Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2/*
3 * Performance events:
4 *
5 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 *
9 * Data type definitions, declarations, prototypes.
10 *
11 * Started by: Thomas Gleixner and Ingo Molnar
12 *
13 * For licencing details see kernel-base/COPYING
14 */
15#ifndef _UAPI_LINUX_PERF_EVENT_H
16#define _UAPI_LINUX_PERF_EVENT_H
17
18#include <linux/types.h>
19#include <linux/ioctl.h>
20#include <asm/byteorder.h>
21
22/*
23 * User-space ABI bits:
24 */
25
26/*
27 * attr.type
28 */
29enum perf_type_id {
30 PERF_TYPE_HARDWARE = 0,
31 PERF_TYPE_SOFTWARE = 1,
32 PERF_TYPE_TRACEPOINT = 2,
33 PERF_TYPE_HW_CACHE = 3,
34 PERF_TYPE_RAW = 4,
35 PERF_TYPE_BREAKPOINT = 5,
36
37 PERF_TYPE_MAX, /* non-ABI */
38};
39
40/*
41 * Generalized performance event event_id types, used by the
42 * attr.event_id parameter of the sys_perf_event_open()
43 * syscall:
44 */
45enum perf_hw_id {
46 /*
47 * Common hardware events, generalized by the kernel:
48 */
49 PERF_COUNT_HW_CPU_CYCLES = 0,
50 PERF_COUNT_HW_INSTRUCTIONS = 1,
51 PERF_COUNT_HW_CACHE_REFERENCES = 2,
52 PERF_COUNT_HW_CACHE_MISSES = 3,
53 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
54 PERF_COUNT_HW_BRANCH_MISSES = 5,
55 PERF_COUNT_HW_BUS_CYCLES = 6,
56 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
57 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
58 PERF_COUNT_HW_REF_CPU_CYCLES = 9,
59
60 PERF_COUNT_HW_MAX, /* non-ABI */
61};
62
63/*
64 * Generalized hardware cache events:
65 *
66 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
67 * { read, write, prefetch } x
68 * { accesses, misses }
69 */
70enum perf_hw_cache_id {
71 PERF_COUNT_HW_CACHE_L1D = 0,
72 PERF_COUNT_HW_CACHE_L1I = 1,
73 PERF_COUNT_HW_CACHE_LL = 2,
74 PERF_COUNT_HW_CACHE_DTLB = 3,
75 PERF_COUNT_HW_CACHE_ITLB = 4,
76 PERF_COUNT_HW_CACHE_BPU = 5,
77 PERF_COUNT_HW_CACHE_NODE = 6,
78
79 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
80};
81
82enum perf_hw_cache_op_id {
83 PERF_COUNT_HW_CACHE_OP_READ = 0,
84 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
85 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
86
87 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
88};
89
90enum perf_hw_cache_op_result_id {
91 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
92 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
93
94 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
95};
96
97/*
98 * Special "software" events provided by the kernel, even if the hardware
99 * does not support performance events. These events measure various
100 * physical and sw events of the kernel (and allow the profiling of them as
101 * well):
102 */
103enum perf_sw_ids {
104 PERF_COUNT_SW_CPU_CLOCK = 0,
105 PERF_COUNT_SW_TASK_CLOCK = 1,
106 PERF_COUNT_SW_PAGE_FAULTS = 2,
107 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
108 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
109 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
110 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
111 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
112 PERF_COUNT_SW_EMULATION_FAULTS = 8,
113 PERF_COUNT_SW_DUMMY = 9,
114 PERF_COUNT_SW_BPF_OUTPUT = 10,
115
116 PERF_COUNT_SW_MAX, /* non-ABI */
117};
118
119/*
120 * Bits that can be set in attr.sample_type to request information
121 * in the overflow packets.
122 */
123enum perf_event_sample_format {
124 PERF_SAMPLE_IP = 1U << 0,
125 PERF_SAMPLE_TID = 1U << 1,
126 PERF_SAMPLE_TIME = 1U << 2,
127 PERF_SAMPLE_ADDR = 1U << 3,
128 PERF_SAMPLE_READ = 1U << 4,
129 PERF_SAMPLE_CALLCHAIN = 1U << 5,
130 PERF_SAMPLE_ID = 1U << 6,
131 PERF_SAMPLE_CPU = 1U << 7,
132 PERF_SAMPLE_PERIOD = 1U << 8,
133 PERF_SAMPLE_STREAM_ID = 1U << 9,
134 PERF_SAMPLE_RAW = 1U << 10,
135 PERF_SAMPLE_BRANCH_STACK = 1U << 11,
136 PERF_SAMPLE_REGS_USER = 1U << 12,
137 PERF_SAMPLE_STACK_USER = 1U << 13,
138 PERF_SAMPLE_WEIGHT = 1U << 14,
139 PERF_SAMPLE_DATA_SRC = 1U << 15,
140 PERF_SAMPLE_IDENTIFIER = 1U << 16,
141 PERF_SAMPLE_TRANSACTION = 1U << 17,
142 PERF_SAMPLE_REGS_INTR = 1U << 18,
143 PERF_SAMPLE_PHYS_ADDR = 1U << 19,
144 PERF_SAMPLE_AUX = 1U << 20,
145 PERF_SAMPLE_CGROUP = 1U << 21,
146
147 PERF_SAMPLE_MAX = 1U << 22, /* non-ABI */
148
149 __PERF_SAMPLE_CALLCHAIN_EARLY = 1ULL << 63, /* non-ABI; internal use */
150};
151
152/*
153 * values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
154 *
155 * If the user does not pass priv level information via branch_sample_type,
156 * the kernel uses the event's priv level. Branch and event priv levels do
157 * not have to match. Branch priv level is checked for permissions.
158 *
159 * The branch types can be combined, however BRANCH_ANY covers all types
160 * of branches and therefore it supersedes all the other types.
