1059 return false;
1060 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1061 return false;
1062 if (!strcmp(name, ".") || !strcmp(name, ".."))
1063 return false;
1064
1065 while (*name) {
1066 if (*name == '/' || *name == ':' || isspace(*name))
1067 return false;
1068 name++;
1069 }
1070 return true;
1071}
1072EXPORT_SYMBOL(dev_valid_name);
1073
1074/**
1075 * __dev_alloc_name - allocate a name for a device
1076 * @net: network namespace to allocate the device name in
1077 * @name: name format string
1078 * @buf: scratch buffer and result name string
1079 *
1080 * Passed a format string - eg "lt%d" it will try and find a suitable
1081 * id. It scans list of devices to build up a free map, then chooses
1082 * the first empty slot. The caller must hold the dev_base or rtnl lock
1083 * while allocating the name and adding the device in order to avoid
1084 * duplicates.
1085 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1086 * Returns the number of the unit assigned or a negative errno code.
1087 */
1088
1089static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1090{
1091 int i = 0;
1092 const char *p;
1093 const int max_netdevices = 8*PAGE_SIZE;
1094 unsigned long *inuse;
1095 struct net_device *d;
1096
1097 if (!dev_valid_name(name))
1098 return -EINVAL;
1099
1100 p = strchr(name, '%');
1101 if (p) {
1102 /*
1103 * Verify the string as this thing may have come from
1104 * the user. There must be either one "%d" and no other "%"
1105 * characters.
1106 */
1107 if (p[1] != 'd' || strchr(p + 2, '%'))
1108 return -EINVAL;
1109
1110 /* Use one page as a bit array of possible slots */
1111 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1112 if (!inuse)
1113 return -ENOMEM;
1114
1115 for_each_netdev(net, d) {
1116 if (!sscanf(d->name, name, &i))
1117 continue;
1118 if (i < 0 || i >= max_netdevices)
1119 continue;
1120
1121 /* avoid cases where sscanf is not exact inverse of printf */
1122 snprintf(buf, IFNAMSIZ, name, i);
1123 if (!strncmp(buf, d->name, IFNAMSIZ))
1124 set_bit(i, inuse);
1125 }
1126
1127 i = find_first_zero_bit(inuse, max_netdevices);
1128 free_page((unsigned long) inuse);
1129 }
1130
1131 snprintf(buf, IFNAMSIZ, name, i);
1132 if (!__dev_get_by_name(net, buf))
1133 return i;
1134
1135 /* It is possible to run out of possible slots
1136 * when the name is long and there isn't enough space left
1137 * for the digits, or if all bits are used.
1138 */
1139 return -ENFILE;
1140}
1141
1142static int dev_alloc_name_ns(struct net *net,
1143 struct net_device *dev,
1144 const char *name)
1145{
1146 char buf[IFNAMSIZ];
1147 int ret;
1148
1149 BUG_ON(!net);
1150 ret = __dev_alloc_name(net, name, buf);
1151 if (ret >= 0)
1152 strlcpy(dev->name, buf, IFNAMSIZ);
1153 return ret;
1154}
1155
1156/**
1157 * dev_alloc_name - allocate a name for a device
1158 * @dev: device
1159 * @name: name format string
1160 *
1161 * Passed a format string - eg "lt%d" it will try and find a suitable
1162 * id. It scans list of devices to build up a free map, then chooses
1163 * the first empty slot. The caller must hold the dev_base or rtnl lock
1164 * while allocating the name and adding the device in order to avoid
1165 * duplicates.
1166 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1167 * Returns the number of the unit assigned or a negative errno code.
1168 */
1169
1170int dev_alloc_name(struct net_device *dev, const char *name)
1171{
1172 return dev_alloc_name_ns(dev_net(dev), dev, name);
1173}
1174EXPORT_SYMBOL(dev_alloc_name);
1175
1176static int dev_get_valid_name(struct net *net, struct net_device *dev,
1177 const char *name)
1178{
1179 BUG_ON(!net);
1180
1181 if (!dev_valid_name(name))
1182 return -EINVAL;
1183
1184 if (strchr(name, '%'))
1185 return dev_alloc_name_ns(net, dev, name);
1186 else if (__dev_get_by_name(net, name))
1187 return -EEXIST;
1188 else if (dev->name != name)
1189 strlcpy(dev->name, name, IFNAMSIZ);
1190
1191 return 0;
1192}
1193
1194/**
1195 * dev_change_name - change name of a device
1196 * @dev: device
1197 * @newname: name (or format string) must be at least IFNAMSIZ
1198 *
1199 * Change name of a device, can pass format strings "eth%d".
1200 * for wildcarding.
1201 */
1202int dev_change_name(struct net_device *dev, const char *newname)
1203{
1204 unsigned char old_assign_type;
1205 char oldname[IFNAMSIZ];
1206 int err = 0;
1207 int ret;
1208 struct net *net;
1209
1210 ASSERT_RTNL();
1211 BUG_ON(!dev_net(dev));
1212
1213 net = dev_net(dev);
1214
1215 /* Some auto-enslaved devices e.g. failover slaves are
1216 * special, as userspace might rename the device after
1217 * the interface had been brought up and running since
1218 * the point kernel initiated auto-enslavement. Allow
1219 * live name change even when these slave devices are
1220 * up and running.
1221 *
1222 * Typically, users of these auto-enslaving devices
1223 * don't actually care about slave name change, as
1224 * they are supposed to operate on master interface
1225 * directly.
1226 */
1227 if (dev->flags & IFF_UP &&
1228 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1229 return -EBUSY;
1230
1231 write_seqcount_begin(&devnet_rename_seq);
1232
1233 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1234 write_seqcount_end(&devnet_rename_seq);
1235 return 0;
1236 }
1237
1238 memcpy(oldname, dev->name, IFNAMSIZ);
1239
1240 err = dev_get_valid_name(net, dev, newname);
1241 if (err < 0) {
1242 write_seqcount_end(&devnet_rename_seq);
1243 return err;
1244 }
1245
1246 if (oldname[0] && !strchr(oldname, '%'))
1247 netdev_info(dev, "renamed from %s\n", oldname);
1248
1249 old_assign_type = dev->name_assign_type;
1250 dev->name_assign_type = NET_NAME_RENAMED;
1251
1252rollback:
1253 ret = device_rename(&dev->dev, dev->name);
1254 if (ret) {
1255 memcpy(dev->name, oldname, IFNAMSIZ);
1256 dev->name_assign_type = old_assign_type;
1257 write_seqcount_end(&devnet_rename_seq);
1258 return ret;
1259 }
1260
1261 write_seqcount_end(&devnet_rename_seq);
1262
1263 netdev_adjacent_rename_links(dev, oldname);
1264
1265 write_lock_bh(&dev_base_lock);
1266 netdev_name_node_del(dev->name_node);
1267 write_unlock_bh(&dev_base_lock);
1268
1269 synchronize_rcu();
1270
1271 write_lock_bh(&dev_base_lock);
1272 netdev_name_node_add(net, dev->name_node);
1273 write_unlock_bh(&dev_base_lock);
1274
1275 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1276 ret = notifier_to_errno(ret);
1277
1278 if (ret) {
1279 /* err >= 0 after dev_alloc_name() or stores the first errno */
1280 if (err >= 0) {
1281 err = ret;
1282 write_seqcount_begin(&devnet_rename_seq);
1283 memcpy(dev->name, oldname, IFNAMSIZ);
1284 memcpy(oldname, newname, IFNAMSIZ);
1285 dev->name_assign_type = old_assign_type;
1286 old_assign_type = NET_NAME_RENAMED;
1287 goto rollback;
1288 } else {
1289 pr_err("%s: name change rollback failed: %d\n",
1290 dev->name, ret);
1291 }
1292 }
1293
1294 return err;
1295}
1296
1297/**
1298 * dev_set_alias - change ifalias of a device
1299 * @dev: device
1300 * @alias: name up to IFALIASZ
1301 * @len: limit of bytes to copy from info
1302 *
1303 * Set ifalias for a device,
1304 */
1305int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1306{
1307 struct dev_ifalias *new_alias = NULL;
1308
1309 if (len >= IFALIASZ)
1310 return -EINVAL;
1311
1312 if (len) {
1313 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1314 if (!new_alias)
1315 return -ENOMEM;
1316
1317 memcpy(new_alias->ifalias, alias, len);
1318 new_alias->ifalias[len] = 0;
1319 }
1320
1321 mutex_lock(&ifalias_mutex);
1322 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1323 mutex_is_locked(&ifalias_mutex));
1324 mutex_unlock(&ifalias_mutex);
1325
1326 if (new_alias)
1327 kfree_rcu(new_alias, rcuhead);
1328
1329 return len;
1330}
1331EXPORT_SYMBOL(dev_set_alias);
1332
1333/**
1334 * dev_get_alias - get ifalias of a device
1335 * @dev: device
1336 * @name: buffer to store name of ifalias
1337 * @len: size of buffer
1338 *
1339 * get ifalias for a device. Caller must make sure dev cannot go
1340 * away, e.g. rcu read lock or own a reference count to device.
1341 */
1342int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1343{
1344 const struct dev_ifalias *alias;
1345 int ret = 0;
1346
1347 rcu_read_lock();
1348 alias = rcu_dereference(dev->ifalias);
1349 if (alias)
1350 ret = snprintf(name, len, "%s", alias->ifalias);
1351 rcu_read_unlock();
1352
1353 return ret;
1354}
1355
1356/**
1357 * netdev_features_change - device changes features
1358 * @dev: device to cause notification
1359 *
1360 * Called to indicate a device has changed features.
1361 */
1362void netdev_features_change(struct net_device *dev)
1363{
1364 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1365}
1366EXPORT_SYMBOL(netdev_features_change);
1367
1368/**
1369 * netdev_state_change - device changes state
1370 * @dev: device to cause notification
1371 *
1372 * Called to indicate a device has changed state. This function calls
1373 * the notifier chains for netdev_chain and sends a NEWLINK message
1374 * to the routing socket.
1375 */
1376void netdev_state_change(struct net_device *dev)
1377{
1378 if (dev->flags & IFF_UP) {
1379 struct netdev_notifier_change_info change_info = {
1380 .info.dev = dev,
1381 };
1382
1383 call_netdevice_notifiers_info(NETDEV_CHANGE,
1384 &change_info.info);
1385 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1386 }
1387}
1388EXPORT_SYMBOL(netdev_state_change);
1389
1390/**
1391 * netdev_notify_peers - notify network peers about existence of @dev
1392 * @dev: network device
1393 *
1394 * Generate traffic such that interested network peers are aware of
1395 * @dev, such as by generating a gratuitous ARP. This may be used when
1396 * a device wants to inform the rest of the network about some sort of
1397 * reconfiguration such as a failover event or virtual machine
1398 * migration.
1399 */
1400void netdev_notify_peers(struct net_device *dev)
1401{
1402 rtnl_lock();
1403 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1404 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1405 rtnl_unlock();
1406}
1407EXPORT_SYMBOL(netdev_notify_peers);
1408
1409static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1410{
1411 const struct net_device_ops *ops = dev->netdev_ops;
1412 int ret;
1413
1414 ASSERT_RTNL();
1415
1416 if (!netif_device_present(dev))
1417 return -ENODEV;
1418
1419 /* Block netpoll from trying to do any rx path servicing.
1420 * If we don't do this there is a chance ndo_poll_controller
1421 * or ndo_poll may be running while we open the device
1422 */
1423 netpoll_poll_disable(dev);
1424
1425 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1426 ret = notifier_to_errno(ret);
1427 if (ret)
1428 return ret;
1429
1430 set_bit(__LINK_STATE_START, &dev->state);
1431
1432 if (ops->ndo_validate_addr)
1433 ret = ops->ndo_validate_addr(dev);
1434
1435 if (!ret && ops->ndo_open)
1436 ret = ops->ndo_open(dev);
1437
1438 netpoll_poll_enable(dev);
1439
1440 if (ret)
1441 clear_bit(__LINK_STATE_START, &dev->state);
1442 else {
1443 dev->flags |= IFF_UP;
1444 dev_set_rx_mode(dev);
1445 dev_activate(dev);
1446 add_device_randomness(dev->dev_addr, dev->addr_len);
1447 }
1448
1449 return ret;
1450}
1451
1452/**
1453 * dev_open - prepare an interface for use.
1454 * @dev: device to open
1455 * @extack: netlink extended ack
1456 *
1457 * Takes a device from down to up state. The device's private open
1458 * function is invoked and then the multicast lists are loaded. Finally
1459 * the device is moved into the up state and a %NETDEV_UP message is
1460 * sent to the netdev notifier chain.
1461 *
1462 * Calling this function on an active interface is a nop. On a failure
1463 * a negative errno code is returned.
1464 */
1465int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1466{
1467 int ret;
1468
1469 if (dev->flags & IFF_UP)
1470 return 0;
1471
1472 ret = __dev_open(dev, extack);
1473 if (ret < 0)
1474 return ret;
1475
1476 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1477 call_netdevice_notifiers(NETDEV_UP, dev);
1478
1479 return ret;
1480}
1481EXPORT_SYMBOL(dev_open);
1482
1483static void __dev_close_many(struct list_head *head)
1484{
1485 struct net_device *dev;
1486
1487 ASSERT_RTNL();
1488 might_sleep();
1489
1490 list_for_each_entry(dev, head, close_list) {
1491 /* Temporarily disable netpoll until the interface is down */
1492 netpoll_poll_disable(dev);
1493
1494 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1495
1496 clear_bit(__LINK_STATE_START, &dev->state);
1497
1498 /* Synchronize to scheduled poll. We cannot touch poll list, it
1499 * can be even on different cpu. So just clear netif_running().
1500 *
1501 * dev->stop() will invoke napi_disable() on all of it's
1502 * napi_struct instances on this device.
1503 */
1504 smp_mb__after_atomic(); /* Commit netif_running(). */
1505 }
1506
1507 dev_deactivate_many(head);
1508
1509 list_for_each_entry(dev, head, close_list) {
1510 const struct net_device_ops *ops = dev->netdev_ops;
1511
1512 /*
1513 * Call the device specific close. This cannot fail.
1514 * Only if device is UP
1515 *
1516 * We allow it to be called even after a DETACH hot-plug
1517 * event.
1518 */
1519 if (ops->ndo_stop)
1520 ops->ndo_stop(dev);
1521
1522 dev->flags &= ~IFF_UP;
1523 netpoll_poll_enable(dev);
1524 }
1525}
1526
1527static void __dev_close(struct net_device *dev)
1528{
1529 LIST_HEAD(single);
1530
1531 list_add(&dev->close_list, &single);
1532 __dev_close_many(&single);
1533 list_del(&single);
1534}
1535
1536void dev_close_many(struct list_head *head, bool unlink)
1537{
1538 struct net_device *dev, *tmp;
1539
1540 /* Remove the devices that don't need to be closed */
1541 list_for_each_entry_safe(dev, tmp, head, close_list)
1542 if (!(dev->flags & IFF_UP))
1543 list_del_init(&dev->close_list);
1544
1545 __dev_close_many(head);
1546
1547 list_for_each_entry_safe(dev, tmp, head, close_list) {
1548 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1549 call_netdevice_notifiers(NETDEV_DOWN, dev);
1550 if (unlink)
1551 list_del_init(&dev->close_list);
1552 }
1553}
1554EXPORT_SYMBOL(dev_close_many);
1555
1556/**
1557 * dev_close - shutdown an interface.
1558 * @dev: device to shutdown
1559 *
1560 * This function moves an active device into down state. A
1561 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1562 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1563 * chain.
1564 */
1565void dev_close(struct net_device *dev)
1566{
1567 if (dev->flags & IFF_UP) {
1568 LIST_HEAD(single);
1569
1570 list_add(&dev->close_list, &single);
1571 dev_close_many(&single, true);
1572 list_del(&single);
1573 }
1574}
1575EXPORT_SYMBOL(dev_close);
1576
1577
1578/**
1579 * dev_disable_lro - disable Large Receive Offload on a device
1580 * @dev: device
1581 *
1582 * Disable Large Receive Offload (LRO) on a net device. Must be
1583 * called under RTNL. This is needed if received packets may be
1584 * forwarded to another interface.
1585 */
1586void dev_disable_lro(struct net_device *dev)
1587{
1588 struct net_device *lower_dev;
1589 struct list_head *iter;
1590
1591 dev->wanted_features &= ~NETIF_F_LRO;
1592 netdev_update_features(dev);
1593
1594 if (unlikely(dev->features & NETIF_F_LRO))
1595 netdev_WARN(dev, "failed to disable LRO!\n");
1596
1597 netdev_for_each_lower_dev(dev, lower_dev, iter)
1598 dev_disable_lro(lower_dev);
1599}
1600EXPORT_SYMBOL(dev_disable_lro);
1601
1602/**
1603 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1604 * @dev: device
1605 *
1606 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1607 * called under RTNL. This is needed if Generic XDP is installed on
1608 * the device.
1609 */
1610static void dev_disable_gro_hw(struct net_device *dev)
1611{
1612 dev->wanted_features &= ~NETIF_F_GRO_HW;
1613 netdev_update_features(dev);
1614
1615 if (unlikely(dev->features & NETIF_F_GRO_HW))
1616 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1617}
1618
1619const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1620{
1621#define N(val) \
1622 case NETDEV_##val: \
1623 return "NETDEV_" __stringify(val);
1624 switch (cmd) {
1625 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1626 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1627 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1628 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1629 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1630 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1631 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1632 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1633 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1634 N(PRE_CHANGEADDR)
1635 }
1636#undef N
1637 return "UNKNOWN_NETDEV_EVENT";
1638}
1639EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1640
1641static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1642 struct net_device *dev)
1643{
1644 struct netdev_notifier_info info = {
1645 .dev = dev,
1646 };
1647
1648 return nb->notifier_call(nb, val, &info);
1649}
1650
1651static int call_netdevice_register_notifiers(struct notifier_block *nb,
1652 struct net_device *dev)
1653{
1654 int err;
1655
1656 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1657 err = notifier_to_errno(err);
1658 if (err)
1659 return err;
1660
1661 if (!(dev->flags & IFF_UP))
1662 return 0;
1663
1664 call_netdevice_notifier(nb, NETDEV_UP, dev);
1665 return 0;
1666}
1667
1668static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1669 struct net_device *dev)
1670{
1671 if (dev->flags & IFF_UP) {
1672 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1673 dev);
1674 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1675 }
1676 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1677}
1678
1679static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1680 struct net *net)
1681{
1682 struct net_device *dev;
1683 int err;
1684
1685 for_each_netdev(net, dev) {
1686 err = call_netdevice_register_notifiers(nb, dev);
1687 if (err)
1688 goto rollback;
1689 }
1690 return 0;
1691
1692rollback:
1693 for_each_netdev_continue_reverse(net, dev)
1694 call_netdevice_unregister_notifiers(nb, dev);
1695 return err;
1696}
1697
1698static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1699 struct net *net)
1700{
1701 struct net_device *dev;
1702
1703 for_each_netdev(net, dev)
1704 call_netdevice_unregister_notifiers(nb, dev);
1705}
1706
1707static int dev_boot_phase = 1;
1708
1709/**
1710 * register_netdevice_notifier - register a network notifier block
1711 * @nb: notifier
1712 *
1713 * Register a notifier to be called when network device events occur.
1714 * The notifier passed is linked into the kernel structures and must
1715 * not be reused until it has been unregistered. A negative errno code
1716 * is returned on a failure.
1717 *
1718 * When registered all registration and up events are replayed
1719 * to the new notifier to allow device to have a race free
1720 * view of the network device list.
1721 */
1722
1723int register_netdevice_notifier(struct notifier_block *nb)
1724{
1725 struct net *net;
1726 int err;
1727
1728 /* Close race with setup_net() and cleanup_net() */
1729 down_write(&pernet_ops_rwsem);
1730 rtnl_lock();
1731 err = raw_notifier_chain_register(&netdev_chain, nb);
1732 if (err)
1733 goto unlock;
1734 if (dev_boot_phase)
1735 goto unlock;
1736 for_each_net(net) {
1737 err = call_netdevice_register_net_notifiers(nb, net);
1738 if (err)
1739 goto rollback;
1740 }
1741
1742unlock:
1743 rtnl_unlock();
1744 up_write(&pernet_ops_rwsem);
1745 return err;
1746
1747rollback:
1748 for_each_net_continue_reverse(net)
1749 call_netdevice_unregister_net_notifiers(nb, net);
1750
1751 raw_notifier_chain_unregister(&netdev_chain, nb);
1752 goto unlock;
1753}
1754EXPORT_SYMBOL(register_netdevice_notifier);
1755
1756/**
1757 * unregister_netdevice_notifier - unregister a network notifier block
1758 * @nb: notifier
1759 *
1760 * Unregister a notifier previously registered by
1761 * register_netdevice_notifier(). The notifier is unlinked into the
1762 * kernel structures and may then be reused. A negative errno code
1763 * is returned on a failure.
1764 *
1765 * After unregistering unregister and down device events are synthesized
1766 * for all devices on the device list to the removed notifier to remove
1767 * the need for special case cleanup code.
1768 */
1769
1770int unregister_netdevice_notifier(struct notifier_block *nb)
1771{
1772 struct net *net;
1773 int err;
1774
1775 /* Close race with setup_net() and cleanup_net() */
1776 down_write(&pernet_ops_rwsem);
1777 rtnl_lock();
1778 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1779 if (err)
1780 goto unlock;
1781
1782 for_each_net(net)
1783 call_netdevice_unregister_net_notifiers(nb, net);
1784
1785unlock:
1786 rtnl_unlock();
1787 up_write(&pernet_ops_rwsem);
1788 return err;
1789}
1790EXPORT_SYMBOL(unregister_netdevice_notifier);
1791
1792static int __register_netdevice_notifier_net(struct net *net,
1793 struct notifier_block *nb,
1794 bool ignore_call_fail)
1795{
1796 int err;
1797
1798 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1799 if (err)
1800 return err;
1801 if (dev_boot_phase)
1802 return 0;
1803
1804 err = call_netdevice_register_net_notifiers(nb, net);
1805 if (err && !ignore_call_fail)
1806 goto chain_unregister;
1807
1808 return 0;
1809
1810chain_unregister:
1811 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1812 return err;
1813}
1814
1815static int __unregister_netdevice_notifier_net(struct net *net,
1816 struct notifier_block *nb)
1817{
1818 int err;
1819
1820 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1821 if (err)
1822 return err;
1823
1824 call_netdevice_unregister_net_notifiers(nb, net);
1825 return 0;
1826}
1827
1828/**
1829 * register_netdevice_notifier_net - register a per-netns network notifier block
1830 * @net: network namespace
1831 * @nb: notifier
1832 *
1833 * Register a notifier to be called when network device events occur.
1834 * The notifier passed is linked into the kernel structures and must
1835 * not be reused until it has been unregistered. A negative errno code
1836 * is returned on a failure.
1837 *
1838 * When registered all registration and up events are replayed
1839 * to the new notifier to allow device to have a race free
1840 * view of the network device list.
1841 */
1842
1843int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1844{
1845 int err;
1846
1847 rtnl_lock();
1848 err = __register_netdevice_notifier_net(net, nb, false);
1849 rtnl_unlock();
1850 return err;
1851}
1852EXPORT_SYMBOL(register_netdevice_notifier_net);
1853
1854/**
1855 * unregister_netdevice_notifier_net - unregister a per-netns
1856 * network notifier block
1857 * @net: network namespace
1858 * @nb: notifier
1859 *
1860 * Unregister a notifier previously registered by
1861 * register_netdevice_notifier(). The notifier is unlinked into the
1862 * kernel structures and may then be reused. A negative errno code
1863 * is returned on a failure.
1864 *
1865 * After unregistering unregister and down device events are synthesized
1866 * for all devices on the device list to the removed notifier to remove
1867 * the need for special case cleanup code.
1868 */
1869
1870int unregister_netdevice_notifier_net(struct net *net,
1871 struct notifier_block *nb)
1872{
1873 int err;
1874
1875 rtnl_lock();
1876 err = __unregister_netdevice_notifier_net(net, nb);
1877 rtnl_unlock();
1878 return err;
1879}
1880EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1881
1882int register_netdevice_notifier_dev_net(struct net_device *dev,
1883 struct notifier_block *nb,
1884 struct netdev_net_notifier *nn)
1885{
1886 int err;
1887
1888 rtnl_lock();
1889 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1890 if (!err) {
1891 nn->nb = nb;
1892 list_add(&nn->list, &dev->net_notifier_list);
1893 }
1894 rtnl_unlock();
1895 return err;
1896}
1897EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1898
1899int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1900 struct notifier_block *nb,
1901 struct netdev_net_notifier *nn)
1902{
1903 int err;
1904
1905 rtnl_lock();
1906 list_del(&nn->list);
1907 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1908 rtnl_unlock();
1909 return err;
1910}
1911EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1912
1913static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1914 struct net *net)
1915{
1916 struct netdev_net_notifier *nn;
1917
1918 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1919 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1920 __register_netdevice_notifier_net(net, nn->nb, true);
1921 }
1922}
1923
1924/**
1925 * call_netdevice_notifiers_info - call all network notifier blocks
1926 * @val: value passed unmodified to notifier function
1927 * @info: notifier information data
1928 *
1929 * Call all network notifier blocks. Parameters and return value
1930 * are as for raw_notifier_call_chain().
1931 */
1932
1933static int call_netdevice_notifiers_info(unsigned long val,
1934 struct netdev_notifier_info *info)
1935{
1936 struct net *net = dev_net(info->dev);
1937 int ret;
1938
1939 ASSERT_RTNL();
1940
1941 /* Run per-netns notifier block chain first, then run the global one.
1942 * Hopefully, one day, the global one is going to be removed after
1943 * all notifier block registrators get converted to be per-netns.
1944 */
1945 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1946 if (ret & NOTIFY_STOP_MASK)
1947 return ret;
1948 return raw_notifier_call_chain(&netdev_chain, val, info);
1949}
1950
1951static int call_netdevice_notifiers_extack(unsigned long val,
1952 struct net_device *dev,
1953 struct netlink_ext_ack *extack)
1954{
1955 struct netdev_notifier_info info = {
1956 .dev = dev,
1957 .extack = extack,
1958 };
1959
1960 return call_netdevice_notifiers_info(val, &info);
1961}
1962
1963/**
1964 * call_netdevice_notifiers - call all network notifier blocks
1965 * @val: value passed unmodified to notifier function
1966 * @dev: net_device pointer passed unmodified to notifier function
1967 *
1968 * Call all network notifier blocks. Parameters and return value
1969 * are as for raw_notifier_call_chain().
1970 */
1971
1972int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1973{
1974 return call_netdevice_notifiers_extack(val, dev, NULL);
1975}
1976EXPORT_SYMBOL(call_netdevice_notifiers);
1977
1978/**
1979 * call_netdevice_notifiers_mtu - call all network notifier blocks
1980 * @val: value passed unmodified to notifier function
1981 * @dev: net_device pointer passed unmodified to notifier function
1982 * @arg: additional u32 argument passed to the notifier function
1983 *
1984 * Call all network notifier blocks. Parameters and return value
1985 * are as for raw_notifier_call_chain().
1986 */
1987static int call_netdevice_notifiers_mtu(unsigned long val,
1988 struct net_device *dev, u32 arg)
1989{
1990 struct netdev_notifier_info_ext info = {
1991 .info.dev = dev,
1992 .ext.mtu = arg,
1993 };
1994
1995 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1996
1997 return call_netdevice_notifiers_info(val, &info.info);
1998}
1999
2000#ifdef CONFIG_NET_INGRESS
2001static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2002
2003void net_inc_ingress_queue(void)
2004{
2005 static_branch_inc(&ingress_needed_key);
2006}
2007EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2008
2009void net_dec_ingress_queue(void)
2010{
2011 static_branch_dec(&ingress_needed_key);
2012}
2013EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2014#endif
2015
2016#ifdef CONFIG_NET_EGRESS
2017static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2018
2019void net_inc_egress_queue(void)
2020{
2021 static_branch_inc(&egress_needed_key);
2022}
2023EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2024
2025void net_dec_egress_queue(void)
2026{
2027 static_branch_dec(&egress_needed_key);
2028}
2029EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2030#endif
2031
2032static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2033#ifdef CONFIG_JUMP_LABEL
2034static atomic_t netstamp_needed_deferred;
2035static atomic_t netstamp_wanted;
2036static void netstamp_clear(struct work_struct *work)
2037{
2038 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2039 int wanted;
2040
2041 wanted = atomic_add_return(deferred, &netstamp_wanted);
2042 if (wanted > 0)
2043 static_branch_enable(&netstamp_needed_key);
2044 else
2045 static_branch_disable(&netstamp_needed_key);
2046}
2047static DECLARE_WORK(netstamp_work, netstamp_clear);
2048#endif
2049
2050void net_enable_timestamp(void)
2051{
2052#ifdef CONFIG_JUMP_LABEL
2053 int wanted;
2054
2055 while (1) {
2056 wanted = atomic_read(&netstamp_wanted);
2057 if (wanted <= 0)
2058 break;
2059 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2060 return;
2061 }
2062 atomic_inc(&netstamp_needed_deferred);
2063 schedule_work(&netstamp_work);
2064#else
2065 static_branch_inc(&netstamp_needed_key);
2066#endif
2067}
2068EXPORT_SYMBOL(net_enable_timestamp);
2069
2070void net_disable_timestamp(void)
2071{
2072#ifdef CONFIG_JUMP_LABEL
2073 int wanted;
2074
2075 while (1) {
2076 wanted = atomic_read(&netstamp_wanted);
2077 if (wanted <= 1)
2078 break;
2079 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2080 return;
2081 }
2082 atomic_dec(&netstamp_needed_deferred);
2083 schedule_work(&netstamp_work);
2084#else
2085 static_branch_dec(&netstamp_needed_key);
2086#endif
2087}
2088EXPORT_SYMBOL(net_disable_timestamp);
2089
2090static inline void net_timestamp_set(struct sk_buff *skb)
2091{
2092 skb->tstamp = 0;
2093 if (static_branch_unlikely(&netstamp_needed_key))
2094 __net_timestamp(skb);
2095}
2096
2097#define net_timestamp_check(COND, SKB) \
2098 if (static_branch_unlikely(&netstamp_needed_key)) { \
2099 if ((COND) && !(SKB)->tstamp) \
2100 __net_timestamp(SKB); \
2101 } \
2102
2103bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2104{
2105 unsigned int len;
2106
2107 if (!(dev->flags & IFF_UP))
2108 return false;
2109
2110 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
2111 if (skb->len <= len)
2112 return true;
2113
2114 /* if TSO is enabled, we don't care about the length as the packet
2115 * could be forwarded without being segmented before
2116 */
2117 if (skb_is_gso(skb))
2118 return true;
2119
2120 return false;
2121}
2122EXPORT_SYMBOL_GPL(is_skb_forwardable);
2123
2124int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2125{
2126 int ret = ____dev_forward_skb(dev, skb);
2127
2128 if (likely(!ret)) {
2129 skb->protocol = eth_type_trans(skb, dev);
2130 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2131 }
2132
2133 return ret;
2134}
2135EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136
2137/**
2138 * dev_forward_skb - loopback an skb to another netif
2139 *
2140 * @dev: destination network device
2141 * @skb: buffer to forward
2142 *
2143 * return values:
2144 * NET_RX_SUCCESS (no congestion)
2145 * NET_RX_DROP (packet was dropped, but freed)
2146 *
2147 * dev_forward_skb can be used for injecting an skb from the
2148 * start_xmit function of one device into the receive queue
2149 * of another device.
2150 *
2151 * The receiving device may be in another namespace, so
2152 * we have to clear all information in the skb that could
2153 * impact namespace isolation.
2154 */
2155int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156{
2157 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158}
2159EXPORT_SYMBOL_GPL(dev_forward_skb);
2160
2161static inline int deliver_skb(struct sk_buff *skb,
2162 struct packet_type *pt_prev,
2163 struct net_device *orig_dev)
2164{
2165 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2166 return -ENOMEM;
2167 refcount_inc(&skb->users);
2168 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2169}
2170
2171static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2172 struct packet_type **pt,
2173 struct net_device *orig_dev,
2174 __be16 type,
2175 struct list_head *ptype_list)
2176{
2177 struct packet_type *ptype, *pt_prev = *pt;
2178
2179 list_for_each_entry_rcu(ptype, ptype_list, list) {
2180 if (ptype->type != type)
2181 continue;
2182 if (pt_prev)
2183 deliver_skb(skb, pt_prev, orig_dev);
2184 pt_prev = ptype;
2185 }
2186 *pt = pt_prev;
2187}
2188
2189static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2190{
2191 if (!ptype->af_packet_priv || !skb->sk)
2192 return false;
2193
2194 if (ptype->id_match)
2195 return ptype->id_match(ptype, skb->sk);
2196 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2197 return true;
2198
2199 return false;
2200}
2201
2202/**
2203 * dev_nit_active - return true if any network interface taps are in use
2204 *
2205 * @dev: network device to check for the presence of taps
2206 */
2207bool dev_nit_active(struct net_device *dev)
2208{
2209 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2210}
2211EXPORT_SYMBOL_GPL(dev_nit_active);
2212
2213/*
2214 * Support routine. Sends outgoing frames to any network
2215 * taps currently in use.
2216 */
2217
2218void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2219{
2220 struct packet_type *ptype;
2221 struct sk_buff *skb2 = NULL;
2222 struct packet_type *pt_prev = NULL;
2223 struct list_head *ptype_list = &ptype_all;
2224
2225 rcu_read_lock();
2226again:
2227 list_for_each_entry_rcu(ptype, ptype_list, list) {
2228 if (ptype->ignore_outgoing)
2229 continue;
2230
2231 /* Never send packets back to the socket
2232 * they originated from - MvS (miquels@drinkel.ow.org)
2233 */
2234 if (skb_loop_sk(ptype, skb))
2235 continue;
2236
2237 if (pt_prev) {
2238 deliver_skb(skb2, pt_prev, skb->dev);
2239 pt_prev = ptype;
2240 continue;
2241 }
2242
2243 /* need to clone skb, done only once */
2244 skb2 = skb_clone(skb, GFP_ATOMIC);
2245 if (!skb2)
2246 goto out_unlock;
2247
2248 net_timestamp_set(skb2);
2249
2250 /* skb->nh should be correctly
2251 * set by sender, so that the second statement is
2252 * just protection against buggy protocols.
