at v5.7 28 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages not added to the page allocator when onlining a section because 34 * they were excluded via the online_page_callback() or because they are 35 * PG_hwpoison. 36 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 37 * control pages, vmcoreinfo) 38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 39 * not marked PG_reserved (as they might be in use by somebody else who does 40 * not respect the caching strategy). 41 * - Pages part of an offline section (struct pages of offline sections should 42 * not be trusted as they will be initialized when first onlined). 43 * - MCA pages on ia64 44 * - Pages holding CPU notes for POWER Firmware Assisted Dump 45 * - Device memory (e.g. PMEM, DAX, HMM) 46 * Some PG_reserved pages will be excluded from the hibernation image. 47 * PG_reserved does in general not hinder anybody from dumping or swapping 48 * and is no longer required for remap_pfn_range(). ioremap might require it. 49 * Consequently, PG_reserved for a page mapped into user space can indicate 50 * the zero page, the vDSO, MMIO pages or device memory. 51 * 52 * The PG_private bitflag is set on pagecache pages if they contain filesystem 53 * specific data (which is normally at page->private). It can be used by 54 * private allocations for its own usage. 55 * 56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 58 * is set before writeback starts and cleared when it finishes. 59 * 60 * PG_locked also pins a page in pagecache, and blocks truncation of the file 61 * while it is held. 62 * 63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 64 * to become unlocked. 65 * 66 * PG_swapbacked is set when a page uses swap as a backing storage. This are 67 * usually PageAnon or shmem pages but please note that even anonymous pages 68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 69 * a result of MADV_FREE). 70 * 71 * PG_uptodate tells whether the page's contents is valid. When a read 72 * completes, the page becomes uptodate, unless a disk I/O error happened. 73 * 74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 75 * file-backed pagecache (see mm/vmscan.c). 76 * 77 * PG_error is set to indicate that an I/O error occurred on this page. 78 * 79 * PG_arch_1 is an architecture specific page state bit. The generic code 80 * guarantees that this bit is cleared for a page when it first is entered into 81 * the page cache. 82 * 83 * PG_hwpoison indicates that a page got corrupted in hardware and contains 84 * data with incorrect ECC bits that triggered a machine check. Accessing is 85 * not safe since it may cause another machine check. Don't touch! 86 */ 87 88/* 89 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 90 * locked- and dirty-page accounting. 91 * 92 * The page flags field is split into two parts, the main flags area 93 * which extends from the low bits upwards, and the fields area which 94 * extends from the high bits downwards. 95 * 96 * | FIELD | ... | FLAGS | 97 * N-1 ^ 0 98 * (NR_PAGEFLAGS) 99 * 100 * The fields area is reserved for fields mapping zone, node (for NUMA) and 101 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 102 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 103 */ 104enum pageflags { 105 PG_locked, /* Page is locked. Don't touch. */ 106 PG_referenced, 107 PG_uptodate, 108 PG_dirty, 109 PG_lru, 110 PG_active, 111 PG_workingset, 112 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 113 PG_error, 114 PG_slab, 115 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 116 PG_arch_1, 117 PG_reserved, 118 PG_private, /* If pagecache, has fs-private data */ 119 PG_private_2, /* If pagecache, has fs aux data */ 120 PG_writeback, /* Page is under writeback */ 121 PG_head, /* A head page */ 122 PG_mappedtodisk, /* Has blocks allocated on-disk */ 123 PG_reclaim, /* To be reclaimed asap */ 124 PG_swapbacked, /* Page is backed by RAM/swap */ 125 PG_unevictable, /* Page is "unevictable" */ 126#ifdef CONFIG_MMU 127 PG_mlocked, /* Page is vma mlocked */ 128#endif 129#ifdef CONFIG_ARCH_USES_PG_UNCACHED 130 PG_uncached, /* Page has been mapped as uncached */ 131#endif 132#ifdef CONFIG_MEMORY_FAILURE 133 PG_hwpoison, /* hardware poisoned page. Don't touch */ 134#endif 135#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 136 PG_young, 137 PG_idle, 138#endif 139 __NR_PAGEFLAGS, 140 141 /* Filesystems */ 142 PG_checked = PG_owner_priv_1, 143 144 /* SwapBacked */ 145 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 146 147 /* Two page bits are conscripted by FS-Cache to maintain local caching 148 * state. These bits are set on pages belonging to the netfs's inodes 149 * when those inodes are being locally cached. 