161 */
162enum perf_branch_sample_type_shift {
163 PERF_SAMPLE_BRANCH_USER_SHIFT = 0, /* user branches */
164 PERF_SAMPLE_BRANCH_KERNEL_SHIFT = 1, /* kernel branches */
165 PERF_SAMPLE_BRANCH_HV_SHIFT = 2, /* hypervisor branches */
166
167 PERF_SAMPLE_BRANCH_ANY_SHIFT = 3, /* any branch types */
168 PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT = 4, /* any call branch */
169 PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT = 5, /* any return branch */
170 PERF_SAMPLE_BRANCH_IND_CALL_SHIFT = 6, /* indirect calls */
171 PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT = 7, /* transaction aborts */
172 PERF_SAMPLE_BRANCH_IN_TX_SHIFT = 8, /* in transaction */
173 PERF_SAMPLE_BRANCH_NO_TX_SHIFT = 9, /* not in transaction */
174 PERF_SAMPLE_BRANCH_COND_SHIFT = 10, /* conditional branches */
175
176 PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT = 11, /* call/ret stack */
177 PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT = 12, /* indirect jumps */
178 PERF_SAMPLE_BRANCH_CALL_SHIFT = 13, /* direct call */
179
180 PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT = 14, /* no flags */
181 PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT = 15, /* no cycles */
182
183 PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT = 16, /* save branch type */
184
185 PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT = 17, /* save low level index of raw branch records */
186
187 PERF_SAMPLE_BRANCH_MAX_SHIFT /* non-ABI */
188};
189
190enum perf_branch_sample_type {
191 PERF_SAMPLE_BRANCH_USER = 1U << PERF_SAMPLE_BRANCH_USER_SHIFT,
192 PERF_SAMPLE_BRANCH_KERNEL = 1U << PERF_SAMPLE_BRANCH_KERNEL_SHIFT,
193 PERF_SAMPLE_BRANCH_HV = 1U << PERF_SAMPLE_BRANCH_HV_SHIFT,
194
195 PERF_SAMPLE_BRANCH_ANY = 1U << PERF_SAMPLE_BRANCH_ANY_SHIFT,
196 PERF_SAMPLE_BRANCH_ANY_CALL = 1U << PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT,
197 PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT,
198 PERF_SAMPLE_BRANCH_IND_CALL = 1U << PERF_SAMPLE_BRANCH_IND_CALL_SHIFT,
199 PERF_SAMPLE_BRANCH_ABORT_TX = 1U << PERF_SAMPLE_BRANCH_ABORT_TX_SHIFT,
200 PERF_SAMPLE_BRANCH_IN_TX = 1U << PERF_SAMPLE_BRANCH_IN_TX_SHIFT,
201 PERF_SAMPLE_BRANCH_NO_TX = 1U << PERF_SAMPLE_BRANCH_NO_TX_SHIFT,
202 PERF_SAMPLE_BRANCH_COND = 1U << PERF_SAMPLE_BRANCH_COND_SHIFT,
203
204 PERF_SAMPLE_BRANCH_CALL_STACK = 1U << PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT,
205 PERF_SAMPLE_BRANCH_IND_JUMP = 1U << PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT,
206 PERF_SAMPLE_BRANCH_CALL = 1U << PERF_SAMPLE_BRANCH_CALL_SHIFT,
207
208 PERF_SAMPLE_BRANCH_NO_FLAGS = 1U << PERF_SAMPLE_BRANCH_NO_FLAGS_SHIFT,
209 PERF_SAMPLE_BRANCH_NO_CYCLES = 1U << PERF_SAMPLE_BRANCH_NO_CYCLES_SHIFT,
210
211 PERF_SAMPLE_BRANCH_TYPE_SAVE =
212 1U << PERF_SAMPLE_BRANCH_TYPE_SAVE_SHIFT,
213
214 PERF_SAMPLE_BRANCH_HW_INDEX = 1U << PERF_SAMPLE_BRANCH_HW_INDEX_SHIFT,
215
216 PERF_SAMPLE_BRANCH_MAX = 1U << PERF_SAMPLE_BRANCH_MAX_SHIFT,
217};
218
219/*
220 * Common flow change classification
221 */
222enum {
223 PERF_BR_UNKNOWN = 0, /* unknown */
224 PERF_BR_COND = 1, /* conditional */
225 PERF_BR_UNCOND = 2, /* unconditional */
226 PERF_BR_IND = 3, /* indirect */
227 PERF_BR_CALL = 4, /* function call */
228 PERF_BR_IND_CALL = 5, /* indirect function call */
229 PERF_BR_RET = 6, /* function return */
230 PERF_BR_SYSCALL = 7, /* syscall */
231 PERF_BR_SYSRET = 8, /* syscall return */
232 PERF_BR_COND_CALL = 9, /* conditional function call */
233 PERF_BR_COND_RET = 10, /* conditional function return */
234 PERF_BR_MAX,
235};
236
237#define PERF_SAMPLE_BRANCH_PLM_ALL \
238 (PERF_SAMPLE_BRANCH_USER|\
239 PERF_SAMPLE_BRANCH_KERNEL|\
240 PERF_SAMPLE_BRANCH_HV)
241
242/*
243 * Values to determine ABI of the registers dump.
244 */
245enum perf_sample_regs_abi {
246 PERF_SAMPLE_REGS_ABI_NONE = 0,
247 PERF_SAMPLE_REGS_ABI_32 = 1,
248 PERF_SAMPLE_REGS_ABI_64 = 2,
249};
250
251/*
252 * Values for the memory transaction event qualifier, mostly for
253 * abort events. Multiple bits can be set.