2253 */
2254 skb_reset_mac_header(skb2);
2255
2256 if (skb_network_header(skb2) < skb2->data ||
2257 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2258 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2259 ntohs(skb2->protocol),
2260 dev->name);
2261 skb_reset_network_header(skb2);
2262 }
2263
2264 skb2->transport_header = skb2->network_header;
2265 skb2->pkt_type = PACKET_OUTGOING;
2266 pt_prev = ptype;
2267 }
2268
2269 if (ptype_list == &ptype_all) {
2270 ptype_list = &dev->ptype_all;
2271 goto again;
2272 }
2273out_unlock:
2274 if (pt_prev) {
2275 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2276 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2277 else
2278 kfree_skb(skb2);
2279 }
2280 rcu_read_unlock();
2281}
2282EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2283
2284/**
2285 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2286 * @dev: Network device
2287 * @txq: number of queues available
2288 *
2289 * If real_num_tx_queues is changed the tc mappings may no longer be
2290 * valid. To resolve this verify the tc mapping remains valid and if
2291 * not NULL the mapping. With no priorities mapping to this
2292 * offset/count pair it will no longer be used. In the worst case TC0
2293 * is invalid nothing can be done so disable priority mappings. If is
2294 * expected that drivers will fix this mapping if they can before
2295 * calling netif_set_real_num_tx_queues.
2296 */
2297static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2298{
2299 int i;
2300 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2301
2302 /* If TC0 is invalidated disable TC mapping */
2303 if (tc->offset + tc->count > txq) {
2304 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2305 dev->num_tc = 0;
2306 return;
2307 }
2308
2309 /* Invalidated prio to tc mappings set to TC0 */
2310 for (i = 1; i < TC_BITMASK + 1; i++) {
2311 int q = netdev_get_prio_tc_map(dev, i);
2312
2313 tc = &dev->tc_to_txq[q];
2314 if (tc->offset + tc->count > txq) {
2315 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2316 i, q);
2317 netdev_set_prio_tc_map(dev, i, 0);
2318 }
2319 }
2320}
2321
2322int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2323{
2324 if (dev->num_tc) {
2325 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2326 int i;
2327
2328 /* walk through the TCs and see if it falls into any of them */
2329 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2330 if ((txq - tc->offset) < tc->count)
2331 return i;
2332 }
2333
2334 /* didn't find it, just return -1 to indicate no match */
2335 return -1;
2336 }
2337
2338 return 0;
2339}
2340EXPORT_SYMBOL(netdev_txq_to_tc);
2341
2342#ifdef CONFIG_XPS
2343struct static_key xps_needed __read_mostly;
2344EXPORT_SYMBOL(xps_needed);
2345struct static_key xps_rxqs_needed __read_mostly;
2346EXPORT_SYMBOL(xps_rxqs_needed);
2347static DEFINE_MUTEX(xps_map_mutex);
2348#define xmap_dereference(P) \
2349 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2350
2351static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2352 int tci, u16 index)
2353{
2354 struct xps_map *map = NULL;
2355 int pos;
2356
2357 if (dev_maps)
2358 map = xmap_dereference(dev_maps->attr_map[tci]);
2359 if (!map)
2360 return false;
2361
2362 for (pos = map->len; pos--;) {
2363 if (map->queues[pos] != index)
2364 continue;
2365
2366 if (map->len > 1) {
2367 map->queues[pos] = map->queues[--map->len];
2368 break;
2369 }
2370
2371 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2372 kfree_rcu(map, rcu);
2373 return false;
2374 }
2375
2376 return true;
2377}
2378
2379static bool remove_xps_queue_cpu(struct net_device *dev,
2380 struct xps_dev_maps *dev_maps,
2381 int cpu, u16 offset, u16 count)
2382{
2383 int num_tc = dev->num_tc ? : 1;
2384 bool active = false;
2385 int tci;
2386
2387 for (tci = cpu * num_tc; num_tc--; tci++) {
2388 int i, j;
2389
2390 for (i = count, j = offset; i--; j++) {
2391 if (!remove_xps_queue(dev_maps, tci, j))
2392 break;
2393 }
2394
2395 active |= i < 0;
2396 }
2397
2398 return active;
2399}
2400
2401static void reset_xps_maps(struct net_device *dev,
2402 struct xps_dev_maps *dev_maps,
2403 bool is_rxqs_map)
2404{
2405 if (is_rxqs_map) {
2406 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2407 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2408 } else {
2409 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2410 }
2411 static_key_slow_dec_cpuslocked(&xps_needed);
2412 kfree_rcu(dev_maps, rcu);
2413}
2414
2415static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2416 struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2417 u16 offset, u16 count, bool is_rxqs_map)
2418{
2419 bool active = false;
2420 int i, j;
2421
2422 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2423 j < nr_ids;)
2424 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2425 count);
2426 if (!active)
2427 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2428
2429 if (!is_rxqs_map) {
2430 for (i = offset + (count - 1); count--; i--) {
2431 netdev_queue_numa_node_write(
2432 netdev_get_tx_queue(dev, i),
2433 NUMA_NO_NODE);
2434 }
2435 }
2436}
2437
2438static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2439 u16 count)
2440{
2441 const unsigned long *possible_mask = NULL;
2442 struct xps_dev_maps *dev_maps;
2443 unsigned int nr_ids;
2444
2445 if (!static_key_false(&xps_needed))
2446 return;
2447
2448 cpus_read_lock();
2449 mutex_lock(&xps_map_mutex);
2450
2451 if (static_key_false(&xps_rxqs_needed)) {
2452 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2453 if (dev_maps) {
2454 nr_ids = dev->num_rx_queues;
2455 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2456 offset, count, true);
2457 }
2458 }
2459
2460 dev_maps = xmap_dereference(dev->xps_cpus_map);
2461 if (!dev_maps)
2462 goto out_no_maps;
2463
2464 if (num_possible_cpus() > 1)
2465 possible_mask = cpumask_bits(cpu_possible_mask);
2466 nr_ids = nr_cpu_ids;
2467 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2468 false);
2469
2470out_no_maps:
2471 mutex_unlock(&xps_map_mutex);
2472 cpus_read_unlock();
2473}
2474
2475static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2476{
2477 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2478}
2479
2480static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2481 u16 index, bool is_rxqs_map)
2482{
2483 struct xps_map *new_map;
2484 int alloc_len = XPS_MIN_MAP_ALLOC;
2485 int i, pos;
2486
2487 for (pos = 0; map && pos < map->len; pos++) {
2488 if (map->queues[pos] != index)
2489 continue;
2490 return map;
2491 }
2492
2493 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2494 if (map) {
2495 if (pos < map->alloc_len)
2496 return map;
2497
2498 alloc_len = map->alloc_len * 2;
2499 }
2500
2501 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2502 * map
2503 */
2504 if (is_rxqs_map)
2505 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2506 else
2507 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2508 cpu_to_node(attr_index));
2509 if (!new_map)
2510 return NULL;
2511
2512 for (i = 0; i < pos; i++)
2513 new_map->queues[i] = map->queues[i];
2514 new_map->alloc_len = alloc_len;
2515 new_map->len = pos;
2516
2517 return new_map;
2518}
2519
2520/* Must be called under cpus_read_lock */
2521int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2522 u16 index, bool is_rxqs_map)
2523{
2524 const unsigned long *online_mask = NULL, *possible_mask = NULL;
2525 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2526 int i, j, tci, numa_node_id = -2;
2527 int maps_sz, num_tc = 1, tc = 0;
2528 struct xps_map *map, *new_map;
2529 bool active = false;
2530 unsigned int nr_ids;
2531
2532 if (dev->num_tc) {
2533 /* Do not allow XPS on subordinate device directly */
2534 num_tc = dev->num_tc;
2535 if (num_tc < 0)
2536 return -EINVAL;
2537
2538 /* If queue belongs to subordinate dev use its map */
2539 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2540
2541 tc = netdev_txq_to_tc(dev, index);
2542 if (tc < 0)
2543 return -EINVAL;
2544 }
2545
2546 mutex_lock(&xps_map_mutex);
2547 if (is_rxqs_map) {
2548 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2549 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2550 nr_ids = dev->num_rx_queues;
2551 } else {
2552 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2553 if (num_possible_cpus() > 1) {
2554 online_mask = cpumask_bits(cpu_online_mask);
2555 possible_mask = cpumask_bits(cpu_possible_mask);
2556 }
2557 dev_maps = xmap_dereference(dev->xps_cpus_map);
2558 nr_ids = nr_cpu_ids;
2559 }
2560
2561 if (maps_sz < L1_CACHE_BYTES)
2562 maps_sz = L1_CACHE_BYTES;
2563
2564 /* allocate memory for queue storage */
2565 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2566 j < nr_ids;) {
2567 if (!new_dev_maps)
2568 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2569 if (!new_dev_maps) {
2570 mutex_unlock(&xps_map_mutex);
2571 return -ENOMEM;
2572 }
2573
2574 tci = j * num_tc + tc;
2575 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2576 NULL;
2577
2578 map = expand_xps_map(map, j, index, is_rxqs_map);
2579 if (!map)
2580 goto error;
2581
2582 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2583 }
2584
2585 if (!new_dev_maps)
2586 goto out_no_new_maps;
2587
2588 if (!dev_maps) {
2589 /* Increment static keys at most once per type */
2590 static_key_slow_inc_cpuslocked(&xps_needed);
2591 if (is_rxqs_map)
2592 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2593 }
2594
2595 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2596 j < nr_ids;) {
2597 /* copy maps belonging to foreign traffic classes */
2598 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2599 /* fill in the new device map from the old device map */
2600 map = xmap_dereference(dev_maps->attr_map[tci]);
2601 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2602 }
2603
2604 /* We need to explicitly update tci as prevous loop
2605 * could break out early if dev_maps is NULL.
2606 */
2607 tci = j * num_tc + tc;
2608
2609 if (netif_attr_test_mask(j, mask, nr_ids) &&
2610 netif_attr_test_online(j, online_mask, nr_ids)) {
2611 /* add tx-queue to CPU/rx-queue maps */
2612 int pos = 0;
2613
2614 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2615 while ((pos < map->len) && (map->queues[pos] != index))
2616 pos++;
2617
2618 if (pos == map->len)
2619 map->queues[map->len++] = index;
2620#ifdef CONFIG_NUMA
2621 if (!is_rxqs_map) {
2622 if (numa_node_id == -2)
2623 numa_node_id = cpu_to_node(j);
2624 else if (numa_node_id != cpu_to_node(j))
2625 numa_node_id = -1;
2626 }
2627#endif
2628 } else if (dev_maps) {
2629 /* fill in the new device map from the old device map */
2630 map = xmap_dereference(dev_maps->attr_map[tci]);
2631 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2632 }
2633
2634 /* copy maps belonging to foreign traffic classes */
2635 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2636 /* fill in the new device map from the old device map */
2637 map = xmap_dereference(dev_maps->attr_map[tci]);
2638 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2639 }
2640 }
2641
2642 if (is_rxqs_map)
2643 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2644 else
2645 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2646
2647 /* Cleanup old maps */
2648 if (!dev_maps)
2649 goto out_no_old_maps;
2650
2651 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2652 j < nr_ids;) {
2653 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2654 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2655 map = xmap_dereference(dev_maps->attr_map[tci]);
2656 if (map && map != new_map)
2657 kfree_rcu(map, rcu);
2658 }
2659 }
2660
2661 kfree_rcu(dev_maps, rcu);
2662
2663out_no_old_maps:
2664 dev_maps = new_dev_maps;
2665 active = true;
2666
2667out_no_new_maps:
2668 if (!is_rxqs_map) {
2669 /* update Tx queue numa node */
2670 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2671 (numa_node_id >= 0) ?
2672 numa_node_id : NUMA_NO_NODE);
2673 }
2674
2675 if (!dev_maps)
2676 goto out_no_maps;
2677
2678 /* removes tx-queue from unused CPUs/rx-queues */
2679 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2680 j < nr_ids;) {
2681 for (i = tc, tci = j * num_tc; i--; tci++)
2682 active |= remove_xps_queue(dev_maps, tci, index);
2683 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2684 !netif_attr_test_online(j, online_mask, nr_ids))
2685 active |= remove_xps_queue(dev_maps, tci, index);
2686 for (i = num_tc - tc, tci++; --i; tci++)
2687 active |= remove_xps_queue(dev_maps, tci, index);
2688 }
2689
2690 /* free map if not active */
2691 if (!active)
2692 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2693
2694out_no_maps:
2695 mutex_unlock(&xps_map_mutex);
2696
2697 return 0;
2698error:
2699 /* remove any maps that we added */
2700 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2701 j < nr_ids;) {
2702 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2703 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2704 map = dev_maps ?
2705 xmap_dereference(dev_maps->attr_map[tci]) :
2706 NULL;
2707 if (new_map && new_map != map)
2708 kfree(new_map);
2709 }
2710 }
2711
2712 mutex_unlock(&xps_map_mutex);
2713
2714 kfree(new_dev_maps);
2715 return -ENOMEM;
2716}
2717EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2718
2719int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2720 u16 index)
2721{
2722 int ret;
2723
2724 cpus_read_lock();
2725 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2726 cpus_read_unlock();
2727
2728 return ret;
2729}
2730EXPORT_SYMBOL(netif_set_xps_queue);
2731
2732#endif
2733static void netdev_unbind_all_sb_channels(struct net_device *dev)
2734{
2735 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2736
2737 /* Unbind any subordinate channels */
2738 while (txq-- != &dev->_tx[0]) {
2739 if (txq->sb_dev)
2740 netdev_unbind_sb_channel(dev, txq->sb_dev);
2741 }
2742}
2743
2744void netdev_reset_tc(struct net_device *dev)
2745{
2746#ifdef CONFIG_XPS
2747 netif_reset_xps_queues_gt(dev, 0);
2748#endif
2749 netdev_unbind_all_sb_channels(dev);
2750
2751 /* Reset TC configuration of device */
2752 dev->num_tc = 0;
2753 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2754 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2755}
2756EXPORT_SYMBOL(netdev_reset_tc);
2757
2758int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2759{
2760 if (tc >= dev->num_tc)
2761 return -EINVAL;
2762
2763#ifdef CONFIG_XPS
2764 netif_reset_xps_queues(dev, offset, count);
2765#endif
2766 dev->tc_to_txq[tc].count = count;
2767 dev->tc_to_txq[tc].offset = offset;
2768 return 0;
2769}
2770EXPORT_SYMBOL(netdev_set_tc_queue);
2771
2772int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2773{
2774 if (num_tc > TC_MAX_QUEUE)
2775 return -EINVAL;
2776
2777#ifdef CONFIG_XPS
2778 netif_reset_xps_queues_gt(dev, 0);
2779#endif
2780 netdev_unbind_all_sb_channels(dev);
2781
2782 dev->num_tc = num_tc;
2783 return 0;
2784}
2785EXPORT_SYMBOL(netdev_set_num_tc);
2786
2787void netdev_unbind_sb_channel(struct net_device *dev,
2788 struct net_device *sb_dev)
2789{
2790 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2791
2792#ifdef CONFIG_XPS
2793 netif_reset_xps_queues_gt(sb_dev, 0);
2794#endif
2795 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2796 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2797
2798 while (txq-- != &dev->_tx[0]) {
2799 if (txq->sb_dev == sb_dev)
2800 txq->sb_dev = NULL;
2801 }
2802}
2803EXPORT_SYMBOL(netdev_unbind_sb_channel);
2804
2805int netdev_bind_sb_channel_queue(struct net_device *dev,
2806 struct net_device *sb_dev,
2807 u8 tc, u16 count, u16 offset)
2808{
2809 /* Make certain the sb_dev and dev are already configured */
2810 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2811 return -EINVAL;
2812
2813 /* We cannot hand out queues we don't have */
2814 if ((offset + count) > dev->real_num_tx_queues)
2815 return -EINVAL;
2816
2817 /* Record the mapping */
2818 sb_dev->tc_to_txq[tc].count = count;
2819 sb_dev->tc_to_txq[tc].offset = offset;
2820
2821 /* Provide a way for Tx queue to find the tc_to_txq map or
2822 * XPS map for itself.
2823 */
2824 while (count--)
2825 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2826
2827 return 0;
2828}
2829EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2830
2831int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2832{
2833 /* Do not use a multiqueue device to represent a subordinate channel */
2834 if (netif_is_multiqueue(dev))
2835 return -ENODEV;
2836
2837 /* We allow channels 1 - 32767 to be used for subordinate channels.
2838 * Channel 0 is meant to be "native" mode and used only to represent
2839 * the main root device. We allow writing 0 to reset the device back
2840 * to normal mode after being used as a subordinate channel.
2841 */
2842 if (channel > S16_MAX)
2843 return -EINVAL;
2844
2845 dev->num_tc = -channel;
2846
2847 return 0;
2848}
2849EXPORT_SYMBOL(netdev_set_sb_channel);
2850
2851/*
2852 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2853 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2854 */
2855int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2856{
2857 bool disabling;
2858 int rc;
2859
2860 disabling = txq < dev->real_num_tx_queues;
2861
2862 if (txq < 1 || txq > dev->num_tx_queues)
2863 return -EINVAL;
2864
2865 if (dev->reg_state == NETREG_REGISTERED ||
2866 dev->reg_state == NETREG_UNREGISTERING) {
2867 ASSERT_RTNL();
2868
2869 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2870 txq);
2871 if (rc)
2872 return rc;
2873
2874 if (dev->num_tc)
2875 netif_setup_tc(dev, txq);
2876
2877 dev->real_num_tx_queues = txq;
2878
2879 if (disabling) {
2880 synchronize_net();
2881 qdisc_reset_all_tx_gt(dev, txq);
2882#ifdef CONFIG_XPS
2883 netif_reset_xps_queues_gt(dev, txq);
2884#endif
2885 }
2886 } else {
2887 dev->real_num_tx_queues = txq;
2888 }
2889
2890 return 0;
2891}
2892EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2893
2894#ifdef CONFIG_SYSFS
2895/**
2896 * netif_set_real_num_rx_queues - set actual number of RX queues used
2897 * @dev: Network device
2898 * @rxq: Actual number of RX queues
2899 *
2900 * This must be called either with the rtnl_lock held or before
2901 * registration of the net device. Returns 0 on success, or a
2902 * negative error code. If called before registration, it always
2903 * succeeds.
2904 */
2905int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2906{
2907 int rc;
2908
2909 if (rxq < 1 || rxq > dev->num_rx_queues)
2910 return -EINVAL;
2911
2912 if (dev->reg_state == NETREG_REGISTERED) {
2913 ASSERT_RTNL();
2914
2915 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2916 rxq);
2917 if (rc)
2918 return rc;
2919 }
2920
2921 dev->real_num_rx_queues = rxq;
2922 return 0;
2923}
2924EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2925#endif
2926
2927/**
2928 * netif_get_num_default_rss_queues - default number of RSS queues
2929 *
2930 * This routine should set an upper limit on the number of RSS queues
2931 * used by default by multiqueue devices.
2932 */
2933int netif_get_num_default_rss_queues(void)
2934{
2935 return is_kdump_kernel() ?
2936 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2937}
2938EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2939
2940static void __netif_reschedule(struct Qdisc *q)
2941{
2942 struct softnet_data *sd;
2943 unsigned long flags;
2944
2945 local_irq_save(flags);
2946 sd = this_cpu_ptr(&softnet_data);
2947 q->next_sched = NULL;
2948 *sd->output_queue_tailp = q;
2949 sd->output_queue_tailp = &q->next_sched;
2950 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2951 local_irq_restore(flags);
2952}
2953
2954void __netif_schedule(struct Qdisc *q)
2955{
2956 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2957 __netif_reschedule(q);
2958}
2959EXPORT_SYMBOL(__netif_schedule);
2960
2961struct dev_kfree_skb_cb {
2962 enum skb_free_reason reason;
2963};
2964
2965static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2966{
2967 return (struct dev_kfree_skb_cb *)skb->cb;
2968}
2969
2970void netif_schedule_queue(struct netdev_queue *txq)
2971{
2972 rcu_read_lock();
2973 if (!netif_xmit_stopped(txq)) {
2974 struct Qdisc *q = rcu_dereference(txq->qdisc);
2975
2976 __netif_schedule(q);
2977 }
2978 rcu_read_unlock();
2979}
2980EXPORT_SYMBOL(netif_schedule_queue);
2981
2982void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2983{
2984 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2985 struct Qdisc *q;
2986
2987 rcu_read_lock();
2988 q = rcu_dereference(dev_queue->qdisc);
2989 __netif_schedule(q);
2990 rcu_read_unlock();
2991 }
2992}
2993EXPORT_SYMBOL(netif_tx_wake_queue);
2994
2995void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2996{
2997 unsigned long flags;
2998
2999 if (unlikely(!skb))
3000 return;
3001
3002 if (likely(refcount_read(&skb->users) == 1)) {
3003 smp_rmb();
3004 refcount_set(&skb->users, 0);
3005 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3006 return;
3007 }
3008 get_kfree_skb_cb(skb)->reason = reason;
3009 local_irq_save(flags);
3010 skb->next = __this_cpu_read(softnet_data.completion_queue);
3011 __this_cpu_write(softnet_data.completion_queue, skb);
3012 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3013 local_irq_restore(flags);
3014}
3015EXPORT_SYMBOL(__dev_kfree_skb_irq);
3016
3017void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3018{
3019 if (in_irq() || irqs_disabled())
3020 __dev_kfree_skb_irq(skb, reason);
3021 else
3022 dev_kfree_skb(skb);
3023}
3024EXPORT_SYMBOL(__dev_kfree_skb_any);
3025
3026
3027/**
3028 * netif_device_detach - mark device as removed
3029 * @dev: network device
3030 *
3031 * Mark device as removed from system and therefore no longer available.
3032 */
3033void netif_device_detach(struct net_device *dev)
3034{
3035 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3036 netif_running(dev)) {
3037 netif_tx_stop_all_queues(dev);
3038 }
3039}
3040EXPORT_SYMBOL(netif_device_detach);
3041
3042/**
3043 * netif_device_attach - mark device as attached
3044 * @dev: network device
3045 *
3046 * Mark device as attached from system and restart if needed.
3047 */
3048void netif_device_attach(struct net_device *dev)
3049{
3050 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3051 netif_running(dev)) {
3052 netif_tx_wake_all_queues(dev);
3053 __netdev_watchdog_up(dev);
3054 }
3055}
3056EXPORT_SYMBOL(netif_device_attach);
3057
3058/*
3059 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3060 * to be used as a distribution range.
3061 */
3062static u16 skb_tx_hash(const struct net_device *dev,
3063 const struct net_device *sb_dev,
3064 struct sk_buff *skb)
3065{
3066 u32 hash;
3067 u16 qoffset = 0;
3068 u16 qcount = dev->real_num_tx_queues;
3069
3070 if (dev->num_tc) {
3071 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3072
3073 qoffset = sb_dev->tc_to_txq[tc].offset;
3074 qcount = sb_dev->tc_to_txq[tc].count;
3075 }
3076
3077 if (skb_rx_queue_recorded(skb)) {
3078 hash = skb_get_rx_queue(skb);
3079 if (hash >= qoffset)
3080 hash -= qoffset;
3081 while (unlikely(hash >= qcount))
3082 hash -= qcount;
3083 return hash + qoffset;
3084 }
3085
3086 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3087}
3088
3089static void skb_warn_bad_offload(const struct sk_buff *skb)
3090{
3091 static const netdev_features_t null_features;
3092 struct net_device *dev = skb->dev;
3093 const char *name = "";
3094
3095 if (!net_ratelimit())
3096 return;
3097
3098 if (dev) {
3099 if (dev->dev.parent)
3100 name = dev_driver_string(dev->dev.parent);
3101 else
3102 name = netdev_name(dev);
3103 }
3104 skb_dump(KERN_WARNING, skb, false);
3105 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3106 name, dev ? &dev->features : &null_features,
3107 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3108}
3109
3110/*
3111 * Invalidate hardware checksum when packet is to be mangled, and
3112 * complete checksum manually on outgoing path.
3113 */
3114int skb_checksum_help(struct sk_buff *skb)
3115{
3116 __wsum csum;
3117 int ret = 0, offset;
3118
3119 if (skb->ip_summed == CHECKSUM_COMPLETE)
3120 goto out_set_summed;
3121
3122 if (unlikely(skb_shinfo(skb)->gso_size)) {
3123 skb_warn_bad_offload(skb);
3124 return -EINVAL;
3125 }
3126
3127 /* Before computing a checksum, we should make sure no frag could
3128 * be modified by an external entity : checksum could be wrong.
3129 */
3130 if (skb_has_shared_frag(skb)) {
3131 ret = __skb_linearize(skb);
3132 if (ret)
3133 goto out;
3134 }
3135
3136 offset = skb_checksum_start_offset(skb);
3137 BUG_ON(offset >= skb_headlen(skb));
3138 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3139
3140 offset += skb->csum_offset;
3141 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3142
3143 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3144 if (ret)
3145 goto out;
3146
3147 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3148out_set_summed:
3149 skb->ip_summed = CHECKSUM_NONE;
3150out:
3151 return ret;
3152}
3153EXPORT_SYMBOL(skb_checksum_help);
3154
3155int skb_crc32c_csum_help(struct sk_buff *skb)
3156{
3157 __le32 crc32c_csum;
3158 int ret = 0, offset, start;
3159
3160 if (skb->ip_summed != CHECKSUM_PARTIAL)
3161 goto out;
3162
3163 if (unlikely(skb_is_gso(skb)))
3164 goto out;
3165
3166 /* Before computing a checksum, we should make sure no frag could
3167 * be modified by an external entity : checksum could be wrong.
3168 */
3169 if (unlikely(skb_has_shared_frag(skb))) {
3170 ret = __skb_linearize(skb);
3171 if (ret)
3172 goto out;
3173 }
3174 start = skb_checksum_start_offset(skb);
3175 offset = start + offsetof(struct sctphdr, checksum);
3176 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3177 ret = -EINVAL;
3178 goto out;
3179 }
3180
3181 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3182 if (ret)
3183 goto out;
3184
3185 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3186 skb->len - start, ~(__u32)0,
3187 crc32c_csum_stub));
3188 *(__le32 *)(skb->data + offset) = crc32c_csum;
3189 skb->ip_summed = CHECKSUM_NONE;
3190 skb->csum_not_inet = 0;
3191out:
3192 return ret;
3193}
3194
3195__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3196{
3197 __be16 type = skb->protocol;
3198
3199 /* Tunnel gso handlers can set protocol to ethernet. */
3200 if (type == htons(ETH_P_TEB)) {
3201 struct ethhdr *eth;
3202
3203 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3204 return 0;
3205
3206 eth = (struct ethhdr *)skb->data;
3207 type = eth->h_proto;
3208 }
3209
3210 return __vlan_get_protocol(skb, type, depth);
3211}
3212
3213/**
3214 * skb_mac_gso_segment - mac layer segmentation handler.
3215 * @skb: buffer to segment
3216 * @features: features for the output path (see dev->features)
3217 */
3218struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3219 netdev_features_t features)
3220{
3221 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3222 struct packet_offload *ptype;
3223 int vlan_depth = skb->mac_len;
3224 __be16 type = skb_network_protocol(skb, &vlan_depth);
3225
3226 if (unlikely(!type))
3227 return ERR_PTR(-EINVAL);
3228
3229 __skb_pull(skb, vlan_depth);
3230
3231 rcu_read_lock();
3232 list_for_each_entry_rcu(ptype, &offload_base, list) {
3233 if (ptype->type == type && ptype->callbacks.gso_segment) {
3234 segs = ptype->callbacks.gso_segment(skb, features);
3235 break;
3236 }
3237 }
3238 rcu_read_unlock();
3239
3240 __skb_push(skb, skb->data - skb_mac_header(skb));
3241
3242 return segs;
3243}
3244EXPORT_SYMBOL(skb_mac_gso_segment);
3245
3246
3247/* openvswitch calls this on rx path, so we need a different check.
3248 */
3249static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3250{
3251 if (tx_path)
3252 return skb->ip_summed != CHECKSUM_PARTIAL &&
3253 skb->ip_summed != CHECKSUM_UNNECESSARY;
3254
3255 return skb->ip_summed == CHECKSUM_NONE;
3256}
3257
3258/**
3259 * __skb_gso_segment - Perform segmentation on skb.
3260 * @skb: buffer to segment
3261 * @features: features for the output path (see dev->features)
3262 * @tx_path: whether it is called in TX path
3263 *
3264 * This function segments the given skb and returns a list of segments.
3265 *
3266 * It may return NULL if the skb requires no segmentation. This is
3267 * only possible when GSO is used for verifying header integrity.
3268 *
3269 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3270 */
3271struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3272 netdev_features_t features, bool tx_path)
3273{
3274 struct sk_buff *segs;
3275
3276 if (unlikely(skb_needs_check(skb, tx_path))) {
3277 int err;
3278
3279 /* We're going to init ->check field in TCP or UDP header */
3280 err = skb_cow_head(skb, 0);
3281 if (err < 0)
3282 return ERR_PTR(err);
3283 }
3284
3285 /* Only report GSO partial support if it will enable us to
3286 * support segmentation on this frame without needing additional
3287 * work.
3288 */
3289 if (features & NETIF_F_GSO_PARTIAL) {
3290 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3291 struct net_device *dev = skb->dev;
3292
3293 partial_features |= dev->features & dev->gso_partial_features;
3294 if (!skb_gso_ok(skb, features | partial_features))
3295 features &= ~NETIF_F_GSO_PARTIAL;
3296 }
3297
3298 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3299 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3300
3301 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3302 SKB_GSO_CB(skb)->encap_level = 0;
3303
3304 skb_reset_mac_header(skb);
3305 skb_reset_mac_len(skb);
3306
3307 segs = skb_mac_gso_segment(skb, features);
3308
3309 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3310 skb_warn_bad_offload(skb);
3311
3312 return segs;
3313}
3314EXPORT_SYMBOL(__skb_gso_segment);
3315
3316/* Take action when hardware reception checksum errors are detected. */
3317#ifdef CONFIG_BUG
3318void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3319{
3320 if (net_ratelimit()) {
3321 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3322 skb_dump(KERN_ERR, skb, true);
3323 dump_stack();
3324 }
3325}
3326EXPORT_SYMBOL(netdev_rx_csum_fault);
3327#endif
3328
3329/* XXX: check that highmem exists at all on the given machine. */
3330static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3331{
3332#ifdef CONFIG_HIGHMEM
3333 int i;
3334
3335 if (!(dev->features & NETIF_F_HIGHDMA)) {
3336 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3337 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3338
3339 if (PageHighMem(skb_frag_page(frag)))
3340 return 1;
3341 }
3342 }
3343#endif
3344 return 0;
3345}
3346
3347/* If MPLS offload request, verify we are testing hardware MPLS features
3348 * instead of standard features for the netdev.
3349 */
3350#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3351static netdev_features_t net_mpls_features(struct sk_buff *skb,
3352 netdev_features_t features,
3353 __be16 type)
3354{
3355 if (eth_p_mpls(type))
3356 features &= skb->dev->mpls_features;
3357
3358 return features;
3359}
3360#else
3361static netdev_features_t net_mpls_features(struct sk_buff *skb,
3362 netdev_features_t features,
3363 __be16 type)
3364{
3365 return features;
3366}
3367#endif
3368
3369static netdev_features_t harmonize_features(struct sk_buff *skb,
3370 netdev_features_t features)
3371{
3372 int tmp;
3373 __be16 type;
3374
3375 type = skb_network_protocol(skb, &tmp);
3376 features = net_mpls_features(skb, features, type);
3377
3378 if (skb->ip_summed != CHECKSUM_NONE &&
3379 !can_checksum_protocol(features, type)) {
3380 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3381 }
3382 if (illegal_highdma(skb->dev, skb))
3383 features &= ~NETIF_F_SG;
3384
3385 return features;
3386}
3387
3388netdev_features_t passthru_features_check(struct sk_buff *skb,
3389 struct net_device *dev,
3390 netdev_features_t features)
3391{
3392 return features;
3393}
3394EXPORT_SYMBOL(passthru_features_check);
3395
3396static netdev_features_t dflt_features_check(struct sk_buff *skb,
3397 struct net_device *dev,
3398 netdev_features_t features)
3399{
3400 return vlan_features_check(skb, features);
3401}
3402
3403static netdev_features_t gso_features_check(const struct sk_buff *skb,
3404 struct net_device *dev,
3405 netdev_features_t features)
3406{
3407 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3408
3409 if (gso_segs > dev->gso_max_segs)
3410 return features & ~NETIF_F_GSO_MASK;
3411
3412 /* Support for GSO partial features requires software
3413 * intervention before we can actually process the packets
3414 * so we need to strip support for any partial features now
3415 * and we can pull them back in after we have partially
3416 * segmented the frame.
3417 */
3418 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3419 features &= ~dev->gso_partial_features;
3420
3421 /* Make sure to clear the IPv4 ID mangling feature if the
3422 * IPv4 header has the potential to be fragmented.
3423 */
3424 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3425 struct iphdr *iph = skb->encapsulation ?
3426 inner_ip_hdr(skb) : ip_hdr(skb);
3427
3428 if (!(iph->frag_off & htons(IP_DF)))
3429 features &= ~NETIF_F_TSO_MANGLEID;
3430 }
3431
3432 return features;
3433}
3434
3435netdev_features_t netif_skb_features(struct sk_buff *skb)
3436{
3437 struct net_device *dev = skb->dev;
3438 netdev_features_t features = dev->features;
3439
3440 if (skb_is_gso(skb))
3441 features = gso_features_check(skb, dev, features);
3442
3443 /* If encapsulation offload request, verify we are testing
3444 * hardware encapsulation features instead of standard
3445 * features for the netdev
3446 */
3447 if (skb->encapsulation)
3448 features &= dev->hw_enc_features;
3449
3450 if (skb_vlan_tagged(skb))
3451 features = netdev_intersect_features(features,
3452 dev->vlan_features |
3453 NETIF_F_HW_VLAN_CTAG_TX |
3454 NETIF_F_HW_VLAN_STAG_TX);
3455
3456 if (dev->netdev_ops->ndo_features_check)
3457 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3458 features);
3459 else
3460 features &= dflt_features_check(skb, dev, features);
3461
3462 return harmonize_features(skb, features);
3463}
3464EXPORT_SYMBOL(netif_skb_features);
3465
3466static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3467 struct netdev_queue *txq, bool more)
3468{
3469 unsigned int len;
3470 int rc;
3471
3472 if (dev_nit_active(dev))
3473 dev_queue_xmit_nit(skb, dev);
3474
3475 len = skb->len;
3476 trace_net_dev_start_xmit(skb, dev);
3477 rc = netdev_start_xmit(skb, dev, txq, more);
3478 trace_net_dev_xmit(skb, rc, dev, len);
3479
3480 return rc;
3481}
3482
3483struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3484 struct netdev_queue *txq, int *ret)
3485{
3486 struct sk_buff *skb = first;
3487 int rc = NETDEV_TX_OK;
3488
3489 while (skb) {
3490 struct sk_buff *next = skb->next;
3491
3492 skb_mark_not_on_list(skb);
3493 rc = xmit_one(skb, dev, txq, next != NULL);
3494 if (unlikely(!dev_xmit_complete(rc))) {
3495 skb->next = next;
3496 goto out;
3497 }
3498
3499 skb = next;
3500 if (netif_tx_queue_stopped(txq) && skb) {
3501 rc = NETDEV_TX_BUSY;
3502 break;
3503 }
3504 }
3505
3506out:
3507 *ret = rc;
3508 return skb;
3509}
3510
3511static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3512 netdev_features_t features)
3513{
3514 if (skb_vlan_tag_present(skb) &&
3515 !vlan_hw_offload_capable(features, skb->vlan_proto))
3516 skb = __vlan_hwaccel_push_inside(skb);
3517 return skb;
3518}
3519
3520int skb_csum_hwoffload_help(struct sk_buff *skb,
3521 const netdev_features_t features)
3522{
3523 if (unlikely(skb->csum_not_inet))
3524 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3525 skb_crc32c_csum_help(skb);
3526
3527 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3528}
3529EXPORT_SYMBOL(skb_csum_hwoffload_help);
3530
3531static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3532{
3533 netdev_features_t features;
3534
3535 features = netif_skb_features(skb);
3536 skb = validate_xmit_vlan(skb, features);
3537 if (unlikely(!skb))
3538 goto out_null;
3539
3540 skb = sk_validate_xmit_skb(skb, dev);
3541 if (unlikely(!skb))
3542 goto out_null;
3543
3544 if (netif_needs_gso(skb, features)) {
3545 struct sk_buff *segs;
3546
3547 segs = skb_gso_segment(skb, features);
3548 if (IS_ERR(segs)) {
3549 goto out_kfree_skb;
3550 } else if (segs) {
3551 consume_skb(skb);
3552 skb = segs;
3553 }
3554 } else {
3555 if (skb_needs_linearize(skb, features) &&
3556 __skb_linearize(skb))
3557 goto out_kfree_skb;
3558
3559 /* If packet is not checksummed and device does not
3560 * support checksumming for this protocol, complete
3561 * checksumming here.