150 */ 151 PG_fscache = PG_private_2, /* page backed by cache */ 152 153 /* XEN */ 154 /* Pinned in Xen as a read-only pagetable page. */ 155 PG_pinned = PG_owner_priv_1, 156 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 157 PG_savepinned = PG_dirty, 158 /* Has a grant mapping of another (foreign) domain's page. */ 159 PG_foreign = PG_owner_priv_1, 160 /* Remapped by swiotlb-xen. */ 161 PG_xen_remapped = PG_owner_priv_1, 162 163 /* SLOB */ 164 PG_slob_free = PG_private, 165 166 /* Compound pages. Stored in first tail page's flags */ 167 PG_double_map = PG_private_2, 168 169 /* non-lru isolated movable page */ 170 PG_isolated = PG_reclaim, 171 172 /* Only valid for buddy pages. Used to track pages that are reported */ 173 PG_reported = PG_uptodate, 174}; 175 176#ifndef __GENERATING_BOUNDS_H 177 178struct page; /* forward declaration */ 179 180static inline struct page *compound_head(struct page *page) 181{ 182 unsigned long head = READ_ONCE(page->compound_head); 183 184 if (unlikely(head & 1)) 185 return (struct page *) (head - 1); 186 return page; 187} 188 189static __always_inline int PageTail(struct page *page) 190{ 191 return READ_ONCE(page->compound_head) & 1; 192} 193 194static __always_inline int PageCompound(struct page *page) 195{ 196 return test_bit(PG_head, &page->flags) || PageTail(page); 197} 198 199#define PAGE_POISON_PATTERN -1l 200static inline int PagePoisoned(const struct page *page) 201{ 202 return page->flags == PAGE_POISON_PATTERN; 203} 204 205#ifdef CONFIG_DEBUG_VM 206void page_init_poison(struct page *page, size_t size); 207#else 208static inline void page_init_poison(struct page *page, size_t size) 209{ 210} 211#endif 212 213/* 214 * Page flags policies wrt compound pages 215 * 216 * PF_POISONED_CHECK 217 * check if this struct page poisoned/uninitialized 218 * 219 * PF_ANY: 220 * the page flag is relevant for small, head and tail pages. 221 * 222 * PF_HEAD: 223 * for compound page all operations related to the page flag applied to 224 * head page. 225 * 226 * PF_ONLY_HEAD: 227 * for compound page, callers only ever operate on the head page. 228 * 229 * PF_NO_TAIL: 230 * modifications of the page flag must be done on small or head pages, 231 * checks can be done on tail pages too. 232 * 233 * PF_NO_COMPOUND: 234 * the page flag is not relevant for compound pages. 235 */ 236#define PF_POISONED_CHECK(page) ({ \ 237 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 238 page; }) 239#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 240#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 241#define PF_ONLY_HEAD(page, enforce) ({ \ 242 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 243 PF_POISONED_CHECK(page); }) 244#define PF_NO_TAIL(page, enforce) ({ \ 245 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 246 PF_POISONED_CHECK(compound_head(page)); }) 247#define PF_NO_COMPOUND(page, enforce) ({ \ 248 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 249 PF_POISONED_CHECK(page); }) 250 251/* 252 * Macros to create function definitions for page flags 253 */ 254#define TESTPAGEFLAG(uname, lname, policy) \ 255static __always_inline int Page##uname(struct page *page) \ 256 { return test_bit(PG_##lname, &policy(page, 0)->flags); } 257 258#define SETPAGEFLAG(uname, lname, policy) \ 259static __always_inline void SetPage##uname(struct page *page) \ 260 { set_bit(PG_##lname, &policy(page, 1)->flags); } 261 262#define CLEARPAGEFLAG(uname, lname, policy) \ 263static __always_inline void ClearPage##uname(struct page *page) \ 264 { clear_bit(PG_##lname, &policy(page, 