254 */
255enum {
256 PERF_TXN_ELISION = (1 << 0), /* From elision */
257 PERF_TXN_TRANSACTION = (1 << 1), /* From transaction */
258 PERF_TXN_SYNC = (1 << 2), /* Instruction is related */
259 PERF_TXN_ASYNC = (1 << 3), /* Instruction not related */
260 PERF_TXN_RETRY = (1 << 4), /* Retry possible */
261 PERF_TXN_CONFLICT = (1 << 5), /* Conflict abort */
262 PERF_TXN_CAPACITY_WRITE = (1 << 6), /* Capacity write abort */
263 PERF_TXN_CAPACITY_READ = (1 << 7), /* Capacity read abort */
264
265 PERF_TXN_MAX = (1 << 8), /* non-ABI */
266
267 /* bits 32..63 are reserved for the abort code */
268
269 PERF_TXN_ABORT_MASK = (0xffffffffULL << 32),
270 PERF_TXN_ABORT_SHIFT = 32,
271};
272
273/*
274 * The format of the data returned by read() on a perf event fd,
275 * as specified by attr.read_format:
276 *
277 * struct read_format {
278 * { u64 value;
279 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
280 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
281 * { u64 id; } && PERF_FORMAT_ID
282 * } && !PERF_FORMAT_GROUP
283 *
284 * { u64 nr;
285 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
286 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
287 * { u64 value;
288 * { u64 id; } && PERF_FORMAT_ID
289 * } cntr[nr];
290 * } && PERF_FORMAT_GROUP
291 * };
292 */
293enum perf_event_read_format {
294 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
295 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
296 PERF_FORMAT_ID = 1U << 2,
297 PERF_FORMAT_GROUP = 1U << 3,
298
299 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
300};
301
302#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
303#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
304#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
305#define PERF_ATTR_SIZE_VER3 96 /* add: sample_regs_user */
306 /* add: sample_stack_user */
307#define PERF_ATTR_SIZE_VER4 104 /* add: sample_regs_intr */
308#define PERF_ATTR_SIZE_VER5 112 /* add: aux_watermark */
309#define PERF_ATTR_SIZE_VER6 120 /* add: aux_sample_size */
310
311/*
312 * Hardware event_id to monitor via a performance monitoring event:
313 *
314 * @sample_max_stack: Max number of frame pointers in a callchain,
315 * should be < /proc/sys/kernel/perf_event_max_stack
316 */
317struct perf_event_attr {
318
319 /*
320 * Major type: hardware/software/tracepoint/etc.
321 */
322 __u32 type;
323
324 /*
325 * Size of the attr structure, for fwd/bwd compat.
326 */
327 __u32 size;
328
329 /*
330 * Type specific configuration information.
331 */
332 __u64 config;
333
334 union {
335 __u64 sample_period;
336 __u64 sample_freq;
337 };
338
339 __u64 sample_type;
340 __u64 read_format;
341
342 __u64 disabled : 1, /* off by default */
343 inherit : 1, /* children inherit it */
344 pinned : 1, /* must always be on PMU */
345 exclusive : 1, /* only group on PMU */
346 exclude_user : 1, /* don't count user */
347 exclude_kernel : 1, /* ditto kernel */
348 exclude_hv : 1, /* ditto hypervisor */
349 exclude_idle : 1, /* don't count when idle */
350 mmap : 1, /* include mmap data */
351 comm : 1, /* include comm data */
352 freq : 1, /* use freq, not period */
353 inherit_stat : 1, /* per task counts */
354 enable_on_exec : 1, /* next exec enables */
355 task : 1, /* trace fork/exit */
356 watermark : 1, /* wakeup_watermark */
357 /*
358 * precise_ip:
359 *
360 * 0 - SAMPLE_IP can have arbitrary skid
361 * 1 - SAMPLE_IP must have constant skid
362 * 2 - SAMPLE_IP requested to have 0 skid
363 * 3 - SAMPLE_IP must have 0 skid
364 *
365 * See also PERF_RECORD_MISC_EXACT_IP
366 */
367 precise_ip : 2, /* skid constraint */
368 mmap_data : 1, /* non-exec mmap data */
369 sample_id_all : 1, /* sample_type all events */
370
371 exclude_host : 1, /* don't count in host */
372 exclude_guest : 1, /* don't count in guest */
373
374 exclude_callchain_kernel : 1, /* exclude kernel callchains */
375 exclude_callchain_user : 1, /* exclude user callchains */
376 mmap2 : 1, /* include mmap with inode data */
377 comm_exec : 1, /* flag comm events that are due to an exec */
378 use_clockid : 1, /* use @clockid for time fields */
379 context_switch : 1, /* context switch data */
380 write_backward : 1, /* Write ring buffer from end to beginning */
381 namespaces : 1, /* include namespaces data */
382 ksymbol : 1, /* include ksymbol events */
383 bpf_event : 1, /* include bpf events */
384 aux_output : 1, /* generate AUX records instead of events */
385 cgroup : 1, /* include cgroup events */
386 __reserved_1 : 31;
387
388 union {
389 __u32 wakeup_events; /* wakeup every n events */
390 __u32 wakeup_watermark; /* bytes before wakeup */
391 };
392
393 __u32 bp_type;
394 union {
395 __u64 bp_addr;
396 __u64 kprobe_func; /* for perf_kprobe */
397 __u64 uprobe_path; /* for perf_uprobe */
398 __u64 config1; /* extension of config */
399 };
400 union {
401 __u64 bp_len;
402 __u64 kprobe_addr; /* when kprobe_func == NULL */
403 __u64 probe_offset; /* for perf_[k,u]probe */
404 __u64 config2; /* extension of config1 */
405 };
406 __u64 branch_sample_type; /* enum perf_branch_sample_type */
407
408 /*
409 * Defines set of user regs to dump on samples.
410 * See asm/perf_regs.h for details.
411 */
412 __u64 sample_regs_user;
413
414 /*
415 * Defines size of the user stack to dump on samples.