3562 */
3563 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3564 if (skb->encapsulation)
3565 skb_set_inner_transport_header(skb,
3566 skb_checksum_start_offset(skb));
3567 else
3568 skb_set_transport_header(skb,
3569 skb_checksum_start_offset(skb));
3570 if (skb_csum_hwoffload_help(skb, features))
3571 goto out_kfree_skb;
3572 }
3573 }
3574
3575 skb = validate_xmit_xfrm(skb, features, again);
3576
3577 return skb;
3578
3579out_kfree_skb:
3580 kfree_skb(skb);
3581out_null:
3582 atomic_long_inc(&dev->tx_dropped);
3583 return NULL;
3584}
3585
3586struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3587{
3588 struct sk_buff *next, *head = NULL, *tail;
3589
3590 for (; skb != NULL; skb = next) {
3591 next = skb->next;
3592 skb_mark_not_on_list(skb);
3593
3594 /* in case skb wont be segmented, point to itself */
3595 skb->prev = skb;
3596
3597 skb = validate_xmit_skb(skb, dev, again);
3598 if (!skb)
3599 continue;
3600
3601 if (!head)
3602 head = skb;
3603 else
3604 tail->next = skb;
3605 /* If skb was segmented, skb->prev points to
3606 * the last segment. If not, it still contains skb.
3607 */
3608 tail = skb->prev;
3609 }
3610 return head;
3611}
3612EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3613
3614static void qdisc_pkt_len_init(struct sk_buff *skb)
3615{
3616 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3617
3618 qdisc_skb_cb(skb)->pkt_len = skb->len;
3619
3620 /* To get more precise estimation of bytes sent on wire,
3621 * we add to pkt_len the headers size of all segments
3622 */
3623 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3624 unsigned int hdr_len;
3625 u16 gso_segs = shinfo->gso_segs;
3626
3627 /* mac layer + network layer */
3628 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3629
3630 /* + transport layer */
3631 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3632 const struct tcphdr *th;
3633 struct tcphdr _tcphdr;
3634
3635 th = skb_header_pointer(skb, skb_transport_offset(skb),
3636 sizeof(_tcphdr), &_tcphdr);
3637 if (likely(th))
3638 hdr_len += __tcp_hdrlen(th);
3639 } else {
3640 struct udphdr _udphdr;
3641
3642 if (skb_header_pointer(skb, skb_transport_offset(skb),
3643 sizeof(_udphdr), &_udphdr))
3644 hdr_len += sizeof(struct udphdr);
3645 }
3646
3647 if (shinfo->gso_type & SKB_GSO_DODGY)
3648 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3649 shinfo->gso_size);
3650
3651 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3652 }
3653}
3654
3655static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3656 struct net_device *dev,
3657 struct netdev_queue *txq)
3658{
3659 spinlock_t *root_lock = qdisc_lock(q);
3660 struct sk_buff *to_free = NULL;
3661 bool contended;
3662 int rc;
3663
3664 qdisc_calculate_pkt_len(skb, q);
3665
3666 if (q->flags & TCQ_F_NOLOCK) {
3667 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3668 qdisc_run(q);
3669
3670 if (unlikely(to_free))
3671 kfree_skb_list(to_free);
3672 return rc;
3673 }
3674
3675 /*
3676 * Heuristic to force contended enqueues to serialize on a
3677 * separate lock before trying to get qdisc main lock.
3678 * This permits qdisc->running owner to get the lock more
3679 * often and dequeue packets faster.
3680 */
3681 contended = qdisc_is_running(q);
3682 if (unlikely(contended))
3683 spin_lock(&q->busylock);
3684
3685 spin_lock(root_lock);
3686 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3687 __qdisc_drop(skb, &to_free);
3688 rc = NET_XMIT_DROP;
3689 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3690 qdisc_run_begin(q)) {
3691 /*
3692 * This is a work-conserving queue; there are no old skbs
3693 * waiting to be sent out; and the qdisc is not running -
3694 * xmit the skb directly.
3695 */
3696
3697 qdisc_bstats_update(q, skb);
3698
3699 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3700 if (unlikely(contended)) {
3701 spin_unlock(&q->busylock);
3702 contended = false;
3703 }
3704 __qdisc_run(q);
3705 }
3706
3707 qdisc_run_end(q);
3708 rc = NET_XMIT_SUCCESS;
3709 } else {
3710 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3711 if (qdisc_run_begin(q)) {
3712 if (unlikely(contended)) {
3713 spin_unlock(&q->busylock);
3714 contended = false;
3715 }
3716 __qdisc_run(q);
3717 qdisc_run_end(q);
3718 }
3719 }
3720 spin_unlock(root_lock);
3721 if (unlikely(to_free))
3722 kfree_skb_list(to_free);
3723 if (unlikely(contended))
3724 spin_unlock(&q->busylock);
3725 return rc;
3726}
3727
3728#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3729static void skb_update_prio(struct sk_buff *skb)
3730{
3731 const struct netprio_map *map;
3732 const struct sock *sk;
3733 unsigned int prioidx;
3734
3735 if (skb->priority)
3736 return;
3737 map = rcu_dereference_bh(skb->dev->priomap);
3738 if (!map)
3739 return;
3740 sk = skb_to_full_sk(skb);
3741 if (!sk)
3742 return;
3743
3744 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3745
3746 if (prioidx < map->priomap_len)
3747 skb->priority = map->priomap[prioidx];
3748}
3749#else
3750#define skb_update_prio(skb)
3751#endif
3752
3753/**
3754 * dev_loopback_xmit - loop back @skb
3755 * @net: network namespace this loopback is happening in
3756 * @sk: sk needed to be a netfilter okfn
3757 * @skb: buffer to transmit
3758 */
3759int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3760{
3761 skb_reset_mac_header(skb);
3762 __skb_pull(skb, skb_network_offset(skb));
3763 skb->pkt_type = PACKET_LOOPBACK;
3764 skb->ip_summed = CHECKSUM_UNNECESSARY;
3765 WARN_ON(!skb_dst(skb));
3766 skb_dst_force(skb);
3767 netif_rx_ni(skb);
3768 return 0;
3769}
3770EXPORT_SYMBOL(dev_loopback_xmit);
3771
3772#ifdef CONFIG_NET_EGRESS
3773static struct sk_buff *
3774sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3775{
3776 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3777 struct tcf_result cl_res;
3778
3779 if (!miniq)
3780 return skb;
3781
3782 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3783 mini_qdisc_bstats_cpu_update(miniq, skb);
3784
3785 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3786 case TC_ACT_OK:
3787 case TC_ACT_RECLASSIFY:
3788 skb->tc_index = TC_H_MIN(cl_res.classid);
3789 break;
3790 case TC_ACT_SHOT:
3791 mini_qdisc_qstats_cpu_drop(miniq);
3792 *ret = NET_XMIT_DROP;
3793 kfree_skb(skb);
3794 return NULL;
3795 case TC_ACT_STOLEN:
3796 case TC_ACT_QUEUED:
3797 case TC_ACT_TRAP:
3798 *ret = NET_XMIT_SUCCESS;
3799 consume_skb(skb);
3800 return NULL;
3801 case TC_ACT_REDIRECT:
3802 /* No need to push/pop skb's mac_header here on egress! */
3803 skb_do_redirect(skb);
3804 *ret = NET_XMIT_SUCCESS;
3805 return NULL;
3806 default:
3807 break;
3808 }
3809
3810 return skb;
3811}
3812#endif /* CONFIG_NET_EGRESS */
3813
3814#ifdef CONFIG_XPS
3815static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3816 struct xps_dev_maps *dev_maps, unsigned int tci)
3817{
3818 struct xps_map *map;
3819 int queue_index = -1;
3820
3821 if (dev->num_tc) {
3822 tci *= dev->num_tc;
3823 tci += netdev_get_prio_tc_map(dev, skb->priority);
3824 }
3825
3826 map = rcu_dereference(dev_maps->attr_map[tci]);
3827 if (map) {
3828 if (map->len == 1)
3829 queue_index = map->queues[0];
3830 else
3831 queue_index = map->queues[reciprocal_scale(
3832 skb_get_hash(skb), map->len)];
3833 if (unlikely(queue_index >= dev->real_num_tx_queues))
3834 queue_index = -1;
3835 }
3836 return queue_index;
3837}
3838#endif
3839
3840static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3841 struct sk_buff *skb)
3842{
3843#ifdef CONFIG_XPS
3844 struct xps_dev_maps *dev_maps;
3845 struct sock *sk = skb->sk;
3846 int queue_index = -1;
3847
3848 if (!static_key_false(&xps_needed))
3849 return -1;
3850
3851 rcu_read_lock();
3852 if (!static_key_false(&xps_rxqs_needed))
3853 goto get_cpus_map;
3854
3855 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3856 if (dev_maps) {
3857 int tci = sk_rx_queue_get(sk);
3858
3859 if (tci >= 0 && tci < dev->num_rx_queues)
3860 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3861 tci);
3862 }
3863
3864get_cpus_map:
3865 if (queue_index < 0) {
3866 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3867 if (dev_maps) {
3868 unsigned int tci = skb->sender_cpu - 1;
3869
3870 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3871 tci);
3872 }
3873 }
3874 rcu_read_unlock();
3875
3876 return queue_index;
3877#else
3878 return -1;
3879#endif
3880}
3881
3882u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3883 struct net_device *sb_dev)
3884{
3885 return 0;
3886}
3887EXPORT_SYMBOL(dev_pick_tx_zero);
3888
3889u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3890 struct net_device *sb_dev)
3891{
3892 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3893}
3894EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3895
3896u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3897 struct net_device *sb_dev)
3898{
3899 struct sock *sk = skb->sk;
3900 int queue_index = sk_tx_queue_get(sk);
3901
3902 sb_dev = sb_dev ? : dev;
3903
3904 if (queue_index < 0 || skb->ooo_okay ||
3905 queue_index >= dev->real_num_tx_queues) {
3906 int new_index = get_xps_queue(dev, sb_dev, skb);
3907
3908 if (new_index < 0)
3909 new_index = skb_tx_hash(dev, sb_dev, skb);
3910
3911 if (queue_index != new_index && sk &&
3912 sk_fullsock(sk) &&
3913 rcu_access_pointer(sk->sk_dst_cache))
3914 sk_tx_queue_set(sk, new_index);
3915
3916 queue_index = new_index;
3917 }
3918
3919 return queue_index;
3920}
3921EXPORT_SYMBOL(netdev_pick_tx);
3922
3923struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3924 struct sk_buff *skb,
3925 struct net_device *sb_dev)
3926{
3927 int queue_index = 0;
3928
3929#ifdef CONFIG_XPS
3930 u32 sender_cpu = skb->sender_cpu - 1;
3931
3932 if (sender_cpu >= (u32)NR_CPUS)
3933 skb->sender_cpu = raw_smp_processor_id() + 1;
3934#endif
3935
3936 if (dev->real_num_tx_queues != 1) {
3937 const struct net_device_ops *ops = dev->netdev_ops;
3938
3939 if (ops->ndo_select_queue)
3940 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3941 else
3942 queue_index = netdev_pick_tx(dev, skb, sb_dev);
3943
3944 queue_index = netdev_cap_txqueue(dev, queue_index);
3945 }
3946
3947 skb_set_queue_mapping(skb, queue_index);
3948 return netdev_get_tx_queue(dev, queue_index);
3949}
3950
3951/**
3952 * __dev_queue_xmit - transmit a buffer
3953 * @skb: buffer to transmit
3954 * @sb_dev: suboordinate device used for L2 forwarding offload
3955 *
3956 * Queue a buffer for transmission to a network device. The caller must
3957 * have set the device and priority and built the buffer before calling
3958 * this function. The function can be called from an interrupt.
3959 *
3960 * A negative errno code is returned on a failure. A success does not
3961 * guarantee the frame will be transmitted as it may be dropped due
3962 * to congestion or traffic shaping.
3963 *
3964 * -----------------------------------------------------------------------------------
3965 * I notice this method can also return errors from the queue disciplines,
3966 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3967 * be positive.
3968 *
3969 * Regardless of the return value, the skb is consumed, so it is currently
3970 * difficult to retry a send to this method. (You can bump the ref count
3971 * before sending to hold a reference for retry if you are careful.)
3972 *
3973 * When calling this method, interrupts MUST be enabled. This is because
3974 * the BH enable code must have IRQs enabled so that it will not deadlock.
3975 * --BLG
3976 */
3977static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3978{
3979 struct net_device *dev = skb->dev;
3980 struct netdev_queue *txq;
3981 struct Qdisc *q;
3982 int rc = -ENOMEM;
3983 bool again = false;
3984
3985 skb_reset_mac_header(skb);
3986
3987 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3988 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3989
3990 /* Disable soft irqs for various locks below. Also
3991 * stops preemption for RCU.
3992 */
3993 rcu_read_lock_bh();
3994
3995 skb_update_prio(skb);
3996
3997 qdisc_pkt_len_init(skb);
3998#ifdef CONFIG_NET_CLS_ACT
3999 skb->tc_at_ingress = 0;
4000# ifdef CONFIG_NET_EGRESS
4001 if (static_branch_unlikely(&egress_needed_key)) {
4002 skb = sch_handle_egress(skb, &rc, dev);
4003 if (!skb)
4004 goto out;
4005 }
4006# endif
4007#endif
4008 /* If device/qdisc don't need skb->dst, release it right now while
4009 * its hot in this cpu cache.
4010 */
4011 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4012 skb_dst_drop(skb);
4013 else
4014 skb_dst_force(skb);
4015
4016 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4017 q = rcu_dereference_bh(txq->qdisc);
4018
4019 trace_net_dev_queue(skb);
4020 if (q->enqueue) {
4021 rc = __dev_xmit_skb(skb, q, dev, txq);
4022 goto out;
4023 }
4024
4025 /* The device has no queue. Common case for software devices:
4026 * loopback, all the sorts of tunnels...
4027
4028 * Really, it is unlikely that netif_tx_lock protection is necessary
4029 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4030 * counters.)
4031 * However, it is possible, that they rely on protection
4032 * made by us here.
4033
4034 * Check this and shot the lock. It is not prone from deadlocks.
4035 *Either shot noqueue qdisc, it is even simpler 8)
4036 */
4037 if (dev->flags & IFF_UP) {
4038 int cpu = smp_processor_id(); /* ok because BHs are off */
4039
4040 if (txq->xmit_lock_owner != cpu) {
4041 if (dev_xmit_recursion())
4042 goto recursion_alert;
4043
4044 skb = validate_xmit_skb(skb, dev, &again);
4045 if (!skb)
4046 goto out;
4047
4048 HARD_TX_LOCK(dev, txq, cpu);
4049
4050 if (!netif_xmit_stopped(txq)) {
4051 dev_xmit_recursion_inc();
4052 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4053 dev_xmit_recursion_dec();
4054 if (dev_xmit_complete(rc)) {
4055 HARD_TX_UNLOCK(dev, txq);
4056 goto out;
4057 }
4058 }
4059 HARD_TX_UNLOCK(dev, txq);
4060 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4061 dev->name);
4062 } else {
4063 /* Recursion is detected! It is possible,
4064 * unfortunately
4065 */
4066recursion_alert:
4067 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4068 dev->name);
4069 }
4070 }
4071
4072 rc = -ENETDOWN;
4073 rcu_read_unlock_bh();
4074
4075 atomic_long_inc(&dev->tx_dropped);
4076 kfree_skb_list(skb);
4077 return rc;
4078out:
4079 rcu_read_unlock_bh();
4080 return rc;
4081}
4082
4083int dev_queue_xmit(struct sk_buff *skb)
4084{
4085 return __dev_queue_xmit(skb, NULL);
4086}
4087EXPORT_SYMBOL(dev_queue_xmit);
4088
4089int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4090{
4091 return __dev_queue_xmit(skb, sb_dev);
4092}
4093EXPORT_SYMBOL(dev_queue_xmit_accel);
4094
4095int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4096{
4097 struct net_device *dev = skb->dev;
4098 struct sk_buff *orig_skb = skb;
4099 struct netdev_queue *txq;
4100 int ret = NETDEV_TX_BUSY;
4101 bool again = false;
4102
4103 if (unlikely(!netif_running(dev) ||
4104 !netif_carrier_ok(dev)))
4105 goto drop;
4106
4107 skb = validate_xmit_skb_list(skb, dev, &again);
4108 if (skb != orig_skb)
4109 goto drop;
4110
4111 skb_set_queue_mapping(skb, queue_id);
4112 txq = skb_get_tx_queue(dev, skb);
4113
4114 local_bh_disable();
4115
4116 HARD_TX_LOCK(dev, txq, smp_processor_id());
4117 if (!netif_xmit_frozen_or_drv_stopped(txq))
4118 ret = netdev_start_xmit(skb, dev, txq, false);
4119 HARD_TX_UNLOCK(dev, txq);
4120
4121 local_bh_enable();
4122
4123 if (!dev_xmit_complete(ret))
4124 kfree_skb(skb);
4125
4126 return ret;
4127drop:
4128 atomic_long_inc(&dev->tx_dropped);
4129 kfree_skb_list(skb);
4130 return NET_XMIT_DROP;
4131}
4132EXPORT_SYMBOL(dev_direct_xmit);
4133
4134/*************************************************************************
4135 * Receiver routines
4136 *************************************************************************/
4137
4138int netdev_max_backlog __read_mostly = 1000;
4139EXPORT_SYMBOL(netdev_max_backlog);
4140
4141int netdev_tstamp_prequeue __read_mostly = 1;
4142int netdev_budget __read_mostly = 300;
4143/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4144unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4145int weight_p __read_mostly = 64; /* old backlog weight */
4146int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4147int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4148int dev_rx_weight __read_mostly = 64;
4149int dev_tx_weight __read_mostly = 64;
4150/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4151int gro_normal_batch __read_mostly = 8;
4152
4153/* Called with irq disabled */
4154static inline void ____napi_schedule(struct softnet_data *sd,
4155 struct napi_struct *napi)
4156{
4157 list_add_tail(&napi->poll_list, &sd->poll_list);
4158 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4159}
4160
4161#ifdef CONFIG_RPS
4162
4163/* One global table that all flow-based protocols share. */
4164struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4165EXPORT_SYMBOL(rps_sock_flow_table);
4166u32 rps_cpu_mask __read_mostly;
4167EXPORT_SYMBOL(rps_cpu_mask);
4168
4169struct static_key_false rps_needed __read_mostly;
4170EXPORT_SYMBOL(rps_needed);
4171struct static_key_false rfs_needed __read_mostly;
4172EXPORT_SYMBOL(rfs_needed);
4173
4174static struct rps_dev_flow *
4175set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4176 struct rps_dev_flow *rflow, u16 next_cpu)
4177{
4178 if (next_cpu < nr_cpu_ids) {
4179#ifdef CONFIG_RFS_ACCEL
4180 struct netdev_rx_queue *rxqueue;
4181 struct rps_dev_flow_table *flow_table;
4182 struct rps_dev_flow *old_rflow;
4183 u32 flow_id;
4184 u16 rxq_index;
4185 int rc;
4186
4187 /* Should we steer this flow to a different hardware queue? */
4188 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4189 !(dev->features & NETIF_F_NTUPLE))
4190 goto out;
4191 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4192 if (rxq_index == skb_get_rx_queue(skb))
4193 goto out;
4194
4195 rxqueue = dev->_rx + rxq_index;
4196 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4197 if (!flow_table)
4198 goto out;
4199 flow_id = skb_get_hash(skb) & flow_table->mask;
4200 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4201 rxq_index, flow_id);
4202 if (rc < 0)
4203 goto out;
4204 old_rflow = rflow;
4205 rflow = &flow_table->flows[flow_id];
4206 rflow->filter = rc;
4207 if (old_rflow->filter == rflow->filter)
4208 old_rflow->filter = RPS_NO_FILTER;
4209 out:
4210#endif
4211 rflow->last_qtail =
4212 per_cpu(softnet_data, next_cpu).input_queue_head;
4213 }
4214
4215 rflow->cpu = next_cpu;
4216 return rflow;
4217}
4218
4219/*
4220 * get_rps_cpu is called from netif_receive_skb and returns the target
4221 * CPU from the RPS map of the receiving queue for a given skb.
4222 * rcu_read_lock must be held on entry.
4223 */
4224static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4225 struct rps_dev_flow **rflowp)
4226{
4227 const struct rps_sock_flow_table *sock_flow_table;
4228 struct netdev_rx_queue *rxqueue = dev->_rx;
4229 struct rps_dev_flow_table *flow_table;
4230 struct rps_map *map;
4231 int cpu = -1;
4232 u32 tcpu;
4233 u32 hash;
4234
4235 if (skb_rx_queue_recorded(skb)) {
4236 u16 index = skb_get_rx_queue(skb);
4237
4238 if (unlikely(index >= dev->real_num_rx_queues)) {
4239 WARN_ONCE(dev->real_num_rx_queues > 1,
4240 "%s received packet on queue %u, but number "
4241 "of RX queues is %u\n",
4242 dev->name, index, dev->real_num_rx_queues);
4243 goto done;
4244 }
4245 rxqueue += index;
4246 }
4247
4248 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4249
4250 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4251 map = rcu_dereference(rxqueue->rps_map);
4252 if (!flow_table && !map)
4253 goto done;
4254
4255 skb_reset_network_header(skb);
4256 hash = skb_get_hash(skb);
4257 if (!hash)
4258 goto done;
4259
4260 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4261 if (flow_table && sock_flow_table) {
4262 struct rps_dev_flow *rflow;
4263 u32 next_cpu;
4264 u32 ident;
4265
4266 /* First check into global flow table if there is a match */
4267 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4268 if ((ident ^ hash) & ~rps_cpu_mask)
4269 goto try_rps;
4270
4271 next_cpu = ident & rps_cpu_mask;
4272
4273 /* OK, now we know there is a match,
4274 * we can look at the local (per receive queue) flow table
4275 */
4276 rflow = &flow_table->flows[hash & flow_table->mask];
4277 tcpu = rflow->cpu;
4278
4279 /*
4280 * If the desired CPU (where last recvmsg was done) is
4281 * different from current CPU (one in the rx-queue flow
4282 * table entry), switch if one of the following holds:
4283 * - Current CPU is unset (>= nr_cpu_ids).
4284 * - Current CPU is offline.
4285 * - The current CPU's queue tail has advanced beyond the
4286 * last packet that was enqueued using this table entry.
4287 * This guarantees that all previous packets for the flow
4288 * have been dequeued, thus preserving in order delivery.
4289 */
4290 if (unlikely(tcpu != next_cpu) &&
4291 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4292 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4293 rflow->last_qtail)) >= 0)) {
4294 tcpu = next_cpu;
4295 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4296 }
4297
4298 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4299 *rflowp = rflow;
4300 cpu = tcpu;
4301 goto done;
4302 }
4303 }
4304
4305try_rps:
4306
4307 if (map) {
4308 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4309 if (cpu_online(tcpu)) {
4310 cpu = tcpu;
4311 goto done;
4312 }
4313 }
4314
4315done:
4316 return cpu;
4317}
4318
4319#ifdef CONFIG_RFS_ACCEL
4320
4321/**
4322 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4323 * @dev: Device on which the filter was set
4324 * @rxq_index: RX queue index
4325 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4326 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4327 *
4328 * Drivers that implement ndo_rx_flow_steer() should periodically call
4329 * this function for each installed filter and remove the filters for
4330 * which it returns %true.
4331 */
4332bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4333 u32 flow_id, u16 filter_id)
4334{
4335 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4336 struct rps_dev_flow_table *flow_table;
4337 struct rps_dev_flow *rflow;
4338 bool expire = true;
4339 unsigned int cpu;
4340
4341 rcu_read_lock();
4342 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4343 if (flow_table && flow_id <= flow_table->mask) {
4344 rflow = &flow_table->flows[flow_id];
4345 cpu = READ_ONCE(rflow->cpu);
4346 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4347 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4348 rflow->last_qtail) <
4349 (int)(10 * flow_table->mask)))
4350 expire = false;
4351 }
4352 rcu_read_unlock();
4353 return expire;
4354}
4355EXPORT_SYMBOL(rps_may_expire_flow);
4356
4357#endif /* CONFIG_RFS_ACCEL */
4358
4359/* Called from hardirq (IPI) context */
4360static void rps_trigger_softirq(void *data)
4361{
4362 struct softnet_data *sd = data;
4363
4364 ____napi_schedule(sd, &sd->backlog);
4365 sd->received_rps++;
4366}
4367
4368#endif /* CONFIG_RPS */
4369
4370/*
4371 * Check if this softnet_data structure is another cpu one
4372 * If yes, queue it to our IPI list and return 1
4373 * If no, return 0
4374 */
4375static int rps_ipi_queued(struct softnet_data *sd)
4376{
4377#ifdef CONFIG_RPS
4378 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4379
4380 if (sd != mysd) {
4381 sd->rps_ipi_next = mysd->rps_ipi_list;
4382 mysd->rps_ipi_list = sd;
4383
4384 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4385 return 1;
4386 }
4387#endif /* CONFIG_RPS */
4388 return 0;
4389}
4390
4391#ifdef CONFIG_NET_FLOW_LIMIT
4392int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4393#endif
4394
4395static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4396{
4397#ifdef CONFIG_NET_FLOW_LIMIT
4398 struct sd_flow_limit *fl;
4399 struct softnet_data *sd;
4400 unsigned int old_flow, new_flow;
4401
4402 if (qlen < (netdev_max_backlog >> 1))
4403 return false;
4404
4405 sd = this_cpu_ptr(&softnet_data);
4406
4407 rcu_read_lock();
4408 fl = rcu_dereference(sd->flow_limit);
4409 if (fl) {
4410 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4411 old_flow = fl->history[fl->history_head];
4412 fl->history[fl->history_head] = new_flow;
4413
4414 fl->history_head++;
4415 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4416
4417 if (likely(fl->buckets[old_flow]))
4418 fl->buckets[old_flow]--;
4419
4420 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4421 fl->count++;
4422 rcu_read_unlock();
4423 return true;
4424 }
4425 }
4426 rcu_read_unlock();
4427#endif
4428 return false;
4429}
4430
4431/*
4432 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4433 * queue (may be a remote CPU queue).
4434 */
4435static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4436 unsigned int *qtail)
4437{
4438 struct softnet_data *sd;
4439 unsigned long flags;
4440 unsigned int qlen;
4441
4442 sd = &per_cpu(softnet_data, cpu);
4443
4444 local_irq_save(flags);
4445
4446 rps_lock(sd);
4447 if (!netif_running(skb->dev))
4448 goto drop;
4449 qlen = skb_queue_len(&sd->input_pkt_queue);
4450 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4451 if (qlen) {
4452enqueue:
4453 __skb_queue_tail(&sd->input_pkt_queue, skb);
4454 input_queue_tail_incr_save(sd, qtail);
4455 rps_unlock(sd);
4456 local_irq_restore(flags);
4457 return NET_RX_SUCCESS;
4458 }
4459
4460 /* Schedule NAPI for backlog device
4461 * We can use non atomic operation since we own the queue lock
4462 */
4463 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4464 if (!rps_ipi_queued(sd))
4465 ____napi_schedule(sd, &sd->backlog);
4466 }
4467 goto enqueue;
4468 }
4469
4470drop:
4471 sd->dropped++;
4472 rps_unlock(sd);
4473
4474 local_irq_restore(flags);
4475
4476 atomic_long_inc(&skb->dev->rx_dropped);
4477 kfree_skb(skb);
4478 return NET_RX_DROP;
4479}
4480
4481static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4482{
4483 struct net_device *dev = skb->dev;
4484 struct netdev_rx_queue *rxqueue;
4485
4486 rxqueue = dev->_rx;
4487
4488 if (skb_rx_queue_recorded(skb)) {
4489 u16 index = skb_get_rx_queue(skb);
4490
4491 if (unlikely(index >= dev->real_num_rx_queues)) {
4492 WARN_ONCE(dev->real_num_rx_queues > 1,
4493 "%s received packet on queue %u, but number "
4494 "of RX queues is %u\n",
4495 dev->name, index, dev->real_num_rx_queues);
4496
4497 return rxqueue; /* Return first rxqueue */
4498 }
4499 rxqueue += index;
4500 }
4501 return rxqueue;
4502}
4503
4504static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4505 struct xdp_buff *xdp,
4506 struct bpf_prog *xdp_prog)
4507{
4508 struct netdev_rx_queue *rxqueue;
4509 void *orig_data, *orig_data_end;
4510 u32 metalen, act = XDP_DROP;
4511 __be16 orig_eth_type;
4512 struct ethhdr *eth;
4513 bool orig_bcast;
4514 int hlen, off;
4515 u32 mac_len;
4516
4517 /* Reinjected packets coming from act_mirred or similar should
4518 * not get XDP generic processing.
4519 */
4520 if (skb_is_redirected(skb))
4521 return XDP_PASS;
4522
4523 /* XDP packets must be linear and must have sufficient headroom
4524 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4525 * native XDP provides, thus we need to do it here as well.
4526 */
4527 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4528 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4529 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4530 int troom = skb->tail + skb->data_len - skb->end;
4531
4532 /* In case we have to go down the path and also linearize,
4533 * then lets do the pskb_expand_head() work just once here.
4534 */
4535 if (pskb_expand_head(skb,
4536 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4537 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4538 goto do_drop;
4539 if (skb_linearize(skb))
4540 goto do_drop;
4541 }
4542
4543 /* The XDP program wants to see the packet starting at the MAC
4544 * header.
4545 */
4546 mac_len = skb->data - skb_mac_header(skb);
4547 hlen = skb_headlen(skb) + mac_len;
4548 xdp->data = skb->data - mac_len;
4549 xdp->data_meta = xdp->data;
4550 xdp->data_end = xdp->data + hlen;
4551 xdp->data_hard_start = skb->data - skb_headroom(skb);
4552 orig_data_end = xdp->data_end;
4553 orig_data = xdp->data;
4554 eth = (struct ethhdr *)xdp->data;
4555 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4556 orig_eth_type = eth->h_proto;
4557
4558 rxqueue = netif_get_rxqueue(skb);
4559 xdp->rxq = &rxqueue->xdp_rxq;
4560
4561 act = bpf_prog_run_xdp(xdp_prog, xdp);
4562
4563 /* check if bpf_xdp_adjust_head was used */
4564 off = xdp->data - orig_data;
4565 if (off) {
4566 if (off > 0)
4567 __skb_pull(skb, off);
4568 else if (off < 0)
4569 __skb_push(skb, -off);
4570
4571 skb->mac_header += off;
4572 skb_reset_network_header(skb);
4573 }
4574
4575 /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4576 * pckt.
4577 */
4578 off = orig_data_end - xdp->data_end;
4579 if (off != 0) {
4580 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4581 skb->len -= off;
4582
4583 }
4584
4585 /* check if XDP changed eth hdr such SKB needs update */
4586 eth = (struct ethhdr *)xdp->data;
4587 if ((orig_eth_type != eth->h_proto) ||
4588 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4589 __skb_push(skb, ETH_HLEN);
4590 skb->protocol = eth_type_trans(skb, skb->dev);
4591 }
4592
4593 switch (act) {
4594 case XDP_REDIRECT:
4595 case XDP_TX:
4596 __skb_push(skb, mac_len);
4597 break;
4598 case XDP_PASS:
4599 metalen = xdp->data - xdp->data_meta;
4600 if (metalen)
4601 skb_metadata_set(skb, metalen);
4602 break;
4603 default:
4604 bpf_warn_invalid_xdp_action(act);
4605 /* fall through */
4606 case XDP_ABORTED:
4607 trace_xdp_exception(skb->dev, xdp_prog, act);
4608 /* fall through */
4609 case XDP_DROP:
4610 do_drop:
4611 kfree_skb(skb);
4612 break;
4613 }
4614
4615 return act;
4616}
4617
4618/* When doing generic XDP we have to bypass the qdisc layer and the
4619 * network taps in order to match in-driver-XDP behavior.