1)->flags); } 265 266#define __SETPAGEFLAG(uname, lname, policy) \ 267static __always_inline void __SetPage##uname(struct page *page) \ 268 { __set_bit(PG_##lname, &policy(page, 1)->flags); } 269 270#define __CLEARPAGEFLAG(uname, lname, policy) \ 271static __always_inline void __ClearPage##uname(struct page *page) \ 272 { __clear_bit(PG_##lname, &policy(page, 1)->flags); } 273 274#define TESTSETFLAG(uname, lname, policy) \ 275static __always_inline int TestSetPage##uname(struct page *page) \ 276 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 277 278#define TESTCLEARFLAG(uname, lname, policy) \ 279static __always_inline int TestClearPage##uname(struct page *page) \ 280 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 281 282#define PAGEFLAG(uname, lname, policy) \ 283 TESTPAGEFLAG(uname, lname, policy) \ 284 SETPAGEFLAG(uname, lname, policy) \ 285 CLEARPAGEFLAG(uname, lname, policy) 286 287#define __PAGEFLAG(uname, lname, policy) \ 288 TESTPAGEFLAG(uname, lname, policy) \ 289 __SETPAGEFLAG(uname, lname, policy) \ 290 __CLEARPAGEFLAG(uname, lname, policy) 291 292#define TESTSCFLAG(uname, lname, policy) \ 293 TESTSETFLAG(uname, lname, policy) \ 294 TESTCLEARFLAG(uname, lname, policy) 295 296#define TESTPAGEFLAG_FALSE(uname) \ 297static inline int Page##uname(const struct page *page) { return 0; } 298 299#define SETPAGEFLAG_NOOP(uname) \ 300static inline void SetPage##uname(struct page *page) { } 301 302#define CLEARPAGEFLAG_NOOP(uname) \ 303static inline void ClearPage##uname(struct page *page) { } 304 305#define __CLEARPAGEFLAG_NOOP(uname) \ 306static inline void __ClearPage##uname(struct page *page) { } 307 308#define TESTSETFLAG_FALSE(uname) \ 309static inline int TestSetPage##uname(struct page *page) { return 0; } 310 311#define TESTCLEARFLAG_FALSE(uname) \ 312static inline int TestClearPage##uname(struct page *page) { return 0; } 313 314#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 315 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 316 317#define TESTSCFLAG_FALSE(uname) \ 318 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 319 320__PAGEFLAG(Locked, locked, PF_NO_TAIL) 321PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 322PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) 323PAGEFLAG(Referenced, referenced, PF_HEAD) 324 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 325 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 326PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 327 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 328PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 329PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 330 TESTCLEARFLAG(Active, active, PF_HEAD) 331PAGEFLAG(Workingset, workingset, PF_HEAD) 332 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 333__PAGEFLAG(Slab, slab, PF_NO_TAIL) 334__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL) 335PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 336 337/* Xen */ 338PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 339 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 340PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 341PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 342PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 343 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 344 345PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 346 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 347 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 348PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 349 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 350 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 351 352/* 353 * Private page markings that may be used by the filesystem that owns the page 354 * for its own purposes. 355 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 356 */ 357PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY) 358 __CLEARPAGEFLAG(Private, private, PF_ANY) 359PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 360PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 361 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 362 363/* 364 * Only test-and-set exist for PG_writeback. The unconditional operators are 365 * risky: they bypass page accounting. 