at v5.7 57 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_SCHED_H 3#define _LINUX_SCHED_H 4 5/* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10#include <uapi/linux/sched.h> 11 12#include <asm/current.h> 13 14#include <linux/pid.h> 15#include <linux/sem.h> 16#include <linux/shm.h> 17#include <linux/kcov.h> 18#include <linux/mutex.h> 19#include <linux/plist.h> 20#include <linux/hrtimer.h> 21#include <linux/seccomp.h> 22#include <linux/nodemask.h> 23#include <linux/rcupdate.h> 24#include <linux/refcount.h> 25#include <linux/resource.h> 26#include <linux/latencytop.h> 27#include <linux/sched/prio.h> 28#include <linux/sched/types.h> 29#include <linux/signal_types.h> 30#include <linux/mm_types_task.h> 31#include <linux/task_io_accounting.h> 32#include <linux/posix-timers.h> 33#include <linux/rseq.h> 34 35/* task_struct member predeclarations (sorted alphabetically): */ 36struct audit_context; 37struct backing_dev_info; 38struct bio_list; 39struct blk_plug; 40struct capture_control; 41struct cfs_rq; 42struct fs_struct; 43struct futex_pi_state; 44struct io_context; 45struct mempolicy; 46struct nameidata; 47struct nsproxy; 48struct perf_event_context; 49struct pid_namespace; 50struct pipe_inode_info; 51struct rcu_node; 52struct reclaim_state; 53struct robust_list_head; 54struct root_domain; 55struct rq; 56struct sched_attr; 57struct sched_param; 58struct seq_file; 59struct sighand_struct; 60struct signal_struct; 61struct task_delay_info; 62struct task_group; 63 64/* 65 * Task state bitmask. NOTE! These bits are also 66 * encoded in fs/proc/array.c: get_task_state(). 67 * 68 * We have two separate sets of flags: task->state 69 * is about runnability, while task->exit_state are 70 * about the task exiting. Confusing, but this way 71 * modifying one set can't modify the other one by 72 * mistake. 73 */ 74 75/* Used in tsk->state: */ 76#define TASK_RUNNING 0x0000 77#define TASK_INTERRUPTIBLE 0x0001 78#define TASK_UNINTERRUPTIBLE 0x0002 79#define __TASK_STOPPED 0x0004 80#define __TASK_TRACED 0x0008 81/* Used in tsk->exit_state: */ 82#define EXIT_DEAD 0x0010 83#define EXIT_ZOMBIE 0x0020 84#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 85/* Used in tsk->state again: */ 86#define TASK_PARKED 0x0040 87#define TASK_DEAD 0x0080 88#define TASK_WAKEKILL 0x0100 89#define TASK_WAKING 0x0200 90#define TASK_NOLOAD 0x0400 91#define TASK_NEW 0x0800 92#define TASK_STATE_MAX 0x1000 93 94/* Convenience macros for the sake of set_current_state: */ 95#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 96#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 97#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 98 99#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 100 101/* Convenience macros for the sake of wake_up(): */ 102#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 103 104/* get_task_state(): */ 105#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 106 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 107 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 108 TASK_PARKED) 109 110#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 111 112#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 113 114#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 115 116#define task_contributes_to_load(task) ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ 117 (task->flags & PF_FROZEN) == 0 && \ 118 (task->state & TASK_NOLOAD) == 0) 119 120#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 121 122/* 123 * Special states are those that do not use the normal wait-loop pattern. See 124 * the comment with set_special_state(). 125 */ 126#define is_special_task_state(state) \ 127 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 128 129#define __set_current_state(state_value) \ 130 do { \ 131 WARN_ON_ONCE(is_special_task_state(state_value));\ 132 current->task_state_change = _THIS_IP_; \ 133 current->state = (state_value); \ 134 } while (0) 135 136#define set_current_state(state_value) \ 137 do { \ 138 WARN_ON_ONCE(is_special_task_state(state_value));\ 139 current->task_state_change = _THIS_IP_; \ 140 smp_store_mb(current->state, (state_value)); \ 141 } while (0) 142 143#define set_special_state(state_value) \ 144 do { \ 145 unsigned long flags; /* may shadow */ \ 146 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 147 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 148 current->task_state_change = _THIS_IP_; \ 149 current->state = (state_value); \ 150 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 151 } while (0) 152#else 153/* 154 * set_current_state() includes a barrier so that the write of current->state 155 * is correctly serialised wrt the caller's subsequent test of whether to 156 * actually sleep: 157 * 158 * for (;;) { 159 * set_current_state(TASK_UNINTERRUPTIBLE); 160 * if (!need_sleep) 161 * break; 162 * 163 * schedule(); 164 * } 165 * __set_current_state(TASK_RUNNING); 166 * 167 * If the caller does not need such serialisation (because, for instance, the 168 * condition test and condition change and wakeup are under the same lock) then 169 * use __set_current_state(). 170 * 171 * The above is typically ordered against the wakeup, which does: 172 * 173 * need_sleep = false; 174 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 175 * 176 * where wake_up_state() executes a full memory barrier before accessing the 177 * task state. 178 * 179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 182 * 183 * However, with slightly different timing the wakeup TASK_RUNNING store can 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 185 * a problem either because that will result in one extra go around the loop 186 * and our @cond test will save the day. 187 * 188 * Also see the comments of try_to_wake_up(). 189 */ 190#define __set_current_state(state_value) \ 191 current->state = (state_value) 192 193#define set_current_state(state_value) \ 194 smp_store_mb(current->state, (state_value)) 195 196/* 197 * set_special_state() should be used for those states when the blocking task 198 * can not use the regular condition based wait-loop. In that case we must 199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 200 * will not collide with our state change. 201 */ 202#define set_special_state(state_value) \ 203 do { \ 204 unsigned long flags; /* may shadow */ \ 205 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 206 current->state = (state_value); \ 207 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 208 } while (0) 209 210#endif 211 212/* Task command name length: */ 213#define TASK_COMM_LEN 16 214 215extern void scheduler_tick(void); 216 217#define MAX_SCHEDULE_TIMEOUT LONG_MAX 218 219extern long schedule_timeout(long timeout); 220extern long schedule_timeout_interruptible(long timeout); 221extern long schedule_timeout_killable(long timeout); 222extern long schedule_timeout_uninterruptible(long timeout); 223extern long schedule_timeout_idle(long timeout); 224asmlinkage void schedule(void); 225extern void schedule_preempt_disabled(void); 226asmlinkage void preempt_schedule_irq(void); 227 228extern int __must_check io_schedule_prepare(void); 229extern void io_schedule_finish(int token); 230extern long io_schedule_timeout(long timeout); 231extern void io_schedule(void); 232 233/** 234 * struct prev_cputime - snapshot of system and user cputime 235 * @utime: time spent in user mode 236 * @stime: time spent in system mode 237 * @lock: protects the above two fields 238 * 239 * Stores previous user/system time values such that we can guarantee 240 * monotonicity. 