4620 */
4621void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4622{
4623 struct net_device *dev = skb->dev;
4624 struct netdev_queue *txq;
4625 bool free_skb = true;
4626 int cpu, rc;
4627
4628 txq = netdev_core_pick_tx(dev, skb, NULL);
4629 cpu = smp_processor_id();
4630 HARD_TX_LOCK(dev, txq, cpu);
4631 if (!netif_xmit_stopped(txq)) {
4632 rc = netdev_start_xmit(skb, dev, txq, 0);
4633 if (dev_xmit_complete(rc))
4634 free_skb = false;
4635 }
4636 HARD_TX_UNLOCK(dev, txq);
4637 if (free_skb) {
4638 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4639 kfree_skb(skb);
4640 }
4641}
4642
4643static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4644
4645int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4646{
4647 if (xdp_prog) {
4648 struct xdp_buff xdp;
4649 u32 act;
4650 int err;
4651
4652 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4653 if (act != XDP_PASS) {
4654 switch (act) {
4655 case XDP_REDIRECT:
4656 err = xdp_do_generic_redirect(skb->dev, skb,
4657 &xdp, xdp_prog);
4658 if (err)
4659 goto out_redir;
4660 break;
4661 case XDP_TX:
4662 generic_xdp_tx(skb, xdp_prog);
4663 break;
4664 }
4665 return XDP_DROP;
4666 }
4667 }
4668 return XDP_PASS;
4669out_redir:
4670 kfree_skb(skb);
4671 return XDP_DROP;
4672}
4673EXPORT_SYMBOL_GPL(do_xdp_generic);
4674
4675static int netif_rx_internal(struct sk_buff *skb)
4676{
4677 int ret;
4678
4679 net_timestamp_check(netdev_tstamp_prequeue, skb);
4680
4681 trace_netif_rx(skb);
4682
4683#ifdef CONFIG_RPS
4684 if (static_branch_unlikely(&rps_needed)) {
4685 struct rps_dev_flow voidflow, *rflow = &voidflow;
4686 int cpu;
4687
4688 preempt_disable();
4689 rcu_read_lock();
4690
4691 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4692 if (cpu < 0)
4693 cpu = smp_processor_id();
4694
4695 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4696
4697 rcu_read_unlock();
4698 preempt_enable();
4699 } else
4700#endif
4701 {
4702 unsigned int qtail;
4703
4704 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4705 put_cpu();
4706 }
4707 return ret;
4708}
4709
4710/**
4711 * netif_rx - post buffer to the network code
4712 * @skb: buffer to post
4713 *
4714 * This function receives a packet from a device driver and queues it for
4715 * the upper (protocol) levels to process. It always succeeds. The buffer
4716 * may be dropped during processing for congestion control or by the
4717 * protocol layers.
4718 *
4719 * return values:
4720 * NET_RX_SUCCESS (no congestion)
4721 * NET_RX_DROP (packet was dropped)
4722 *
4723 */
4724
4725int netif_rx(struct sk_buff *skb)
4726{
4727 int ret;
4728
4729 trace_netif_rx_entry(skb);
4730
4731 ret = netif_rx_internal(skb);
4732 trace_netif_rx_exit(ret);
4733
4734 return ret;
4735}
4736EXPORT_SYMBOL(netif_rx);
4737
4738int netif_rx_ni(struct sk_buff *skb)
4739{
4740 int err;
4741
4742 trace_netif_rx_ni_entry(skb);
4743
4744 preempt_disable();
4745 err = netif_rx_internal(skb);
4746 if (local_softirq_pending())
4747 do_softirq();
4748 preempt_enable();
4749 trace_netif_rx_ni_exit(err);
4750
4751 return err;
4752}
4753EXPORT_SYMBOL(netif_rx_ni);
4754
4755static __latent_entropy void net_tx_action(struct softirq_action *h)
4756{
4757 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4758
4759 if (sd->completion_queue) {
4760 struct sk_buff *clist;
4761
4762 local_irq_disable();
4763 clist = sd->completion_queue;
4764 sd->completion_queue = NULL;
4765 local_irq_enable();
4766
4767 while (clist) {
4768 struct sk_buff *skb = clist;
4769
4770 clist = clist->next;
4771
4772 WARN_ON(refcount_read(&skb->users));
4773 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4774 trace_consume_skb(skb);
4775 else
4776 trace_kfree_skb(skb, net_tx_action);
4777
4778 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4779 __kfree_skb(skb);
4780 else
4781 __kfree_skb_defer(skb);
4782 }
4783
4784 __kfree_skb_flush();
4785 }
4786
4787 if (sd->output_queue) {
4788 struct Qdisc *head;
4789
4790 local_irq_disable();
4791 head = sd->output_queue;
4792 sd->output_queue = NULL;
4793 sd->output_queue_tailp = &sd->output_queue;
4794 local_irq_enable();
4795
4796 while (head) {
4797 struct Qdisc *q = head;
4798 spinlock_t *root_lock = NULL;
4799
4800 head = head->next_sched;
4801
4802 if (!(q->flags & TCQ_F_NOLOCK)) {
4803 root_lock = qdisc_lock(q);
4804 spin_lock(root_lock);
4805 }
4806 /* We need to make sure head->next_sched is read
4807 * before clearing __QDISC_STATE_SCHED
4808 */
4809 smp_mb__before_atomic();
4810 clear_bit(__QDISC_STATE_SCHED, &q->state);
4811 qdisc_run(q);
4812 if (root_lock)
4813 spin_unlock(root_lock);
4814 }
4815 }
4816
4817 xfrm_dev_backlog(sd);
4818}
4819
4820#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4821/* This hook is defined here for ATM LANE */
4822int (*br_fdb_test_addr_hook)(struct net_device *dev,
4823 unsigned char *addr) __read_mostly;
4824EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4825#endif
4826
4827static inline struct sk_buff *
4828sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4829 struct net_device *orig_dev)
4830{
4831#ifdef CONFIG_NET_CLS_ACT
4832 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4833 struct tcf_result cl_res;
4834
4835 /* If there's at least one ingress present somewhere (so
4836 * we get here via enabled static key), remaining devices
4837 * that are not configured with an ingress qdisc will bail
4838 * out here.
4839 */
4840 if (!miniq)
4841 return skb;
4842
4843 if (*pt_prev) {
4844 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4845 *pt_prev = NULL;
4846 }
4847
4848 qdisc_skb_cb(skb)->pkt_len = skb->len;
4849 skb->tc_at_ingress = 1;
4850 mini_qdisc_bstats_cpu_update(miniq, skb);
4851
4852 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
4853 &cl_res, false)) {
4854 case TC_ACT_OK:
4855 case TC_ACT_RECLASSIFY:
4856 skb->tc_index = TC_H_MIN(cl_res.classid);
4857 break;
4858 case TC_ACT_SHOT:
4859 mini_qdisc_qstats_cpu_drop(miniq);
4860 kfree_skb(skb);
4861 return NULL;
4862 case TC_ACT_STOLEN:
4863 case TC_ACT_QUEUED:
4864 case TC_ACT_TRAP:
4865 consume_skb(skb);
4866 return NULL;
4867 case TC_ACT_REDIRECT:
4868 /* skb_mac_header check was done by cls/act_bpf, so
4869 * we can safely push the L2 header back before
4870 * redirecting to another netdev
4871 */
4872 __skb_push(skb, skb->mac_len);
4873 skb_do_redirect(skb);
4874 return NULL;
4875 case TC_ACT_CONSUMED:
4876 return NULL;
4877 default:
4878 break;
4879 }
4880#endif /* CONFIG_NET_CLS_ACT */
4881 return skb;
4882}
4883
4884/**
4885 * netdev_is_rx_handler_busy - check if receive handler is registered
4886 * @dev: device to check
4887 *
4888 * Check if a receive handler is already registered for a given device.
4889 * Return true if there one.
4890 *
4891 * The caller must hold the rtnl_mutex.
4892 */
4893bool netdev_is_rx_handler_busy(struct net_device *dev)
4894{
4895 ASSERT_RTNL();
4896 return dev && rtnl_dereference(dev->rx_handler);
4897}
4898EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4899
4900/**
4901 * netdev_rx_handler_register - register receive handler
4902 * @dev: device to register a handler for
4903 * @rx_handler: receive handler to register
4904 * @rx_handler_data: data pointer that is used by rx handler
4905 *
4906 * Register a receive handler for a device. This handler will then be
4907 * called from __netif_receive_skb. A negative errno code is returned
4908 * on a failure.
4909 *
4910 * The caller must hold the rtnl_mutex.
4911 *
4912 * For a general description of rx_handler, see enum rx_handler_result.
4913 */
4914int netdev_rx_handler_register(struct net_device *dev,
4915 rx_handler_func_t *rx_handler,
4916 void *rx_handler_data)
4917{
4918 if (netdev_is_rx_handler_busy(dev))
4919 return -EBUSY;
4920
4921 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4922 return -EINVAL;
4923
4924 /* Note: rx_handler_data must be set before rx_handler */
4925 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4926 rcu_assign_pointer(dev->rx_handler, rx_handler);
4927
4928 return 0;
4929}
4930EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4931
4932/**
4933 * netdev_rx_handler_unregister - unregister receive handler
4934 * @dev: device to unregister a handler from
4935 *
4936 * Unregister a receive handler from a device.
4937 *
4938 * The caller must hold the rtnl_mutex.
4939 */
4940void netdev_rx_handler_unregister(struct net_device *dev)
4941{
4942
4943 ASSERT_RTNL();
4944 RCU_INIT_POINTER(dev->rx_handler, NULL);
4945 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4946 * section has a guarantee to see a non NULL rx_handler_data
4947 * as well.
4948 */
4949 synchronize_net();
4950 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4951}
4952EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4953
4954/*
4955 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4956 * the special handling of PFMEMALLOC skbs.
4957 */
4958static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4959{
4960 switch (skb->protocol) {
4961 case htons(ETH_P_ARP):
4962 case htons(ETH_P_IP):
4963 case htons(ETH_P_IPV6):
4964 case htons(ETH_P_8021Q):
4965 case htons(ETH_P_8021AD):
4966 return true;
4967 default:
4968 return false;
4969 }
4970}
4971
4972static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4973 int *ret, struct net_device *orig_dev)
4974{
4975 if (nf_hook_ingress_active(skb)) {
4976 int ingress_retval;
4977
4978 if (*pt_prev) {
4979 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4980 *pt_prev = NULL;
4981 }
4982
4983 rcu_read_lock();
4984 ingress_retval = nf_hook_ingress(skb);
4985 rcu_read_unlock();
4986 return ingress_retval;
4987 }
4988 return 0;
4989}
4990
4991static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
4992 struct packet_type **ppt_prev)
4993{
4994 struct packet_type *ptype, *pt_prev;
4995 rx_handler_func_t *rx_handler;
4996 struct sk_buff *skb = *pskb;
4997 struct net_device *orig_dev;
4998 bool deliver_exact = false;
4999 int ret = NET_RX_DROP;
5000 __be16 type;
5001
5002 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5003
5004 trace_netif_receive_skb(skb);
5005
5006 orig_dev = skb->dev;
5007
5008 skb_reset_network_header(skb);
5009 if (!skb_transport_header_was_set(skb))
5010 skb_reset_transport_header(skb);
5011 skb_reset_mac_len(skb);
5012
5013 pt_prev = NULL;
5014
5015another_round:
5016 skb->skb_iif = skb->dev->ifindex;
5017
5018 __this_cpu_inc(softnet_data.processed);
5019
5020 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5021 int ret2;
5022
5023 preempt_disable();
5024 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5025 preempt_enable();
5026
5027 if (ret2 != XDP_PASS) {
5028 ret = NET_RX_DROP;
5029 goto out;
5030 }
5031 skb_reset_mac_len(skb);
5032 }
5033
5034 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5035 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5036 skb = skb_vlan_untag(skb);
5037 if (unlikely(!skb))
5038 goto out;
5039 }
5040
5041 if (skb_skip_tc_classify(skb))
5042 goto skip_classify;
5043
5044 if (pfmemalloc)
5045 goto skip_taps;
5046
5047 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5048 if (pt_prev)
5049 ret = deliver_skb(skb, pt_prev, orig_dev);
5050 pt_prev = ptype;
5051 }
5052
5053 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5054 if (pt_prev)
5055 ret = deliver_skb(skb, pt_prev, orig_dev);
5056 pt_prev = ptype;
5057 }
5058
5059skip_taps:
5060#ifdef CONFIG_NET_INGRESS
5061 if (static_branch_unlikely(&ingress_needed_key)) {
5062 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
5063 if (!skb)
5064 goto out;
5065
5066 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5067 goto out;
5068 }
5069#endif
5070 skb_reset_redirect(skb);
5071skip_classify:
5072 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5073 goto drop;
5074
5075 if (skb_vlan_tag_present(skb)) {
5076 if (pt_prev) {
5077 ret = deliver_skb(skb, pt_prev, orig_dev);
5078 pt_prev = NULL;
5079 }
5080 if (vlan_do_receive(&skb))
5081 goto another_round;
5082 else if (unlikely(!skb))
5083 goto out;
5084 }
5085
5086 rx_handler = rcu_dereference(skb->dev->rx_handler);
5087 if (rx_handler) {
5088 if (pt_prev) {
5089 ret = deliver_skb(skb, pt_prev, orig_dev);
5090 pt_prev = NULL;
5091 }
5092 switch (rx_handler(&skb)) {
5093 case RX_HANDLER_CONSUMED:
5094 ret = NET_RX_SUCCESS;
5095 goto out;
5096 case RX_HANDLER_ANOTHER:
5097 goto another_round;
5098 case RX_HANDLER_EXACT:
5099 deliver_exact = true;
5100 case RX_HANDLER_PASS:
5101 break;
5102 default:
5103 BUG();
5104 }
5105 }
5106
5107 if (unlikely(skb_vlan_tag_present(skb))) {
5108check_vlan_id:
5109 if (skb_vlan_tag_get_id(skb)) {
5110 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5111 * find vlan device.
5112 */
5113 skb->pkt_type = PACKET_OTHERHOST;
5114 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
5115 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
5116 /* Outer header is 802.1P with vlan 0, inner header is
5117 * 802.1Q or 802.1AD and vlan_do_receive() above could
5118 * not find vlan dev for vlan id 0.
5119 */
5120 __vlan_hwaccel_clear_tag(skb);
5121 skb = skb_vlan_untag(skb);
5122 if (unlikely(!skb))
5123 goto out;
5124 if (vlan_do_receive(&skb))
5125 /* After stripping off 802.1P header with vlan 0
5126 * vlan dev is found for inner header.
5127 */
5128 goto another_round;
5129 else if (unlikely(!skb))
5130 goto out;
5131 else
5132 /* We have stripped outer 802.1P vlan 0 header.
5133 * But could not find vlan dev.
5134 * check again for vlan id to set OTHERHOST.
5135 */
5136 goto check_vlan_id;
5137 }
5138 /* Note: we might in the future use prio bits
5139 * and set skb->priority like in vlan_do_receive()
5140 * For the time being, just ignore Priority Code Point
5141 */
5142 __vlan_hwaccel_clear_tag(skb);
5143 }
5144
5145 type = skb->protocol;
5146
5147 /* deliver only exact match when indicated */
5148 if (likely(!deliver_exact)) {
5149 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5150 &ptype_base[ntohs(type) &
5151 PTYPE_HASH_MASK]);
5152 }
5153
5154 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5155 &orig_dev->ptype_specific);
5156
5157 if (unlikely(skb->dev != orig_dev)) {
5158 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5159 &skb->dev->ptype_specific);
5160 }
5161
5162 if (pt_prev) {
5163 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5164 goto drop;
5165 *ppt_prev = pt_prev;
5166 } else {
5167drop:
5168 if (!deliver_exact)
5169 atomic_long_inc(&skb->dev->rx_dropped);
5170 else
5171 atomic_long_inc(&skb->dev->rx_nohandler);
5172 kfree_skb(skb);
5173 /* Jamal, now you will not able to escape explaining
5174 * me how you were going to use this. :-)
5175 */
5176 ret = NET_RX_DROP;
5177 }
5178
5179out:
5180 /* The invariant here is that if *ppt_prev is not NULL
5181 * then skb should also be non-NULL.
5182 *
5183 * Apparently *ppt_prev assignment above holds this invariant due to
5184 * skb dereferencing near it.
5185 */
5186 *pskb = skb;
5187 return ret;
5188}
5189
5190static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5191{
5192 struct net_device *orig_dev = skb->dev;
5193 struct packet_type *pt_prev = NULL;
5194 int ret;
5195
5196 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5197 if (pt_prev)
5198 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5199 skb->dev, pt_prev, orig_dev);
5200 return ret;
5201}
5202
5203/**
5204 * netif_receive_skb_core - special purpose version of netif_receive_skb
5205 * @skb: buffer to process
5206 *
5207 * More direct receive version of netif_receive_skb(). It should
5208 * only be used by callers that have a need to skip RPS and Generic XDP.
5209 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5210 *
5211 * This function may only be called from softirq context and interrupts
5212 * should be enabled.
5213 *
5214 * Return values (usually ignored):
5215 * NET_RX_SUCCESS: no congestion
5216 * NET_RX_DROP: packet was dropped
5217 */
5218int netif_receive_skb_core(struct sk_buff *skb)
5219{
5220 int ret;
5221
5222 rcu_read_lock();
5223 ret = __netif_receive_skb_one_core(skb, false);
5224 rcu_read_unlock();
5225
5226 return ret;
5227}
5228EXPORT_SYMBOL(netif_receive_skb_core);
5229
5230static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5231 struct packet_type *pt_prev,
5232 struct net_device *orig_dev)
5233{
5234 struct sk_buff *skb, *next;
5235
5236 if (!pt_prev)
5237 return;
5238 if (list_empty(head))
5239 return;
5240 if (pt_prev->list_func != NULL)
5241 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5242 ip_list_rcv, head, pt_prev, orig_dev);
5243 else
5244 list_for_each_entry_safe(skb, next, head, list) {
5245 skb_list_del_init(skb);
5246 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5247 }
5248}
5249
5250static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5251{
5252 /* Fast-path assumptions:
5253 * - There is no RX handler.
5254 * - Only one packet_type matches.
5255 * If either of these fails, we will end up doing some per-packet
5256 * processing in-line, then handling the 'last ptype' for the whole
5257 * sublist. This can't cause out-of-order delivery to any single ptype,
5258 * because the 'last ptype' must be constant across the sublist, and all
5259 * other ptypes are handled per-packet.
5260 */
5261 /* Current (common) ptype of sublist */
5262 struct packet_type *pt_curr = NULL;
5263 /* Current (common) orig_dev of sublist */
5264 struct net_device *od_curr = NULL;
5265 struct list_head sublist;
5266 struct sk_buff *skb, *next;
5267
5268 INIT_LIST_HEAD(&sublist);
5269 list_for_each_entry_safe(skb, next, head, list) {
5270 struct net_device *orig_dev = skb->dev;
5271 struct packet_type *pt_prev = NULL;
5272
5273 skb_list_del_init(skb);
5274 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5275 if (!pt_prev)
5276 continue;
5277 if (pt_curr != pt_prev || od_curr != orig_dev) {
5278 /* dispatch old sublist */
5279 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5280 /* start new sublist */
5281 INIT_LIST_HEAD(&sublist);
5282 pt_curr = pt_prev;
5283 od_curr = orig_dev;
5284 }
5285 list_add_tail(&skb->list, &sublist);
5286 }
5287
5288 /* dispatch final sublist */
5289 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5290}
5291
5292static int __netif_receive_skb(struct sk_buff *skb)
5293{
5294 int ret;
5295
5296 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5297 unsigned int noreclaim_flag;
5298
5299 /*
5300 * PFMEMALLOC skbs are special, they should
5301 * - be delivered to SOCK_MEMALLOC sockets only
5302 * - stay away from userspace
5303 * - have bounded memory usage
5304 *
5305 * Use PF_MEMALLOC as this saves us from propagating the allocation
5306 * context down to all allocation sites.
5307 */
5308 noreclaim_flag = memalloc_noreclaim_save();
5309 ret = __netif_receive_skb_one_core(skb, true);
5310 memalloc_noreclaim_restore(noreclaim_flag);
5311 } else
5312 ret = __netif_receive_skb_one_core(skb, false);
5313
5314 return ret;
5315}
5316
5317static void __netif_receive_skb_list(struct list_head *head)
5318{
5319 unsigned long noreclaim_flag = 0;
5320 struct sk_buff *skb, *next;
5321 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5322
5323 list_for_each_entry_safe(skb, next, head, list) {
5324 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5325 struct list_head sublist;
5326
5327 /* Handle the previous sublist */
5328 list_cut_before(&sublist, head, &skb->list);
5329 if (!list_empty(&sublist))
5330 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5331 pfmemalloc = !pfmemalloc;
5332 /* See comments in __netif_receive_skb */
5333 if (pfmemalloc)
5334 noreclaim_flag = memalloc_noreclaim_save();
5335 else
5336 memalloc_noreclaim_restore(noreclaim_flag);
5337 }
5338 }
5339 /* Handle the remaining sublist */
5340 if (!list_empty(head))
5341 __netif_receive_skb_list_core(head, pfmemalloc);
5342 /* Restore pflags */
5343 if (pfmemalloc)
5344 memalloc_noreclaim_restore(noreclaim_flag);
5345}
5346
5347static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5348{
5349 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5350 struct bpf_prog *new = xdp->prog;
5351 int ret = 0;
5352
5353 switch (xdp->command) {
5354 case XDP_SETUP_PROG:
5355 rcu_assign_pointer(dev->xdp_prog, new);
5356 if (old)
5357 bpf_prog_put(old);
5358
5359 if (old && !new) {
5360 static_branch_dec(&generic_xdp_needed_key);
5361 } else if (new && !old) {
5362 static_branch_inc(&generic_xdp_needed_key);
5363 dev_disable_lro(dev);
5364 dev_disable_gro_hw(dev);
5365 }
5366 break;
5367
5368 case XDP_QUERY_PROG:
5369 xdp->prog_id = old ? old->aux->id : 0;
5370 break;
5371
5372 default:
5373 ret = -EINVAL;
5374 break;
5375 }
5376
5377 return ret;
5378}
5379
5380static int netif_receive_skb_internal(struct sk_buff *skb)
5381{
5382 int ret;
5383
5384 net_timestamp_check(netdev_tstamp_prequeue, skb);
5385
5386 if (skb_defer_rx_timestamp(skb))
5387 return NET_RX_SUCCESS;
5388
5389 rcu_read_lock();
5390#ifdef CONFIG_RPS
5391 if (static_branch_unlikely(&rps_needed)) {
5392 struct rps_dev_flow voidflow, *rflow = &voidflow;
5393 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5394
5395 if (cpu >= 0) {
5396 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5397 rcu_read_unlock();
5398 return ret;
5399 }
5400 }
5401#endif
5402 ret = __netif_receive_skb(skb);
5403 rcu_read_unlock();
5404 return ret;
5405}
5406
5407static void netif_receive_skb_list_internal(struct list_head *head)
5408{
5409 struct sk_buff *skb, *next;
5410 struct list_head sublist;
5411
5412 INIT_LIST_HEAD(&sublist);
5413 list_for_each_entry_safe(skb, next, head, list) {
5414 net_timestamp_check(netdev_tstamp_prequeue, skb);
5415 skb_list_del_init(skb);
5416 if (!skb_defer_rx_timestamp(skb))
5417 list_add_tail(&skb->list, &sublist);
5418 }
5419 list_splice_init(&sublist, head);
5420
5421 rcu_read_lock();
5422#ifdef CONFIG_RPS
5423 if (static_branch_unlikely(&rps_needed)) {
5424 list_for_each_entry_safe(skb, next, head, list) {
5425 struct rps_dev_flow voidflow, *rflow = &voidflow;
5426 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5427
5428 if (cpu >= 0) {
5429 /* Will be handled, remove from list */
5430 skb_list_del_init(skb);
5431 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5432 }
5433 }
5434 }
5435#endif
5436 __netif_receive_skb_list(head);
5437 rcu_read_unlock();
5438}
5439
5440/**
5441 * netif_receive_skb - process receive buffer from network
5442 * @skb: buffer to process
5443 *
5444 * netif_receive_skb() is the main receive data processing function.
5445 * It always succeeds. The buffer may be dropped during processing
5446 * for congestion control or by the protocol layers.
5447 *
5448 * This function may only be called from softirq context and interrupts
5449 * should be enabled.
5450 *
5451 * Return values (usually ignored):
5452 * NET_RX_SUCCESS: no congestion
5453 * NET_RX_DROP: packet was dropped
5454 */
5455int netif_receive_skb(struct sk_buff *skb)
5456{
5457 int ret;
5458
5459 trace_netif_receive_skb_entry(skb);
5460
5461 ret = netif_receive_skb_internal(skb);
5462 trace_netif_receive_skb_exit(ret);
5463
5464 return ret;
5465}
5466EXPORT_SYMBOL(netif_receive_skb);
5467
5468/**
5469 * netif_receive_skb_list - process many receive buffers from network
5470 * @head: list of skbs to process.
5471 *
5472 * Since return value of netif_receive_skb() is normally ignored, and
5473 * wouldn't be meaningful for a list, this function returns void.
5474 *
5475 * This function may only be called from softirq context and interrupts
5476 * should be enabled.
5477 */
5478void netif_receive_skb_list(struct list_head *head)
5479{
5480 struct sk_buff *skb;
5481
5482 if (list_empty(head))
5483 return;
5484 if (trace_netif_receive_skb_list_entry_enabled()) {
5485 list_for_each_entry(skb, head, list)
5486 trace_netif_receive_skb_list_entry(skb);
5487 }
5488 netif_receive_skb_list_internal(head);
5489 trace_netif_receive_skb_list_exit(0);
5490}
5491EXPORT_SYMBOL(netif_receive_skb_list);
5492
5493DEFINE_PER_CPU(struct work_struct, flush_works);
5494
5495/* Network device is going away, flush any packets still pending */
5496static void flush_backlog(struct work_struct *work)
5497{
5498 struct sk_buff *skb, *tmp;
5499 struct softnet_data *sd;
5500
5501 local_bh_disable();
5502 sd = this_cpu_ptr(&softnet_data);
5503
5504 local_irq_disable();
5505 rps_lock(sd);
5506 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5507 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5508 __skb_unlink(skb, &sd->input_pkt_queue);
5509 kfree_skb(skb);
5510 input_queue_head_incr(sd);
5511 }
5512 }
5513 rps_unlock(sd);
5514 local_irq_enable();
5515
5516 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5517 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5518 __skb_unlink(skb, &sd->process_queue);
5519 kfree_skb(skb);
5520 input_queue_head_incr(sd);
5521 }
5522 }
5523 local_bh_enable();
5524}
5525
5526static void flush_all_backlogs(void)
5527{
5528 unsigned int cpu;
5529
5530 get_online_cpus();
5531
5532 for_each_online_cpu(cpu)
5533 queue_work_on(cpu, system_highpri_wq,
5534 per_cpu_ptr(&flush_works, cpu));
5535
5536 for_each_online_cpu(cpu)
5537 flush_work(per_cpu_ptr(&flush_works, cpu));
5538
5539 put_online_cpus();
5540}
5541
5542/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5543static void gro_normal_list(struct napi_struct *napi)
5544{
5545 if (!napi->rx_count)
5546 return;
5547 netif_receive_skb_list_internal(&napi->rx_list);
5548 INIT_LIST_HEAD(&napi->rx_list);
5549 napi->rx_count = 0;
5550}
5551
5552/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5553 * pass the whole batch up to the stack.
5554 */
5555static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5556{
5557 list_add_tail(&skb->list, &napi->rx_list);
5558 if (++napi->rx_count >= gro_normal_batch)
5559 gro_normal_list(napi);
5560}
5561
5562INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5563INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5564static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5565{
5566 struct packet_offload *ptype;
5567 __be16 type = skb->protocol;
5568 struct list_head *head = &offload_base;
5569 int err = -ENOENT;
5570
5571 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5572
5573 if (NAPI_GRO_CB(skb)->count == 1) {
5574 skb_shinfo(skb)->gso_size = 0;
5575 goto out;
5576 }
5577
5578 rcu_read_lock();
5579 list_for_each_entry_rcu(ptype, head, list) {
5580 if (ptype->type != type || !ptype->callbacks.gro_complete)
5581 continue;
5582
5583 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5584 ipv6_gro_complete, inet_gro_complete,
5585 skb, 0);
5586 break;
5587 }
5588 rcu_read_unlock();
5589
5590 if (err) {
5591 WARN_ON(&ptype->list == head);
5592 kfree_skb(skb);
5593 return NET_RX_SUCCESS;
5594 }
5595
5596out:
5597 gro_normal_one(napi, skb);
5598 return NET_RX_SUCCESS;
5599}
5600
5601static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5602 bool flush_old)
5603{
5604 struct list_head *head = &napi->gro_hash[index].list;
5605 struct sk_buff *skb, *p;
5606
5607 list_for_each_entry_safe_reverse(skb, p, head, list) {
5608 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5609 return;
5610 skb_list_del_init(skb);
5611 napi_gro_complete(napi, skb);
5612 napi->gro_hash[index].count--;
5613 }
5614
5615 if (!napi->gro_hash[index].count)
5616 __clear_bit(index, &napi->gro_bitmask);
5617}
5618
5619/* napi->gro_hash[].list contains packets ordered by age.
5620 * youngest packets at the head of it.
5621 * Complete skbs in reverse order to reduce latencies.
5622 */
5623void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5624{
5625 unsigned long bitmask = napi->gro_bitmask;
5626 unsigned int i, base = ~0U;
5627
5628 while ((i = ffs(bitmask)) != 0) {
5629 bitmask >>= i;
5630 base += i;
5631 __napi_gro_flush_chain(napi, base, flush_old);
5632 }
5633}
5634EXPORT_SYMBOL(napi_gro_flush);
5635
5636static struct list_head *gro_list_prepare(struct napi_struct *napi,
5637 struct sk_buff *skb)
5638{
5639 unsigned int maclen = skb->dev->hard_header_len;
5640 u32 hash = skb_get_hash_raw(skb);
5641 struct list_head *head;
5642 struct sk_buff *p;
5643
5644 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5645 list_for_each_entry(p, head, list) {
5646 unsigned long diffs;
5647
5648 NAPI_GRO_CB(p)->flush = 0;
5649
5650 if (hash != skb_get_hash_raw(p)) {
5651 NAPI_GRO_CB(p)->same_flow = 0;
5652 continue;
5653 }
5654
5655 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5656 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5657 if (skb_vlan_tag_present(p))
5658 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5659 diffs |= skb_metadata_dst_cmp(p, skb);
5660 diffs |= skb_metadata_differs(p, skb);
5661 if (maclen == ETH_HLEN)
5662 diffs |= compare_ether_header(skb_mac_header(p),
5663 skb_mac_header(skb));
5664 else if (!diffs)
5665 diffs = memcmp(skb_mac_header(p),
5666 skb_mac_header(skb),
5667 maclen);
5668 NAPI_GRO_CB(p)->same_flow = !diffs;
5669 }
5670
5671 return head;
5672}
5673
5674static void skb_gro_reset_offset(struct sk_buff *skb)
5675{
5676 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5677 const skb_frag_t *frag0 = &pinfo->frags[0];
5678
5679 NAPI_GRO_CB(skb)->data_offset = 0;
5680 NAPI_GRO_CB(skb)->frag0 = NULL;
5681 NAPI_GRO_CB(skb)->frag0_len = 0;
5682
5683 if (!skb_headlen(skb) && pinfo->nr_frags &&
5684 !PageHighMem(skb_frag_page(frag0))) {
5685 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5686 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5687 skb_frag_size(frag0),
5688 skb->end - skb->tail);
5689 }
5690}
5691
5692static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5693{
5694 struct skb_shared_info *pinfo = skb_shinfo(skb);
5695
5696 BUG_ON(skb->end - skb->tail < grow);
5697
5698 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5699
5700 skb->data_len -= grow;
5701 skb->tail += grow;
5702
5703 skb_frag_off_add(&pinfo->frags[0], grow);
5704 skb_frag_size_sub(&pinfo->frags[0], grow);
5705
5706 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5707 skb_frag_unref(skb, 0);
5708 memmove(pinfo->frags, pinfo->frags + 1,
5709 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5710 }
5711}
5712
5713static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5714{
5715 struct sk_buff *oldest;
5716
5717 oldest = list_last_entry(head, struct sk_buff, list);
5718
5719 /* We are called with head length >= MAX_GRO_SKBS, so this is
5720 * impossible.
5721 */
5722 if (WARN_ON_ONCE(!oldest))
5723 return;
5724
5725 /* Do not adjust napi->gro_hash[].count, caller is adding a new
5726 * SKB to the chain.