366 */ 367TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 368 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 369PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 370 371/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 372PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 373 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 374PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND) 375 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND) 376 377#ifdef CONFIG_HIGHMEM 378/* 379 * Must use a macro here due to header dependency issues. page_zone() is not 380 * available at this point. 381 */ 382#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 383#else 384PAGEFLAG_FALSE(HighMem) 385#endif 386 387#ifdef CONFIG_SWAP 388static __always_inline int PageSwapCache(struct page *page) 389{ 390#ifdef CONFIG_THP_SWAP 391 page = compound_head(page); 392#endif 393 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags); 394 395} 396SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 397CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 398#else 399PAGEFLAG_FALSE(SwapCache) 400#endif 401 402PAGEFLAG(Unevictable, unevictable, PF_HEAD) 403 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 404 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 405 406#ifdef CONFIG_MMU 407PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 408 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 409 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 410#else 411PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 412 TESTSCFLAG_FALSE(Mlocked) 413#endif 414 415#ifdef CONFIG_ARCH_USES_PG_UNCACHED 416PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 417#else 418PAGEFLAG_FALSE(Uncached) 419#endif 420 421#ifdef CONFIG_MEMORY_FAILURE 422PAGEFLAG(HWPoison, hwpoison, PF_ANY) 423TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 424#define __PG_HWPOISON (1UL << PG_hwpoison) 425extern bool set_hwpoison_free_buddy_page(struct page *page); 426#else 427PAGEFLAG_FALSE(HWPoison) 428static inline bool set_hwpoison_free_buddy_page(struct page *page) 429{ 430 return 0; 431} 432#define __PG_HWPOISON 0 433#endif 434 435#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT) 436TESTPAGEFLAG(Young, young, PF_ANY) 437SETPAGEFLAG(Young, young, PF_ANY) 438TESTCLEARFLAG(Young, young, PF_ANY) 439PAGEFLAG(Idle, idle, PF_ANY) 440#endif 441 442/* 443 * PageReported() is used to track reported free pages within the Buddy 444 * allocator. We can use the non-atomic version of the test and set 445 * operations as both should be shielded with the zone lock to prevent 446 * any possible races on the setting or clearing of the bit. 447 */ 448__PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 449 450/* 451 * On an anonymous page mapped into a user virtual memory area, 452 * page->mapping points to its anon_vma, not to a struct address_space; 453 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 454 * 455 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 456 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 457 * bit; and then page->mapping points, not to an anon_vma, but to a private 458 * structure which KSM associates with that merged page. See ksm.h. 459 * 460 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 461 * page and then page->mapping points a struct address_space. 462 * 463 * Please note that, confusingly, "page_mapping" refers to the inode 464 * address_space which maps the page from disk; whereas "page_mapped" 465 * refers to user virtual address space into which the page is mapped. 