241 */ 242struct prev_cputime { 243#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 244 u64 utime; 245 u64 stime; 246 raw_spinlock_t lock; 247#endif 248}; 249 250enum vtime_state { 251 /* Task is sleeping or running in a CPU with VTIME inactive: */ 252 VTIME_INACTIVE = 0, 253 /* Task is idle */ 254 VTIME_IDLE, 255 /* Task runs in kernelspace in a CPU with VTIME active: */ 256 VTIME_SYS, 257 /* Task runs in userspace in a CPU with VTIME active: */ 258 VTIME_USER, 259 /* Task runs as guests in a CPU with VTIME active: */ 260 VTIME_GUEST, 261}; 262 263struct vtime { 264 seqcount_t seqcount; 265 unsigned long long starttime; 266 enum vtime_state state; 267 unsigned int cpu; 268 u64 utime; 269 u64 stime; 270 u64 gtime; 271}; 272 273/* 274 * Utilization clamp constraints. 275 * @UCLAMP_MIN: Minimum utilization 276 * @UCLAMP_MAX: Maximum utilization 277 * @UCLAMP_CNT: Utilization clamp constraints count 278 */ 279enum uclamp_id { 280 UCLAMP_MIN = 0, 281 UCLAMP_MAX, 282 UCLAMP_CNT 283}; 284 285#ifdef CONFIG_SMP 286extern struct root_domain def_root_domain; 287extern struct mutex sched_domains_mutex; 288#endif 289 290struct sched_info { 291#ifdef CONFIG_SCHED_INFO 292 /* Cumulative counters: */ 293 294 /* # of times we have run on this CPU: */ 295 unsigned long pcount; 296 297 /* Time spent waiting on a runqueue: */ 298 unsigned long long run_delay; 299 300 /* Timestamps: */ 301 302 /* When did we last run on a CPU? */ 303 unsigned long long last_arrival; 304 305 /* When were we last queued to run? */ 306 unsigned long long last_queued; 307 308#endif /* CONFIG_SCHED_INFO */ 309}; 310 311/* 312 * Integer metrics need fixed point arithmetic, e.g., sched/fair 313 * has a few: load, load_avg, util_avg, freq, and capacity. 314 * 315 * We define a basic fixed point arithmetic range, and then formalize 316 * all these metrics based on that basic range. 317 */ 318# define SCHED_FIXEDPOINT_SHIFT 10 319# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 320 321/* Increase resolution of cpu_capacity calculations */ 322# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 323# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 324 325struct load_weight { 326 unsigned long weight; 327 u32 inv_weight; 328}; 329 330/** 331 * struct util_est - Estimation utilization of FAIR tasks 332 * @enqueued: instantaneous estimated utilization of a task/cpu 333 * @ewma: the Exponential Weighted Moving Average (EWMA) 334 * utilization of a task 335 * 336 * Support data structure to track an Exponential Weighted Moving Average 337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 338 * average each time a task completes an activation. Sample's weight is chosen 339 * so that the EWMA will be relatively insensitive to transient changes to the 340 * task's workload. 341 * 342 * The enqueued attribute has a slightly different meaning for tasks and cpus: 343 * - task: the task's util_avg at last task dequeue time 344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 345 * Thus, the util_est.enqueued of a task represents the contribution on the 346 * estimated utilization of the CPU where that task is currently enqueued. 347 * 348 * Only for tasks we track a moving average of the past instantaneous 349 * estimated utilization. This allows to absorb sporadic drops in utilization 350 * of an otherwise almost periodic task. 351 */ 352struct util_est { 353 unsigned int enqueued; 354 unsigned int ewma; 355#define UTIL_EST_WEIGHT_SHIFT 2 356} __attribute__((__aligned__(sizeof(u64)))); 357 358/* 359 * The load/runnable/util_avg accumulates an infinite geometric series 360 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). 361 * 362 * [load_avg definition] 363 * 364 * load_avg = runnable% * scale_load_down(load) 365 * 366 * [runnable_avg definition] 367 * 368 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE 369 * 370 * [util_avg definition] 371 * 372 * util_avg = running% * SCHED_CAPACITY_SCALE 373 * 374 * where runnable% is the time ratio that a sched_entity is runnable and 375 * running% the time ratio that a sched_entity is running. 376 * 377 * For cfs_rq, they are the aggregated values of all runnable and blocked 378 * sched_entities. 379 * 380 * The load/runnable/util_avg doesn't direcly factor frequency scaling and CPU 381 * capacity scaling. The scaling is done through the rq_clock_pelt that is used 382 * for computing those signals (see update_rq_clock_pelt()) 383 * 384 * N.B., the above ratios (runnable% and running%) themselves are in the 385 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 386 * to as large a range as necessary. This is for example reflected by 387 * util_avg's SCHED_CAPACITY_SCALE. 388 * 389 * [Overflow issue] 390 * 391 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 392 * with the highest load (=88761), always runnable on a single cfs_rq, 393 * and should not overflow as the number already hits PID_MAX_LIMIT. 394 * 395 * For all other cases (including 32-bit kernels), struct load_weight's 396 * weight will overflow first before we do, because: 397 * 398 * Max(load_avg) <= Max(load.weight) 399 * 400 * Then it is the load_weight's responsibility to consider overflow 401 * issues. 402 */ 403struct sched_avg { 404 u64 last_update_time; 405 u64 load_sum; 406 u64 runnable_sum; 407 u32 util_sum; 408 u32 period_contrib; 409 unsigned long load_avg; 410 unsigned long runnable_avg; 411 unsigned long util_avg; 412 struct util_est util_est; 413} ____cacheline_aligned; 414 415struct sched_statistics { 416#ifdef CONFIG_SCHEDSTATS 417 u64 wait_start; 418 u64 wait_max; 419 u64 wait_count; 420 u64 wait_sum; 421 u64 iowait_count; 422 u64 iowait_sum; 423 424 u64 sleep_start; 425 u64 sleep_max; 426 s64 sum_sleep_runtime; 427 428 u64 block_start; 429 u64 block_max; 430 u64 exec_max; 431 u64 slice_max; 432 433 u64 nr_migrations_cold; 434 u64 nr_failed_migrations_affine; 435 u64 nr_failed_migrations_running; 436 u64 nr_failed_migrations_hot; 437 u64 nr_forced_migrations; 438 439 u64 nr_wakeups; 440 u64 nr_wakeups_sync; 441 u64 nr_wakeups_migrate; 442 u64 nr_wakeups_local; 443 u64 nr_wakeups_remote; 444 u64 nr_wakeups_affine; 445 u64 nr_wakeups_affine_attempts; 446 u64 nr_wakeups_passive; 447 u64 nr_wakeups_idle; 448#endif 449}; 450 451struct sched_entity { 452 /* For load-balancing: */ 453 struct load_weight load; 454 struct rb_node run_node; 455 struct list_head group_node; 456 unsigned int on_rq; 457 458 u64 exec_start; 459 u64 sum_exec_runtime; 460 u64 vruntime; 461 u64 prev_sum_exec_runtime; 462 463 u64 nr_migrations; 464 465 struct sched_statistics statistics; 466 467#ifdef CONFIG_FAIR_GROUP_SCHED 468 int depth; 469 struct sched_entity *parent; 470 /* rq on which this entity is (to be) queued: */ 471 struct cfs_rq *cfs_rq; 472 /* rq "owned" by this entity/group: */ 473 struct cfs_rq *my_q; 474 /* cached value of my_q->h_nr_running */ 475 unsigned long runnable_weight; 476#endif 477 478#ifdef CONFIG_SMP 479 /* 480 * Per entity load average tracking. 481 * 482 * Put into separate cache line so it does not 483 * collide with read-mostly values above. 484 */ 485 struct sched_avg avg; 486#endif 487}; 488 489struct sched_rt_entity { 490 struct list_head run_list; 491 unsigned long timeout; 492 unsigned long watchdog_stamp; 493 unsigned int time_slice; 494 unsigned short on_rq; 495 unsigned short on_list; 496 497 struct sched_rt_entity *back; 498#ifdef CONFIG_RT_GROUP_SCHED 499 struct sched_rt_entity *parent; 500 /* rq on which this entity is (to be) queued: */ 501 struct rt_rq *rt_rq; 502 /* rq "owned" by this entity/group: */ 503 struct rt_rq *my_q; 504#endif 505} __randomize_layout; 506 507struct sched_dl_entity { 508 struct rb_node rb_node; 509 510 /* 511 * Original scheduling parameters. Copied here from sched_attr 512 * during sched_setattr(), they will remain the same until 513 * the next sched_setattr(). 