5727 */
5728 skb_list_del_init(oldest);
5729 napi_gro_complete(napi, oldest);
5730}
5731
5732INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5733 struct sk_buff *));
5734INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5735 struct sk_buff *));
5736static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5737{
5738 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5739 struct list_head *head = &offload_base;
5740 struct packet_offload *ptype;
5741 __be16 type = skb->protocol;
5742 struct list_head *gro_head;
5743 struct sk_buff *pp = NULL;
5744 enum gro_result ret;
5745 int same_flow;
5746 int grow;
5747
5748 if (netif_elide_gro(skb->dev))
5749 goto normal;
5750
5751 gro_head = gro_list_prepare(napi, skb);
5752
5753 rcu_read_lock();
5754 list_for_each_entry_rcu(ptype, head, list) {
5755 if (ptype->type != type || !ptype->callbacks.gro_receive)
5756 continue;
5757
5758 skb_set_network_header(skb, skb_gro_offset(skb));
5759 skb_reset_mac_len(skb);
5760 NAPI_GRO_CB(skb)->same_flow = 0;
5761 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5762 NAPI_GRO_CB(skb)->free = 0;
5763 NAPI_GRO_CB(skb)->encap_mark = 0;
5764 NAPI_GRO_CB(skb)->recursion_counter = 0;
5765 NAPI_GRO_CB(skb)->is_fou = 0;
5766 NAPI_GRO_CB(skb)->is_atomic = 1;
5767 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5768
5769 /* Setup for GRO checksum validation */
5770 switch (skb->ip_summed) {
5771 case CHECKSUM_COMPLETE:
5772 NAPI_GRO_CB(skb)->csum = skb->csum;
5773 NAPI_GRO_CB(skb)->csum_valid = 1;
5774 NAPI_GRO_CB(skb)->csum_cnt = 0;
5775 break;
5776 case CHECKSUM_UNNECESSARY:
5777 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5778 NAPI_GRO_CB(skb)->csum_valid = 0;
5779 break;
5780 default:
5781 NAPI_GRO_CB(skb)->csum_cnt = 0;
5782 NAPI_GRO_CB(skb)->csum_valid = 0;
5783 }
5784
5785 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5786 ipv6_gro_receive, inet_gro_receive,
5787 gro_head, skb);
5788 break;
5789 }
5790 rcu_read_unlock();
5791
5792 if (&ptype->list == head)
5793 goto normal;
5794
5795 if (PTR_ERR(pp) == -EINPROGRESS) {
5796 ret = GRO_CONSUMED;
5797 goto ok;
5798 }
5799
5800 same_flow = NAPI_GRO_CB(skb)->same_flow;
5801 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5802
5803 if (pp) {
5804 skb_list_del_init(pp);
5805 napi_gro_complete(napi, pp);
5806 napi->gro_hash[hash].count--;
5807 }
5808
5809 if (same_flow)
5810 goto ok;
5811
5812 if (NAPI_GRO_CB(skb)->flush)
5813 goto normal;
5814
5815 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5816 gro_flush_oldest(napi, gro_head);
5817 } else {
5818 napi->gro_hash[hash].count++;
5819 }
5820 NAPI_GRO_CB(skb)->count = 1;
5821 NAPI_GRO_CB(skb)->age = jiffies;
5822 NAPI_GRO_CB(skb)->last = skb;
5823 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5824 list_add(&skb->list, gro_head);
5825 ret = GRO_HELD;
5826
5827pull:
5828 grow = skb_gro_offset(skb) - skb_headlen(skb);
5829 if (grow > 0)
5830 gro_pull_from_frag0(skb, grow);
5831ok:
5832 if (napi->gro_hash[hash].count) {
5833 if (!test_bit(hash, &napi->gro_bitmask))
5834 __set_bit(hash, &napi->gro_bitmask);
5835 } else if (test_bit(hash, &napi->gro_bitmask)) {
5836 __clear_bit(hash, &napi->gro_bitmask);
5837 }
5838
5839 return ret;
5840
5841normal:
5842 ret = GRO_NORMAL;
5843 goto pull;
5844}
5845
5846struct packet_offload *gro_find_receive_by_type(__be16 type)
5847{
5848 struct list_head *offload_head = &offload_base;
5849 struct packet_offload *ptype;
5850
5851 list_for_each_entry_rcu(ptype, offload_head, list) {
5852 if (ptype->type != type || !ptype->callbacks.gro_receive)
5853 continue;
5854 return ptype;
5855 }
5856 return NULL;
5857}
5858EXPORT_SYMBOL(gro_find_receive_by_type);
5859
5860struct packet_offload *gro_find_complete_by_type(__be16 type)
5861{
5862 struct list_head *offload_head = &offload_base;
5863 struct packet_offload *ptype;
5864
5865 list_for_each_entry_rcu(ptype, offload_head, list) {
5866 if (ptype->type != type || !ptype->callbacks.gro_complete)
5867 continue;
5868 return ptype;
5869 }
5870 return NULL;
5871}
5872EXPORT_SYMBOL(gro_find_complete_by_type);
5873
5874static void napi_skb_free_stolen_head(struct sk_buff *skb)
5875{
5876 skb_dst_drop(skb);
5877 skb_ext_put(skb);
5878 kmem_cache_free(skbuff_head_cache, skb);
5879}
5880
5881static gro_result_t napi_skb_finish(struct napi_struct *napi,
5882 struct sk_buff *skb,
5883 gro_result_t ret)
5884{
5885 switch (ret) {
5886 case GRO_NORMAL:
5887 gro_normal_one(napi, skb);
5888 break;
5889
5890 case GRO_DROP:
5891 kfree_skb(skb);
5892 break;
5893
5894 case GRO_MERGED_FREE:
5895 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5896 napi_skb_free_stolen_head(skb);
5897 else
5898 __kfree_skb(skb);
5899 break;
5900
5901 case GRO_HELD:
5902 case GRO_MERGED:
5903 case GRO_CONSUMED:
5904 break;
5905 }
5906
5907 return ret;
5908}
5909
5910gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5911{
5912 gro_result_t ret;
5913
5914 skb_mark_napi_id(skb, napi);
5915 trace_napi_gro_receive_entry(skb);
5916
5917 skb_gro_reset_offset(skb);
5918
5919 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
5920 trace_napi_gro_receive_exit(ret);
5921
5922 return ret;
5923}
5924EXPORT_SYMBOL(napi_gro_receive);
5925
5926static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5927{
5928 if (unlikely(skb->pfmemalloc)) {
5929 consume_skb(skb);
5930 return;
5931 }
5932 __skb_pull(skb, skb_headlen(skb));
5933 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5934 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5935 __vlan_hwaccel_clear_tag(skb);
5936 skb->dev = napi->dev;
5937 skb->skb_iif = 0;
5938
5939 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5940 skb->pkt_type = PACKET_HOST;
5941
5942 skb->encapsulation = 0;
5943 skb_shinfo(skb)->gso_type = 0;
5944 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5945 skb_ext_reset(skb);
5946
5947 napi->skb = skb;
5948}
5949
5950struct sk_buff *napi_get_frags(struct napi_struct *napi)
5951{
5952 struct sk_buff *skb = napi->skb;
5953
5954 if (!skb) {
5955 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5956 if (skb) {
5957 napi->skb = skb;
5958 skb_mark_napi_id(skb, napi);
5959 }
5960 }
5961 return skb;
5962}
5963EXPORT_SYMBOL(napi_get_frags);
5964
5965static gro_result_t napi_frags_finish(struct napi_struct *napi,
5966 struct sk_buff *skb,
5967 gro_result_t ret)
5968{
5969 switch (ret) {
5970 case GRO_NORMAL:
5971 case GRO_HELD:
5972 __skb_push(skb, ETH_HLEN);
5973 skb->protocol = eth_type_trans(skb, skb->dev);
5974 if (ret == GRO_NORMAL)
5975 gro_normal_one(napi, skb);
5976 break;
5977
5978 case GRO_DROP:
5979 napi_reuse_skb(napi, skb);
5980 break;
5981
5982 case GRO_MERGED_FREE:
5983 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5984 napi_skb_free_stolen_head(skb);
5985 else
5986 napi_reuse_skb(napi, skb);
5987 break;
5988
5989 case GRO_MERGED:
5990 case GRO_CONSUMED:
5991 break;
5992 }
5993
5994 return ret;
5995}
5996
5997/* Upper GRO stack assumes network header starts at gro_offset=0
5998 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5999 * We copy ethernet header into skb->data to have a common layout.
6000 */
6001static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6002{
6003 struct sk_buff *skb = napi->skb;
6004 const struct ethhdr *eth;
6005 unsigned int hlen = sizeof(*eth);
6006
6007 napi->skb = NULL;
6008
6009 skb_reset_mac_header(skb);
6010 skb_gro_reset_offset(skb);
6011
6012 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6013 eth = skb_gro_header_slow(skb, hlen, 0);
6014 if (unlikely(!eth)) {
6015 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6016 __func__, napi->dev->name);
6017 napi_reuse_skb(napi, skb);
6018 return NULL;
6019 }
6020 } else {
6021 eth = (const struct ethhdr *)skb->data;
6022 gro_pull_from_frag0(skb, hlen);
6023 NAPI_GRO_CB(skb)->frag0 += hlen;
6024 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6025 }
6026 __skb_pull(skb, hlen);
6027
6028 /*
6029 * This works because the only protocols we care about don't require
6030 * special handling.
6031 * We'll fix it up properly in napi_frags_finish()
6032 */
6033 skb->protocol = eth->h_proto;
6034
6035 return skb;
6036}
6037
6038gro_result_t napi_gro_frags(struct napi_struct *napi)
6039{
6040 gro_result_t ret;
6041 struct sk_buff *skb = napi_frags_skb(napi);
6042
6043 if (!skb)
6044 return GRO_DROP;
6045
6046 trace_napi_gro_frags_entry(skb);
6047
6048 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6049 trace_napi_gro_frags_exit(ret);
6050
6051 return ret;
6052}
6053EXPORT_SYMBOL(napi_gro_frags);
6054
6055/* Compute the checksum from gro_offset and return the folded value
6056 * after adding in any pseudo checksum.
6057 */
6058__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6059{
6060 __wsum wsum;
6061 __sum16 sum;
6062
6063 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6064
6065 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6066 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6067 /* See comments in __skb_checksum_complete(). */
6068 if (likely(!sum)) {
6069 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6070 !skb->csum_complete_sw)
6071 netdev_rx_csum_fault(skb->dev, skb);
6072 }
6073
6074 NAPI_GRO_CB(skb)->csum = wsum;
6075 NAPI_GRO_CB(skb)->csum_valid = 1;
6076
6077 return sum;
6078}
6079EXPORT_SYMBOL(__skb_gro_checksum_complete);
6080
6081static void net_rps_send_ipi(struct softnet_data *remsd)
6082{
6083#ifdef CONFIG_RPS
6084 while (remsd) {
6085 struct softnet_data *next = remsd->rps_ipi_next;
6086
6087 if (cpu_online(remsd->cpu))
6088 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6089 remsd = next;
6090 }
6091#endif
6092}
6093
6094/*
6095 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6096 * Note: called with local irq disabled, but exits with local irq enabled.
6097 */
6098static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6099{
6100#ifdef CONFIG_RPS
6101 struct softnet_data *remsd = sd->rps_ipi_list;
6102
6103 if (remsd) {
6104 sd->rps_ipi_list = NULL;
6105
6106 local_irq_enable();
6107
6108 /* Send pending IPI's to kick RPS processing on remote cpus. */
6109 net_rps_send_ipi(remsd);
6110 } else
6111#endif
6112 local_irq_enable();
6113}
6114
6115static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6116{
6117#ifdef CONFIG_RPS
6118 return sd->rps_ipi_list != NULL;
6119#else
6120 return false;
6121#endif
6122}
6123
6124static int process_backlog(struct napi_struct *napi, int quota)
6125{
6126 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6127 bool again = true;
6128 int work = 0;
6129
6130 /* Check if we have pending ipi, its better to send them now,
6131 * not waiting net_rx_action() end.
6132 */
6133 if (sd_has_rps_ipi_waiting(sd)) {
6134 local_irq_disable();
6135 net_rps_action_and_irq_enable(sd);
6136 }
6137
6138 napi->weight = dev_rx_weight;
6139 while (again) {
6140 struct sk_buff *skb;
6141
6142 while ((skb = __skb_dequeue(&sd->process_queue))) {
6143 rcu_read_lock();
6144 __netif_receive_skb(skb);
6145 rcu_read_unlock();
6146 input_queue_head_incr(sd);
6147 if (++work >= quota)
6148 return work;
6149
6150 }
6151
6152 local_irq_disable();
6153 rps_lock(sd);
6154 if (skb_queue_empty(&sd->input_pkt_queue)) {
6155 /*
6156 * Inline a custom version of __napi_complete().
6157 * only current cpu owns and manipulates this napi,
6158 * and NAPI_STATE_SCHED is the only possible flag set
6159 * on backlog.
6160 * We can use a plain write instead of clear_bit(),
6161 * and we dont need an smp_mb() memory barrier.
6162 */
6163 napi->state = 0;
6164 again = false;
6165 } else {
6166 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6167 &sd->process_queue);
6168 }
6169 rps_unlock(sd);
6170 local_irq_enable();
6171 }
6172
6173 return work;
6174}
6175
6176/**
6177 * __napi_schedule - schedule for receive
6178 * @n: entry to schedule
6179 *
6180 * The entry's receive function will be scheduled to run.
6181 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6182 */
6183void __napi_schedule(struct napi_struct *n)
6184{
6185 unsigned long flags;
6186
6187 local_irq_save(flags);
6188 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6189 local_irq_restore(flags);
6190}
6191EXPORT_SYMBOL(__napi_schedule);
6192
6193/**
6194 * napi_schedule_prep - check if napi can be scheduled
6195 * @n: napi context
6196 *
6197 * Test if NAPI routine is already running, and if not mark
6198 * it as running. This is used as a condition variable
6199 * insure only one NAPI poll instance runs. We also make
6200 * sure there is no pending NAPI disable.
6201 */
6202bool napi_schedule_prep(struct napi_struct *n)
6203{
6204 unsigned long val, new;
6205
6206 do {
6207 val = READ_ONCE(n->state);
6208 if (unlikely(val & NAPIF_STATE_DISABLE))
6209 return false;
6210 new = val | NAPIF_STATE_SCHED;
6211
6212 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6213 * This was suggested by Alexander Duyck, as compiler
6214 * emits better code than :
6215 * if (val & NAPIF_STATE_SCHED)
6216 * new |= NAPIF_STATE_MISSED;
6217 */
6218 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6219 NAPIF_STATE_MISSED;
6220 } while (cmpxchg(&n->state, val, new) != val);
6221
6222 return !(val & NAPIF_STATE_SCHED);
6223}
6224EXPORT_SYMBOL(napi_schedule_prep);
6225
6226/**
6227 * __napi_schedule_irqoff - schedule for receive
6228 * @n: entry to schedule
6229 *
6230 * Variant of __napi_schedule() assuming hard irqs are masked
6231 */
6232void __napi_schedule_irqoff(struct napi_struct *n)
6233{
6234 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6235}
6236EXPORT_SYMBOL(__napi_schedule_irqoff);
6237
6238bool napi_complete_done(struct napi_struct *n, int work_done)
6239{
6240 unsigned long flags, val, new;
6241
6242 /*
6243 * 1) Don't let napi dequeue from the cpu poll list
6244 * just in case its running on a different cpu.
6245 * 2) If we are busy polling, do nothing here, we have
6246 * the guarantee we will be called later.
6247 */
6248 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6249 NAPIF_STATE_IN_BUSY_POLL)))
6250 return false;
6251
6252 if (n->gro_bitmask) {
6253 unsigned long timeout = 0;
6254
6255 if (work_done)
6256 timeout = n->dev->gro_flush_timeout;
6257
6258 /* When the NAPI instance uses a timeout and keeps postponing
6259 * it, we need to bound somehow the time packets are kept in
6260 * the GRO layer
6261 */
6262 napi_gro_flush(n, !!timeout);
6263 if (timeout)
6264 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6265 HRTIMER_MODE_REL_PINNED);
6266 }
6267
6268 gro_normal_list(n);
6269
6270 if (unlikely(!list_empty(&n->poll_list))) {
6271 /* If n->poll_list is not empty, we need to mask irqs */
6272 local_irq_save(flags);
6273 list_del_init(&n->poll_list);
6274 local_irq_restore(flags);
6275 }
6276
6277 do {
6278 val = READ_ONCE(n->state);
6279
6280 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6281
6282 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6283
6284 /* If STATE_MISSED was set, leave STATE_SCHED set,
6285 * because we will call napi->poll() one more time.
6286 * This C code was suggested by Alexander Duyck to help gcc.
6287 */
6288 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6289 NAPIF_STATE_SCHED;
6290 } while (cmpxchg(&n->state, val, new) != val);
6291
6292 if (unlikely(val & NAPIF_STATE_MISSED)) {
6293 __napi_schedule(n);
6294 return false;
6295 }
6296
6297 return true;
6298}
6299EXPORT_SYMBOL(napi_complete_done);
6300
6301/* must be called under rcu_read_lock(), as we dont take a reference */
6302static struct napi_struct *napi_by_id(unsigned int napi_id)
6303{
6304 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6305 struct napi_struct *napi;
6306
6307 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6308 if (napi->napi_id == napi_id)
6309 return napi;
6310
6311 return NULL;
6312}
6313
6314#if defined(CONFIG_NET_RX_BUSY_POLL)
6315
6316#define BUSY_POLL_BUDGET 8
6317
6318static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6319{
6320 int rc;
6321
6322 /* Busy polling means there is a high chance device driver hard irq
6323 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6324 * set in napi_schedule_prep().
6325 * Since we are about to call napi->poll() once more, we can safely
6326 * clear NAPI_STATE_MISSED.
6327 *
6328 * Note: x86 could use a single "lock and ..." instruction
6329 * to perform these two clear_bit()
6330 */
6331 clear_bit(NAPI_STATE_MISSED, &napi->state);
6332 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6333
6334 local_bh_disable();
6335
6336 /* All we really want here is to re-enable device interrupts.
6337 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6338 */
6339 rc = napi->poll(napi, BUSY_POLL_BUDGET);
6340 /* We can't gro_normal_list() here, because napi->poll() might have
6341 * rearmed the napi (napi_complete_done()) in which case it could
6342 * already be running on another CPU.
6343 */
6344 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6345 netpoll_poll_unlock(have_poll_lock);
6346 if (rc == BUSY_POLL_BUDGET) {
6347 /* As the whole budget was spent, we still own the napi so can
6348 * safely handle the rx_list.
6349 */
6350 gro_normal_list(napi);
6351 __napi_schedule(napi);
6352 }
6353 local_bh_enable();
6354}
6355
6356void napi_busy_loop(unsigned int napi_id,
6357 bool (*loop_end)(void *, unsigned long),
6358 void *loop_end_arg)
6359{
6360 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6361 int (*napi_poll)(struct napi_struct *napi, int budget);
6362 void *have_poll_lock = NULL;
6363 struct napi_struct *napi;
6364
6365restart:
6366 napi_poll = NULL;
6367
6368 rcu_read_lock();
6369
6370 napi = napi_by_id(napi_id);
6371 if (!napi)
6372 goto out;
6373
6374 preempt_disable();
6375 for (;;) {
6376 int work = 0;
6377
6378 local_bh_disable();
6379 if (!napi_poll) {
6380 unsigned long val = READ_ONCE(napi->state);
6381
6382 /* If multiple threads are competing for this napi,
6383 * we avoid dirtying napi->state as much as we can.
6384 */
6385 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6386 NAPIF_STATE_IN_BUSY_POLL))
6387 goto count;
6388 if (cmpxchg(&napi->state, val,
6389 val | NAPIF_STATE_IN_BUSY_POLL |
6390 NAPIF_STATE_SCHED) != val)
6391 goto count;
6392 have_poll_lock = netpoll_poll_lock(napi);
6393 napi_poll = napi->poll;
6394 }
6395 work = napi_poll(napi, BUSY_POLL_BUDGET);
6396 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6397 gro_normal_list(napi);
6398count:
6399 if (work > 0)
6400 __NET_ADD_STATS(dev_net(napi->dev),
6401 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6402 local_bh_enable();
6403
6404 if (!loop_end || loop_end(loop_end_arg, start_time))
6405 break;
6406
6407 if (unlikely(need_resched())) {
6408 if (napi_poll)
6409 busy_poll_stop(napi, have_poll_lock);
6410 preempt_enable();
6411 rcu_read_unlock();
6412 cond_resched();
6413 if (loop_end(loop_end_arg, start_time))
6414 return;
6415 goto restart;
6416 }
6417 cpu_relax();
6418 }
6419 if (napi_poll)
6420 busy_poll_stop(napi, have_poll_lock);
6421 preempt_enable();
6422out:
6423 rcu_read_unlock();
6424}
6425EXPORT_SYMBOL(napi_busy_loop);
6426
6427#endif /* CONFIG_NET_RX_BUSY_POLL */
6428
6429static void napi_hash_add(struct napi_struct *napi)
6430{
6431 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6432 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6433 return;
6434
6435 spin_lock(&napi_hash_lock);
6436
6437 /* 0..NR_CPUS range is reserved for sender_cpu use */
6438 do {
6439 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6440 napi_gen_id = MIN_NAPI_ID;
6441 } while (napi_by_id(napi_gen_id));
6442 napi->napi_id = napi_gen_id;
6443
6444 hlist_add_head_rcu(&napi->napi_hash_node,
6445 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6446
6447 spin_unlock(&napi_hash_lock);
6448}
6449
6450/* Warning : caller is responsible to make sure rcu grace period
6451 * is respected before freeing memory containing @napi
6452 */
6453bool napi_hash_del(struct napi_struct *napi)
6454{
6455 bool rcu_sync_needed = false;
6456
6457 spin_lock(&napi_hash_lock);
6458
6459 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6460 rcu_sync_needed = true;
6461 hlist_del_rcu(&napi->napi_hash_node);
6462 }
6463 spin_unlock(&napi_hash_lock);
6464 return rcu_sync_needed;
6465}
6466EXPORT_SYMBOL_GPL(napi_hash_del);
6467
6468static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6469{
6470 struct napi_struct *napi;
6471
6472 napi = container_of(timer, struct napi_struct, timer);
6473
6474 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6475 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6476 */
6477 if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6478 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6479 __napi_schedule_irqoff(napi);
6480
6481 return HRTIMER_NORESTART;
6482}
6483
6484static void init_gro_hash(struct napi_struct *napi)
6485{
6486 int i;
6487
6488 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6489 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6490 napi->gro_hash[i].count = 0;
6491 }
6492 napi->gro_bitmask = 0;
6493}
6494
6495void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6496 int (*poll)(struct napi_struct *, int), int weight)
6497{
6498 INIT_LIST_HEAD(&napi->poll_list);
6499 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6500 napi->timer.function = napi_watchdog;
6501 init_gro_hash(napi);
6502 napi->skb = NULL;
6503 INIT_LIST_HEAD(&napi->rx_list);
6504 napi->rx_count = 0;
6505 napi->poll = poll;
6506 if (weight > NAPI_POLL_WEIGHT)
6507 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6508 weight);
6509 napi->weight = weight;
6510 list_add(&napi->dev_list, &dev->napi_list);
6511 napi->dev = dev;
6512#ifdef CONFIG_NETPOLL
6513 napi->poll_owner = -1;
6514#endif
6515 set_bit(NAPI_STATE_SCHED, &napi->state);
6516 napi_hash_add(napi);
6517}
6518EXPORT_SYMBOL(netif_napi_add);
6519
6520void napi_disable(struct napi_struct *n)
6521{
6522 might_sleep();
6523 set_bit(NAPI_STATE_DISABLE, &n->state);
6524
6525 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6526 msleep(1);
6527 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6528 msleep(1);
6529
6530 hrtimer_cancel(&n->timer);
6531
6532 clear_bit(NAPI_STATE_DISABLE, &n->state);
6533}
6534EXPORT_SYMBOL(napi_disable);
6535
6536static void flush_gro_hash(struct napi_struct *napi)
6537{
6538 int i;
6539
6540 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6541 struct sk_buff *skb, *n;
6542
6543 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6544 kfree_skb(skb);
6545 napi->gro_hash[i].count = 0;
6546 }
6547}
6548
6549/* Must be called in process context */
6550void netif_napi_del(struct napi_struct *napi)
6551{
6552 might_sleep();
6553 if (napi_hash_del(napi))
6554 synchronize_net();
6555 list_del_init(&napi->dev_list);
6556 napi_free_frags(napi);
6557
6558 flush_gro_hash(napi);
6559 napi->gro_bitmask = 0;
6560}
6561EXPORT_SYMBOL(netif_napi_del);
6562
6563static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6564{
6565 void *have;
6566 int work, weight;
6567
6568 list_del_init(&n->poll_list);
6569
6570 have = netpoll_poll_lock(n);
6571
6572 weight = n->weight;
6573
6574 /* This NAPI_STATE_SCHED test is for avoiding a race
6575 * with netpoll's poll_napi(). Only the entity which
6576 * obtains the lock and sees NAPI_STATE_SCHED set will
6577 * actually make the ->poll() call. Therefore we avoid
6578 * accidentally calling ->poll() when NAPI is not scheduled.
6579 */
6580 work = 0;
6581 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6582 work = n->poll(n, weight);
6583 trace_napi_poll(n, work, weight);
6584 }
6585
6586 WARN_ON_ONCE(work > weight);
6587
6588 if (likely(work < weight))
6589 goto out_unlock;
6590
6591 /* Drivers must not modify the NAPI state if they
6592 * consume the entire weight. In such cases this code
6593 * still "owns" the NAPI instance and therefore can
6594 * move the instance around on the list at-will.
6595 */
6596 if (unlikely(napi_disable_pending(n))) {
6597 napi_complete(n);
6598 goto out_unlock;
6599 }
6600
6601 if (n->gro_bitmask) {
6602 /* flush too old packets
6603 * If HZ < 1000, flush all packets.
6604 */
6605 napi_gro_flush(n, HZ >= 1000);
6606 }
6607
6608 gro_normal_list(n);
6609
6610 /* Some drivers may have called napi_schedule
6611 * prior to exhausting their budget.
6612 */
6613 if (unlikely(!list_empty(&n->poll_list))) {
6614 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6615 n->dev ? n->dev->name : "backlog");
6616 goto out_unlock;
6617 }
6618
6619 list_add_tail(&n->poll_list, repoll);
6620
6621out_unlock:
6622 netpoll_poll_unlock(have);
6623
6624 return work;
6625}
6626
6627static __latent_entropy void net_rx_action(struct softirq_action *h)
6628{
6629 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6630 unsigned long time_limit = jiffies +
6631 usecs_to_jiffies(netdev_budget_usecs);
6632 int budget = netdev_budget;
6633 LIST_HEAD(list);
6634 LIST_HEAD(repoll);
6635
6636 local_irq_disable();
6637 list_splice_init(&sd->poll_list, &list);
6638 local_irq_enable();
6639
6640 for (;;) {
6641 struct napi_struct *n;
6642
6643 if (list_empty(&list)) {
6644 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6645 goto out;
6646 break;
6647 }
6648
6649 n = list_first_entry(&list, struct napi_struct, poll_list);
6650 budget -= napi_poll(n, &repoll);
6651
6652 /* If softirq window is exhausted then punt.
6653 * Allow this to run for 2 jiffies since which will allow
6654 * an average latency of 1.5/HZ.
6655 */
6656 if (unlikely(budget <= 0 ||
6657 time_after_eq(jiffies, time_limit))) {
6658 sd->time_squeeze++;
6659 break;
6660 }
6661 }
6662
6663 local_irq_disable();
6664
6665 list_splice_tail_init(&sd->poll_list, &list);
6666 list_splice_tail(&repoll, &list);
6667 list_splice(&list, &sd->poll_list);
6668 if (!list_empty(&sd->poll_list))
6669 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6670
6671 net_rps_action_and_irq_enable(sd);
6672out:
6673 __kfree_skb_flush();
6674}
6675
6676struct netdev_adjacent {
6677 struct net_device *dev;
6678
6679 /* upper master flag, there can only be one master device per list */
6680 bool master;
6681
6682 /* lookup ignore flag */
6683 bool ignore;
6684
6685 /* counter for the number of times this device was added to us */
6686 u16 ref_nr;
6687
6688 /* private field for the users */
6689 void *private;
6690
6691 struct list_head list;
6692 struct rcu_head rcu;
6693};
6694
6695static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6696 struct list_head *adj_list)
6697{
6698 struct netdev_adjacent *adj;
6699
6700 list_for_each_entry(adj, adj_list, list) {
6701 if (adj->dev == adj_dev)
6702 return adj;
6703 }
6704 return NULL;
6705}
6706
6707static int ____netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6708{
6709 struct net_device *dev = data;
6710
6711 return upper_dev == dev;
6712}
6713
6714/**
6715 * netdev_has_upper_dev - Check if device is linked to an upper device
6716 * @dev: device
6717 * @upper_dev: upper device to check
6718 *
6719 * Find out if a device is linked to specified upper device and return true
6720 * in case it is. Note that this checks only immediate upper device,
6721 * not through a complete stack of devices. The caller must hold the RTNL lock.
6722 */
6723bool netdev_has_upper_dev(struct net_device *dev,
6724 struct net_device *upper_dev)
6725{
6726 ASSERT_RTNL();
6727
6728 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6729 upper_dev);
6730}
6731EXPORT_SYMBOL(netdev_has_upper_dev);
6732
6733/**
6734 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6735 * @dev: device
6736 * @upper_dev: upper device to check
6737 *
6738 * Find out if a device is linked to specified upper device and return true
6739 * in case it is. Note that this checks the entire upper device chain.
6740 * The caller must hold rcu lock.
6741 */
6742
6743bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6744 struct net_device *upper_dev)
6745{
6746 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6747 upper_dev);
6748}
6749EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6750
6751/**
6752 * netdev_has_any_upper_dev - Check if device is linked to some device
6753 * @dev: device
6754 *
6755 * Find out if a device is linked to an upper device and return true in case
6756 * it is. The caller must hold the RTNL lock.
6757 */
6758bool netdev_has_any_upper_dev(struct net_device *dev)
6759{
6760 ASSERT_RTNL();
6761
6762 return !list_empty(&dev->adj_list.upper);
6763}
6764EXPORT_SYMBOL(netdev_has_any_upper_dev);
6765
6766/**
6767 * netdev_master_upper_dev_get - Get master upper device
6768 * @dev: device
6769 *
6770 * Find a master upper device and return pointer to it or NULL in case
6771 * it's not there. The caller must hold the RTNL lock.
6772 */
6773struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6774{
6775 struct netdev_adjacent *upper;
6776
6777 ASSERT_RTNL();
6778
6779 if (list_empty(&dev->adj_list.upper))
6780 return NULL;
6781
6782 upper = list_first_entry(&dev->adj_list.upper,
6783 struct netdev_adjacent, list);
6784 if (likely(upper->master))
6785 return upper->dev;
6786 return NULL;
6787}
6788EXPORT_SYMBOL(netdev_master_upper_dev_get);
6789
6790static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6791{
6792 struct netdev_adjacent *upper;
6793
6794 ASSERT_RTNL();
6795
6796 if (list_empty(&dev->adj_list.upper))
6797 return NULL;
6798
6799 upper = list_first_entry(&dev->adj_list.upper,
6800 struct netdev_adjacent, list);
6801 if (likely(upper->master) && !upper->ignore)
6802 return upper->dev;
6803 return NULL;
6804}
6805
6806/**
6807 * netdev_has_any_lower_dev - Check if device is linked to some device
6808 * @dev: device
6809 *
6810 * Find out if a device is linked to a lower device and return true in case
6811 * it is. The caller must hold the RTNL lock.
6812 */
6813static bool netdev_has_any_lower_dev(struct net_device *dev)
6814{
6815 ASSERT_RTNL();
6816
6817 return !list_empty(&dev->adj_list.lower);
6818}
6819
6820void *netdev_adjacent_get_private(struct list_head *adj_list)
6821{
6822 struct netdev_adjacent *adj;
6823
6824 adj = list_entry(adj_list, struct netdev_adjacent, list);
6825
6826 return adj->private;
6827}
6828EXPORT_SYMBOL(netdev_adjacent_get_private);
6829
6830/**
6831 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6832 * @dev: device
6833 * @iter: list_head ** of the current position
6834 *
6835 * Gets the next device from the dev's upper list, starting from iter
6836 * position. The caller must hold RCU read lock.
6837 */
6838struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6839 struct list_head **iter)
6840{
6841 struct netdev_adjacent *upper;
6842
6843 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6844
6845 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6846
6847 if (&upper->list == &dev->adj_list.upper)
6848 return NULL;
6849
6850 *iter = &upper->list;
6851
6852 return upper->dev;
6853}
6854EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6855
6856static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6857 struct list_head **iter,
6858 bool *ignore)
6859{
6860 struct netdev_adjacent *upper;
6861
6862 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6863
6864 if (&upper->list == &dev->adj_list.upper)
6865 return NULL;
6866
6867 *iter = &upper->list;
6868 *ignore = upper->ignore;
6869
6870 return upper->dev;
6871}
6872
6873static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6874 struct list_head **iter)
6875{
6876 struct netdev_adjacent *upper;
6877
6878 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6879
6880 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6881
6882 if (&upper->list == &dev->adj_list.upper)
6883 return NULL;
6884
6885 *iter = &upper->list;
6886
6887 return upper->dev;
6888}
6889
6890static int __netdev_walk_all_upper_dev(struct net_device *dev,
6891 int (*fn)(struct net_device *dev,
6892 void *data),
6893 void *data)
6894{
6895 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6896 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6897 int ret, cur = 0;
6898 bool ignore;
6899
6900 now = dev;
6901 iter = &dev->adj_list.upper;
6902
6903 while (1) {
6904 if (now != dev) {
6905 ret = fn(now, data);
6906 if (ret)
6907 return ret;
6908 }
6909
6910 next = NULL;
6911 while (1) {
6912 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6913 if (!udev)
6914 break;
6915 if (ignore)
6916 continue;
6917
6918 next = udev;
6919 niter = &udev->adj_list.upper;
6920 dev_stack[cur] = now;
6921 iter_stack[cur++] = iter;
6922 break;
6923 }
6924
6925 if (!next) {
6926 if (!cur)
6927 return 0;
6928 next = dev_stack[--cur];
6929 niter = iter_stack[cur];
6930 }
6931
6932 now = next;
6933 iter = niter;
6934 }
6935
6936 return 0;
6937}
6938
6939int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6940 int (*fn)(struct net_device *dev,
6941 void *data),
6942 void *data)
6943{
6944 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6945 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6946 int ret, cur = 0;
6947
6948 now = dev;
6949 iter = &dev->adj_list.upper;
6950
6951 while (1) {
6952 if (now != dev) {
6953 ret = fn(now, data);
6954 if (ret)
6955 return ret;
6956 }
6957
6958 next = NULL;
6959 while (1) {
6960 udev = netdev_next_upper_dev_rcu(now, &iter);
6961 if (!udev)
6962 break;
6963
6964 next = udev;
6965 niter = &udev->adj_list.upper;
6966 dev_stack[cur] = now;
6967 iter_stack[cur++] = iter;
6968 break;
6969 }
6970
6971 if (!next) {
6972 if (!cur)
6973 return 0;
6974 next = dev_stack[--cur];
6975 niter = iter_stack[cur];
6976 }
6977
6978 now = next;
6979 iter = niter;
6980 }
6981
6982 return 0;
6983}
6984EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6985
6986static bool __netdev_has_upper_dev(struct net_device *dev,
6987 struct net_device *upper_dev)
6988{
6989 ASSERT_RTNL();
6990
6991 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
6992 upper_dev);
6993}
6994
6995/**
6996 * netdev_lower_get_next_private - Get the next ->private from the
6997 * lower neighbour list
6998 * @dev: device
6999 * @iter: list_head ** of the current position
7000 *
7001 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7002 * list, starting from iter position. The caller must hold either hold the
7003 * RTNL lock or its own locking that guarantees that the neighbour lower
7004 * list will remain unchanged.
7005 */
7006void *netdev_lower_get_next_private(struct net_device *dev,
7007 struct list_head **iter)
7008{
7009 struct netdev_adjacent *lower;
7010
7011 lower = list_entry(*iter, struct netdev_adjacent, list);
7012
7013 if (&lower->list == &dev->adj_list.lower)
7014 return NULL;
7015
7016 *iter = lower->list.next;
7017
7018 return lower->private;
7019}
7020EXPORT_SYMBOL(netdev_lower_get_next_private);
7021
7022/**
7023 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7024 * lower neighbour list, RCU
7025 * variant
7026 * @dev: device
7027 * @iter: list_head ** of the current position
7028 *
7029 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7030 * list, starting from iter position. The caller must hold RCU read lock.
7031 */
7032void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7033 struct list_head **iter)
7034{
7035 struct netdev_adjacent *lower;
7036
7037 WARN_ON_ONCE(!rcu_read_lock_held());
7038
7039 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7040
7041 if (&lower->list == &dev->adj_list.lower)
7042 return NULL;
7043
7044 *iter = &lower->list;
7045
7046 return lower->private;
7047}
7048EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7049
7050/**
7051 * netdev_lower_get_next - Get the next device from the lower neighbour
7052 * list
7053 * @dev: device
7054 * @iter: list_head ** of the current position
7055 *
7056 * Gets the next netdev_adjacent from the dev's lower neighbour
7057 * list, starting from iter position. The caller must hold RTNL lock or
7058 * its own locking that guarantees that the neighbour lower
7059 * list will remain unchanged.