466 */ 467#define PAGE_MAPPING_ANON 0x1 468#define PAGE_MAPPING_MOVABLE 0x2 469#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 470#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 471 472static __always_inline int PageMappingFlags(struct page *page) 473{ 474 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 475} 476 477static __always_inline int PageAnon(struct page *page) 478{ 479 page = compound_head(page); 480 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 481} 482 483static __always_inline int __PageMovable(struct page *page) 484{ 485 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 486 PAGE_MAPPING_MOVABLE; 487} 488 489#ifdef CONFIG_KSM 490/* 491 * A KSM page is one of those write-protected "shared pages" or "merged pages" 492 * which KSM maps into multiple mms, wherever identical anonymous page content 493 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 494 * anon_vma, but to that page's node of the stable tree. 495 */ 496static __always_inline int PageKsm(struct page *page) 497{ 498 page = compound_head(page); 499 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 500 PAGE_MAPPING_KSM; 501} 502#else 503TESTPAGEFLAG_FALSE(Ksm) 504#endif 505 506u64 stable_page_flags(struct page *page); 507 508static inline int PageUptodate(struct page *page) 509{ 510 int ret; 511 page = compound_head(page); 512 ret = test_bit(PG_uptodate, &(page)->flags); 513 /* 514 * Must ensure that the data we read out of the page is loaded 515 * _after_ we've loaded page->flags to check for PageUptodate. 516 * We can skip the barrier if the page is not uptodate, because 517 * we wouldn't be reading anything from it. 518 * 519 * See SetPageUptodate() for the other side of the story. 520 */ 521 if (ret) 522 smp_rmb(); 523 524 return ret; 525} 526 527static __always_inline void __SetPageUptodate(struct page *page) 528{ 529 VM_BUG_ON_PAGE(PageTail(page), page); 530 smp_wmb(); 531 __set_bit(PG_uptodate, &page->flags); 532} 533 534static __always_inline void SetPageUptodate(struct page *page) 535{ 536 VM_BUG_ON_PAGE(PageTail(page), page); 537 /* 538 * Memory barrier must be issued before setting the PG_uptodate bit, 539 * so that all previous stores issued in order to bring the page 540 * uptodate are actually visible before PageUptodate becomes true. 541 */ 542 smp_wmb(); 543 set_bit(PG_uptodate, &page->flags); 544} 545 546CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 547 548int test_clear_page_writeback(struct page *page); 549int __test_set_page_writeback(struct page *page, bool keep_write); 550 551#define test_set_page_writeback(page) \ 552 __test_set_page_writeback(page, false) 553#define test_set_page_writeback_keepwrite(page) \ 554 __test_set_page_writeback(page, true) 555 556static inline void set_page_writeback(struct page *page) 557{ 558 test_set_page_writeback(page); 559} 560 561static inline void set_page_writeback_keepwrite(struct page *page) 562{ 563 test_set_page_writeback_keepwrite(page); 564} 565 566__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY) 567 568static __always_inline void set_compound_head(struct page *page, struct page *head) 569{ 570 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 571} 572 573static __always_inline void clear_compound_head(struct page *page) 574{ 575 WRITE_ONCE(page->compound_head, 0); 576} 577 578#ifdef CONFIG_TRANSPARENT_HUGEPAGE 579static inline void ClearPageCompound(struct page *page) 580{ 581 BUG_ON(!PageHead(page)); 582 ClearPageHead(page); 583} 584#endif 585 586#define PG_head_mask ((1UL << PG_head)) 587 588#ifdef CONFIG_HUGETLB_PAGE 589int PageHuge(struct page *page); 590int PageHeadHuge(struct page *page); 591bool page_huge_active(struct page *page); 592#else 593TESTPAGEFLAG_FALSE(Huge) 594TESTPAGEFLAG_FALSE(HeadHuge) 595 596static inline bool page_huge_active(struct page *page) 597{ 598 return 0; 599} 600#endif 601 602 603#ifdef CONFIG_TRANSPARENT_HUGEPAGE 604/* 605 * PageHuge() only returns true for hugetlbfs pages, but not for 606 * normal or transparent huge pages. 607 * 608 * PageTransHuge() returns true for both transparent huge and 609 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 610 * called only in the core VM paths where hugetlbfs pages can't exist. 611 */ 612static inline int PageTransHuge(struct page *page) 613{ 614 VM_BUG_ON_PAGE(PageTail(page), page); 615 return PageHead(page); 616} 617 618/* 619 * PageTransCompound returns true for both transparent huge pages 620 * and hugetlbfs pages, so it should only be called when it's known 621 * that hugetlbfs pages aren't involved. 