514 */ 515 u64 dl_runtime; /* Maximum runtime for each instance */ 516 u64 dl_deadline; /* Relative deadline of each instance */ 517 u64 dl_period; /* Separation of two instances (period) */ 518 u64 dl_bw; /* dl_runtime / dl_period */ 519 u64 dl_density; /* dl_runtime / dl_deadline */ 520 521 /* 522 * Actual scheduling parameters. Initialized with the values above, 523 * they are continuously updated during task execution. Note that 524 * the remaining runtime could be < 0 in case we are in overrun. 525 */ 526 s64 runtime; /* Remaining runtime for this instance */ 527 u64 deadline; /* Absolute deadline for this instance */ 528 unsigned int flags; /* Specifying the scheduler behaviour */ 529 530 /* 531 * Some bool flags: 532 * 533 * @dl_throttled tells if we exhausted the runtime. If so, the 534 * task has to wait for a replenishment to be performed at the 535 * next firing of dl_timer. 536 * 537 * @dl_boosted tells if we are boosted due to DI. If so we are 538 * outside bandwidth enforcement mechanism (but only until we 539 * exit the critical section); 540 * 541 * @dl_yielded tells if task gave up the CPU before consuming 542 * all its available runtime during the last job. 543 * 544 * @dl_non_contending tells if the task is inactive while still 545 * contributing to the active utilization. In other words, it 546 * indicates if the inactive timer has been armed and its handler 547 * has not been executed yet. This flag is useful to avoid race 548 * conditions between the inactive timer handler and the wakeup 549 * code. 550 * 551 * @dl_overrun tells if the task asked to be informed about runtime 552 * overruns. 553 */ 554 unsigned int dl_throttled : 1; 555 unsigned int dl_boosted : 1; 556 unsigned int dl_yielded : 1; 557 unsigned int dl_non_contending : 1; 558 unsigned int dl_overrun : 1; 559 560 /* 561 * Bandwidth enforcement timer. Each -deadline task has its 562 * own bandwidth to be enforced, thus we need one timer per task. 563 */ 564 struct hrtimer dl_timer; 565 566 /* 567 * Inactive timer, responsible for decreasing the active utilization 568 * at the "0-lag time". When a -deadline task blocks, it contributes 569 * to GRUB's active utilization until the "0-lag time", hence a 570 * timer is needed to decrease the active utilization at the correct 571 * time. 572 */ 573 struct hrtimer inactive_timer; 574}; 575 576#ifdef CONFIG_UCLAMP_TASK 577/* Number of utilization clamp buckets (shorter alias) */ 578#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 579 580/* 581 * Utilization clamp for a scheduling entity 582 * @value: clamp value "assigned" to a se 583 * @bucket_id: bucket index corresponding to the "assigned" value 584 * @active: the se is currently refcounted in a rq's bucket 585 * @user_defined: the requested clamp value comes from user-space 586 * 587 * The bucket_id is the index of the clamp bucket matching the clamp value 588 * which is pre-computed and stored to avoid expensive integer divisions from 589 * the fast path. 590 * 591 * The active bit is set whenever a task has got an "effective" value assigned, 592 * which can be different from the clamp value "requested" from user-space. 593 * This allows to know a task is refcounted in the rq's bucket corresponding 594 * to the "effective" bucket_id. 595 * 596 * The user_defined bit is set whenever a task has got a task-specific clamp 597 * value requested from userspace, i.e. the system defaults apply to this task 598 * just as a restriction. This allows to relax default clamps when a less 599 * restrictive task-specific value has been requested, thus allowing to 600 * implement a "nice" semantic. For example, a task running with a 20% 601 * default boost can still drop its own boosting to 0%. 602 */ 603struct uclamp_se { 604 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 605 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 606 unsigned int active : 1; 607 unsigned int user_defined : 1; 608}; 609#endif /* CONFIG_UCLAMP_TASK */ 610 611union rcu_special { 612 struct { 613 u8 blocked; 614 u8 need_qs; 615 u8 exp_hint; /* Hint for performance. */ 616 u8 deferred_qs; 617 } b; /* Bits. */ 618 u32 s; /* Set of bits. */ 619}; 620 621enum perf_event_task_context { 622 perf_invalid_context = -1, 623 perf_hw_context = 0, 624 perf_sw_context, 625 perf_nr_task_contexts, 626}; 627 628struct wake_q_node { 629 struct wake_q_node *next; 630}; 631 632struct task_struct { 633#ifdef CONFIG_THREAD_INFO_IN_TASK 634 /* 635 * For reasons of header soup (see current_thread_info()), this 636 * must be the first element of task_struct. 637 */ 638 struct thread_info thread_info; 639#endif 640 /* -1 unrunnable, 0 runnable, >0 stopped: */ 641 volatile long state; 642 643 /* 644 * This begins the randomizable portion of task_struct. Only 645 * scheduling-critical items should be added above here. 646 */ 647 randomized_struct_fields_start 648 649 void *stack; 650 refcount_t usage; 651 /* Per task flags (PF_*), defined further below: */ 652 unsigned int flags; 653 unsigned int ptrace; 654 655#ifdef CONFIG_SMP 656 struct llist_node wake_entry; 657 int on_cpu; 658#ifdef CONFIG_THREAD_INFO_IN_TASK 659 /* Current CPU: */ 660 unsigned int cpu; 661#endif 662 unsigned int wakee_flips; 663 unsigned long wakee_flip_decay_ts; 664 struct task_struct *last_wakee; 665 666 /* 667 * recent_used_cpu is initially set as the last CPU used by a task 668 * that wakes affine another task. Waker/wakee relationships can 669 * push tasks around a CPU where each wakeup moves to the next one. 670 * Tracking a recently used CPU allows a quick search for a recently 671 * used CPU that may be idle. 672 */ 673 int recent_used_cpu; 674 int wake_cpu; 675#endif 676 int on_rq; 677 678 int prio; 679 int static_prio; 680 int normal_prio; 681 unsigned int rt_priority; 682 683 const struct sched_class *sched_class; 684 struct sched_entity se; 685 struct sched_rt_entity rt; 686#ifdef CONFIG_CGROUP_SCHED 687 struct task_group *sched_task_group; 688#endif 689 struct sched_dl_entity dl; 690 691#ifdef CONFIG_UCLAMP_TASK 692 /* Clamp values requested for a scheduling entity */ 693 struct uclamp_se uclamp_req[UCLAMP_CNT]; 694 /* Effective clamp values used for a scheduling entity */ 695 struct uclamp_se uclamp[UCLAMP_CNT]; 696#endif 697 698#ifdef CONFIG_PREEMPT_NOTIFIERS 699 /* List of struct preempt_notifier: */ 700 struct hlist_head preempt_notifiers; 701#endif 702 703#ifdef CONFIG_BLK_DEV_IO_TRACE 704 unsigned int btrace_seq; 705#endif 706 707 unsigned int policy; 708 int nr_cpus_allowed; 709 const cpumask_t *cpus_ptr; 710 cpumask_t cpus_mask; 711 712#ifdef CONFIG_PREEMPT_RCU 713 int rcu_read_lock_nesting; 714 union rcu_special rcu_read_unlock_special; 715 struct list_head rcu_node_entry; 716 struct rcu_node *rcu_blocked_node; 717#endif /* #ifdef CONFIG_PREEMPT_RCU */ 718 719#ifdef CONFIG_TASKS_RCU 720 unsigned long rcu_tasks_nvcsw; 721 u8 rcu_tasks_holdout; 722 u8 rcu_tasks_idx; 723 int rcu_tasks_idle_cpu; 724 struct list_head rcu_tasks_holdout_list; 725#endif /* #ifdef CONFIG_TASKS_RCU */ 726 727 struct sched_info sched_info; 728 729 struct list_head tasks; 730#ifdef CONFIG_SMP 731 struct plist_node pushable_tasks; 732 struct rb_node pushable_dl_tasks; 733#endif 734 735 struct mm_struct *mm; 736 struct mm_struct *active_mm; 737 738 /* Per-thread vma caching: */ 739 struct vmacache vmacache; 740 741#ifdef SPLIT_RSS_COUNTING 742 struct