416 */
417 __u32 sample_stack_user;
418
419 __s32 clockid;
420 /*
421 * Defines set of regs to dump for each sample
422 * state captured on:
423 * - precise = 0: PMU interrupt
424 * - precise > 0: sampled instruction
425 *
426 * See asm/perf_regs.h for details.
427 */
428 __u64 sample_regs_intr;
429
430 /*
431 * Wakeup watermark for AUX area
432 */
433 __u32 aux_watermark;
434 __u16 sample_max_stack;
435 __u16 __reserved_2;
436 __u32 aux_sample_size;
437 __u32 __reserved_3;
438};
439
440/*
441 * Structure used by below PERF_EVENT_IOC_QUERY_BPF command
442 * to query bpf programs attached to the same perf tracepoint
443 * as the given perf event.
444 */
445struct perf_event_query_bpf {
446 /*
447 * The below ids array length
448 */
449 __u32 ids_len;
450 /*
451 * Set by the kernel to indicate the number of
452 * available programs
453 */
454 __u32 prog_cnt;
455 /*
456 * User provided buffer to store program ids
457 */
458 __u32 ids[0];
459};
460
461/*
462 * Ioctls that can be done on a perf event fd:
463 */
464#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
465#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
466#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
467#define PERF_EVENT_IOC_RESET _IO ('$', 3)
468#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
469#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
470#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
471#define PERF_EVENT_IOC_ID _IOR('$', 7, __u64 *)
472#define PERF_EVENT_IOC_SET_BPF _IOW('$', 8, __u32)
473#define PERF_EVENT_IOC_PAUSE_OUTPUT _IOW('$', 9, __u32)
474#define PERF_EVENT_IOC_QUERY_BPF _IOWR('$', 10, struct perf_event_query_bpf *)
475#define PERF_EVENT_IOC_MODIFY_ATTRIBUTES _IOW('$', 11, struct perf_event_attr *)
476
477enum perf_event_ioc_flags {
478 PERF_IOC_FLAG_GROUP = 1U << 0,
479};
480
481/*
482 * Structure of the page that can be mapped via mmap
483 */
484struct perf_event_mmap_page {
485 __u32 version; /* version number of this structure */
486 __u32 compat_version; /* lowest version this is compat with */
487
488 /*
489 * Bits needed to read the hw events in user-space.
490 *
491 * u32 seq, time_mult, time_shift, index, width;
492 * u64 count, enabled, running;
493 * u64 cyc, time_offset;
494 * s64 pmc = 0;
495 *
496 * do {
497 * seq = pc->lock;
498 * barrier()
499 *
500 * enabled = pc->time_enabled;
501 * running = pc->time_running;
502 *
503 * if (pc->cap_usr_time && enabled != running) {
504 * cyc = rdtsc();
505 * time_offset = pc->time_offset;
506 * time_mult = pc->time_mult;
507 * time_shift = pc->time_shift;
508 * }
509 *
510 * index = pc->index;
511 * count = pc->offset;
512 * if (pc->cap_user_rdpmc && index) {
513 * width = pc->pmc_width;
514 * pmc = rdpmc(index - 1);
515 * }
516 *
517 * barrier();
518 * } while (pc->lock != seq);
519 *
520 * NOTE: for obvious reason this only works on self-monitoring
521 * processes.
522 */
523 __u32 lock; /* seqlock for synchronization */
524 __u32 index; /* hardware event identifier */
525 __s64 offset; /* add to hardware event value */
526 __u64 time_enabled; /* time event active */
527 __u64 time_running; /* time event on cpu */
528 union {
529 __u64 capabilities;
530 struct {
531 __u64 cap_bit0 : 1, /* Always 0, deprecated, see commit 860f085b74e9 */
532 cap_bit0_is_deprecated : 1, /* Always 1, signals that bit 0 is zero */
533
534 cap_user_rdpmc : 1, /* The RDPMC instruction can be used to read counts */
535 cap_user_time : 1, /* The time_* fields are used */
536 cap_user_time_zero : 1, /* The time_zero field is used */
537 cap_____res : 59;
538 };
539 };
540
541 /*
542 * If cap_user_rdpmc this field provides the bit-width of the value
543 * read using the rdpmc() or equivalent instruction. This can be used
544 * to sign extend the result like:
545 *
546 * pmc <<= 64 - width;
547 * pmc >>= 64 - width; // signed shift right
548 * count += pmc;
549 */
550 __u16 pmc_width;
551
552 /*
553 * If cap_usr_time the below fields can be used to compute the time
554 * delta since time_enabled (in ns) using rdtsc or similar.
555 *
556 * u64 quot, rem;
557 * u64 delta;
558 *
559 * quot = (cyc >> time_shift);
560 * rem = cyc & (((u64)1 << time_shift) - 1);
561 * delta = time_offset + quot * time_mult +
562 * ((rem * time_mult) >> time_shift);
563 *
564 * Where time_offset,time_mult,time_shift and cyc are read in the
565 * seqcount loop described above. This delta can then be added to
566 * enabled and possible running (if index), improving the scaling:
567 *
568 * enabled += delta;
569 * if (index)
570 * running += delta;
571 *
572 * quot = count / running;
573 * rem = count % running;
574 * count = quot * enabled + (rem * enabled) / running;
575 */
576 __u16 time_shift;
577 __u32 time_mult;
578 __u64 time_offset;
579 /*
580 * If cap_usr_time_zero, the hardware clock (e.g. TSC) can be calculated
581 * from sample timestamps.
582 *
583 * time = timestamp - time_zero;
584 * quot = time / time_mult;
585 * rem = time % time_mult;
586 * cyc = (quot << time_shift) + (rem << time_shift) / time_mult;
587 *
588 * And vice versa:
589 *
590 * quot = cyc >> time_shift;
591 * rem = cyc & (((u64)1 << time_shift) - 1);
592 * timestamp = time_zero + quot * time_mult +
593 * ((rem * time_mult) >> time_shift);
594 */
595 __u64 time_zero;
596 __u32 size; /* Header size up to __reserved[] fields. */
597
598 /*
599 * Hole for extension of the self monitor capabilities
600 */
601
602 __u8 __reserved[118*8+4]; /* align to 1k. */
603
604 /*
605 * Control data for the mmap() data buffer.