7060 */
7061void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7062{
7063 struct netdev_adjacent *lower;
7064
7065 lower = list_entry(*iter, struct netdev_adjacent, list);
7066
7067 if (&lower->list == &dev->adj_list.lower)
7068 return NULL;
7069
7070 *iter = lower->list.next;
7071
7072 return lower->dev;
7073}
7074EXPORT_SYMBOL(netdev_lower_get_next);
7075
7076static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7077 struct list_head **iter)
7078{
7079 struct netdev_adjacent *lower;
7080
7081 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7082
7083 if (&lower->list == &dev->adj_list.lower)
7084 return NULL;
7085
7086 *iter = &lower->list;
7087
7088 return lower->dev;
7089}
7090
7091static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7092 struct list_head **iter,
7093 bool *ignore)
7094{
7095 struct netdev_adjacent *lower;
7096
7097 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7098
7099 if (&lower->list == &dev->adj_list.lower)
7100 return NULL;
7101
7102 *iter = &lower->list;
7103 *ignore = lower->ignore;
7104
7105 return lower->dev;
7106}
7107
7108int netdev_walk_all_lower_dev(struct net_device *dev,
7109 int (*fn)(struct net_device *dev,
7110 void *data),
7111 void *data)
7112{
7113 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7114 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7115 int ret, cur = 0;
7116
7117 now = dev;
7118 iter = &dev->adj_list.lower;
7119
7120 while (1) {
7121 if (now != dev) {
7122 ret = fn(now, data);
7123 if (ret)
7124 return ret;
7125 }
7126
7127 next = NULL;
7128 while (1) {
7129 ldev = netdev_next_lower_dev(now, &iter);
7130 if (!ldev)
7131 break;
7132
7133 next = ldev;
7134 niter = &ldev->adj_list.lower;
7135 dev_stack[cur] = now;
7136 iter_stack[cur++] = iter;
7137 break;
7138 }
7139
7140 if (!next) {
7141 if (!cur)
7142 return 0;
7143 next = dev_stack[--cur];
7144 niter = iter_stack[cur];
7145 }
7146
7147 now = next;
7148 iter = niter;
7149 }
7150
7151 return 0;
7152}
7153EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7154
7155static int __netdev_walk_all_lower_dev(struct net_device *dev,
7156 int (*fn)(struct net_device *dev,
7157 void *data),
7158 void *data)
7159{
7160 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7161 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7162 int ret, cur = 0;
7163 bool ignore;
7164
7165 now = dev;
7166 iter = &dev->adj_list.lower;
7167
7168 while (1) {
7169 if (now != dev) {
7170 ret = fn(now, data);
7171 if (ret)
7172 return ret;
7173 }
7174
7175 next = NULL;
7176 while (1) {
7177 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7178 if (!ldev)
7179 break;
7180 if (ignore)
7181 continue;
7182
7183 next = ldev;
7184 niter = &ldev->adj_list.lower;
7185 dev_stack[cur] = now;
7186 iter_stack[cur++] = iter;
7187 break;
7188 }
7189
7190 if (!next) {
7191 if (!cur)
7192 return 0;
7193 next = dev_stack[--cur];
7194 niter = iter_stack[cur];
7195 }
7196
7197 now = next;
7198 iter = niter;
7199 }
7200
7201 return 0;
7202}
7203
7204struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7205 struct list_head **iter)
7206{
7207 struct netdev_adjacent *lower;
7208
7209 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7210 if (&lower->list == &dev->adj_list.lower)
7211 return NULL;
7212
7213 *iter = &lower->list;
7214
7215 return lower->dev;
7216}
7217EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7218
7219static u8 __netdev_upper_depth(struct net_device *dev)
7220{
7221 struct net_device *udev;
7222 struct list_head *iter;
7223 u8 max_depth = 0;
7224 bool ignore;
7225
7226 for (iter = &dev->adj_list.upper,
7227 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7228 udev;
7229 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7230 if (ignore)
7231 continue;
7232 if (max_depth < udev->upper_level)
7233 max_depth = udev->upper_level;
7234 }
7235
7236 return max_depth;
7237}
7238
7239static u8 __netdev_lower_depth(struct net_device *dev)
7240{
7241 struct net_device *ldev;
7242 struct list_head *iter;
7243 u8 max_depth = 0;
7244 bool ignore;
7245
7246 for (iter = &dev->adj_list.lower,
7247 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7248 ldev;
7249 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7250 if (ignore)
7251 continue;
7252 if (max_depth < ldev->lower_level)
7253 max_depth = ldev->lower_level;
7254 }
7255
7256 return max_depth;
7257}
7258
7259static int __netdev_update_upper_level(struct net_device *dev, void *data)
7260{
7261 dev->upper_level = __netdev_upper_depth(dev) + 1;
7262 return 0;
7263}
7264
7265static int __netdev_update_lower_level(struct net_device *dev, void *data)
7266{
7267 dev->lower_level = __netdev_lower_depth(dev) + 1;
7268 return 0;
7269}
7270
7271int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7272 int (*fn)(struct net_device *dev,
7273 void *data),
7274 void *data)
7275{
7276 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7277 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7278 int ret, cur = 0;
7279
7280 now = dev;
7281 iter = &dev->adj_list.lower;
7282
7283 while (1) {
7284 if (now != dev) {
7285 ret = fn(now, data);
7286 if (ret)
7287 return ret;
7288 }
7289
7290 next = NULL;
7291 while (1) {
7292 ldev = netdev_next_lower_dev_rcu(now, &iter);
7293 if (!ldev)
7294 break;
7295
7296 next = ldev;
7297 niter = &ldev->adj_list.lower;
7298 dev_stack[cur] = now;
7299 iter_stack[cur++] = iter;
7300 break;
7301 }
7302
7303 if (!next) {
7304 if (!cur)
7305 return 0;
7306 next = dev_stack[--cur];
7307 niter = iter_stack[cur];
7308 }
7309
7310 now = next;
7311 iter = niter;
7312 }
7313
7314 return 0;
7315}
7316EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7317
7318/**
7319 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7320 * lower neighbour list, RCU
7321 * variant
7322 * @dev: device
7323 *
7324 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7325 * list. The caller must hold RCU read lock.
7326 */
7327void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7328{
7329 struct netdev_adjacent *lower;
7330
7331 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7332 struct netdev_adjacent, list);
7333 if (lower)
7334 return lower->private;
7335 return NULL;
7336}
7337EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7338
7339/**
7340 * netdev_master_upper_dev_get_rcu - Get master upper device
7341 * @dev: device
7342 *
7343 * Find a master upper device and return pointer to it or NULL in case
7344 * it's not there. The caller must hold the RCU read lock.
7345 */
7346struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7347{
7348 struct netdev_adjacent *upper;
7349
7350 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7351 struct netdev_adjacent, list);
7352 if (upper && likely(upper->master))
7353 return upper->dev;
7354 return NULL;
7355}
7356EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7357
7358static int netdev_adjacent_sysfs_add(struct net_device *dev,
7359 struct net_device *adj_dev,
7360 struct list_head *dev_list)
7361{
7362 char linkname[IFNAMSIZ+7];
7363
7364 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7365 "upper_%s" : "lower_%s", adj_dev->name);
7366 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7367 linkname);
7368}
7369static void netdev_adjacent_sysfs_del(struct net_device *dev,
7370 char *name,
7371 struct list_head *dev_list)
7372{
7373 char linkname[IFNAMSIZ+7];
7374
7375 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7376 "upper_%s" : "lower_%s", name);
7377 sysfs_remove_link(&(dev->dev.kobj), linkname);
7378}
7379
7380static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7381 struct net_device *adj_dev,
7382 struct list_head *dev_list)
7383{
7384 return (dev_list == &dev->adj_list.upper ||
7385 dev_list == &dev->adj_list.lower) &&
7386 net_eq(dev_net(dev), dev_net(adj_dev));
7387}
7388
7389static int __netdev_adjacent_dev_insert(struct net_device *dev,
7390 struct net_device *adj_dev,
7391 struct list_head *dev_list,
7392 void *private, bool master)
7393{
7394 struct netdev_adjacent *adj;
7395 int ret;
7396
7397 adj = __netdev_find_adj(adj_dev, dev_list);
7398
7399 if (adj) {
7400 adj->ref_nr += 1;
7401 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7402 dev->name, adj_dev->name, adj->ref_nr);
7403
7404 return 0;
7405 }
7406
7407 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7408 if (!adj)
7409 return -ENOMEM;
7410
7411 adj->dev = adj_dev;
7412 adj->master = master;
7413 adj->ref_nr = 1;
7414 adj->private = private;
7415 adj->ignore = false;
7416 dev_hold(adj_dev);
7417
7418 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7419 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7420
7421 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7422 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7423 if (ret)
7424 goto free_adj;
7425 }
7426
7427 /* Ensure that master link is always the first item in list. */
7428 if (master) {
7429 ret = sysfs_create_link(&(dev->dev.kobj),
7430 &(adj_dev->dev.kobj), "master");
7431 if (ret)
7432 goto remove_symlinks;
7433
7434 list_add_rcu(&adj->list, dev_list);
7435 } else {
7436 list_add_tail_rcu(&adj->list, dev_list);
7437 }
7438
7439 return 0;
7440
7441remove_symlinks:
7442 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7443 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7444free_adj:
7445 kfree(adj);
7446 dev_put(adj_dev);
7447
7448 return ret;
7449}
7450
7451static void __netdev_adjacent_dev_remove(struct net_device *dev,
7452 struct net_device *adj_dev,
7453 u16 ref_nr,
7454 struct list_head *dev_list)
7455{
7456 struct netdev_adjacent *adj;
7457
7458 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7459 dev->name, adj_dev->name, ref_nr);
7460
7461 adj = __netdev_find_adj(adj_dev, dev_list);
7462
7463 if (!adj) {
7464 pr_err("Adjacency does not exist for device %s from %s\n",
7465 dev->name, adj_dev->name);
7466 WARN_ON(1);
7467 return;
7468 }
7469
7470 if (adj->ref_nr > ref_nr) {
7471 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7472 dev->name, adj_dev->name, ref_nr,
7473 adj->ref_nr - ref_nr);
7474 adj->ref_nr -= ref_nr;
7475 return;
7476 }
7477
7478 if (adj->master)
7479 sysfs_remove_link(&(dev->dev.kobj), "master");
7480
7481 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7482 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7483
7484 list_del_rcu(&adj->list);
7485 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7486 adj_dev->name, dev->name, adj_dev->name);
7487 dev_put(adj_dev);
7488 kfree_rcu(adj, rcu);
7489}
7490
7491static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7492 struct net_device *upper_dev,
7493 struct list_head *up_list,
7494 struct list_head *down_list,
7495 void *private, bool master)
7496{
7497 int ret;
7498
7499 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7500 private, master);
7501 if (ret)
7502 return ret;
7503
7504 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7505 private, false);
7506 if (ret) {
7507 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7508 return ret;
7509 }
7510
7511 return 0;
7512}
7513
7514static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7515 struct net_device *upper_dev,
7516 u16 ref_nr,
7517 struct list_head *up_list,
7518 struct list_head *down_list)
7519{
7520 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7521 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7522}
7523
7524static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7525 struct net_device *upper_dev,
7526 void *private, bool master)
7527{
7528 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7529 &dev->adj_list.upper,
7530 &upper_dev->adj_list.lower,
7531 private, master);
7532}
7533
7534static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7535 struct net_device *upper_dev)
7536{
7537 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7538 &dev->adj_list.upper,
7539 &upper_dev->adj_list.lower);
7540}
7541
7542static int __netdev_upper_dev_link(struct net_device *dev,
7543 struct net_device *upper_dev, bool master,
7544 void *upper_priv, void *upper_info,
7545 struct netlink_ext_ack *extack)
7546{
7547 struct netdev_notifier_changeupper_info changeupper_info = {
7548 .info = {
7549 .dev = dev,
7550 .extack = extack,
7551 },
7552 .upper_dev = upper_dev,
7553 .master = master,
7554 .linking = true,
7555 .upper_info = upper_info,
7556 };
7557 struct net_device *master_dev;
7558 int ret = 0;
7559
7560 ASSERT_RTNL();
7561
7562 if (dev == upper_dev)
7563 return -EBUSY;
7564
7565 /* To prevent loops, check if dev is not upper device to upper_dev. */
7566 if (__netdev_has_upper_dev(upper_dev, dev))
7567 return -EBUSY;
7568
7569 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7570 return -EMLINK;
7571
7572 if (!master) {
7573 if (__netdev_has_upper_dev(dev, upper_dev))
7574 return -EEXIST;
7575 } else {
7576 master_dev = __netdev_master_upper_dev_get(dev);
7577 if (master_dev)
7578 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7579 }
7580
7581 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7582 &changeupper_info.info);
7583 ret = notifier_to_errno(ret);
7584 if (ret)
7585 return ret;
7586
7587 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7588 master);
7589 if (ret)
7590 return ret;
7591
7592 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7593 &changeupper_info.info);
7594 ret = notifier_to_errno(ret);
7595 if (ret)
7596 goto rollback;
7597
7598 __netdev_update_upper_level(dev, NULL);
7599 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7600
7601 __netdev_update_lower_level(upper_dev, NULL);
7602 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7603 NULL);
7604
7605 return 0;
7606
7607rollback:
7608 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7609
7610 return ret;
7611}
7612
7613/**
7614 * netdev_upper_dev_link - Add a link to the upper device
7615 * @dev: device
7616 * @upper_dev: new upper device
7617 * @extack: netlink extended ack
7618 *
7619 * Adds a link to device which is upper to this one. The caller must hold
7620 * the RTNL lock. On a failure a negative errno code is returned.
7621 * On success the reference counts are adjusted and the function
7622 * returns zero.
7623 */
7624int netdev_upper_dev_link(struct net_device *dev,
7625 struct net_device *upper_dev,
7626 struct netlink_ext_ack *extack)
7627{
7628 return __netdev_upper_dev_link(dev, upper_dev, false,
7629 NULL, NULL, extack);
7630}
7631EXPORT_SYMBOL(netdev_upper_dev_link);
7632
7633/**
7634 * netdev_master_upper_dev_link - Add a master link to the upper device
7635 * @dev: device
7636 * @upper_dev: new upper device
7637 * @upper_priv: upper device private
7638 * @upper_info: upper info to be passed down via notifier
7639 * @extack: netlink extended ack
7640 *
7641 * Adds a link to device which is upper to this one. In this case, only
7642 * one master upper device can be linked, although other non-master devices
7643 * might be linked as well. The caller must hold the RTNL lock.
7644 * On a failure a negative errno code is returned. On success the reference
7645 * counts are adjusted and the function returns zero.
7646 */
7647int netdev_master_upper_dev_link(struct net_device *dev,
7648 struct net_device *upper_dev,
7649 void *upper_priv, void *upper_info,
7650 struct netlink_ext_ack *extack)
7651{
7652 return __netdev_upper_dev_link(dev, upper_dev, true,
7653 upper_priv, upper_info, extack);
7654}
7655EXPORT_SYMBOL(netdev_master_upper_dev_link);
7656
7657/**
7658 * netdev_upper_dev_unlink - Removes a link to upper device
7659 * @dev: device
7660 * @upper_dev: new upper device
7661 *
7662 * Removes a link to device which is upper to this one. The caller must hold
7663 * the RTNL lock.
7664 */
7665void netdev_upper_dev_unlink(struct net_device *dev,
7666 struct net_device *upper_dev)
7667{
7668 struct netdev_notifier_changeupper_info changeupper_info = {
7669 .info = {
7670 .dev = dev,
7671 },
7672 .upper_dev = upper_dev,
7673 .linking = false,
7674 };
7675
7676 ASSERT_RTNL();
7677
7678 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7679
7680 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7681 &changeupper_info.info);
7682
7683 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7684
7685 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7686 &changeupper_info.info);
7687
7688 __netdev_update_upper_level(dev, NULL);
7689 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7690
7691 __netdev_update_lower_level(upper_dev, NULL);
7692 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7693 NULL);
7694}
7695EXPORT_SYMBOL(netdev_upper_dev_unlink);
7696
7697static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7698 struct net_device *lower_dev,
7699 bool val)
7700{
7701 struct netdev_adjacent *adj;
7702
7703 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7704 if (adj)
7705 adj->ignore = val;
7706
7707 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7708 if (adj)
7709 adj->ignore = val;
7710}
7711
7712static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7713 struct net_device *lower_dev)
7714{
7715 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7716}
7717
7718static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7719 struct net_device *lower_dev)
7720{
7721 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7722}
7723
7724int netdev_adjacent_change_prepare(struct net_device *old_dev,
7725 struct net_device *new_dev,
7726 struct net_device *dev,
7727 struct netlink_ext_ack *extack)
7728{
7729 int err;
7730
7731 if (!new_dev)
7732 return 0;
7733
7734 if (old_dev && new_dev != old_dev)
7735 netdev_adjacent_dev_disable(dev, old_dev);
7736
7737 err = netdev_upper_dev_link(new_dev, dev, extack);
7738 if (err) {
7739 if (old_dev && new_dev != old_dev)
7740 netdev_adjacent_dev_enable(dev, old_dev);
7741 return err;
7742 }
7743
7744 return 0;
7745}
7746EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7747
7748void netdev_adjacent_change_commit(struct net_device *old_dev,
7749 struct net_device *new_dev,
7750 struct net_device *dev)
7751{
7752 if (!new_dev || !old_dev)
7753 return;
7754
7755 if (new_dev == old_dev)
7756 return;
7757
7758 netdev_adjacent_dev_enable(dev, old_dev);
7759 netdev_upper_dev_unlink(old_dev, dev);
7760}
7761EXPORT_SYMBOL(netdev_adjacent_change_commit);
7762
7763void netdev_adjacent_change_abort(struct net_device *old_dev,
7764 struct net_device *new_dev,
7765 struct net_device *dev)
7766{
7767 if (!new_dev)
7768 return;
7769
7770 if (old_dev && new_dev != old_dev)
7771 netdev_adjacent_dev_enable(dev, old_dev);
7772
7773 netdev_upper_dev_unlink(new_dev, dev);
7774}
7775EXPORT_SYMBOL(netdev_adjacent_change_abort);
7776
7777/**
7778 * netdev_bonding_info_change - Dispatch event about slave change
7779 * @dev: device
7780 * @bonding_info: info to dispatch
7781 *
7782 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7783 * The caller must hold the RTNL lock.
7784 */
7785void netdev_bonding_info_change(struct net_device *dev,
7786 struct netdev_bonding_info *bonding_info)
7787{
7788 struct netdev_notifier_bonding_info info = {
7789 .info.dev = dev,
7790 };
7791
7792 memcpy(&info.bonding_info, bonding_info,
7793 sizeof(struct netdev_bonding_info));
7794 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7795 &info.info);
7796}
7797EXPORT_SYMBOL(netdev_bonding_info_change);
7798
7799static void netdev_adjacent_add_links(struct net_device *dev)
7800{
7801 struct netdev_adjacent *iter;
7802
7803 struct net *net = dev_net(dev);
7804
7805 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7806 if (!net_eq(net, dev_net(iter->dev)))
7807 continue;
7808 netdev_adjacent_sysfs_add(iter->dev, dev,
7809 &iter->dev->adj_list.lower);
7810 netdev_adjacent_sysfs_add(dev, iter->dev,
7811 &dev->adj_list.upper);
7812 }
7813
7814 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7815 if (!net_eq(net, dev_net(iter->dev)))
7816 continue;
7817 netdev_adjacent_sysfs_add(iter->dev, dev,
7818 &iter->dev->adj_list.upper);
7819 netdev_adjacent_sysfs_add(dev, iter->dev,
7820 &dev->adj_list.lower);
7821 }
7822}
7823
7824static void netdev_adjacent_del_links(struct net_device *dev)
7825{
7826 struct netdev_adjacent *iter;
7827
7828 struct net *net = dev_net(dev);
7829
7830 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7831 if (!net_eq(net, dev_net(iter->dev)))
7832 continue;
7833 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7834 &iter->dev->adj_list.lower);
7835 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7836 &dev->adj_list.upper);
7837 }
7838
7839 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7840 if (!net_eq(net, dev_net(iter->dev)))
7841 continue;
7842 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7843 &iter->dev->adj_list.upper);
7844 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7845 &dev->adj_list.lower);
7846 }
7847}
7848
7849void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7850{
7851 struct netdev_adjacent *iter;
7852
7853 struct net *net = dev_net(dev);
7854
7855 list_for_each_entry(iter, &dev->adj_list.upper, list) {
7856 if (!net_eq(net, dev_net(iter->dev)))
7857 continue;
7858 netdev_adjacent_sysfs_del(iter->dev, oldname,
7859 &iter->dev->adj_list.lower);
7860 netdev_adjacent_sysfs_add(iter->dev, dev,
7861 &iter->dev->adj_list.lower);
7862 }
7863
7864 list_for_each_entry(iter, &dev->adj_list.lower, list) {
7865 if (!net_eq(net, dev_net(iter->dev)))
7866 continue;
7867 netdev_adjacent_sysfs_del(iter->dev, oldname,
7868 &iter->dev->adj_list.upper);
7869 netdev_adjacent_sysfs_add(iter->dev, dev,
7870 &iter->dev->adj_list.upper);
7871 }
7872}
7873
7874void *netdev_lower_dev_get_private(struct net_device *dev,
7875 struct net_device *lower_dev)
7876{
7877 struct netdev_adjacent *lower;
7878
7879 if (!lower_dev)
7880 return NULL;
7881 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7882 if (!lower)
7883 return NULL;
7884
7885 return lower->private;
7886}
7887EXPORT_SYMBOL(netdev_lower_dev_get_private);
7888
7889
7890/**
7891 * netdev_lower_change - Dispatch event about lower device state change
7892 * @lower_dev: device
7893 * @lower_state_info: state to dispatch
7894 *
7895 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7896 * The caller must hold the RTNL lock.
7897 */
7898void netdev_lower_state_changed(struct net_device *lower_dev,
7899 void *lower_state_info)
7900{
7901 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7902 .info.dev = lower_dev,
7903 };
7904
7905 ASSERT_RTNL();
7906 changelowerstate_info.lower_state_info = lower_state_info;
7907 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7908 &changelowerstate_info.info);
7909}
7910EXPORT_SYMBOL(netdev_lower_state_changed);
7911
7912static void dev_change_rx_flags(struct net_device *dev, int flags)
7913{
7914 const struct net_device_ops *ops = dev->netdev_ops;
7915
7916 if (ops->ndo_change_rx_flags)
7917 ops->ndo_change_rx_flags(dev, flags);
7918}
7919
7920static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7921{
7922 unsigned int old_flags = dev->flags;
7923 kuid_t uid;
7924 kgid_t gid;
7925
7926 ASSERT_RTNL();
7927
7928 dev->flags |= IFF_PROMISC;
7929 dev->promiscuity += inc;
7930 if (dev->promiscuity == 0) {
7931 /*
7932 * Avoid overflow.
7933 * If inc causes overflow, untouch promisc and return error.
7934 */
7935 if (inc < 0)
7936 dev->flags &= ~IFF_PROMISC;
7937 else {
7938 dev->promiscuity -= inc;
7939 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7940 dev->name);
7941 return -EOVERFLOW;
7942 }
7943 }
7944 if (dev->flags != old_flags) {
7945 pr_info("device %s %s promiscuous mode\n",
7946 dev->name,
7947 dev->flags & IFF_PROMISC ? "entered" : "left");
7948 if (audit_enabled) {
7949 current_uid_gid(&uid, &gid);
7950 audit_log(audit_context(), GFP_ATOMIC,
7951 AUDIT_ANOM_PROMISCUOUS,
7952 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7953 dev->name, (dev->flags & IFF_PROMISC),
7954 (old_flags & IFF_PROMISC),
7955 from_kuid(&init_user_ns, audit_get_loginuid(current)),
7956 from_kuid(&init_user_ns, uid),
7957 from_kgid(&init_user_ns, gid),
7958 audit_get_sessionid(current));
7959 }
7960
7961 dev_change_rx_flags(dev, IFF_PROMISC);
7962 }
7963 if (notify)
7964 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7965 return 0;
7966}
7967
7968/**
7969 * dev_set_promiscuity - update promiscuity count on a device
7970 * @dev: device
7971 * @inc: modifier
7972 *
7973 * Add or remove promiscuity from a device. While the count in the device
7974 * remains above zero the interface remains promiscuous. Once it hits zero
7975 * the device reverts back to normal filtering operation. A negative inc
7976 * value is used to drop promiscuity on the device.
7977 * Return 0 if successful or a negative errno code on error.
7978 */
7979int dev_set_promiscuity(struct net_device *dev, int inc)
7980{
7981 unsigned int old_flags = dev->flags;
7982 int err;
7983
7984 err = __dev_set_promiscuity(dev, inc, true);
7985 if (err < 0)
7986 return err;
7987 if (dev->flags != old_flags)
7988 dev_set_rx_mode(dev);
7989 return err;
7990}
7991EXPORT_SYMBOL(dev_set_promiscuity);
7992
7993static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7994{
7995 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7996
7997 ASSERT_RTNL();
7998
7999 dev->flags |= IFF_ALLMULTI;
8000 dev->allmulti += inc;
8001 if (dev->allmulti == 0) {
8002 /*
8003 * Avoid overflow.
8004 * If inc causes overflow, untouch allmulti and return error.
8005 */
8006 if (inc < 0)
8007 dev->flags &= ~IFF_ALLMULTI;
8008 else {
8009 dev->allmulti -= inc;
8010 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8011 dev->name);
8012 return -EOVERFLOW;
8013 }
8014 }
8015 if (dev->flags ^ old_flags) {
8016 dev_change_rx_flags(dev, IFF_ALLMULTI);
8017 dev_set_rx_mode(dev);
8018 if (notify)
8019 __dev_notify_flags(dev, old_flags,
8020 dev->gflags ^ old_gflags);
8021 }
8022 return 0;
8023}
8024
8025/**
8026 * dev_set_allmulti - update allmulti count on a device
8027 * @dev: device
8028 * @inc: modifier
8029 *
8030 * Add or remove reception of all multicast frames to a device. While the
8031 * count in the device remains above zero the interface remains listening
8032 * to all interfaces. Once it hits zero the device reverts back to normal
8033 * filtering operation. A negative @inc value is used to drop the counter
8034 * when releasing a resource needing all multicasts.
8035 * Return 0 if successful or a negative errno code on error.
8036 */
8037
8038int dev_set_allmulti(struct net_device *dev, int inc)
8039{
8040 return __dev_set_allmulti(dev, inc, true);
8041}
8042EXPORT_SYMBOL(dev_set_allmulti);
8043
8044/*
8045 * Upload unicast and multicast address lists to device and
8046 * configure RX filtering. When the device doesn't support unicast
8047 * filtering it is put in promiscuous mode while unicast addresses
8048 * are present.
8049 */
8050void __dev_set_rx_mode(struct net_device *dev)
8051{
8052 const struct net_device_ops *ops = dev->netdev_ops;
8053
8054 /* dev_open will call this function so the list will stay sane. */
8055 if (!(dev->flags&IFF_UP))
8056 return;
8057
8058 if (!netif_device_present(dev))
8059 return;
8060
8061 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8062 /* Unicast addresses changes may only happen under the rtnl,
8063 * therefore calling __dev_set_promiscuity here is safe.
8064 */
8065 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8066 __dev_set_promiscuity(dev, 1, false);
8067 dev->uc_promisc = true;
8068 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8069 __dev_set_promiscuity(dev, -1, false);
8070 dev->uc_promisc = false;
8071 }
8072 }
8073
8074 if (ops->ndo_set_rx_mode)
8075 ops->ndo_set_rx_mode(dev);
8076}
8077
8078void dev_set_rx_mode(struct net_device *dev)
8079{
8080 netif_addr_lock_bh(dev);
8081 __dev_set_rx_mode(dev);
8082 netif_addr_unlock_bh(dev);
8083}
8084
8085/**
8086 * dev_get_flags - get flags reported to userspace
8087 * @dev: device
8088 *
8089 * Get the combination of flag bits exported through APIs to userspace.
8090 */
8091unsigned int dev_get_flags(const struct net_device *dev)
8092{
8093 unsigned int flags;
8094
8095 flags = (dev->flags & ~(IFF_PROMISC |
8096 IFF_ALLMULTI |
8097 IFF_RUNNING |
8098 IFF_LOWER_UP |
8099 IFF_DORMANT)) |
8100 (dev->gflags & (IFF_PROMISC |
8101 IFF_ALLMULTI));
8102
8103 if (netif_running(dev)) {
8104 if (netif_oper_up(dev))
8105 flags |= IFF_RUNNING;
8106 if (netif_carrier_ok(dev))
8107 flags |= IFF_LOWER_UP;
8108 if (netif_dormant(dev))
8109 flags |= IFF_DORMANT;
8110 }
8111
8112 return flags;
8113}
8114EXPORT_SYMBOL(dev_get_flags);
8115
8116int __dev_change_flags(struct net_device *dev, unsigned int flags,
8117 struct netlink_ext_ack *extack)
8118{
8119 unsigned int old_flags = dev->flags;
8120 int ret;
8121
8122 ASSERT_RTNL();
8123
8124 /*
8125 * Set the flags on our device.
8126 */
8127
8128 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8129 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8130 IFF_AUTOMEDIA)) |
8131 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8132 IFF_ALLMULTI));
8133
8134 /*
8135 * Load in the correct multicast list now the flags have changed.
8136 */
8137
8138 if ((old_flags ^ flags) & IFF_MULTICAST)
8139 dev_change_rx_flags(dev, IFF_MULTICAST);
8140
8141 dev_set_rx_mode(dev);
8142
8143 /*
8144 * Have we downed the interface. We handle IFF_UP ourselves
8145 * according to user attempts to set it, rather than blindly
8146 * setting it.
8147 */
8148
8149 ret = 0;
8150 if ((old_flags ^ flags) & IFF_UP) {
8151 if (old_flags & IFF_UP)
8152 __dev_close(dev);
8153 else
8154 ret = __dev_open(dev, extack);
8155 }
8156
8157 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8158 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8159 unsigned int old_flags = dev->flags;
8160
8161 dev->gflags ^= IFF_PROMISC;
8162
8163 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8164 if (dev->flags != old_flags)
8165 dev_set_rx_mode(dev);
8166 }
8167
8168 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8169 * is important. Some (broken) drivers set IFF_PROMISC, when
8170 * IFF_ALLMULTI is requested not asking us and not reporting.
8171 */
8172 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8173 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8174
8175 dev->gflags ^= IFF_ALLMULTI;
8176 __dev_set_allmulti(dev, inc, false);
8177 }
8178
8179 return ret;
8180}
8181
8182void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8183 unsigned int gchanges)
8184{
8185 unsigned int changes = dev->flags ^ old_flags;
8186
8187 if (gchanges)
8188 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8189
8190 if (changes & IFF_UP) {
8191 if (dev->flags & IFF_UP)
8192 call_netdevice_notifiers(NETDEV_UP, dev);
8193 else
8194 call_netdevice_notifiers(NETDEV_DOWN, dev);
8195 }
8196
8197 if (dev->flags & IFF_UP &&
8198 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8199 struct netdev_notifier_change_info change_info = {
8200 .info = {
8201 .dev = dev,
8202 },
8203 .flags_changed = changes,
8204 };
8205
8206 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8207 }
8208}
8209
8210/**
8211 * dev_change_flags - change device settings
8212 * @dev: device
8213 * @flags: device state flags
8214 * @extack: netlink extended ack
8215 *
8216 * Change settings on device based state flags. The flags are
8217 * in the userspace exported format.
8218 */
8219int dev_change_flags(struct net_device *dev, unsigned int flags,
8220 struct netlink_ext_ack *extack)
8221{
8222 int ret;
8223 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8224
8225 ret = __dev_change_flags(dev, flags, extack);
8226 if (ret < 0)
8227 return ret;
8228
8229 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8230 __dev_notify_flags(dev, old_flags, changes);
8231 return ret;
8232}
8233EXPORT_SYMBOL(dev_change_flags);
8234
8235int __dev_set_mtu(struct net_device *dev, int new_mtu)
8236{
8237 const struct net_device_ops *ops = dev->netdev_ops;
8238
8239 if (ops->ndo_change_mtu)
8240 return ops->ndo_change_mtu(dev, new_mtu);
8241
8242 /* Pairs with all the lockless reads of dev->mtu in the stack */
8243 WRITE_ONCE(dev->mtu, new_mtu);
8244 return 0;
8245}
8246EXPORT_SYMBOL(__dev_set_mtu);
8247
8248int dev_validate_mtu(struct net_device *dev, int new_mtu,
8249 struct netlink_ext_ack *extack)
8250{
8251 /* MTU must be positive, and in range */
8252 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8253 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8254 return -EINVAL;
8255 }
8256
8257 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8258 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8259 return -EINVAL;
8260 }
8261 return 0;
8262}
8263
8264/**
8265 * dev_set_mtu_ext - Change maximum transfer unit
8266 * @dev: device
8267 * @new_mtu: new transfer unit
8268 * @extack: netlink extended ack
8269 *
8270 * Change the maximum transfer size of the network device.
8271 */
8272int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8273 struct netlink_ext_ack *extack)
8274{
8275 int err, orig_mtu;
8276
8277 if (new_mtu == dev->mtu)
8278 return 0;
8279
8280 err = dev_validate_mtu(dev, new_mtu, extack);
8281 if (err)
8282 return err;
8283
8284 if (!netif_device_present(dev))
8285 return -ENODEV;
8286
8287 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8288 err = notifier_to_errno(err);
8289 if (err)
8290 return err;
8291
8292 orig_mtu = dev->mtu;
8293 err = __dev_set_mtu(dev, new_mtu);
8294
8295 if (!err) {
8296 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8297 orig_mtu);
8298 err = notifier_to_errno(err);
8299 if (err) {
8300 /* setting mtu back and notifying everyone again,
8301 * so that they have a chance to revert changes.