task_rss_stat rss_stat; 743#endif 744 int exit_state; 745 int exit_code; 746 int exit_signal; 747 /* The signal sent when the parent dies: */ 748 int pdeath_signal; 749 /* JOBCTL_*, siglock protected: */ 750 unsigned long jobctl; 751 752 /* Used for emulating ABI behavior of previous Linux versions: */ 753 unsigned int personality; 754 755 /* Scheduler bits, serialized by scheduler locks: */ 756 unsigned sched_reset_on_fork:1; 757 unsigned sched_contributes_to_load:1; 758 unsigned sched_migrated:1; 759 unsigned sched_remote_wakeup:1; 760#ifdef CONFIG_PSI 761 unsigned sched_psi_wake_requeue:1; 762#endif 763 764 /* Force alignment to the next boundary: */ 765 unsigned :0; 766 767 /* Unserialized, strictly 'current' */ 768 769 /* Bit to tell LSMs we're in execve(): */ 770 unsigned in_execve:1; 771 unsigned in_iowait:1; 772#ifndef TIF_RESTORE_SIGMASK 773 unsigned restore_sigmask:1; 774#endif 775#ifdef CONFIG_MEMCG 776 unsigned in_user_fault:1; 777#endif 778#ifdef CONFIG_COMPAT_BRK 779 unsigned brk_randomized:1; 780#endif 781#ifdef CONFIG_CGROUPS 782 /* disallow userland-initiated cgroup migration */ 783 unsigned no_cgroup_migration:1; 784 /* task is frozen/stopped (used by the cgroup freezer) */ 785 unsigned frozen:1; 786#endif 787#ifdef CONFIG_BLK_CGROUP 788 unsigned use_memdelay:1; 789#endif 790#ifdef CONFIG_PSI 791 /* Stalled due to lack of memory */ 792 unsigned in_memstall:1; 793#endif 794 795 unsigned long atomic_flags; /* Flags requiring atomic access. */ 796 797 struct restart_block restart_block; 798 799 pid_t pid; 800 pid_t tgid; 801 802#ifdef CONFIG_STACKPROTECTOR 803 /* Canary value for the -fstack-protector GCC feature: */ 804 unsigned long stack_canary; 805#endif 806 /* 807 * Pointers to the (original) parent process, youngest child, younger sibling, 808 * older sibling, respectively. (p->father can be replaced with 809 * p->real_parent->pid) 810 */ 811 812 /* Real parent process: */ 813 struct task_struct __rcu *real_parent; 814 815 /* Recipient of SIGCHLD, wait4() reports: */ 816 struct task_struct __rcu *parent; 817 818 /* 819 * Children/sibling form the list of natural children: 820 */ 821 struct list_head children; 822 struct list_head sibling; 823 struct task_struct *group_leader; 824 825 /* 826 * 'ptraced' is the list of tasks this task is using ptrace() on. 827 * 828 * This includes both natural children and PTRACE_ATTACH targets. 829 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 830 */ 831 struct list_head ptraced; 832 struct list_head ptrace_entry; 833 834 /* PID/PID hash table linkage. */ 835 struct pid *thread_pid; 836 struct hlist_node pid_links[PIDTYPE_MAX]; 837 struct list_head thread_group; 838 struct list_head thread_node; 839 840 struct completion *vfork_done; 841 842 /* CLONE_CHILD_SETTID: */ 843 int __user *set_child_tid; 844 845 /* CLONE_CHILD_CLEARTID: */ 846 int __user *clear_child_tid; 847 848 u64 utime; 849 u64 stime; 850#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 851 u64 utimescaled; 852 u64 stimescaled; 853#endif 854 u64 gtime; 855 struct prev_cputime prev_cputime; 856#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 857 struct vtime vtime; 858#endif 859 860#ifdef CONFIG_NO_HZ_FULL 861 atomic_t tick_dep_mask; 862#endif 863 /* Context switch counts: */ 864 unsigned long nvcsw; 865 unsigned long nivcsw; 866 867 /* Monotonic time in nsecs: */ 868 u64 start_time; 869 870 /* Boot based time in nsecs: */ 871 u64 start_boottime; 872 873 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 874 unsigned long min_flt; 875 unsigned long maj_flt; 876 877 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 878 struct posix_cputimers posix_cputimers; 879 880 /* Process credentials: */ 881 882 /* Tracer's credentials at attach: */ 883 const struct cred __rcu *ptracer_cred; 884 885 /* Objective and real subjective task credentials (COW): */ 886 const struct cred __rcu *real_cred; 887 888 /* Effective (overridable) subjective task credentials (COW): */ 889 const struct cred __rcu *cred; 890 891#ifdef CONFIG_KEYS 892 /* Cached requested key. */ 893 struct key *cached_requested_key; 894#endif 895 896 /* 897 * executable name, excluding path. 898 * 899 * - normally initialized setup_new_exec() 900 * - access it with [gs]et_task_comm() 901 * - lock it with task_lock() 902 */ 903 char comm[TASK_COMM_LEN]; 904 905 struct nameidata *nameidata; 906 907#ifdef CONFIG_SYSVIPC 908 struct sysv_sem sysvsem; 909 struct sysv_shm sysvshm; 910#endif 911#ifdef CONFIG_DETECT_HUNG_TASK 912 unsigned long last_switch_count; 913 unsigned long last_switch_time; 914#endif 915 /* Filesystem information: */ 916 struct fs_struct *fs; 917 918 /* Open file information: */ 919 struct files_struct *files; 920 921 /* Namespaces: */ 922 struct nsproxy *nsproxy; 923 924 /* Signal handlers: */ 925 struct signal_struct *signal; 926 struct sighand_struct __rcu *sighand; 927 sigset_t blocked; 928 sigset_t real_blocked; 929 /* Restored if set_restore_sigmask() was used: */ 930 sigset_t saved_sigmask; 931 struct sigpending pending; 932 unsigned long sas_ss_sp; 933 size_t sas_ss_size; 934 unsigned int sas_ss_flags; 935 936 struct callback_head *task_works; 937 938#ifdef CONFIG_AUDIT 939#ifdef CONFIG_AUDITSYSCALL 940 struct audit_context *audit_context; 941#endif 942 kuid_t loginuid; 943 unsigned int sessionid; 944#endif 945 struct seccomp seccomp; 946 947 /* Thread group tracking: */ 948 u64 parent_exec_id; 949 u64 self_exec_id; 950 951 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 952 spinlock_t alloc_lock; 953 954 /* Protection of the PI data structures: */ 955 raw_spinlock_t pi_lock; 956 957 struct wake_q_node wake_q; 958 959#ifdef CONFIG_RT_MUTEXES 960 /* PI waiters blocked on a rt_mutex held by this task: */ 961 struct rb_root_cached pi_waiters; 962 /* Updated under owner's pi_lock and rq lock */ 963 struct task_struct *pi_top_task; 964 /* Deadlock detection and priority inheritance handling: */ 965 struct rt_mutex_waiter *pi_blocked_on; 966#endif 967 968#ifdef CONFIG_DEBUG_MUTEXES 969 /* Mutex deadlock detection: */ 970 struct mutex_waiter *blocked_on; 971#endif 972 973#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 974 int non_block_count; 975#endif 976 977#ifdef CONFIG_TRACE_IRQFLAGS 978 unsigned int irq_events; 979 unsigned int hardirq_threaded; 980 unsigned long hardirq_enable_ip; 981 unsigned long hardirq_disable_ip; 982 unsigned int hardirq_enable_event; 983 unsigned int hardirq_disable_event; 984 int hardirqs_enabled; 985 int hardirq_context; 986 unsigned long softirq_disable_ip; 987 unsigned long softirq_enable_ip; 988 unsigned int softirq_disable_event; 989 unsigned int softirq_enable_event; 990 int softirqs_enabled; 991 int softirq_context; 992 int irq_config; 993#endif 994 995#ifdef CONFIG_LOCKDEP 996# define MAX_LOCK_DEPTH 48UL 997 u64 curr_chain_key; 998 int lockdep_depth; 999 unsigned int lockdep_recursion; 1000 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1001#endif 1002 1003#ifdef CONFIG_UBSAN 1004 unsigned int in_ubsan; 1005#endif 1006 1007 /* Journalling filesystem info: */ 1008 void *journal_info; 1009 1010 /* Stacked block device info: */ 1011 struct bio_list *bio_list; 1012 1013#ifdef CONFIG_BLOCK 1014 /* Stack plugging: */ 1015 struct blk_plug *plug; 1016#endif 1017 1018 /* VM state: */ 1019 struct reclaim_state *reclaim_state; 1020 1021 struct backing_dev_info *backing_dev_info; 1022 1023 struct io_context *io_context; 1024 1025#ifdef CONFIG_COMPACTION 1026 struct capture_control *capture_control; 1027#endif 1028 /* Ptrace state: */ 1029 unsigned long ptrace_message; 1030 kernel_siginfo_t *last_siginfo; 