606 *
607 * User-space reading the @data_head value should issue an smp_rmb(),
608 * after reading this value.
609 *
610 * When the mapping is PROT_WRITE the @data_tail value should be
611 * written by userspace to reflect the last read data, after issueing
612 * an smp_mb() to separate the data read from the ->data_tail store.
613 * In this case the kernel will not over-write unread data.
614 *
615 * See perf_output_put_handle() for the data ordering.
616 *
617 * data_{offset,size} indicate the location and size of the perf record
618 * buffer within the mmapped area.
619 */
620 __u64 data_head; /* head in the data section */
621 __u64 data_tail; /* user-space written tail */
622 __u64 data_offset; /* where the buffer starts */
623 __u64 data_size; /* data buffer size */
624
625 /*
626 * AUX area is defined by aux_{offset,size} fields that should be set
627 * by the userspace, so that
628 *
629 * aux_offset >= data_offset + data_size
630 *
631 * prior to mmap()ing it. Size of the mmap()ed area should be aux_size.
632 *
633 * Ring buffer pointers aux_{head,tail} have the same semantics as
634 * data_{head,tail} and same ordering rules apply.
635 */
636 __u64 aux_head;
637 __u64 aux_tail;
638 __u64 aux_offset;
639 __u64 aux_size;
640};
641
642#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
643#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
644#define PERF_RECORD_MISC_KERNEL (1 << 0)
645#define PERF_RECORD_MISC_USER (2 << 0)
646#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
647#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
648#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
649
650/*
651 * Indicates that /proc/PID/maps parsing are truncated by time out.
652 */
653#define PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT (1 << 12)
654/*
655 * Following PERF_RECORD_MISC_* are used on different
656 * events, so can reuse the same bit position:
657 *
658 * PERF_RECORD_MISC_MMAP_DATA - PERF_RECORD_MMAP* events
659 * PERF_RECORD_MISC_COMM_EXEC - PERF_RECORD_COMM event
660 * PERF_RECORD_MISC_FORK_EXEC - PERF_RECORD_FORK event (perf internal)
661 * PERF_RECORD_MISC_SWITCH_OUT - PERF_RECORD_SWITCH* events
662 */
663#define PERF_RECORD_MISC_MMAP_DATA (1 << 13)
664#define PERF_RECORD_MISC_COMM_EXEC (1 << 13)
665#define PERF_RECORD_MISC_FORK_EXEC (1 << 13)
666#define PERF_RECORD_MISC_SWITCH_OUT (1 << 13)
667/*
668 * These PERF_RECORD_MISC_* flags below are safely reused
669 * for the following events:
670 *
671 * PERF_RECORD_MISC_EXACT_IP - PERF_RECORD_SAMPLE of precise events
672 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT - PERF_RECORD_SWITCH* events
673 *
674 *
675 * PERF_RECORD_MISC_EXACT_IP:
676 * Indicates that the content of PERF_SAMPLE_IP points to
677 * the actual instruction that triggered the event. See also
678 * perf_event_attr::precise_ip.
679 *
680 * PERF_RECORD_MISC_SWITCH_OUT_PREEMPT:
681 * Indicates that thread was preempted in TASK_RUNNING state.
682 */
683#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
684#define PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (1 << 14)
685/*
686 * Reserve the last bit to indicate some extended misc field
687 */
688#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
689
690struct perf_event_header {
691 __u32 type;
692 __u16 misc;
693 __u16 size;
694};
695
696struct perf_ns_link_info {
697 __u64 dev;
698 __u64 ino;
699};
700
701enum {
702 NET_NS_INDEX = 0,
703 UTS_NS_INDEX = 1,
704 IPC_NS_INDEX = 2,
705 PID_NS_INDEX = 3,
706 USER_NS_INDEX = 4,
707 MNT_NS_INDEX = 5,
708 CGROUP_NS_INDEX = 6,
709
710 NR_NAMESPACES, /* number of available namespaces */
711};
712
713enum perf_event_type {
714
715 /*
716 * If perf_event_attr.sample_id_all is set then all event types will
717 * have the sample_type selected fields related to where/when
718 * (identity) an event took place (TID, TIME, ID, STREAM_ID, CPU,
719 * IDENTIFIER) described in PERF_RECORD_SAMPLE below, it will be stashed
720 * just after the perf_event_header and the fields already present for
721 * the existing fields, i.e. at the end of the payload. That way a newer
722 * perf.data file will be supported by older perf tools, with these new
723 * optional fields being ignored.
724 *
725 * struct sample_id {
726 * { u32 pid, tid; } && PERF_SAMPLE_TID
727 * { u64 time; } && PERF_SAMPLE_TIME
728 * { u64 id; } && PERF_SAMPLE_ID
729 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
730 * { u32 cpu, res; } && PERF_SAMPLE_CPU
731 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
732 * } && perf_event_attr::sample_id_all
733 *
734 * Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID. The
735 * advantage of PERF_SAMPLE_IDENTIFIER is that its position is fixed
736 * relative to header.size.