622 */ 623static inline int PageTransCompound(struct page *page) 624{ 625 return PageCompound(page); 626} 627 628/* 629 * PageTransCompoundMap is the same as PageTransCompound, but it also 630 * guarantees the primary MMU has the entire compound page mapped 631 * through pmd_trans_huge, which in turn guarantees the secondary MMUs 632 * can also map the entire compound page. This allows the secondary 633 * MMUs to call get_user_pages() only once for each compound page and 634 * to immediately map the entire compound page with a single secondary 635 * MMU fault. If there will be a pmd split later, the secondary MMUs 636 * will get an update through the MMU notifier invalidation through 637 * split_huge_pmd(). 638 * 639 * Unlike PageTransCompound, this is safe to be called only while 640 * split_huge_pmd() cannot run from under us, like if protected by the 641 * MMU notifier, otherwise it may result in page->_mapcount check false 642 * positives. 643 * 644 * We have to treat page cache THP differently since every subpage of it 645 * would get _mapcount inc'ed once it is PMD mapped. But, it may be PTE 646 * mapped in the current process so comparing subpage's _mapcount to 647 * compound_mapcount to filter out PTE mapped case. 648 */ 649static inline int PageTransCompoundMap(struct page *page) 650{ 651 struct page *head; 652 653 if (!PageTransCompound(page)) 654 return 0; 655 656 if (PageAnon(page)) 657 return atomic_read(&page->_mapcount) < 0; 658 659 head = compound_head(page); 660 /* File THP is PMD mapped and not PTE mapped */ 661 return atomic_read(&page->_mapcount) == 662 atomic_read(compound_mapcount_ptr(head)); 663} 664 665/* 666 * PageTransTail returns true for both transparent huge pages 667 * and hugetlbfs pages, so it should only be called when it's known 668 * that hugetlbfs pages aren't involved. 669 */ 670static inline int PageTransTail(struct page *page) 671{ 672 return PageTail(page); 673} 674 675/* 676 * PageDoubleMap indicates that the compound page is mapped with PTEs as well 677 * as PMDs. 678 * 679 * This is required for optimization of rmap operations for THP: we can postpone 680 * per small page mapcount accounting (and its overhead from atomic operations) 681 * until the first PMD split. 682 * 683 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up 684 * by one. This reference will go away with last compound_mapcount. 685 * 686 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap(). 687 */ 688static inline int PageDoubleMap(struct page *page) 689{ 690 return PageHead(page) && test_bit(PG_double_map, &page[1].flags); 691} 692 693static inline void SetPageDoubleMap(struct page *page) 694{ 695 VM_BUG_ON_PAGE(!PageHead(page), page); 696 set_bit(PG_double_map, &page[1].flags); 697} 698 699static inline void ClearPageDoubleMap(struct page *page) 700{ 701 VM_BUG_ON_PAGE(!PageHead(page), page); 702 clear_bit(PG_double_map, &page[1].flags); 703} 704static inline int TestSetPageDoubleMap(struct page *page) 705{ 706 VM_BUG_ON_PAGE(!PageHead(page), page); 707 return test_and_set_bit(PG_double_map, &page[1].flags); 708} 709 710static inline int TestClearPageDoubleMap(struct page *page) 711{ 712 VM_BUG_ON_PAGE(!PageHead(page), page); 713 return test_and_clear_bit(PG_double_map, &page[1].flags); 714} 715 716#else 717TESTPAGEFLAG_FALSE(TransHuge) 718TESTPAGEFLAG_FALSE(TransCompound) 719TESTPAGEFLAG_FALSE(TransCompoundMap) 720TESTPAGEFLAG_FALSE(TransTail) 721PAGEFLAG_FALSE(DoubleMap) 722 TESTSETFLAG_FALSE(DoubleMap) 723 TESTCLEARFLAG_FALSE(DoubleMap) 724#endif 725 726/* 727 * For pages that are never mapped to userspace (and aren't PageSlab), 728 * page_type may be used. Because it is initialised to -1, we invert the 729 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 730 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 731 * low bits so that an underflow or overflow of page_mapcount() won't be 732 * mistaken for a page type value. 