1031 1032 struct task_io_accounting ioac; 1033#ifdef CONFIG_PSI 1034 /* Pressure stall state */ 1035 unsigned int psi_flags; 1036#endif 1037#ifdef CONFIG_TASK_XACCT 1038 /* Accumulated RSS usage: */ 1039 u64 acct_rss_mem1; 1040 /* Accumulated virtual memory usage: */ 1041 u64 acct_vm_mem1; 1042 /* stime + utime since last update: */ 1043 u64 acct_timexpd; 1044#endif 1045#ifdef CONFIG_CPUSETS 1046 /* Protected by ->alloc_lock: */ 1047 nodemask_t mems_allowed; 1048 /* Seqence number to catch updates: */ 1049 seqcount_t mems_allowed_seq; 1050 int cpuset_mem_spread_rotor; 1051 int cpuset_slab_spread_rotor; 1052#endif 1053#ifdef CONFIG_CGROUPS 1054 /* Control Group info protected by css_set_lock: */ 1055 struct css_set __rcu *cgroups; 1056 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1057 struct list_head cg_list; 1058#endif 1059#ifdef CONFIG_X86_CPU_RESCTRL 1060 u32 closid; 1061 u32 rmid; 1062#endif 1063#ifdef CONFIG_FUTEX 1064 struct robust_list_head __user *robust_list; 1065#ifdef CONFIG_COMPAT 1066 struct compat_robust_list_head __user *compat_robust_list; 1067#endif 1068 struct list_head pi_state_list; 1069 struct futex_pi_state *pi_state_cache; 1070 struct mutex futex_exit_mutex; 1071 unsigned int futex_state; 1072#endif 1073#ifdef CONFIG_PERF_EVENTS 1074 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1075 struct mutex perf_event_mutex; 1076 struct list_head perf_event_list; 1077#endif 1078#ifdef CONFIG_DEBUG_PREEMPT 1079 unsigned long preempt_disable_ip; 1080#endif 1081#ifdef CONFIG_NUMA 1082 /* Protected by alloc_lock: */ 1083 struct mempolicy *mempolicy; 1084 short il_prev; 1085 short pref_node_fork; 1086#endif 1087#ifdef CONFIG_NUMA_BALANCING 1088 int numa_scan_seq; 1089 unsigned int numa_scan_period; 1090 unsigned int numa_scan_period_max; 1091 int numa_preferred_nid; 1092 unsigned long numa_migrate_retry; 1093 /* Migration stamp: */ 1094 u64 node_stamp; 1095 u64 last_task_numa_placement; 1096 u64 last_sum_exec_runtime; 1097 struct callback_head numa_work; 1098 1099 /* 1100 * This pointer is only modified for current in syscall and 1101 * pagefault context (and for tasks being destroyed), so it can be read 1102 * from any of the following contexts: 1103 * - RCU read-side critical section 1104 * - current->numa_group from everywhere 1105 * - task's runqueue locked, task not running 1106 */ 1107 struct numa_group __rcu *numa_group; 1108 1109 /* 1110 * numa_faults is an array split into four regions: 1111 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1112 * in this precise order. 1113 * 1114 * faults_memory: Exponential decaying average of faults on a per-node 1115 * basis. Scheduling placement decisions are made based on these 1116 * counts. The values remain static for the duration of a PTE scan. 1117 * faults_cpu: Track the nodes the process was running on when a NUMA 1118 * hinting fault was incurred. 1119 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1120 * during the current scan window. When the scan completes, the counts 1121 * in faults_memory and faults_cpu decay and these values are copied. 1122 */ 1123 unsigned long *numa_faults; 1124 unsigned long total_numa_faults; 1125 1126 /* 1127 * numa_faults_locality tracks if faults recorded during the last 1128 * scan window were remote/local or failed to migrate. The task scan 1129 * period is adapted based on the locality of the faults with different 1130 * weights depending on whether they were shared or private faults 1131 */ 1132 unsigned long numa_faults_locality[3]; 1133 1134 unsigned long numa_pages_migrated; 1135#endif /* CONFIG_NUMA_BALANCING */ 1136 1137#ifdef CONFIG_RSEQ 1138 struct rseq __user *rseq; 1139 u32 rseq_sig; 1140 /* 1141 * RmW on rseq_event_mask must be performed atomically 1142 * with respect to preemption. 1143 */ 1144 unsigned long rseq_event_mask; 1145#endif 1146 1147 struct tlbflush_unmap_batch tlb_ubc; 1148 1149 union { 1150 refcount_t rcu_users; 1151 struct rcu_head rcu; 1152 }; 1153 1154 /* Cache last used pipe for splice(): */ 1155 struct pipe_inode_info *splice_pipe; 1156 1157 struct page_frag task_frag; 1158 1159#ifdef CONFIG_TASK_DELAY_ACCT 1160 struct task_delay_info *delays; 1161#endif 1162 1163#ifdef CONFIG_FAULT_INJECTION 1164 int make_it_fail; 1165 unsigned int fail_nth; 1166#endif 1167 /* 1168 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1169 * balance_dirty_pages() for a dirty throttling pause: 1170 */ 1171 int nr_dirtied; 1172 int nr_dirtied_pause; 1173 /* Start of a write-and-pause period: */ 1174 unsigned long dirty_paused_when; 1175 1176#ifdef CONFIG_LATENCYTOP 1177 int latency_record_count; 1178 struct latency_record latency_record[LT_SAVECOUNT]; 1179#endif 1180 /* 1181 * Time slack values; these are used to round up poll() and 1182 * select() etc timeout values. These are in nanoseconds. 1183 */ 1184 u64 timer_slack_ns; 1185 u64 default_timer_slack_ns; 1186 1187#ifdef CONFIG_KASAN 1188 unsigned int kasan_depth; 1189#endif 1190 1191#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1192 /* Index of current stored address in ret_stack: */ 1193 int curr_ret_stack; 1194 int curr_ret_depth; 1195 1196 /* Stack of return addresses for return function tracing: */ 1197 struct ftrace_ret_stack *ret_stack; 1198 1199 /* Timestamp for last schedule: */ 1200 unsigned long long ftrace_timestamp; 1201 1202 /* 1203 * Number of functions that haven't been traced 1204 * because of depth overrun: 1205 */ 1206 atomic_t trace_overrun; 1207 1208 /* Pause tracing: */ 1209 atomic_t tracing_graph_pause; 1210#endif 1211 1212#ifdef CONFIG_TRACING 1213 /* State flags for use by tracers: */ 1214 unsigned long trace; 1215 1216 /* Bitmask and counter of trace recursion: */ 1217 unsigned long trace_recursion; 1218#endif /* CONFIG_TRACING */ 1219 1220#ifdef CONFIG_KCOV 1221 /* See kernel/kcov.c for more details. */ 1222 1223 /* Coverage collection mode enabled for this task (0 if disabled): */ 1224 unsigned int kcov_mode; 1225 1226 /* Size of the kcov_area: */ 1227 unsigned int kcov_size; 1228 1229 /* Buffer for coverage collection: */ 1230 void *kcov_area; 1231 1232 /* KCOV descriptor wired with this task or NULL: */ 1233 struct kcov *kcov; 1234 1235 /* KCOV common handle for remote coverage collection: */ 1236 u64 kcov_handle; 1237 1238 /* KCOV sequence number: */ 1239 int kcov_sequence; 1240#endif 1241 1242#ifdef CONFIG_MEMCG 1243 struct mem_cgroup *memcg_in_oom; 1244 gfp_t memcg_oom_gfp_mask; 1245 int memcg_oom_order; 1246 1247 /* Number of pages to reclaim on returning to userland: */ 1248 unsigned int memcg_nr_pages_over_high; 1249 1250 /* Used by memcontrol for targeted memcg charge: */ 1251 struct mem_cgroup *active_memcg; 1252#endif 1253 1254#ifdef CONFIG_BLK_CGROUP 1255 struct request_queue *throttle_queue; 1256#endif 1257 1258#ifdef CONFIG_UPROBES 1259 struct uprobe_task *utask; 1260#endif 1261#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1262 unsigned int sequential_io; 1263 unsigned int sequential_io_avg; 1264#endif 1265#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1266 unsigned long task_state_change; 1267#endif 1268 int pagefault_disabled; 1269#ifdef CONFIG_MMU 1270 struct task_struct *oom_reaper_list; 1271#endif 1272#ifdef CONFIG_VMAP_STACK 1273 struct vm_struct *stack_vm_area; 1274#endif 1275#ifdef CONFIG_THREAD_INFO_IN_TASK 1276 /* A live task holds one reference: */ 1277 refcount_t stack_refcount; 1278#endif 1279#ifdef CONFIG_LIVEPATCH 1280 int patch_state; 1281#endif 1282#ifdef CONFIG_SECURITY 1283 /* Used by LSM modules for access restriction: */ 1284 void *security; 1285#endif 1286 1287#ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1288 unsigned long lowest_stack; 1289 unsigned long prev_lowest_stack; 1290#endif 1291 1292 /* 1293 * New fields for task_struct should be added above here, so that 1294 * they are included in the randomized portion of task_struct. 