737 */
738
739 /*
740 * The MMAP events record the PROT_EXEC mappings so that we can
741 * correlate userspace IPs to code. They have the following structure:
742 *
743 * struct {
744 * struct perf_event_header header;
745 *
746 * u32 pid, tid;
747 * u64 addr;
748 * u64 len;
749 * u64 pgoff;
750 * char filename[];
751 * struct sample_id sample_id;
752 * };
753 */
754 PERF_RECORD_MMAP = 1,
755
756 /*
757 * struct {
758 * struct perf_event_header header;
759 * u64 id;
760 * u64 lost;
761 * struct sample_id sample_id;
762 * };
763 */
764 PERF_RECORD_LOST = 2,
765
766 /*
767 * struct {
768 * struct perf_event_header header;
769 *
770 * u32 pid, tid;
771 * char comm[];
772 * struct sample_id sample_id;
773 * };
774 */
775 PERF_RECORD_COMM = 3,
776
777 /*
778 * struct {
779 * struct perf_event_header header;
780 * u32 pid, ppid;
781 * u32 tid, ptid;
782 * u64 time;
783 * struct sample_id sample_id;
784 * };
785 */
786 PERF_RECORD_EXIT = 4,
787
788 /*
789 * struct {
790 * struct perf_event_header header;
791 * u64 time;
792 * u64 id;
793 * u64 stream_id;
794 * struct sample_id sample_id;
795 * };
796 */
797 PERF_RECORD_THROTTLE = 5,
798 PERF_RECORD_UNTHROTTLE = 6,
799
800 /*
801 * struct {
802 * struct perf_event_header header;
803 * u32 pid, ppid;
804 * u32 tid, ptid;
805 * u64 time;
806 * struct sample_id sample_id;
807 * };
808 */
809 PERF_RECORD_FORK = 7,
810
811 /*
812 * struct {
813 * struct perf_event_header header;
814 * u32 pid, tid;
815 *
816 * struct read_format values;
817 * struct sample_id sample_id;
818 * };
819 */
820 PERF_RECORD_READ = 8,
821
822 /*
823 * struct {
824 * struct perf_event_header header;
825 *
826 * #
827 * # Note that PERF_SAMPLE_IDENTIFIER duplicates PERF_SAMPLE_ID.
828 * # The advantage of PERF_SAMPLE_IDENTIFIER is that its position
829 * # is fixed relative to header.
830 * #
831 *
832 * { u64 id; } && PERF_SAMPLE_IDENTIFIER
833 * { u64 ip; } && PERF_SAMPLE_IP
834 * { u32 pid, tid; } && PERF_SAMPLE_TID
835 * { u64 time; } && PERF_SAMPLE_TIME
836 * { u64 addr; } && PERF_SAMPLE_ADDR
837 * { u64 id; } && PERF_SAMPLE_ID
838 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
839 * { u32 cpu, res; } && PERF_SAMPLE_CPU
840 * { u64 period; } && PERF_SAMPLE_PERIOD
841 *
842 * { struct read_format values; } && PERF_SAMPLE_READ
843 *
844 * { u64 nr,
845 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
846 *
847 * #
848 * # The RAW record below is opaque data wrt the ABI
849 * #
850 * # That is, the ABI doesn't make any promises wrt to
851 * # the stability of its content, it may vary depending
852 * # on event, hardware, kernel version and phase of
853 * # the moon.
854 * #
855 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
856 * #
857 *
858 * { u32 size;
859 * char data[size];}&& PERF_SAMPLE_RAW
860 *
861 * { u64 nr;
862 * { u64 hw_idx; } && PERF_SAMPLE_BRANCH_HW_INDEX
863 * { u64 from, to, flags } lbr[nr];
864 * } && PERF_SAMPLE_BRANCH_STACK
865 *
866 * { u64 abi; # enum perf_sample_regs_abi
867 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_USER
868 *
869 * { u64 size;
870 * char data[size];
871 * u64 dyn_size; } && PERF_SAMPLE_STACK_USER
872 *
873 * { u64 weight; } && PERF_SAMPLE_WEIGHT
874 * { u64 data_src; } && PERF_SAMPLE_DATA_SRC
875 * { u64 transaction; } && PERF_SAMPLE_TRANSACTION
876 * { u64 abi; # enum perf_sample_regs_abi
877 * u64 regs[weight(mask)]; } && PERF_SAMPLE_REGS_INTR
878 * { u64 phys_addr;} && PERF_SAMPLE_PHYS_ADDR
879 * { u64 size;
880 * char data[size]; } && PERF_SAMPLE_AUX
881 * };
882 */
883 PERF_RECORD_SAMPLE = 9,
884
885 /*
886 * The MMAP2 records are an augmented version of MMAP, they add
887 * maj, min, ino numbers to be used to uniquely identify each mapping
888 *
889 * struct {
890 * struct perf_event_header header;
891 *
892 * u32 pid, tid;
893 * u64 addr;
894 * u64 len;
895 * u64 pgoff;
896 * u32 maj;
897 * u32 min;
898 * u64 ino;
899 * u64 ino_generation;
900 * u32 prot, flags;
901 * char filename[];
902 * struct sample_id sample_id;
903 * };
904 */
905 PERF_RECORD_MMAP2 = 10,
906
907 /*
908 * Records that new data landed in the AUX buffer part.
909 *
910 * struct {
911 * struct perf_event_header header;
912 *
913 * u64 aux_offset;
914 * u64 aux_size;
915 * u64 flags;
916 * struct sample_id sample_id;
917 * };
918 */
919 PERF_RECORD_AUX = 11,
920
921 /*
922 * Indicates that instruction trace has started
923 *
924 * struct {
925 * struct perf_event_header header;
926 * u32 pid;
927 * u32 tid;
928 * struct sample_id sample_id;
929 * };
930 */
931 PERF_RECORD_ITRACE_START = 12,
932
933 /*
934 * Records the dropped/lost sample number.
935 *
936 * struct {
937 * struct perf_event_header header;
938 *
939 * u64 lost;
940 * struct sample_id sample_id;
941 * };
942 */
943 PERF_RECORD_LOST_SAMPLES = 13,
944
945 /*
946 * Records a context switch in or out (flagged by
947 * PERF_RECORD_MISC_SWITCH_OUT). See also
948 * PERF_RECORD_SWITCH_CPU_WIDE.