8302 */
8303 __dev_set_mtu(dev, orig_mtu);
8304 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8305 new_mtu);
8306 }
8307 }
8308 return err;
8309}
8310
8311int dev_set_mtu(struct net_device *dev, int new_mtu)
8312{
8313 struct netlink_ext_ack extack;
8314 int err;
8315
8316 memset(&extack, 0, sizeof(extack));
8317 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8318 if (err && extack._msg)
8319 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8320 return err;
8321}
8322EXPORT_SYMBOL(dev_set_mtu);
8323
8324/**
8325 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8326 * @dev: device
8327 * @new_len: new tx queue length
8328 */
8329int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8330{
8331 unsigned int orig_len = dev->tx_queue_len;
8332 int res;
8333
8334 if (new_len != (unsigned int)new_len)
8335 return -ERANGE;
8336
8337 if (new_len != orig_len) {
8338 dev->tx_queue_len = new_len;
8339 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8340 res = notifier_to_errno(res);
8341 if (res)
8342 goto err_rollback;
8343 res = dev_qdisc_change_tx_queue_len(dev);
8344 if (res)
8345 goto err_rollback;
8346 }
8347
8348 return 0;
8349
8350err_rollback:
8351 netdev_err(dev, "refused to change device tx_queue_len\n");
8352 dev->tx_queue_len = orig_len;
8353 return res;
8354}
8355
8356/**
8357 * dev_set_group - Change group this device belongs to
8358 * @dev: device
8359 * @new_group: group this device should belong to
8360 */
8361void dev_set_group(struct net_device *dev, int new_group)
8362{
8363 dev->group = new_group;
8364}
8365EXPORT_SYMBOL(dev_set_group);
8366
8367/**
8368 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8369 * @dev: device
8370 * @addr: new address
8371 * @extack: netlink extended ack
8372 */
8373int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8374 struct netlink_ext_ack *extack)
8375{
8376 struct netdev_notifier_pre_changeaddr_info info = {
8377 .info.dev = dev,
8378 .info.extack = extack,
8379 .dev_addr = addr,
8380 };
8381 int rc;
8382
8383 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8384 return notifier_to_errno(rc);
8385}
8386EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8387
8388/**
8389 * dev_set_mac_address - Change Media Access Control Address
8390 * @dev: device
8391 * @sa: new address
8392 * @extack: netlink extended ack
8393 *
8394 * Change the hardware (MAC) address of the device
8395 */
8396int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8397 struct netlink_ext_ack *extack)
8398{
8399 const struct net_device_ops *ops = dev->netdev_ops;
8400 int err;
8401
8402 if (!ops->ndo_set_mac_address)
8403 return -EOPNOTSUPP;
8404 if (sa->sa_family != dev->type)
8405 return -EINVAL;
8406 if (!netif_device_present(dev))
8407 return -ENODEV;
8408 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8409 if (err)
8410 return err;
8411 err = ops->ndo_set_mac_address(dev, sa);
8412 if (err)
8413 return err;
8414 dev->addr_assign_type = NET_ADDR_SET;
8415 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8416 add_device_randomness(dev->dev_addr, dev->addr_len);
8417 return 0;
8418}
8419EXPORT_SYMBOL(dev_set_mac_address);
8420
8421/**
8422 * dev_change_carrier - Change device carrier
8423 * @dev: device
8424 * @new_carrier: new value
8425 *
8426 * Change device carrier
8427 */
8428int dev_change_carrier(struct net_device *dev, bool new_carrier)
8429{
8430 const struct net_device_ops *ops = dev->netdev_ops;
8431
8432 if (!ops->ndo_change_carrier)
8433 return -EOPNOTSUPP;
8434 if (!netif_device_present(dev))
8435 return -ENODEV;
8436 return ops->ndo_change_carrier(dev, new_carrier);
8437}
8438EXPORT_SYMBOL(dev_change_carrier);
8439
8440/**
8441 * dev_get_phys_port_id - Get device physical port ID
8442 * @dev: device
8443 * @ppid: port ID
8444 *
8445 * Get device physical port ID
8446 */
8447int dev_get_phys_port_id(struct net_device *dev,
8448 struct netdev_phys_item_id *ppid)
8449{
8450 const struct net_device_ops *ops = dev->netdev_ops;
8451
8452 if (!ops->ndo_get_phys_port_id)
8453 return -EOPNOTSUPP;
8454 return ops->ndo_get_phys_port_id(dev, ppid);
8455}
8456EXPORT_SYMBOL(dev_get_phys_port_id);
8457
8458/**
8459 * dev_get_phys_port_name - Get device physical port name
8460 * @dev: device
8461 * @name: port name
8462 * @len: limit of bytes to copy to name
8463 *
8464 * Get device physical port name
8465 */
8466int dev_get_phys_port_name(struct net_device *dev,
8467 char *name, size_t len)
8468{
8469 const struct net_device_ops *ops = dev->netdev_ops;
8470 int err;
8471
8472 if (ops->ndo_get_phys_port_name) {
8473 err = ops->ndo_get_phys_port_name(dev, name, len);
8474 if (err != -EOPNOTSUPP)
8475 return err;
8476 }
8477 return devlink_compat_phys_port_name_get(dev, name, len);
8478}
8479EXPORT_SYMBOL(dev_get_phys_port_name);
8480
8481/**
8482 * dev_get_port_parent_id - Get the device's port parent identifier
8483 * @dev: network device
8484 * @ppid: pointer to a storage for the port's parent identifier
8485 * @recurse: allow/disallow recursion to lower devices
8486 *
8487 * Get the devices's port parent identifier
8488 */
8489int dev_get_port_parent_id(struct net_device *dev,
8490 struct netdev_phys_item_id *ppid,
8491 bool recurse)
8492{
8493 const struct net_device_ops *ops = dev->netdev_ops;
8494 struct netdev_phys_item_id first = { };
8495 struct net_device *lower_dev;
8496 struct list_head *iter;
8497 int err;
8498
8499 if (ops->ndo_get_port_parent_id) {
8500 err = ops->ndo_get_port_parent_id(dev, ppid);
8501 if (err != -EOPNOTSUPP)
8502 return err;
8503 }
8504
8505 err = devlink_compat_switch_id_get(dev, ppid);
8506 if (!err || err != -EOPNOTSUPP)
8507 return err;
8508
8509 if (!recurse)
8510 return -EOPNOTSUPP;
8511
8512 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8513 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
8514 if (err)
8515 break;
8516 if (!first.id_len)
8517 first = *ppid;
8518 else if (memcmp(&first, ppid, sizeof(*ppid)))
8519 return -ENODATA;
8520 }
8521
8522 return err;
8523}
8524EXPORT_SYMBOL(dev_get_port_parent_id);
8525
8526/**
8527 * netdev_port_same_parent_id - Indicate if two network devices have
8528 * the same port parent identifier
8529 * @a: first network device
8530 * @b: second network device
8531 */
8532bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8533{
8534 struct netdev_phys_item_id a_id = { };
8535 struct netdev_phys_item_id b_id = { };
8536
8537 if (dev_get_port_parent_id(a, &a_id, true) ||
8538 dev_get_port_parent_id(b, &b_id, true))
8539 return false;
8540
8541 return netdev_phys_item_id_same(&a_id, &b_id);
8542}
8543EXPORT_SYMBOL(netdev_port_same_parent_id);
8544
8545/**
8546 * dev_change_proto_down - update protocol port state information
8547 * @dev: device
8548 * @proto_down: new value
8549 *
8550 * This info can be used by switch drivers to set the phys state of the
8551 * port.
8552 */
8553int dev_change_proto_down(struct net_device *dev, bool proto_down)
8554{
8555 const struct net_device_ops *ops = dev->netdev_ops;
8556
8557 if (!ops->ndo_change_proto_down)
8558 return -EOPNOTSUPP;
8559 if (!netif_device_present(dev))
8560 return -ENODEV;
8561 return ops->ndo_change_proto_down(dev, proto_down);
8562}
8563EXPORT_SYMBOL(dev_change_proto_down);
8564
8565/**
8566 * dev_change_proto_down_generic - generic implementation for
8567 * ndo_change_proto_down that sets carrier according to
8568 * proto_down.
8569 *
8570 * @dev: device
8571 * @proto_down: new value
8572 */
8573int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8574{
8575 if (proto_down)
8576 netif_carrier_off(dev);
8577 else
8578 netif_carrier_on(dev);
8579 dev->proto_down = proto_down;
8580 return 0;
8581}
8582EXPORT_SYMBOL(dev_change_proto_down_generic);
8583
8584u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8585 enum bpf_netdev_command cmd)
8586{
8587 struct netdev_bpf xdp;
8588
8589 if (!bpf_op)
8590 return 0;
8591
8592 memset(&xdp, 0, sizeof(xdp));
8593 xdp.command = cmd;
8594
8595 /* Query must always succeed. */
8596 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8597
8598 return xdp.prog_id;
8599}
8600
8601static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8602 struct netlink_ext_ack *extack, u32 flags,
8603 struct bpf_prog *prog)
8604{
8605 bool non_hw = !(flags & XDP_FLAGS_HW_MODE);
8606 struct bpf_prog *prev_prog = NULL;
8607 struct netdev_bpf xdp;
8608 int err;
8609
8610 if (non_hw) {
8611 prev_prog = bpf_prog_by_id(__dev_xdp_query(dev, bpf_op,
8612 XDP_QUERY_PROG));
8613 if (IS_ERR(prev_prog))
8614 prev_prog = NULL;
8615 }
8616
8617 memset(&xdp, 0, sizeof(xdp));
8618 if (flags & XDP_FLAGS_HW_MODE)
8619 xdp.command = XDP_SETUP_PROG_HW;
8620 else
8621 xdp.command = XDP_SETUP_PROG;
8622 xdp.extack = extack;
8623 xdp.flags = flags;
8624 xdp.prog = prog;
8625
8626 err = bpf_op(dev, &xdp);
8627 if (!err && non_hw)
8628 bpf_prog_change_xdp(prev_prog, prog);
8629
8630 if (prev_prog)
8631 bpf_prog_put(prev_prog);
8632
8633 return err;
8634}
8635
8636static void dev_xdp_uninstall(struct net_device *dev)
8637{
8638 struct netdev_bpf xdp;
8639 bpf_op_t ndo_bpf;
8640
8641 /* Remove generic XDP */
8642 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8643
8644 /* Remove from the driver */
8645 ndo_bpf = dev->netdev_ops->ndo_bpf;
8646 if (!ndo_bpf)
8647 return;
8648
8649 memset(&xdp, 0, sizeof(xdp));
8650 xdp.command = XDP_QUERY_PROG;
8651 WARN_ON(ndo_bpf(dev, &xdp));
8652 if (xdp.prog_id)
8653 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8654 NULL));
8655
8656 /* Remove HW offload */
8657 memset(&xdp, 0, sizeof(xdp));
8658 xdp.command = XDP_QUERY_PROG_HW;
8659 if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8660 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8661 NULL));
8662}
8663
8664/**
8665 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
8666 * @dev: device
8667 * @extack: netlink extended ack
8668 * @fd: new program fd or negative value to clear
8669 * @expected_fd: old program fd that userspace expects to replace or clear
8670 * @flags: xdp-related flags
8671 *
8672 * Set or clear a bpf program for a device
8673 */
8674int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8675 int fd, int expected_fd, u32 flags)
8676{
8677 const struct net_device_ops *ops = dev->netdev_ops;
8678 enum bpf_netdev_command query;
8679 u32 prog_id, expected_id = 0;
8680 bpf_op_t bpf_op, bpf_chk;
8681 struct bpf_prog *prog;
8682 bool offload;
8683 int err;
8684
8685 ASSERT_RTNL();
8686
8687 offload = flags & XDP_FLAGS_HW_MODE;
8688 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8689
8690 bpf_op = bpf_chk = ops->ndo_bpf;
8691 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8692 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8693 return -EOPNOTSUPP;
8694 }
8695 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8696 bpf_op = generic_xdp_install;
8697 if (bpf_op == bpf_chk)
8698 bpf_chk = generic_xdp_install;
8699
8700 prog_id = __dev_xdp_query(dev, bpf_op, query);
8701 if (flags & XDP_FLAGS_REPLACE) {
8702 if (expected_fd >= 0) {
8703 prog = bpf_prog_get_type_dev(expected_fd,
8704 BPF_PROG_TYPE_XDP,
8705 bpf_op == ops->ndo_bpf);
8706 if (IS_ERR(prog))
8707 return PTR_ERR(prog);
8708 expected_id = prog->aux->id;
8709 bpf_prog_put(prog);
8710 }
8711
8712 if (prog_id != expected_id) {
8713 NL_SET_ERR_MSG(extack, "Active program does not match expected");
8714 return -EEXIST;
8715 }
8716 }
8717 if (fd >= 0) {
8718 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8719 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8720 return -EEXIST;
8721 }
8722
8723 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8724 NL_SET_ERR_MSG(extack, "XDP program already attached");
8725 return -EBUSY;
8726 }
8727
8728 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8729 bpf_op == ops->ndo_bpf);
8730 if (IS_ERR(prog))
8731 return PTR_ERR(prog);
8732
8733 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8734 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8735 bpf_prog_put(prog);
8736 return -EINVAL;
8737 }
8738
8739 /* prog->aux->id may be 0 for orphaned device-bound progs */
8740 if (prog->aux->id && prog->aux->id == prog_id) {
8741 bpf_prog_put(prog);
8742 return 0;
8743 }
8744 } else {
8745 if (!prog_id)
8746 return 0;
8747 prog = NULL;
8748 }
8749
8750 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8751 if (err < 0 && prog)
8752 bpf_prog_put(prog);
8753
8754 return err;
8755}
8756
8757/**
8758 * dev_new_index - allocate an ifindex
8759 * @net: the applicable net namespace
8760 *
8761 * Returns a suitable unique value for a new device interface
8762 * number. The caller must hold the rtnl semaphore or the
8763 * dev_base_lock to be sure it remains unique.
8764 */
8765static int dev_new_index(struct net *net)
8766{
8767 int ifindex = net->ifindex;
8768
8769 for (;;) {
8770 if (++ifindex <= 0)
8771 ifindex = 1;
8772 if (!__dev_get_by_index(net, ifindex))
8773 return net->ifindex = ifindex;
8774 }
8775}
8776
8777/* Delayed registration/unregisteration */
8778static LIST_HEAD(net_todo_list);
8779DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8780
8781static void net_set_todo(struct net_device *dev)
8782{
8783 list_add_tail(&dev->todo_list, &net_todo_list);
8784 dev_net(dev)->dev_unreg_count++;
8785}
8786
8787static void rollback_registered_many(struct list_head *head)
8788{
8789 struct net_device *dev, *tmp;
8790 LIST_HEAD(close_head);
8791
8792 BUG_ON(dev_boot_phase);
8793 ASSERT_RTNL();
8794
8795 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8796 /* Some devices call without registering
8797 * for initialization unwind. Remove those
8798 * devices and proceed with the remaining.
8799 */
8800 if (dev->reg_state == NETREG_UNINITIALIZED) {
8801 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8802 dev->name, dev);
8803
8804 WARN_ON(1);
8805 list_del(&dev->unreg_list);
8806 continue;
8807 }
8808 dev->dismantle = true;
8809 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8810 }
8811
8812 /* If device is running, close it first. */
8813 list_for_each_entry(dev, head, unreg_list)
8814 list_add_tail(&dev->close_list, &close_head);
8815 dev_close_many(&close_head, true);
8816
8817 list_for_each_entry(dev, head, unreg_list) {
8818 /* And unlink it from device chain. */
8819 unlist_netdevice(dev);
8820
8821 dev->reg_state = NETREG_UNREGISTERING;
8822 }
8823 flush_all_backlogs();
8824
8825 synchronize_net();
8826
8827 list_for_each_entry(dev, head, unreg_list) {
8828 struct sk_buff *skb = NULL;
8829
8830 /* Shutdown queueing discipline. */
8831 dev_shutdown(dev);
8832
8833 dev_xdp_uninstall(dev);
8834
8835 /* Notify protocols, that we are about to destroy
8836 * this device. They should clean all the things.
8837 */
8838 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8839
8840 if (!dev->rtnl_link_ops ||
8841 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8842 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8843 GFP_KERNEL, NULL, 0);
8844
8845 /*
8846 * Flush the unicast and multicast chains
8847 */
8848 dev_uc_flush(dev);
8849 dev_mc_flush(dev);
8850
8851 netdev_name_node_alt_flush(dev);
8852 netdev_name_node_free(dev->name_node);
8853
8854 if (dev->netdev_ops->ndo_uninit)
8855 dev->netdev_ops->ndo_uninit(dev);
8856
8857 if (skb)
8858 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8859
8860 /* Notifier chain MUST detach us all upper devices. */
8861 WARN_ON(netdev_has_any_upper_dev(dev));
8862 WARN_ON(netdev_has_any_lower_dev(dev));
8863
8864 /* Remove entries from kobject tree */
8865 netdev_unregister_kobject(dev);
8866#ifdef CONFIG_XPS
8867 /* Remove XPS queueing entries */
8868 netif_reset_xps_queues_gt(dev, 0);
8869#endif
8870 }
8871
8872 synchronize_net();
8873
8874 list_for_each_entry(dev, head, unreg_list)
8875 dev_put(dev);
8876}
8877
8878static void rollback_registered(struct net_device *dev)
8879{
8880 LIST_HEAD(single);
8881
8882 list_add(&dev->unreg_list, &single);
8883 rollback_registered_many(&single);
8884 list_del(&single);
8885}
8886
8887static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8888 struct net_device *upper, netdev_features_t features)
8889{
8890 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8891 netdev_features_t feature;
8892 int feature_bit;
8893
8894 for_each_netdev_feature(upper_disables, feature_bit) {
8895 feature = __NETIF_F_BIT(feature_bit);
8896 if (!(upper->wanted_features & feature)
8897 && (features & feature)) {
8898 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8899 &feature, upper->name);
8900 features &= ~feature;
8901 }
8902 }
8903
8904 return features;
8905}
8906
8907static void netdev_sync_lower_features(struct net_device *upper,
8908 struct net_device *lower, netdev_features_t features)
8909{
8910 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8911 netdev_features_t feature;
8912 int feature_bit;
8913
8914 for_each_netdev_feature(upper_disables, feature_bit) {
8915 feature = __NETIF_F_BIT(feature_bit);
8916 if (!(features & feature) && (lower->features & feature)) {
8917 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8918 &feature, lower->name);
8919 lower->wanted_features &= ~feature;
8920 __netdev_update_features(lower);
8921
8922 if (unlikely(lower->features & feature))
8923 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8924 &feature, lower->name);
8925 else
8926 netdev_features_change(lower);
8927 }
8928 }
8929}
8930
8931static netdev_features_t netdev_fix_features(struct net_device *dev,
8932 netdev_features_t features)
8933{
8934 /* Fix illegal checksum combinations */
8935 if ((features & NETIF_F_HW_CSUM) &&
8936 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8937 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8938 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8939 }
8940
8941 /* TSO requires that SG is present as well. */
8942 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8943 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8944 features &= ~NETIF_F_ALL_TSO;
8945 }
8946
8947 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8948 !(features & NETIF_F_IP_CSUM)) {
8949 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8950 features &= ~NETIF_F_TSO;
8951 features &= ~NETIF_F_TSO_ECN;
8952 }
8953
8954 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8955 !(features & NETIF_F_IPV6_CSUM)) {
8956 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8957 features &= ~NETIF_F_TSO6;
8958 }
8959
8960 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8961 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8962 features &= ~NETIF_F_TSO_MANGLEID;
8963
8964 /* TSO ECN requires that TSO is present as well. */
8965 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8966 features &= ~NETIF_F_TSO_ECN;
8967
8968 /* Software GSO depends on SG. */
8969 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8970 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8971 features &= ~NETIF_F_GSO;
8972 }
8973
8974 /* GSO partial features require GSO partial be set */
8975 if ((features & dev->gso_partial_features) &&
8976 !(features & NETIF_F_GSO_PARTIAL)) {
8977 netdev_dbg(dev,
8978 "Dropping partially supported GSO features since no GSO partial.\n");
8979 features &= ~dev->gso_partial_features;
8980 }
8981
8982 if (!(features & NETIF_F_RXCSUM)) {
8983 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8984 * successfully merged by hardware must also have the
8985 * checksum verified by hardware. If the user does not
8986 * want to enable RXCSUM, logically, we should disable GRO_HW.
8987 */
8988 if (features & NETIF_F_GRO_HW) {
8989 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8990 features &= ~NETIF_F_GRO_HW;
8991 }
8992 }
8993
8994 /* LRO/HW-GRO features cannot be combined with RX-FCS */
8995 if (features & NETIF_F_RXFCS) {
8996 if (features & NETIF_F_LRO) {
8997 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8998 features &= ~NETIF_F_LRO;
8999 }
9000
9001 if (features & NETIF_F_GRO_HW) {
9002 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9003 features &= ~NETIF_F_GRO_HW;
9004 }
9005 }
9006
9007 return features;
9008}
9009
9010int __netdev_update_features(struct net_device *dev)
9011{
9012 struct net_device *upper, *lower;
9013 netdev_features_t features;
9014 struct list_head *iter;
9015 int err = -1;
9016
9017 ASSERT_RTNL();
9018
9019 features = netdev_get_wanted_features(dev);
9020
9021 if (dev->netdev_ops->ndo_fix_features)
9022 features = dev->netdev_ops->ndo_fix_features(dev, features);
9023
9024 /* driver might be less strict about feature dependencies */
9025 features = netdev_fix_features(dev, features);
9026
9027 /* some features can't be enabled if they're off an an upper device */
9028 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9029 features = netdev_sync_upper_features(dev, upper, features);
9030
9031 if (dev->features == features)
9032 goto sync_lower;
9033
9034 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9035 &dev->features, &features);
9036
9037 if (dev->netdev_ops->ndo_set_features)
9038 err = dev->netdev_ops->ndo_set_features(dev, features);
9039 else
9040 err = 0;
9041
9042 if (unlikely(err < 0)) {
9043 netdev_err(dev,
9044 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9045 err, &features, &dev->features);
9046 /* return non-0 since some features might have changed and
9047 * it's better to fire a spurious notification than miss it
9048 */
9049 return -1;
9050 }
9051
9052sync_lower:
9053 /* some features must be disabled on lower devices when disabled
9054 * on an upper device (think: bonding master or bridge)
9055 */
9056 netdev_for_each_lower_dev(dev, lower, iter)
9057 netdev_sync_lower_features(dev, lower, features);
9058
9059 if (!err) {
9060 netdev_features_t diff = features ^ dev->features;
9061
9062 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9063 /* udp_tunnel_{get,drop}_rx_info both need
9064 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9065 * device, or they won't do anything.
9066 * Thus we need to update dev->features
9067 * *before* calling udp_tunnel_get_rx_info,
9068 * but *after* calling udp_tunnel_drop_rx_info.
9069 */
9070 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9071 dev->features = features;
9072 udp_tunnel_get_rx_info(dev);
9073 } else {
9074 udp_tunnel_drop_rx_info(dev);
9075 }
9076 }
9077
9078 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9079 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9080 dev->features = features;
9081 err |= vlan_get_rx_ctag_filter_info(dev);
9082 } else {
9083 vlan_drop_rx_ctag_filter_info(dev);
9084 }
9085 }
9086
9087 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9088 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9089 dev->features = features;
9090 err |= vlan_get_rx_stag_filter_info(dev);
9091 } else {
9092 vlan_drop_rx_stag_filter_info(dev);
9093 }
9094 }
9095
9096 dev->features = features;
9097 }
9098
9099 return err < 0 ? 0 : 1;
9100}
9101
9102/**
9103 * netdev_update_features - recalculate device features
9104 * @dev: the device to check
9105 *
9106 * Recalculate dev->features set and send notifications if it
9107 * has changed. Should be called after driver or hardware dependent
9108 * conditions might have changed that influence the features.
9109 */
9110void netdev_update_features(struct net_device *dev)
9111{
9112 if (__netdev_update_features(dev))
9113 netdev_features_change(dev);
9114}
9115EXPORT_SYMBOL(netdev_update_features);
9116
9117/**
9118 * netdev_change_features - recalculate device features
9119 * @dev: the device to check
9120 *
9121 * Recalculate dev->features set and send notifications even
9122 * if they have not changed. Should be called instead of
9123 * netdev_update_features() if also dev->vlan_features might
9124 * have changed to allow the changes to be propagated to stacked
9125 * VLAN devices.
9126 */
9127void netdev_change_features(struct net_device *dev)
9128{
9129 __netdev_update_features(dev);
9130 netdev_features_change(dev);
9131}
9132EXPORT_SYMBOL(netdev_change_features);
9133
9134/**
9135 * netif_stacked_transfer_operstate - transfer operstate
9136 * @rootdev: the root or lower level device to transfer state from
9137 * @dev: the device to transfer operstate to
9138 *
9139 * Transfer operational state from root to device. This is normally
9140 * called when a stacking relationship exists between the root
9141 * device and the device(a leaf device).
9142 */
9143void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9144 struct net_device *dev)
9145{
9146 if (rootdev->operstate == IF_OPER_DORMANT)
9147 netif_dormant_on(dev);
9148 else
9149 netif_dormant_off(dev);
9150
9151 if (netif_carrier_ok(rootdev))
9152 netif_carrier_on(dev);
9153 else
9154 netif_carrier_off(dev);
9155}
9156EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9157
9158static int netif_alloc_rx_queues(struct net_device *dev)
9159{
9160 unsigned int i, count = dev->num_rx_queues;
9161 struct netdev_rx_queue *rx;
9162 size_t sz = count * sizeof(*rx);
9163 int err = 0;
9164
9165 BUG_ON(count < 1);
9166
9167 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9168 if (!rx)
9169 return -ENOMEM;
9170
9171 dev->_rx = rx;
9172
9173 for (i = 0; i < count; i++) {
9174 rx[i].dev = dev;
9175
9176 /* XDP RX-queue setup */
9177 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
9178 if (err < 0)
9179 goto err_rxq_info;
9180 }
9181 return 0;
9182
9183err_rxq_info:
9184 /* Rollback successful reg's and free other resources */
9185 while (i--)
9186 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9187 kvfree(dev->_rx);
9188 dev->_rx = NULL;
9189 return err;
9190}
9191
9192static void netif_free_rx_queues(struct net_device *dev)
9193{
9194 unsigned int i, count = dev->num_rx_queues;
9195
9196 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9197 if (!dev->_rx)
9198 return;
9199
9200 for (i = 0; i < count; i++)
9201 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9202
9203 kvfree(dev->_rx);
9204}
9205
9206static void netdev_init_one_queue(struct net_device *dev,
9207 struct netdev_queue *queue, void *_unused)
9208{
9209 /* Initialize queue lock */
9210 spin_lock_init(&queue->_xmit_lock);
9211 lockdep_set_class(&queue->_xmit_lock, &dev->qdisc_xmit_lock_key);
9212 queue->xmit_lock_owner = -1;
9213 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9214 queue->dev = dev;
9215#ifdef CONFIG_BQL
9216 dql_init(&queue->dql, HZ);
9217#endif
9218}
9219
9220static void netif_free_tx_queues(struct net_device *dev)
9221{
9222 kvfree(dev->_tx);
9223}
9224
9225static int netif_alloc_netdev_queues(struct net_device *dev)
9226{
9227 unsigned int count = dev->num_tx_queues;
9228 struct netdev_queue *tx;
9229 size_t sz = count * sizeof(*tx);
9230
9231 if (count < 1 || count > 0xffff)
9232 return -EINVAL;
9233
9234 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9235 if (!tx)
9236 return -ENOMEM;
9237
9238 dev->_tx = tx;
9239
9240 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9241 spin_lock_init(&dev->tx_global_lock);
9242
9243 return 0;
9244}
9245
9246void netif_tx_stop_all_queues(struct net_device *dev)
9247{
9248 unsigned int i;
9249
9250 for (i = 0; i < dev->num_tx_queues; i++) {
9251 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9252
9253 netif_tx_stop_queue(txq);
9254 }
9255}
9256EXPORT_SYMBOL(netif_tx_stop_all_queues);
9257
9258static void netdev_register_lockdep_key(struct net_device *dev)
9259{
9260 lockdep_register_key(&dev->qdisc_tx_busylock_key);
9261 lockdep_register_key(&dev->qdisc_running_key);
9262 lockdep_register_key(&dev->qdisc_xmit_lock_key);
9263 lockdep_register_key(&dev->addr_list_lock_key);
9264}
9265
9266static void netdev_unregister_lockdep_key(struct net_device *dev)
9267{
9268 lockdep_unregister_key(&dev->qdisc_tx_busylock_key);
9269 lockdep_unregister_key(&dev->qdisc_running_key);
9270 lockdep_unregister_key(&dev->qdisc_xmit_lock_key);
9271 lockdep_unregister_key(&dev->addr_list_lock_key);
9272}
9273
9274void netdev_update_lockdep_key(struct net_device *dev)
9275{
9276 lockdep_unregister_key(&dev->addr_list_lock_key);
9277 lockdep_register_key(&dev->addr_list_lock_key);
9278
9279 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9280}
9281EXPORT_SYMBOL(netdev_update_lockdep_key);
9282
9283/**
9284 * register_netdevice - register a network device
9285 * @dev: device to register
9286 *
9287 * Take a completed network device structure and add it to the kernel
9288 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9289 * chain. 0 is returned on success. A negative errno code is returned
9290 * on a failure to set up the device, or if the name is a duplicate.
9291 *
9292 * Callers must hold the rtnl semaphore. You may want
9293 * register_netdev() instead of this.
9294 *
9295 * BUGS:
9296 * The locking appears insufficient to guarantee two parallel registers
9297 * will not get the same name.
9298 */
9299
9300int register_netdevice(struct net_device *dev)
9301{
9302 int ret;
9303 struct net *net = dev_net(dev);
9304
9305 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9306 NETDEV_FEATURE_COUNT);
9307 BUG_ON(dev_boot_phase);
9308 ASSERT_RTNL();
9309
9310 might_sleep();
9311
9312 /* When net_device's are persistent, this will be fatal. */
9313 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9314 BUG_ON(!net);
9315
9316 ret = ethtool_check_ops(dev->ethtool_ops);
9317 if (ret)
9318 return ret;
9319
9320 spin_lock_init(&dev->addr_list_lock);
9321 lockdep_set_class(&dev->addr_list_lock, &dev->addr_list_lock_key);
9322
9323 ret = dev_get_valid_name(net, dev, dev->name);
9324 if (ret < 0)
9325 goto out;
9326
9327 ret = -ENOMEM;
9328 dev->name_node = netdev_name_node_head_alloc(dev);
9329 if (!dev->name_node)
9330 goto out;
9331
9332 /* Init, if this function is available */
9333 if (dev->netdev_ops->ndo_init) {
9334 ret = dev->netdev_ops->ndo_init(dev);
9335 if (ret) {
9336 if (ret > 0)
9337 ret = -EIO;
9338 goto err_free_name;
9339 }
9340 }
9341
9342 if (((dev->hw_features | dev->features) &
9343 NETIF_F_HW_VLAN_CTAG_FILTER) &&
9344 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
9345 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
9346 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
9347 ret = -EINVAL;
9348 goto err_uninit;
9349 }
9350
9351 ret = -EBUSY;
9352 if (!dev->ifindex)
9353 dev->ifindex = dev_new_index(net);
9354 else if (__dev_get_by_index(net, dev->ifindex))
9355 goto err_uninit;
9356
9357 /* Transfer changeable features to wanted_features and enable
9358 * software offloads (GSO and GRO).
9359 */
9360 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
9361 dev->features |= NETIF_F_SOFT_FEATURES;
9362
9363 if (dev->netdev_ops->ndo_udp_tunnel_add) {
9364 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9365 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
9366 }
9367
9368 dev->wanted_features = dev->features & dev->hw_features;
9369
9370 if (!(dev->flags & IFF_LOOPBACK))
9371 dev->hw_features |= NETIF_F_NOCACHE_COPY;
9372
9373 /* If IPv4 TCP segmentation offload is supported we should also
9374 * allow the device to enable segmenting the frame with the option
9375 * of ignoring a static IP ID value. This doesn't enable the
9376 * feature itself but allows the user to enable it later.
9377 */
9378 if (dev->hw_features & NETIF_F_TSO)
9379 dev->hw_features |= NETIF_F_TSO_MANGLEID;
9380 if (dev->vlan_features & NETIF_F_TSO)
9381 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
9382 if (dev->mpls_features & NETIF_F_TSO)
9383 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
9384 if (dev->hw_enc_features & NETIF_F_TSO)
9385 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
9386
9387 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
9388 */
9389 dev->vlan_features |= NETIF_F_HIGHDMA;
9390
9391 /* Make NETIF_F_SG inheritable to tunnel devices.
9392 */
9393 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
9394
9395 /* Make NETIF_F_SG inheritable to MPLS.
9396 */
9397 dev->mpls_features |= NETIF_F_SG;
9398
9399 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
9400 ret = notifier_to_errno(ret);
9401 if (ret)
9402 goto err_uninit;
9403
9404 ret = netdev_register_kobject(dev);
9405 if (ret) {
9406 dev->reg_state = NETREG_UNREGISTERED;
9407 goto err_uninit;
9408 }
9409 dev->reg_state = NETREG_REGISTERED;
9410
9411 __netdev_update_features(dev);
9412
9413 /*
9414 * Default initial state at registry is that the
9415 * device is present.
9416 */
9417
9418 set_bit(__LINK_STATE_PRESENT, &dev->state);
9419
9420 linkwatch_init_dev(dev);
9421
9422 dev_init_scheduler(dev);
9423 dev_hold(dev);
9424 list_netdevice(dev);
9425 add_device_randomness(dev->dev_addr, dev->addr_len);
9426
9427 /* If the device has permanent device address, driver should
9428 * set dev_addr and also addr_assign_type should be set to
9429 * NET_ADDR_PERM (default value).
9430 */
9431 if (dev->addr_assign_type == NET_ADDR_PERM)
9432 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
9433
9434 /* Notify protocols, that a new device appeared. */
9435 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
9436 ret = notifier_to_errno(ret);
9437 if (ret) {
9438 rollback_registered(dev);
9439 rcu_barrier();
9440
9441 dev->reg_state = NETREG_UNREGISTERED;
9442 }
9443 /*
9444 * Prevent userspace races by waiting until the network
9445 * device is fully setup before sending notifications.
9446 */
9447 if (!dev->rtnl_link_ops ||
9448 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
9449 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9450
9451out:
9452 return ret;
9453
9454err_uninit:
9455 if (dev->netdev_ops->ndo_uninit)
9456 dev->netdev_ops->ndo_uninit(dev);
9457 if (dev->priv_destructor)
9458 dev->priv_destructor(dev);
9459err_free_name:
9460 netdev_name_node_free(dev->name_node);
9461 goto out;
9462}
9463EXPORT_SYMBOL(register_netdevice);
9464
9465/**
9466 * init_dummy_netdev - init a dummy network device for NAPI
9467 * @dev: device to init
9468 *
9469 * This takes a network device structure and initialize the minimum
9470 * amount of fields so it can be used to schedule NAPI polls without
9471 * registering a full blown interface. This is to be used by drivers
9472 * that need to tie several hardware interfaces to a single NAPI
9473 * poll scheduler due to HW limitations.