1295 */ 1296 randomized_struct_fields_end 1297 1298 /* CPU-specific state of this task: */ 1299 struct thread_struct thread; 1300 1301 /* 1302 * WARNING: on x86, 'thread_struct' contains a variable-sized 1303 * structure. It *MUST* be at the end of 'task_struct'. 1304 * 1305 * Do not put anything below here! 1306 */ 1307}; 1308 1309static inline struct pid *task_pid(struct task_struct *task) 1310{ 1311 return task->thread_pid; 1312} 1313 1314/* 1315 * the helpers to get the task's different pids as they are seen 1316 * from various namespaces 1317 * 1318 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1319 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1320 * current. 1321 * task_xid_nr_ns() : id seen from the ns specified; 1322 * 1323 * see also pid_nr() etc in include/linux/pid.h 1324 */ 1325pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1326 1327static inline pid_t task_pid_nr(struct task_struct *tsk) 1328{ 1329 return tsk->pid; 1330} 1331 1332static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1333{ 1334 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1335} 1336 1337static inline pid_t task_pid_vnr(struct task_struct *tsk) 1338{ 1339 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1340} 1341 1342 1343static inline pid_t task_tgid_nr(struct task_struct *tsk) 1344{ 1345 return tsk->tgid; 1346} 1347 1348/** 1349 * pid_alive - check that a task structure is not stale 1350 * @p: Task structure to be checked. 1351 * 1352 * Test if a process is not yet dead (at most zombie state) 1353 * If pid_alive fails, then pointers within the task structure 1354 * can be stale and must not be dereferenced. 1355 * 1356 * Return: 1 if the process is alive. 0 otherwise. 1357 */ 1358static inline int pid_alive(const struct task_struct *p) 1359{ 1360 return p->thread_pid != NULL; 1361} 1362 1363static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1364{ 1365 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1366} 1367 1368static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1369{ 1370 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1371} 1372 1373 1374static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1375{ 1376 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1377} 1378 1379static inline pid_t task_session_vnr(struct task_struct *tsk) 1380{ 1381 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1382} 1383 1384static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1385{ 1386 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1387} 1388 1389static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1390{ 1391 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1392} 1393 1394static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1395{ 1396 pid_t pid = 0; 1397 1398 rcu_read_lock(); 1399 if (pid_alive(tsk)) 1400 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1401 rcu_read_unlock(); 1402 1403 return pid; 1404} 1405 1406static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1407{ 1408 return task_ppid_nr_ns(tsk, &init_pid_ns); 1409} 1410 1411/* Obsolete, do not use: */ 1412static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1413{ 1414 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1415} 1416 1417#define TASK_REPORT_IDLE (TASK_REPORT + 1) 1418#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1419 1420static inline unsigned int task_state_index(struct task_struct *tsk) 1421{ 1422 unsigned int tsk_state = READ_ONCE(tsk->state); 1423 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1424 1425 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1426 1427 if (tsk_state == TASK_IDLE) 1428 state = TASK_REPORT_IDLE; 1429 1430 return fls(state); 1431} 1432 1433static inline char task_index_to_char(unsigned int state) 1434{ 1435 static const char state_char[] = "RSDTtXZPI"; 1436 1437 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1438 1439 return state_char[state]; 1440} 1441 1442static inline char task_state_to_char(struct task_struct *tsk) 1443{ 1444 return task_index_to_char(task_state_index(tsk)); 1445} 1446 1447/** 1448 * is_global_init - check if a task structure is init. Since init 1449 * is free to have sub-threads we need to check tgid. 1450 * @tsk: Task structure to be checked. 1451 * 1452 * Check if a task structure is the first user space task the kernel created. 1453 * 1454 * Return: 1 if the task structure is init. 0 otherwise. 1455 */ 1456static inline int is_global_init(struct task_struct *tsk) 1457{ 1458 return task_tgid_nr(tsk) == 1; 1459} 1460 1461extern struct pid *cad_pid; 1462 1463/* 1464 * Per process flags 1465 */ 1466#define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1467#define PF_EXITING 0x00000004 /* Getting shut down */ 1468#define PF_VCPU 0x00000010 /* I'm a virtual CPU */ 1469#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1470#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1471#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1472#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1473#define PF_DUMPCORE 0x00000200 /* Dumped core */ 1474#define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1475#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1476#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1477#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1478#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1479#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1480#define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1481#define PF_KSWAPD 0x00020000 /* I am kswapd */ 1482#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1483#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1484#define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ 1485#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1486#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1487#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1488#define PF_UMH 0x02000000 /* I'm an Usermodehelper process */ 1489#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1490#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1491#define PF_MEMALLOC_NOCMA 0x10000000 /* All allocation request will have _GFP_MOVABLE cleared */ 1492#define PF_IO_WORKER 0x20000000 /* Task is an IO worker */ 1493#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1494#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1495 1496/* 1497 * Only the _current_ task can read/write to tsk->flags, but other 1498 * tasks can access tsk->flags in readonly mode for example 1499 * with tsk_used_math (like during threaded core dumping). 