949 *
950 * struct {
951 * struct perf_event_header header;
952 * struct sample_id sample_id;
953 * };
954 */
955 PERF_RECORD_SWITCH = 14,
956
957 /*
958 * CPU-wide version of PERF_RECORD_SWITCH with next_prev_pid and
959 * next_prev_tid that are the next (switching out) or previous
960 * (switching in) pid/tid.
961 *
962 * struct {
963 * struct perf_event_header header;
964 * u32 next_prev_pid;
965 * u32 next_prev_tid;
966 * struct sample_id sample_id;
967 * };
968 */
969 PERF_RECORD_SWITCH_CPU_WIDE = 15,
970
971 /*
972 * struct {
973 * struct perf_event_header header;
974 * u32 pid;
975 * u32 tid;
976 * u64 nr_namespaces;
977 * { u64 dev, inode; } [nr_namespaces];
978 * struct sample_id sample_id;
979 * };
980 */
981 PERF_RECORD_NAMESPACES = 16,
982
983 /*
984 * Record ksymbol register/unregister events:
985 *
986 * struct {
987 * struct perf_event_header header;
988 * u64 addr;
989 * u32 len;
990 * u16 ksym_type;
991 * u16 flags;
992 * char name[];
993 * struct sample_id sample_id;
994 * };
995 */
996 PERF_RECORD_KSYMBOL = 17,
997
998 /*
999 * Record bpf events:
1000 * enum perf_bpf_event_type {
1001 * PERF_BPF_EVENT_UNKNOWN = 0,
1002 * PERF_BPF_EVENT_PROG_LOAD = 1,
1003 * PERF_BPF_EVENT_PROG_UNLOAD = 2,
1004 * };
1005 *
1006 * struct {
1007 * struct perf_event_header header;
1008 * u16 type;
1009 * u16 flags;
1010 * u32 id;
1011 * u8 tag[BPF_TAG_SIZE];
1012 * struct sample_id sample_id;
1013 * };
1014 */
1015 PERF_RECORD_BPF_EVENT = 18,
1016
1017 /*
1018 * struct {
1019 * struct perf_event_header header;
1020 * u64 id;
1021 * char path[];
1022 * struct sample_id sample_id;
1023 * };
1024 */
1025 PERF_RECORD_CGROUP = 19,
1026
1027 PERF_RECORD_MAX, /* non-ABI */
1028};
1029
1030enum perf_record_ksymbol_type {
1031 PERF_RECORD_KSYMBOL_TYPE_UNKNOWN = 0,
1032 PERF_RECORD_KSYMBOL_TYPE_BPF = 1,
1033 PERF_RECORD_KSYMBOL_TYPE_MAX /* non-ABI */
1034};
1035
1036#define PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER (1 << 0)
1037
1038enum perf_bpf_event_type {
1039 PERF_BPF_EVENT_UNKNOWN = 0,
1040 PERF_BPF_EVENT_PROG_LOAD = 1,
1041 PERF_BPF_EVENT_PROG_UNLOAD = 2,
1042 PERF_BPF_EVENT_MAX, /* non-ABI */
1043};
1044
1045#define PERF_MAX_STACK_DEPTH 127
1046#define PERF_MAX_CONTEXTS_PER_STACK 8
1047
1048enum perf_callchain_context {
1049 PERF_CONTEXT_HV = (__u64)-32,
1050 PERF_CONTEXT_KERNEL = (__u64)-128,
1051 PERF_CONTEXT_USER = (__u64)-512,
1052
1053 PERF_CONTEXT_GUEST = (__u64)-2048,
1054 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
1055 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
1056
1057 PERF_CONTEXT_MAX = (__u64)-4095,
1058};
1059
1060/**
1061 * PERF_RECORD_AUX::flags bits
1062 */
1063#define PERF_AUX_FLAG_TRUNCATED 0x01 /* record was truncated to fit */
1064#define PERF_AUX_FLAG_OVERWRITE 0x02 /* snapshot from overwrite mode */
1065#define PERF_AUX_FLAG_PARTIAL 0x04 /* record contains gaps */
1066#define PERF_AUX_FLAG_COLLISION 0x08 /* sample collided with another */
1067
1068#define PERF_FLAG_FD_NO_GROUP (1UL << 0)
1069#define PERF_FLAG_FD_OUTPUT (1UL << 1)
1070#define PERF_FLAG_PID_CGROUP (1UL << 2) /* pid=cgroup id, per-cpu mode only */
1071#define PERF_FLAG_FD_CLOEXEC (1UL << 3) /* O_CLOEXEC */
1072
1073#if defined(__LITTLE_ENDIAN_BITFIELD)
1074union perf_mem_data_src {
1075 __u64 val;
1076 struct {
1077 __u64 mem_op:5, /* type of opcode */
1078 mem_lvl:14, /* memory hierarchy level */
1079 mem_snoop:5, /* snoop mode */
1080 mem_lock:2, /* lock instr */
1081 mem_dtlb:7, /* tlb access */
1082 mem_lvl_num:4, /* memory hierarchy level number */
1083 mem_remote:1, /* remote */
1084 mem_snoopx:2, /* snoop mode, ext */
1085 mem_rsvd:24;
1086 };
1087};
1088#elif defined(__BIG_ENDIAN_BITFIELD)
1089union perf_mem_data_src {
1090 __u64 val;
1091 struct {
1092 __u64 mem_rsvd:24,
1093 mem_snoopx:2, /* snoop mode, ext */
1094 mem_remote:1, /* remote */
1095 mem_lvl_num:4, /* memory hierarchy level number */
1096 mem_dtlb:7, /* tlb access */
1097 mem_lock:2, /* lock instr */
1098 mem_snoop:5, /* snoop mode */
1099 mem_lvl:14, /* memory hierarchy level */