733 */ 734 735#define PAGE_TYPE_BASE 0xf0000000 736/* Reserve 0x0000007f to catch underflows of page_mapcount */ 737#define PAGE_MAPCOUNT_RESERVE -128 738#define PG_buddy 0x00000080 739#define PG_offline 0x00000100 740#define PG_kmemcg 0x00000200 741#define PG_table 0x00000400 742#define PG_guard 0x00000800 743 744#define PageType(page, flag) \ 745 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 746 747static inline int page_has_type(struct page *page) 748{ 749 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE; 750} 751 752#define PAGE_TYPE_OPS(uname, lname) \ 753static __always_inline int Page##uname(struct page *page) \ 754{ \ 755 return PageType(page, PG_##lname); \ 756} \ 757static __always_inline void __SetPage##uname(struct page *page) \ 758{ \ 759 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 760 page->page_type &= ~PG_##lname; \ 761} \ 762static __always_inline void __ClearPage##uname(struct page *page) \ 763{ \ 764 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 765 page->page_type |= PG_##lname; \ 766} 767 768/* 769 * PageBuddy() indicates that the page is free and in the buddy system 770 * (see mm/page_alloc.c). 771 */ 772PAGE_TYPE_OPS(Buddy, buddy) 773 774/* 775 * PageOffline() indicates that the page is logically offline although the 776 * containing section is online. (e.g. inflated in a balloon driver or 777 * not onlined when onlining the section). 778 * The content of these pages is effectively stale. Such pages should not 779 * be touched (read/write/dump/save) except by their owner. 780 */ 781PAGE_TYPE_OPS(Offline, offline) 782 783/* 784 * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on 785 * pages allocated with __GFP_ACCOUNT. It gets cleared on page free. 786 */ 787PAGE_TYPE_OPS(Kmemcg, kmemcg) 788 789/* 790 * Marks pages in use as page tables. 791 */ 792PAGE_TYPE_OPS(Table, table) 793 794/* 795 * Marks guardpages used with debug_pagealloc. 796 */ 797PAGE_TYPE_OPS(Guard, guard) 798 799extern bool is_free_buddy_page(struct page *page); 800 801__PAGEFLAG(Isolated, isolated, PF_ANY); 802 803/* 804 * If network-based swap is enabled, sl*b must keep track of whether pages 805 * were allocated from pfmemalloc reserves. 806 */ 807static inline int PageSlabPfmemalloc(struct page *page) 808{ 809 VM_BUG_ON_PAGE(!PageSlab(page), page); 810 return PageActive(page); 811} 812 813static inline void SetPageSlabPfmemalloc(struct page *page) 814{ 815 VM_BUG_ON_PAGE(!PageSlab(page), page); 816 SetPageActive(page); 817} 818 819static inline void __ClearPageSlabPfmemalloc(struct page *page) 820{ 821 VM_BUG_ON_PAGE(!PageSlab(page), page); 822 __ClearPageActive(page); 823} 824 825static inline void ClearPageSlabPfmemalloc(struct page *page) 826{ 827 VM_BUG_ON_PAGE(!PageSlab(page), page); 828 ClearPageActive(page); 829} 830 831#ifdef CONFIG_MMU 832#define __PG_MLOCKED (1UL << PG_mlocked) 833#else 834#define __PG_MLOCKED 0 835#endif 836 837/* 838 * Flags checked when a page is freed. Pages being freed should not have 839 * these flags set. It they are, there is a problem. 840 */ 841#define PAGE_FLAGS_CHECK_AT_FREE \ 842 (1UL << PG_lru | 1UL << PG_locked | \ 843 1UL << PG_private | 1UL << PG_private_2 | \ 844 1UL << PG_writeback | 1UL << PG_reserved | \ 845 1UL << PG_slab | 1UL << PG_active | \ 846 1UL << PG_unevictable | __PG_MLOCKED) 847 848/* 849 * Flags checked when a page is prepped for return by the page allocator. 850 * Pages being prepped should not have these flags set. It they are set, 851 * there has been a kernel bug or struct page corruption. 852 * 853 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 854 * alloc-free cycle to prevent from reusing the page. 855 */ 856#define PAGE_FLAGS_CHECK_AT_PREP \ 857 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON) 858 859#define PAGE_FLAGS_PRIVATE \ 860 (1UL << PG_private | 1UL << PG_private_2) 861/** 862 * page_has_private - Determine if page has private stuff 863 * @page: The page to be checked 864 * 865 * Determine if a page has private stuff, indicating that release routines 866 * should be invoked upon it. 867 */ 868static inline int page_has_private(struct page *page) 869{ 870 return !!(page->flags & PAGE_FLAGS_PRIVATE); 871} 872 873#undef PF_ANY 874#undef PF_HEAD 875#undef PF_ONLY_HEAD 876#undef PF_NO_TAIL 877#undef PF_NO_COMPOUND 878#endif /* !__GENERATING_BOUNDS_H */ 879 880#endif /* PAGE_FLAGS_H */