1500 * There is however an exception to this rule during ptrace 1501 * or during fork: the ptracer task is allowed to write to the 1502 * child->flags of its traced child (same goes for fork, the parent 1503 * can write to the child->flags), because we're guaranteed the 1504 * child is not running and in turn not changing child->flags 1505 * at the same time the parent does it. 1506 */ 1507#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1508#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1509#define clear_used_math() clear_stopped_child_used_math(current) 1510#define set_used_math() set_stopped_child_used_math(current) 1511 1512#define conditional_stopped_child_used_math(condition, child) \ 1513 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1514 1515#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1516 1517#define copy_to_stopped_child_used_math(child) \ 1518 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1519 1520/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1521#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1522#define used_math() tsk_used_math(current) 1523 1524static inline bool is_percpu_thread(void) 1525{ 1526#ifdef CONFIG_SMP 1527 return (current->flags & PF_NO_SETAFFINITY) && 1528 (current->nr_cpus_allowed == 1); 1529#else 1530 return true; 1531#endif 1532} 1533 1534/* Per-process atomic flags. */ 1535#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1536#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1537#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1538#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1539#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1540#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1541#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1542#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1543 1544#define TASK_PFA_TEST(name, func) \ 1545 static inline bool task_##func(struct task_struct *p) \ 1546 { return test_bit(PFA_##name, &p->atomic_flags); } 1547 1548#define TASK_PFA_SET(name, func) \ 1549 static inline void task_set_##func(struct task_struct *p) \ 1550 { set_bit(PFA_##name, &p->atomic_flags); } 1551 1552#define TASK_PFA_CLEAR(name, func) \ 1553 static inline void task_clear_##func(struct task_struct *p) \ 1554 { clear_bit(PFA_##name, &p->atomic_flags); } 1555 1556TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1557TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1558 1559TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1560TASK_PFA_SET(SPREAD_PAGE, spread_page) 1561TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1562 1563TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1564TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1565TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1566 1567TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1568TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1569TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1570 1571TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1572TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1573TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1574 1575TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1576TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1577 1578TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1579TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1580TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1581 1582TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1583TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1584 1585static inline void 1586current_restore_flags(unsigned long orig_flags, unsigned long flags) 1587{ 1588 current->flags &= ~flags; 1589 current->flags |= orig_flags & flags; 1590} 1591 1592extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1593extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1594#ifdef CONFIG_SMP 1595extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1596extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1597#else 1598static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1599{ 1600} 1601static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1602{ 1603 if (!cpumask_test_cpu(0, new_mask)) 1604 return -EINVAL; 1605 return 0; 1606} 1607#endif 1608 1609extern int yield_to(struct task_struct *p, bool preempt); 1610extern void set_user_nice(struct task_struct *p, long nice); 1611extern int task_prio(const struct task_struct *p); 1612 1613/** 1614 * task_nice - return the nice value of a given task. 1615 * @p: the task in question. 1616 * 1617 * Return: The nice value [ -20 ... 0 ... 19 ]. 1618 */ 1619static inline int task_nice(const struct task_struct *p) 1620{ 1621 return PRIO_TO_NICE((p)->static_prio); 1622} 1623 1624extern int can_nice(const struct task_struct *p, const int nice); 1625extern int task_curr(const struct task_struct *p); 1626extern int idle_cpu(int cpu); 1627extern int available_idle_cpu(int cpu); 1628extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1629extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1630extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1631extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1632extern struct task_struct *idle_task(int cpu); 1633 1634/** 1635 * is_idle_task - is the specified task an idle task? 1636 * @p: the task in question. 1637 * 1638 * Return: 1 if @p is an idle task. 0 otherwise. 1639 */ 1640static inline bool is_idle_task(const struct task_struct *p) 1641{ 1642 return !!(p->flags & PF_IDLE); 1643} 1644 1645extern struct task_struct *curr_task(int cpu); 1646extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1647 1648void yield(void); 1649 1650union thread_union { 1651#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1652 struct task_struct task; 1653#endif 1654#ifndef CONFIG_THREAD_INFO_IN_TASK 1655 struct thread_info thread_info; 1656#endif 1657 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1658}; 1659 1660#ifndef CONFIG_THREAD_INFO_IN_TASK 1661extern struct thread_info init_thread_info; 1662#endif 1663 1664extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1665 1666#ifdef CONFIG_THREAD_INFO_IN_TASK 1667static inline struct thread_info *task_thread_info(struct task_struct *task) 1668{ 1669 return &task->thread_info; 1670} 1671#elif !defined(__HAVE_THREAD_FUNCTIONS) 1672# define task_thread_info(task) ((struct thread_info *)(task)->stack) 1673#endif 1674 1675/* 1676 * find a task by one of its numerical ids 1677 * 1678 * find_task_by_pid_ns(): 1679 * finds a task by its pid in the specified namespace 1680 * find_task_by_vpid(): 1681 * finds a task by its virtual pid 1682 * 1683 * see also find_vpid() etc in include/linux/pid.h 1684 */ 1685 1686extern struct task_struct *find_task_by_vpid(pid_t nr); 1687extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1688 1689/* 1690 * find a task by its virtual pid and get the task struct 1691 */ 1692extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1693 1694extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1695extern int wake_up_process(struct task_struct *tsk); 1696extern void wake_up_new_task(struct task_struct *tsk); 1697 1698#ifdef CONFIG_SMP 1699extern void kick_process(struct task_struct *tsk); 1700#else 1701static inline void kick_process(struct task_struct *tsk) { } 1702#endif 1703 1704extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1705 1706static inline void set_task_comm(struct task_struct *tsk, const char *from) 1707{ 1708 __set_task_comm(tsk, from, false); 1709} 1710 1711extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1712#define get_task_comm(buf, tsk) ({ \ 1713 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1714 __get_task_comm(buf, sizeof(buf), tsk); \ 1715}) 1716 1717#ifdef CONFIG_SMP 1718void scheduler_ipi(void); 1719extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1720#else 1721static inline void scheduler_ipi(void) { } 1722static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1723{ 1724 return 1; 1725} 1726#endif 1727 1728/* 1729 * Set thread flags in other task's structures. 