9474 */
9475int init_dummy_netdev(struct net_device *dev)
9476{
9477 /* Clear everything. Note we don't initialize spinlocks
9478 * are they aren't supposed to be taken by any of the
9479 * NAPI code and this dummy netdev is supposed to be
9480 * only ever used for NAPI polls
9481 */
9482 memset(dev, 0, sizeof(struct net_device));
9483
9484 /* make sure we BUG if trying to hit standard
9485 * register/unregister code path
9486 */
9487 dev->reg_state = NETREG_DUMMY;
9488
9489 /* NAPI wants this */
9490 INIT_LIST_HEAD(&dev->napi_list);
9491
9492 /* a dummy interface is started by default */
9493 set_bit(__LINK_STATE_PRESENT, &dev->state);
9494 set_bit(__LINK_STATE_START, &dev->state);
9495
9496 /* napi_busy_loop stats accounting wants this */
9497 dev_net_set(dev, &init_net);
9498
9499 /* Note : We dont allocate pcpu_refcnt for dummy devices,
9500 * because users of this 'device' dont need to change
9501 * its refcount.
9502 */
9503
9504 return 0;
9505}
9506EXPORT_SYMBOL_GPL(init_dummy_netdev);
9507
9508
9509/**
9510 * register_netdev - register a network device
9511 * @dev: device to register
9512 *
9513 * Take a completed network device structure and add it to the kernel
9514 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
9515 * chain. 0 is returned on success. A negative errno code is returned
9516 * on a failure to set up the device, or if the name is a duplicate.
9517 *
9518 * This is a wrapper around register_netdevice that takes the rtnl semaphore
9519 * and expands the device name if you passed a format string to
9520 * alloc_netdev.
9521 */
9522int register_netdev(struct net_device *dev)
9523{
9524 int err;
9525
9526 if (rtnl_lock_killable())
9527 return -EINTR;
9528 err = register_netdevice(dev);
9529 rtnl_unlock();
9530 return err;
9531}
9532EXPORT_SYMBOL(register_netdev);
9533
9534int netdev_refcnt_read(const struct net_device *dev)
9535{
9536 int i, refcnt = 0;
9537
9538 for_each_possible_cpu(i)
9539 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
9540 return refcnt;
9541}
9542EXPORT_SYMBOL(netdev_refcnt_read);
9543
9544/**
9545 * netdev_wait_allrefs - wait until all references are gone.
9546 * @dev: target net_device
9547 *
9548 * This is called when unregistering network devices.
9549 *
9550 * Any protocol or device that holds a reference should register
9551 * for netdevice notification, and cleanup and put back the
9552 * reference if they receive an UNREGISTER event.
9553 * We can get stuck here if buggy protocols don't correctly
9554 * call dev_put.
9555 */
9556static void netdev_wait_allrefs(struct net_device *dev)
9557{
9558 unsigned long rebroadcast_time, warning_time;
9559 int refcnt;
9560
9561 linkwatch_forget_dev(dev);
9562
9563 rebroadcast_time = warning_time = jiffies;
9564 refcnt = netdev_refcnt_read(dev);
9565
9566 while (refcnt != 0) {
9567 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
9568 rtnl_lock();
9569
9570 /* Rebroadcast unregister notification */
9571 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9572
9573 __rtnl_unlock();
9574 rcu_barrier();
9575 rtnl_lock();
9576
9577 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
9578 &dev->state)) {
9579 /* We must not have linkwatch events
9580 * pending on unregister. If this
9581 * happens, we simply run the queue
9582 * unscheduled, resulting in a noop
9583 * for this device.
9584 */
9585 linkwatch_run_queue();
9586 }
9587
9588 __rtnl_unlock();
9589
9590 rebroadcast_time = jiffies;
9591 }
9592
9593 msleep(250);
9594
9595 refcnt = netdev_refcnt_read(dev);
9596
9597 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
9598 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
9599 dev->name, refcnt);
9600 warning_time = jiffies;
9601 }
9602 }
9603}
9604
9605/* The sequence is:
9606 *
9607 * rtnl_lock();
9608 * ...
9609 * register_netdevice(x1);
9610 * register_netdevice(x2);
9611 * ...
9612 * unregister_netdevice(y1);
9613 * unregister_netdevice(y2);
9614 * ...
9615 * rtnl_unlock();
9616 * free_netdev(y1);
9617 * free_netdev(y2);
9618 *
9619 * We are invoked by rtnl_unlock().
9620 * This allows us to deal with problems:
9621 * 1) We can delete sysfs objects which invoke hotplug
9622 * without deadlocking with linkwatch via keventd.
9623 * 2) Since we run with the RTNL semaphore not held, we can sleep
9624 * safely in order to wait for the netdev refcnt to drop to zero.
9625 *
9626 * We must not return until all unregister events added during
9627 * the interval the lock was held have been completed.
9628 */
9629void netdev_run_todo(void)
9630{
9631 struct list_head list;
9632
9633 /* Snapshot list, allow later requests */
9634 list_replace_init(&net_todo_list, &list);
9635
9636 __rtnl_unlock();
9637
9638
9639 /* Wait for rcu callbacks to finish before next phase */
9640 if (!list_empty(&list))
9641 rcu_barrier();
9642
9643 while (!list_empty(&list)) {
9644 struct net_device *dev
9645 = list_first_entry(&list, struct net_device, todo_list);
9646 list_del(&dev->todo_list);
9647
9648 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9649 pr_err("network todo '%s' but state %d\n",
9650 dev->name, dev->reg_state);
9651 dump_stack();
9652 continue;
9653 }
9654
9655 dev->reg_state = NETREG_UNREGISTERED;
9656
9657 netdev_wait_allrefs(dev);
9658
9659 /* paranoia */
9660 BUG_ON(netdev_refcnt_read(dev));
9661 BUG_ON(!list_empty(&dev->ptype_all));
9662 BUG_ON(!list_empty(&dev->ptype_specific));
9663 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9664 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9665#if IS_ENABLED(CONFIG_DECNET)
9666 WARN_ON(dev->dn_ptr);
9667#endif
9668 if (dev->priv_destructor)
9669 dev->priv_destructor(dev);
9670 if (dev->needs_free_netdev)
9671 free_netdev(dev);
9672
9673 /* Report a network device has been unregistered */
9674 rtnl_lock();
9675 dev_net(dev)->dev_unreg_count--;
9676 __rtnl_unlock();
9677 wake_up(&netdev_unregistering_wq);
9678
9679 /* Free network device */
9680 kobject_put(&dev->dev.kobj);
9681 }
9682}
9683
9684/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9685 * all the same fields in the same order as net_device_stats, with only
9686 * the type differing, but rtnl_link_stats64 may have additional fields
9687 * at the end for newer counters.
9688 */
9689void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9690 const struct net_device_stats *netdev_stats)
9691{
9692#if BITS_PER_LONG == 64
9693 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9694 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9695 /* zero out counters that only exist in rtnl_link_stats64 */
9696 memset((char *)stats64 + sizeof(*netdev_stats), 0,
9697 sizeof(*stats64) - sizeof(*netdev_stats));
9698#else
9699 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9700 const unsigned long *src = (const unsigned long *)netdev_stats;
9701 u64 *dst = (u64 *)stats64;
9702
9703 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9704 for (i = 0; i < n; i++)
9705 dst[i] = src[i];
9706 /* zero out counters that only exist in rtnl_link_stats64 */
9707 memset((char *)stats64 + n * sizeof(u64), 0,
9708 sizeof(*stats64) - n * sizeof(u64));
9709#endif
9710}
9711EXPORT_SYMBOL(netdev_stats_to_stats64);
9712
9713/**
9714 * dev_get_stats - get network device statistics
9715 * @dev: device to get statistics from
9716 * @storage: place to store stats
9717 *
9718 * Get network statistics from device. Return @storage.
9719 * The device driver may provide its own method by setting
9720 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9721 * otherwise the internal statistics structure is used.
9722 */
9723struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9724 struct rtnl_link_stats64 *storage)
9725{
9726 const struct net_device_ops *ops = dev->netdev_ops;
9727
9728 if (ops->ndo_get_stats64) {
9729 memset(storage, 0, sizeof(*storage));
9730 ops->ndo_get_stats64(dev, storage);
9731 } else if (ops->ndo_get_stats) {
9732 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9733 } else {
9734 netdev_stats_to_stats64(storage, &dev->stats);
9735 }
9736 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9737 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9738 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9739 return storage;
9740}
9741EXPORT_SYMBOL(dev_get_stats);
9742
9743struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9744{
9745 struct netdev_queue *queue = dev_ingress_queue(dev);
9746
9747#ifdef CONFIG_NET_CLS_ACT
9748 if (queue)
9749 return queue;
9750 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9751 if (!queue)
9752 return NULL;
9753 netdev_init_one_queue(dev, queue, NULL);
9754 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9755 queue->qdisc_sleeping = &noop_qdisc;
9756 rcu_assign_pointer(dev->ingress_queue, queue);
9757#endif
9758 return queue;
9759}
9760
9761static const struct ethtool_ops default_ethtool_ops;
9762
9763void netdev_set_default_ethtool_ops(struct net_device *dev,
9764 const struct ethtool_ops *ops)
9765{
9766 if (dev->ethtool_ops == &default_ethtool_ops)
9767 dev->ethtool_ops = ops;
9768}
9769EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9770
9771void netdev_freemem(struct net_device *dev)
9772{
9773 char *addr = (char *)dev - dev->padded;
9774
9775 kvfree(addr);
9776}
9777
9778/**
9779 * alloc_netdev_mqs - allocate network device
9780 * @sizeof_priv: size of private data to allocate space for
9781 * @name: device name format string
9782 * @name_assign_type: origin of device name
9783 * @setup: callback to initialize device
9784 * @txqs: the number of TX subqueues to allocate
9785 * @rxqs: the number of RX subqueues to allocate
9786 *
9787 * Allocates a struct net_device with private data area for driver use
9788 * and performs basic initialization. Also allocates subqueue structs
9789 * for each queue on the device.
9790 */
9791struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9792 unsigned char name_assign_type,
9793 void (*setup)(struct net_device *),
9794 unsigned int txqs, unsigned int rxqs)
9795{
9796 struct net_device *dev;
9797 unsigned int alloc_size;
9798 struct net_device *p;
9799
9800 BUG_ON(strlen(name) >= sizeof(dev->name));
9801
9802 if (txqs < 1) {
9803 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9804 return NULL;
9805 }
9806
9807 if (rxqs < 1) {
9808 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9809 return NULL;
9810 }
9811
9812 alloc_size = sizeof(struct net_device);
9813 if (sizeof_priv) {
9814 /* ensure 32-byte alignment of private area */
9815 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9816 alloc_size += sizeof_priv;
9817 }
9818 /* ensure 32-byte alignment of whole construct */
9819 alloc_size += NETDEV_ALIGN - 1;
9820
9821 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9822 if (!p)
9823 return NULL;
9824
9825 dev = PTR_ALIGN(p, NETDEV_ALIGN);
9826 dev->padded = (char *)dev - (char *)p;
9827
9828 dev->pcpu_refcnt = alloc_percpu(int);
9829 if (!dev->pcpu_refcnt)
9830 goto free_dev;
9831
9832 if (dev_addr_init(dev))
9833 goto free_pcpu;
9834
9835 dev_mc_init(dev);
9836 dev_uc_init(dev);
9837
9838 dev_net_set(dev, &init_net);
9839
9840 netdev_register_lockdep_key(dev);
9841
9842 dev->gso_max_size = GSO_MAX_SIZE;
9843 dev->gso_max_segs = GSO_MAX_SEGS;
9844 dev->upper_level = 1;
9845 dev->lower_level = 1;
9846
9847 INIT_LIST_HEAD(&dev->napi_list);
9848 INIT_LIST_HEAD(&dev->unreg_list);
9849 INIT_LIST_HEAD(&dev->close_list);
9850 INIT_LIST_HEAD(&dev->link_watch_list);
9851 INIT_LIST_HEAD(&dev->adj_list.upper);
9852 INIT_LIST_HEAD(&dev->adj_list.lower);
9853 INIT_LIST_HEAD(&dev->ptype_all);
9854 INIT_LIST_HEAD(&dev->ptype_specific);
9855 INIT_LIST_HEAD(&dev->net_notifier_list);
9856#ifdef CONFIG_NET_SCHED
9857 hash_init(dev->qdisc_hash);
9858#endif
9859 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9860 setup(dev);
9861
9862 if (!dev->tx_queue_len) {
9863 dev->priv_flags |= IFF_NO_QUEUE;
9864 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9865 }
9866
9867 dev->num_tx_queues = txqs;
9868 dev->real_num_tx_queues = txqs;
9869 if (netif_alloc_netdev_queues(dev))
9870 goto free_all;
9871
9872 dev->num_rx_queues = rxqs;
9873 dev->real_num_rx_queues = rxqs;
9874 if (netif_alloc_rx_queues(dev))
9875 goto free_all;
9876
9877 strcpy(dev->name, name);
9878 dev->name_assign_type = name_assign_type;
9879 dev->group = INIT_NETDEV_GROUP;
9880 if (!dev->ethtool_ops)
9881 dev->ethtool_ops = &default_ethtool_ops;
9882
9883 nf_hook_ingress_init(dev);
9884
9885 return dev;
9886
9887free_all:
9888 free_netdev(dev);
9889 return NULL;
9890
9891free_pcpu:
9892 free_percpu(dev->pcpu_refcnt);
9893free_dev:
9894 netdev_freemem(dev);
9895 return NULL;
9896}
9897EXPORT_SYMBOL(alloc_netdev_mqs);
9898
9899/**
9900 * free_netdev - free network device
9901 * @dev: device
9902 *
9903 * This function does the last stage of destroying an allocated device
9904 * interface. The reference to the device object is released. If this
9905 * is the last reference then it will be freed.Must be called in process
9906 * context.
9907 */
9908void free_netdev(struct net_device *dev)
9909{
9910 struct napi_struct *p, *n;
9911
9912 might_sleep();
9913 netif_free_tx_queues(dev);
9914 netif_free_rx_queues(dev);
9915
9916 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9917
9918 /* Flush device addresses */
9919 dev_addr_flush(dev);
9920
9921 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9922 netif_napi_del(p);
9923
9924 free_percpu(dev->pcpu_refcnt);
9925 dev->pcpu_refcnt = NULL;
9926 free_percpu(dev->xdp_bulkq);
9927 dev->xdp_bulkq = NULL;
9928
9929 netdev_unregister_lockdep_key(dev);
9930
9931 /* Compatibility with error handling in drivers */
9932 if (dev->reg_state == NETREG_UNINITIALIZED) {
9933 netdev_freemem(dev);
9934 return;
9935 }
9936
9937 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9938 dev->reg_state = NETREG_RELEASED;
9939
9940 /* will free via device release */
9941 put_device(&dev->dev);
9942}
9943EXPORT_SYMBOL(free_netdev);
9944
9945/**
9946 * synchronize_net - Synchronize with packet receive processing
9947 *
9948 * Wait for packets currently being received to be done.
9949 * Does not block later packets from starting.
9950 */
9951void synchronize_net(void)
9952{
9953 might_sleep();
9954 if (rtnl_is_locked())
9955 synchronize_rcu_expedited();
9956 else
9957 synchronize_rcu();
9958}
9959EXPORT_SYMBOL(synchronize_net);
9960
9961/**
9962 * unregister_netdevice_queue - remove device from the kernel
9963 * @dev: device
9964 * @head: list
9965 *
9966 * This function shuts down a device interface and removes it
9967 * from the kernel tables.
9968 * If head not NULL, device is queued to be unregistered later.
9969 *
9970 * Callers must hold the rtnl semaphore. You may want
9971 * unregister_netdev() instead of this.
9972 */
9973
9974void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9975{
9976 ASSERT_RTNL();
9977
9978 if (head) {
9979 list_move_tail(&dev->unreg_list, head);
9980 } else {
9981 rollback_registered(dev);
9982 /* Finish processing unregister after unlock */
9983 net_set_todo(dev);
9984 }
9985}
9986EXPORT_SYMBOL(unregister_netdevice_queue);
9987
9988/**
9989 * unregister_netdevice_many - unregister many devices
9990 * @head: list of devices
9991 *
9992 * Note: As most callers use a stack allocated list_head,
9993 * we force a list_del() to make sure stack wont be corrupted later.
9994 */
9995void unregister_netdevice_many(struct list_head *head)
9996{
9997 struct net_device *dev;
9998
9999 if (!list_empty(head)) {
10000 rollback_registered_many(head);
10001 list_for_each_entry(dev, head, unreg_list)
10002 net_set_todo(dev);
10003 list_del(head);
10004 }
10005}
10006EXPORT_SYMBOL(unregister_netdevice_many);
10007
10008/**
10009 * unregister_netdev - remove device from the kernel
10010 * @dev: device
10011 *
10012 * This function shuts down a device interface and removes it
10013 * from the kernel tables.
10014 *
10015 * This is just a wrapper for unregister_netdevice that takes
10016 * the rtnl semaphore. In general you want to use this and not
10017 * unregister_netdevice.
10018 */
10019void unregister_netdev(struct net_device *dev)
10020{
10021 rtnl_lock();
10022 unregister_netdevice(dev);
10023 rtnl_unlock();
10024}
10025EXPORT_SYMBOL(unregister_netdev);
10026
10027/**
10028 * dev_change_net_namespace - move device to different nethost namespace
10029 * @dev: device
10030 * @net: network namespace
10031 * @pat: If not NULL name pattern to try if the current device name
10032 * is already taken in the destination network namespace.
10033 *
10034 * This function shuts down a device interface and moves it
10035 * to a new network namespace. On success 0 is returned, on
10036 * a failure a netagive errno code is returned.
10037 *
10038 * Callers must hold the rtnl semaphore.
10039 */
10040
10041int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10042{
10043 struct net *net_old = dev_net(dev);
10044 int err, new_nsid, new_ifindex;
10045
10046 ASSERT_RTNL();
10047
10048 /* Don't allow namespace local devices to be moved. */
10049 err = -EINVAL;
10050 if (dev->features & NETIF_F_NETNS_LOCAL)
10051 goto out;
10052
10053 /* Ensure the device has been registrered */
10054 if (dev->reg_state != NETREG_REGISTERED)
10055 goto out;
10056
10057 /* Get out if there is nothing todo */
10058 err = 0;
10059 if (net_eq(net_old, net))
10060 goto out;
10061
10062 /* Pick the destination device name, and ensure
10063 * we can use it in the destination network namespace.
10064 */
10065 err = -EEXIST;
10066 if (__dev_get_by_name(net, dev->name)) {
10067 /* We get here if we can't use the current device name */
10068 if (!pat)
10069 goto out;
10070 err = dev_get_valid_name(net, dev, pat);
10071 if (err < 0)
10072 goto out;
10073 }
10074
10075 /*
10076 * And now a mini version of register_netdevice unregister_netdevice.
10077 */
10078
10079 /* If device is running close it first. */
10080 dev_close(dev);
10081
10082 /* And unlink it from device chain */
10083 unlist_netdevice(dev);
10084
10085 synchronize_net();
10086
10087 /* Shutdown queueing discipline. */
10088 dev_shutdown(dev);
10089
10090 /* Notify protocols, that we are about to destroy
10091 * this device. They should clean all the things.
10092 *
10093 * Note that dev->reg_state stays at NETREG_REGISTERED.
10094 * This is wanted because this way 8021q and macvlan know
10095 * the device is just moving and can keep their slaves up.
10096 */
10097 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10098 rcu_barrier();
10099
10100 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
10101 /* If there is an ifindex conflict assign a new one */
10102 if (__dev_get_by_index(net, dev->ifindex))
10103 new_ifindex = dev_new_index(net);
10104 else
10105 new_ifindex = dev->ifindex;
10106
10107 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
10108 new_ifindex);
10109
10110 /*
10111 * Flush the unicast and multicast chains
10112 */
10113 dev_uc_flush(dev);
10114 dev_mc_flush(dev);
10115
10116 /* Send a netdev-removed uevent to the old namespace */
10117 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
10118 netdev_adjacent_del_links(dev);
10119
10120 /* Move per-net netdevice notifiers that are following the netdevice */
10121 move_netdevice_notifiers_dev_net(dev, net);
10122
10123 /* Actually switch the network namespace */
10124 dev_net_set(dev, net);
10125 dev->ifindex = new_ifindex;
10126
10127 /* Send a netdev-add uevent to the new namespace */
10128 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
10129 netdev_adjacent_add_links(dev);
10130
10131 /* Fixup kobjects */
10132 err = device_rename(&dev->dev, dev->name);
10133 WARN_ON(err);
10134
10135 /* Adapt owner in case owning user namespace of target network
10136 * namespace is different from the original one.
10137 */
10138 err = netdev_change_owner(dev, net_old, net);
10139 WARN_ON(err);
10140
10141 /* Add the device back in the hashes */
10142 list_netdevice(dev);
10143
10144 /* Notify protocols, that a new device appeared. */
10145 call_netdevice_notifiers(NETDEV_REGISTER, dev);
10146
10147 /*
10148 * Prevent userspace races by waiting until the network
10149 * device is fully setup before sending notifications.
10150 */
10151 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10152
10153 synchronize_net();
10154 err = 0;
10155out:
10156 return err;
10157}
10158EXPORT_SYMBOL_GPL(dev_change_net_namespace);
10159
10160static int dev_cpu_dead(unsigned int oldcpu)
10161{
10162 struct sk_buff **list_skb;
10163 struct sk_buff *skb;
10164 unsigned int cpu;
10165 struct softnet_data *sd, *oldsd, *remsd = NULL;
10166
10167 local_irq_disable();
10168 cpu = smp_processor_id();
10169 sd = &per_cpu(softnet_data, cpu);
10170 oldsd = &per_cpu(softnet_data, oldcpu);
10171
10172 /* Find end of our completion_queue. */
10173 list_skb = &sd->completion_queue;
10174 while (*list_skb)
10175 list_skb = &(*list_skb)->next;
10176 /* Append completion queue from offline CPU. */
10177 *list_skb = oldsd->completion_queue;
10178 oldsd->completion_queue = NULL;
10179
10180 /* Append output queue from offline CPU. */
10181 if (oldsd->output_queue) {
10182 *sd->output_queue_tailp = oldsd->output_queue;
10183 sd->output_queue_tailp = oldsd->output_queue_tailp;
10184 oldsd->output_queue = NULL;
10185 oldsd->output_queue_tailp = &oldsd->output_queue;
10186 }
10187 /* Append NAPI poll list from offline CPU, with one exception :
10188 * process_backlog() must be called by cpu owning percpu backlog.
10189 * We properly handle process_queue & input_pkt_queue later.
10190 */
10191 while (!list_empty(&oldsd->poll_list)) {
10192 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
10193 struct napi_struct,
10194 poll_list);
10195
10196 list_del_init(&napi->poll_list);
10197 if (napi->poll == process_backlog)
10198 napi->state = 0;
10199 else
10200 ____napi_schedule(sd, napi);
10201 }
10202
10203 raise_softirq_irqoff(NET_TX_SOFTIRQ);
10204 local_irq_enable();
10205
10206#ifdef CONFIG_RPS
10207 remsd = oldsd->rps_ipi_list;
10208 oldsd->rps_ipi_list = NULL;
10209#endif
10210 /* send out pending IPI's on offline CPU */
10211 net_rps_send_ipi(remsd);
10212
10213 /* Process offline CPU's input_pkt_queue */
10214 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
10215 netif_rx_ni(skb);
10216 input_queue_head_incr(oldsd);
10217 }
10218 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
10219 netif_rx_ni(skb);
10220 input_queue_head_incr(oldsd);
10221 }
10222
10223 return 0;
10224}
10225
10226/**
10227 * netdev_increment_features - increment feature set by one
10228 * @all: current feature set
10229 * @one: new feature set
10230 * @mask: mask feature set
10231 *
10232 * Computes a new feature set after adding a device with feature set
10233 * @one to the master device with current feature set @all. Will not
10234 * enable anything that is off in @mask. Returns the new feature set.
10235 */
10236netdev_features_t netdev_increment_features(netdev_features_t all,
10237 netdev_features_t one, netdev_features_t mask)
10238{
10239 if (mask & NETIF_F_HW_CSUM)
10240 mask |= NETIF_F_CSUM_MASK;
10241 mask |= NETIF_F_VLAN_CHALLENGED;
10242
10243 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
10244 all &= one | ~NETIF_F_ALL_FOR_ALL;
10245
10246 /* If one device supports hw checksumming, set for all. */
10247 if (all & NETIF_F_HW_CSUM)
10248 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
10249
10250 return all;
10251}
10252EXPORT_SYMBOL(netdev_increment_features);
10253
10254static struct hlist_head * __net_init netdev_create_hash(void)
10255{
10256 int i;
10257 struct hlist_head *hash;
10258
10259 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
10260 if (hash != NULL)
10261 for (i = 0; i < NETDEV_HASHENTRIES; i++)
10262 INIT_HLIST_HEAD(&hash[i]);
10263
10264 return hash;
10265}
10266
10267/* Initialize per network namespace state */
10268static int __net_init netdev_init(struct net *net)
10269{
10270 BUILD_BUG_ON(GRO_HASH_BUCKETS >
10271 8 * sizeof_field(struct napi_struct, gro_bitmask));
10272
10273 if (net != &init_net)
10274 INIT_LIST_HEAD(&net->dev_base_head);
10275
10276 net->dev_name_head = netdev_create_hash();
10277 if (net->dev_name_head == NULL)
10278 goto err_name;
10279
10280 net->dev_index_head = netdev_create_hash();
10281 if (net->dev_index_head == NULL)
10282 goto err_idx;
10283
10284 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
10285
10286 return 0;
10287
10288err_idx:
10289 kfree(net->dev_name_head);
10290err_name:
10291 return -ENOMEM;
10292}
10293
10294/**
10295 * netdev_drivername - network driver for the device
10296 * @dev: network device
10297 *
10298 * Determine network driver for device.
10299 */
10300const char *netdev_drivername(const struct net_device *dev)
10301{
10302 const struct device_driver *driver;
10303 const struct device *parent;
10304 const char *empty = "";
10305
10306 parent = dev->dev.parent;
10307 if (!parent)
10308 return empty;
10309
10310 driver = parent->driver;
10311 if (driver && driver->name)
10312 return driver->name;
10313 return empty;
10314}
10315
10316static void __netdev_printk(const char *level, const struct net_device *dev,
10317 struct va_format *vaf)
10318{
10319 if (dev && dev->dev.parent) {
10320 dev_printk_emit(level[1] - '0',
10321 dev->dev.parent,
10322 "%s %s %s%s: %pV",
10323 dev_driver_string(dev->dev.parent),
10324 dev_name(dev->dev.parent),
10325 netdev_name(dev), netdev_reg_state(dev),
10326 vaf);
10327 } else if (dev) {
10328 printk("%s%s%s: %pV",
10329 level, netdev_name(dev), netdev_reg_state(dev), vaf);
10330 } else {
10331 printk("%s(NULL net_device): %pV", level, vaf);
10332 }
10333}
10334
10335void netdev_printk(const char *level, const struct net_device *dev,
10336 const char *format, ...)
10337{
10338 struct va_format vaf;
10339 va_list args;
10340
10341 va_start(args, format);
10342
10343 vaf.fmt = format;
10344 vaf.va = &args;
10345
10346 __netdev_printk(level, dev, &vaf);
10347
10348 va_end(args);
10349}
10350EXPORT_SYMBOL(netdev_printk);
10351
10352#define define_netdev_printk_level(func, level) \
10353void func(const struct net_device *dev, const char *fmt, ...) \
10354{ \
10355 struct va_format vaf; \
10356 va_list args; \
10357 \
10358 va_start(args, fmt); \
10359 \
10360 vaf.fmt = fmt; \
10361 vaf.va = &args; \
10362 \
10363 __netdev_printk(level, dev, &vaf); \
10364 \
10365 va_end(args); \
10366} \
10367EXPORT_SYMBOL(func);
10368
10369define_netdev_printk_level(netdev_emerg, KERN_EMERG);
10370define_netdev_printk_level(netdev_alert, KERN_ALERT);
10371define_netdev_printk_level(netdev_crit, KERN_CRIT);
10372define_netdev_printk_level(netdev_err, KERN_ERR);
10373define_netdev_printk_level(netdev_warn, KERN_WARNING);
10374define_netdev_printk_level(netdev_notice, KERN_NOTICE);
10375define_netdev_printk_level(netdev_info, KERN_INFO);
10376
10377static void __net_exit netdev_exit(struct net *net)
10378{
10379 kfree(net->dev_name_head);
10380 kfree(net->dev_index_head);
10381 if (net != &init_net)
10382 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
10383}
10384
10385static struct pernet_operations __net_initdata netdev_net_ops = {
10386 .init = netdev_init,
10387 .exit = netdev_exit,
10388};
10389
10390static void __net_exit default_device_exit(struct net *net)
10391{
10392 struct net_device *dev, *aux;
10393 /*
10394 * Push all migratable network devices back to the
10395 * initial network namespace
10396 */
10397 rtnl_lock();
10398 for_each_netdev_safe(net, dev, aux) {
10399 int err;
10400 char fb_name[IFNAMSIZ];
10401
10402 /* Ignore unmoveable devices (i.e. loopback) */
10403 if (dev->features & NETIF_F_NETNS_LOCAL)
10404 continue;
10405
10406 /* Leave virtual devices for the generic cleanup */
10407 if (dev->rtnl_link_ops)
10408 continue;
10409
10410 /* Push remaining network devices to init_net */
10411 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
10412 if (__dev_get_by_name(&init_net, fb_name))
10413 snprintf(fb_name, IFNAMSIZ, "dev%%d");
10414 err = dev_change_net_namespace(dev, &init_net, fb_name);
10415 if (err) {
10416 pr_emerg("%s: failed to move %s to init_net: %d\n",
10417 __func__, dev->name, err);
10418 BUG();
10419 }
10420 }
10421 rtnl_unlock();
10422}
10423
10424static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
10425{
10426 /* Return with the rtnl_lock held when there are no network
10427 * devices unregistering in any network namespace in net_list.
10428 */
10429 struct net *net;
10430 bool unregistering;
10431 DEFINE_WAIT_FUNC(wait, woken_wake_function);
10432
10433 add_wait_queue(&netdev_unregistering_wq, &wait);
10434 for (;;) {
10435 unregistering = false;
10436 rtnl_lock();
10437 list_for_each_entry(net, net_list, exit_list) {
10438 if (net->dev_unreg_count > 0) {
10439 unregistering = true;
10440 break;
10441 }
10442 }
10443 if (!unregistering)
10444 break;
10445 __rtnl_unlock();
10446
10447 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
10448 }
10449 remove_wait_queue(&netdev_unregistering_wq, &wait);
10450}
10451
10452static void __net_exit default_device_exit_batch(struct list_head *net_list)
10453{
10454 /* At exit all network devices most be removed from a network
10455 * namespace. Do this in the reverse order of registration.
10456 * Do this across as many network namespaces as possible to
10457 * improve batching efficiency.
10458 */
10459 struct net_device *dev;
10460 struct net *net;
10461 LIST_HEAD(dev_kill_list);
10462
10463 /* To prevent network device cleanup code from dereferencing
10464 * loopback devices or network devices that have been freed
10465 * wait here for all pending unregistrations to complete,
10466 * before unregistring the loopback device and allowing the
10467 * network namespace be freed.
10468 *
10469 * The netdev todo list containing all network devices
10470 * unregistrations that happen in default_device_exit_batch
10471 * will run in the rtnl_unlock() at the end of
10472 * default_device_exit_batch.
10473 */
10474 rtnl_lock_unregistering(net_list);
10475 list_for_each_entry(net, net_list, exit_list) {
10476 for_each_netdev_reverse(net, dev) {
10477 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
10478 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
10479 else
10480 unregister_netdevice_queue(dev, &dev_kill_list);
10481 }
10482 }
10483 unregister_netdevice_many(&dev_kill_list);
10484 rtnl_unlock();
10485}
10486
10487static struct pernet_operations __net_initdata default_device_ops = {
10488 .exit = default_device_exit,
10489 .exit_batch = default_device_exit_batch,
10490};
10491
10492/*
10493 * Initialize the DEV module. At boot time this walks the device list and
10494 * unhooks any devices that fail to initialise (normally hardware not
10495 * present) and leaves us with a valid list of present and active devices.
10496 *
10497 */
10498
10499/*
10500 * This is called single threaded during boot, so no need
10501 * to take the rtnl semaphore.
10502 */
10503static int __init net_dev_init(void)
10504{
10505 int i, rc = -ENOMEM;
10506
10507 BUG_ON(!dev_boot_phase);
10508
10509 if (dev_proc_init())
10510 goto out;
10511
10512 if (netdev_kobject_init())
10513 goto out;
10514
10515 INIT_LIST_HEAD(&ptype_all);
10516 for (i = 0; i < PTYPE_HASH_SIZE; i++)
10517 INIT_LIST_HEAD(&ptype_base[i]);
10518
10519 INIT_LIST_HEAD(&offload_base);
10520
10521 if (register_pernet_subsys(&netdev_net_ops))
10522 goto out;
10523
10524 /*
10525 * Initialise the packet receive queues.
10526 */
10527
10528 for_each_possible_cpu(i) {
10529 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
10530 struct softnet_data *sd = &per_cpu(softnet_data, i);
10531
10532 INIT_WORK(flush, flush_backlog);
10533
10534 skb_queue_head_init(&sd->input_pkt_queue);
10535 skb_queue_head_init(&sd->process_queue);
10536#ifdef CONFIG_XFRM_OFFLOAD
10537 skb_queue_head_init(&sd->xfrm_backlog);
10538#endif
10539 INIT_LIST_HEAD(&sd->poll_list);
10540 sd->output_queue_tailp = &sd->output_queue;
10541#ifdef CONFIG_RPS
10542 sd->csd.func = rps_trigger_softirq;
10543 sd->csd.info = sd;
10544 sd->cpu = i;
10545#endif
10546
10547 init_gro_hash(&sd->backlog);
10548 sd->backlog.poll = process_backlog;
10549 sd->backlog.weight = weight_p;
10550 }
10551
10552 dev_boot_phase = 0;
10553
10554 /* The loopback device is special if any other network devices
10555 * is present in a network namespace the loopback device must
10556 * be present. Since we now dynamically allocate and free the
10557 * loopback device ensure this invariant is maintained by
10558 * keeping the loopback device as the first device on the
10559 * list of network devices. Ensuring the loopback devices
10560 * is the first device that appears and the last network device
10561 * that disappears.
10562 */
10563 if (register_pernet_device(&loopback_net_ops))
10564 goto out;
10565
10566 if (register_pernet_device(&default_device_ops))
10567 goto out;
10568
10569 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
10570 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
10571
10572 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
10573 NULL, dev_cpu_dead);
10574 WARN_ON(rc < 0);
10575 rc = 0;
10576out:
10577 return rc;
10578}
10579
10580subsys_initcall(net_dev_init);