1100 mem_op:5; /* type of opcode */
1101 };
1102};
1103#else
1104#error "Unknown endianness"
1105#endif
1106
1107/* type of opcode (load/store/prefetch,code) */
1108#define PERF_MEM_OP_NA 0x01 /* not available */
1109#define PERF_MEM_OP_LOAD 0x02 /* load instruction */
1110#define PERF_MEM_OP_STORE 0x04 /* store instruction */
1111#define PERF_MEM_OP_PFETCH 0x08 /* prefetch */
1112#define PERF_MEM_OP_EXEC 0x10 /* code (execution) */
1113#define PERF_MEM_OP_SHIFT 0
1114
1115/* memory hierarchy (memory level, hit or miss) */
1116#define PERF_MEM_LVL_NA 0x01 /* not available */
1117#define PERF_MEM_LVL_HIT 0x02 /* hit level */
1118#define PERF_MEM_LVL_MISS 0x04 /* miss level */
1119#define PERF_MEM_LVL_L1 0x08 /* L1 */
1120#define PERF_MEM_LVL_LFB 0x10 /* Line Fill Buffer */
1121#define PERF_MEM_LVL_L2 0x20 /* L2 */
1122#define PERF_MEM_LVL_L3 0x40 /* L3 */
1123#define PERF_MEM_LVL_LOC_RAM 0x80 /* Local DRAM */
1124#define PERF_MEM_LVL_REM_RAM1 0x100 /* Remote DRAM (1 hop) */
1125#define PERF_MEM_LVL_REM_RAM2 0x200 /* Remote DRAM (2 hops) */
1126#define PERF_MEM_LVL_REM_CCE1 0x400 /* Remote Cache (1 hop) */
1127#define PERF_MEM_LVL_REM_CCE2 0x800 /* Remote Cache (2 hops) */
1128#define PERF_MEM_LVL_IO 0x1000 /* I/O memory */
1129#define PERF_MEM_LVL_UNC 0x2000 /* Uncached memory */
1130#define PERF_MEM_LVL_SHIFT 5
1131
1132#define PERF_MEM_REMOTE_REMOTE 0x01 /* Remote */
1133#define PERF_MEM_REMOTE_SHIFT 37
1134
1135#define PERF_MEM_LVLNUM_L1 0x01 /* L1 */
1136#define PERF_MEM_LVLNUM_L2 0x02 /* L2 */
1137#define PERF_MEM_LVLNUM_L3 0x03 /* L3 */
1138#define PERF_MEM_LVLNUM_L4 0x04 /* L4 */
1139/* 5-0xa available */
1140#define PERF_MEM_LVLNUM_ANY_CACHE 0x0b /* Any cache */
1141#define PERF_MEM_LVLNUM_LFB 0x0c /* LFB */
1142#define PERF_MEM_LVLNUM_RAM 0x0d /* RAM */
1143#define PERF_MEM_LVLNUM_PMEM 0x0e /* PMEM */
1144#define PERF_MEM_LVLNUM_NA 0x0f /* N/A */
1145
1146#define PERF_MEM_LVLNUM_SHIFT 33
1147
1148/* snoop mode */
1149#define PERF_MEM_SNOOP_NA 0x01 /* not available */
1150#define PERF_MEM_SNOOP_NONE 0x02 /* no snoop */
1151#define PERF_MEM_SNOOP_HIT 0x04 /* snoop hit */
1152#define PERF_MEM_SNOOP_MISS 0x08 /* snoop miss */
1153#define PERF_MEM_SNOOP_HITM 0x10 /* snoop hit modified */
1154#define PERF_MEM_SNOOP_SHIFT 19
1155
1156#define PERF_MEM_SNOOPX_FWD 0x01 /* forward */
1157/* 1 free */
1158#define PERF_MEM_SNOOPX_SHIFT 37
1159
1160/* locked instruction */
1161#define PERF_MEM_LOCK_NA 0x01 /* not available */
1162#define PERF_MEM_LOCK_LOCKED 0x02 /* locked transaction */
1163#define PERF_MEM_LOCK_SHIFT 24
1164
1165/* TLB access */
1166#define PERF_MEM_TLB_NA 0x01 /* not available */
1167#define PERF_MEM_TLB_HIT 0x02 /* hit level */
1168#define PERF_MEM_TLB_MISS 0x04 /* miss level */
1169#define PERF_MEM_TLB_L1 0x08 /* L1 */
1170#define PERF_MEM_TLB_L2 0x10 /* L2 */
1171#define PERF_MEM_TLB_WK 0x20 /* Hardware Walker*/
1172#define PERF_MEM_TLB_OS 0x40 /* OS fault handler */
1173#define PERF_MEM_TLB_SHIFT 26
1174
1175#define PERF_MEM_S(a, s) \
1176 (((__u64)PERF_MEM_##a##_##s) << PERF_MEM_##a##_SHIFT)
1177
1178/*
1179 * single taken branch record layout:
1180 *
1181 * from: source instruction (may not always be a branch insn)
1182 * to: branch target
1183 * mispred: branch target was mispredicted
1184 * predicted: branch target was predicted
1185 *
1186 * support for mispred, predicted is optional. In case it
1187 * is not supported mispred = predicted = 0.
1188 *
1189 * in_tx: running in a hardware transaction
1190 * abort: aborting a hardware transaction
1191 * cycles: cycles from last branch (or 0 if not supported)
1192 * type: branch type
1193 */
1194struct perf_branch_entry {
1195 __u64 from;
1196 __u64 to;
1197 __u64 mispred:1, /* target mispredicted */
1198 predicted:1,/* target predicted */
1199 in_tx:1, /* in transaction */
1200 abort:1, /* transaction abort */
1201 cycles:16, /* cycle count to last branch */
1202 type:4, /* branch type */
1203 reserved:40;
1204};
1205
1206#endif /* _UAPI_LINUX_PERF_EVENT_H */