1730 * See asm/thread_info.h for TIF_xxxx flags available: 1731 */ 1732static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1733{ 1734 set_ti_thread_flag(task_thread_info(tsk), flag); 1735} 1736 1737static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1738{ 1739 clear_ti_thread_flag(task_thread_info(tsk), flag); 1740} 1741 1742static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1743 bool value) 1744{ 1745 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1746} 1747 1748static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1749{ 1750 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1751} 1752 1753static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1754{ 1755 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1756} 1757 1758static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1759{ 1760 return test_ti_thread_flag(task_thread_info(tsk), flag); 1761} 1762 1763static inline void set_tsk_need_resched(struct task_struct *tsk) 1764{ 1765 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1766} 1767 1768static inline void clear_tsk_need_resched(struct task_struct *tsk) 1769{ 1770 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1771} 1772 1773static inline int test_tsk_need_resched(struct task_struct *tsk) 1774{ 1775 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1776} 1777 1778/* 1779 * cond_resched() and cond_resched_lock(): latency reduction via 1780 * explicit rescheduling in places that are safe. The return 1781 * value indicates whether a reschedule was done in fact. 1782 * cond_resched_lock() will drop the spinlock before scheduling, 1783 */ 1784#ifndef CONFIG_PREEMPTION 1785extern int _cond_resched(void); 1786#else 1787static inline int _cond_resched(void) { return 0; } 1788#endif 1789 1790#define cond_resched() ({ \ 1791 ___might_sleep(__FILE__, __LINE__, 0); \ 1792 _cond_resched(); \ 1793}) 1794 1795extern int __cond_resched_lock(spinlock_t *lock); 1796 1797#define cond_resched_lock(lock) ({ \ 1798 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1799 __cond_resched_lock(lock); \ 1800}) 1801 1802static inline void cond_resched_rcu(void) 1803{ 1804#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1805 rcu_read_unlock(); 1806 cond_resched(); 1807 rcu_read_lock(); 1808#endif 1809} 1810 1811/* 1812 * Does a critical section need to be broken due to another 1813 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1814 * but a general need for low latency) 1815 */ 1816static inline int spin_needbreak(spinlock_t *lock) 1817{ 1818#ifdef CONFIG_PREEMPTION 1819 return spin_is_contended(lock); 1820#else 1821 return 0; 1822#endif 1823} 1824 1825static __always_inline bool need_resched(void) 1826{ 1827 return unlikely(tif_need_resched()); 1828} 1829 1830/* 1831 * Wrappers for p->thread_info->cpu access. No-op on UP. 1832 */ 1833#ifdef CONFIG_SMP 1834 1835static inline unsigned int task_cpu(const struct task_struct *p) 1836{ 1837#ifdef CONFIG_THREAD_INFO_IN_TASK 1838 return READ_ONCE(p->cpu); 1839#else 1840 return READ_ONCE(task_thread_info(p)->cpu); 1841#endif 1842} 1843 1844extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 1845 1846#else 1847 1848static inline unsigned int task_cpu(const struct task_struct *p) 1849{ 1850 return 0; 1851} 1852 1853static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 1854{ 1855} 1856 1857#endif /* CONFIG_SMP */ 1858 1859/* 1860 * In order to reduce various lock holder preemption latencies provide an 1861 * interface to see if a vCPU is currently running or not. 1862 * 1863 * This allows us to terminate optimistic spin loops and block, analogous to 1864 * the native optimistic spin heuristic of testing if the lock owner task is 1865 * running or not. 1866 */ 1867#ifndef vcpu_is_preempted 1868static inline bool vcpu_is_preempted(int cpu) 1869{ 1870 return false; 1871} 1872#endif 1873 1874extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 1875extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 1876 1877#ifndef TASK_SIZE_OF 1878#define TASK_SIZE_OF(tsk) TASK_SIZE 1879#endif 1880 1881#ifdef CONFIG_RSEQ 1882 1883/* 1884 * Map the event mask on the user-space ABI enum rseq_cs_flags 1885 * for direct mask checks. 1886 */ 1887enum rseq_event_mask_bits { 1888 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 1889 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 1890 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 1891}; 1892 1893enum rseq_event_mask { 1894 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 1895 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 1896 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 1897}; 1898 1899static inline void rseq_set_notify_resume(struct task_struct *t) 1900{ 1901 if (t->rseq) 1902 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 1903} 1904 1905void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 1906 1907static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1908 struct pt_regs *regs) 1909{ 1910 if (current->rseq) 1911 __rseq_handle_notify_resume(ksig, regs); 1912} 1913 1914static inline void rseq_signal_deliver(struct ksignal *ksig, 1915 struct pt_regs *regs) 1916{ 1917 preempt_disable(); 1918 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask); 1919 preempt_enable(); 1920 rseq_handle_notify_resume(ksig, regs); 1921} 1922 1923/* rseq_preempt() requires preemption to be disabled. */ 1924static inline void rseq_preempt(struct task_struct *t) 1925{ 1926 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 1927 rseq_set_notify_resume(t); 1928} 1929 1930/* rseq_migrate() requires preemption to be disabled. */ 1931static inline void rseq_migrate(struct task_struct *t) 1932{ 1933 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 1934 rseq_set_notify_resume(t); 1935} 1936 1937/* 1938 * If parent process has a registered restartable sequences area, the 1939 * child inherits. Unregister rseq for a clone with CLONE_VM set. 1940 */ 1941static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1942{ 1943 if (clone_flags & CLONE_VM) { 1944 t->rseq = NULL; 1945 t->rseq_sig = 0; 1946 t->rseq_event_mask = 0; 1947 } else { 1948 t->rseq = current->rseq; 1949 t->rseq_sig = current->rseq_sig; 1950 t->rseq_event_mask = current->rseq_event_mask; 1951 } 1952} 1953 1954static inline void rseq_execve(struct task_struct *t) 1955{ 1956 t->rseq = NULL; 1957 t->rseq_sig = 0; 1958 t->rseq_event_mask = 0; 1959} 1960 1961#else 1962 1963static inline void rseq_set_notify_resume(struct task_struct *t) 1964{ 1965} 1966static inline void rseq_handle_notify_resume(struct ksignal *ksig, 1967 struct pt_regs *regs) 1968{ 1969} 1970static inline void rseq_signal_deliver(struct ksignal *ksig, 1971 struct pt_regs *regs) 1972{ 1973} 1974static inline void rseq_preempt(struct task_struct *t) 1975{ 1976} 1977static inline void rseq_migrate(struct task_struct *t) 1978{ 1979} 1980static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 1981{ 1982} 1983static inline void rseq_execve(struct task_struct *t) 1984{ 1985} 1986 1987#endif 1988 1989void __exit_umh(struct task_struct *tsk); 1990 1991static inline void exit_umh(struct task_struct *tsk) 1992{ 1993 if (unlikely(tsk->flags & PF_UMH)) 1994 __exit_umh(tsk); 1995} 1996 1997#ifdef CONFIG_DEBUG_RSEQ 1998 1999void rseq_syscall(struct pt_regs *regs); 2000 2001#else 2002 2003static inline void rseq_syscall(struct pt_regs *regs) 2004{ 2005} 2006 2007#endif 2008 2009const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 2010char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 2011int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 2012 2013const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 2014const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 2015const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 2016 2017int sched_trace_rq_cpu(struct rq *rq); 2018 2019const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 2020 2021#endif