Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
4 */
5
6#ifndef __MTD_MTD_H__
7#define __MTD_MTD_H__
8
9#include <linux/types.h>
10#include <linux/uio.h>
11#include <linux/list.h>
12#include <linux/notifier.h>
13#include <linux/device.h>
14#include <linux/of.h>
15#include <linux/nvmem-provider.h>
16
17#include <mtd/mtd-abi.h>
18
19#include <asm/div64.h>
20
21#define MTD_FAIL_ADDR_UNKNOWN -1LL
22
23struct mtd_info;
24
25/*
26 * If the erase fails, fail_addr might indicate exactly which block failed. If
27 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
28 * or was not specific to any particular block.
29 */
30struct erase_info {
31 uint64_t addr;
32 uint64_t len;
33 uint64_t fail_addr;
34};
35
36struct mtd_erase_region_info {
37 uint64_t offset; /* At which this region starts, from the beginning of the MTD */
38 uint32_t erasesize; /* For this region */
39 uint32_t numblocks; /* Number of blocks of erasesize in this region */
40 unsigned long *lockmap; /* If keeping bitmap of locks */
41};
42
43/**
44 * struct mtd_oob_ops - oob operation operands
45 * @mode: operation mode
46 *
47 * @len: number of data bytes to write/read
48 *
49 * @retlen: number of data bytes written/read
50 *
51 * @ooblen: number of oob bytes to write/read
52 * @oobretlen: number of oob bytes written/read
53 * @ooboffs: offset of oob data in the oob area (only relevant when
54 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
55 * @datbuf: data buffer - if NULL only oob data are read/written
56 * @oobbuf: oob data buffer
57 *
58 * Note, some MTD drivers do not allow you to write more than one OOB area at
59 * one go. If you try to do that on such an MTD device, -EINVAL will be
60 * returned. If you want to make your implementation portable on all kind of MTD
61 * devices you should split the write request into several sub-requests when the
62 * request crosses a page boundary.
63 */
64struct mtd_oob_ops {
65 unsigned int mode;
66 size_t len;
67 size_t retlen;
68 size_t ooblen;
69 size_t oobretlen;
70 uint32_t ooboffs;
71 uint8_t *datbuf;
72 uint8_t *oobbuf;
73};
74
75#define MTD_MAX_OOBFREE_ENTRIES_LARGE 32
76#define MTD_MAX_ECCPOS_ENTRIES_LARGE 640
77/**
78 * struct mtd_oob_region - oob region definition
79 * @offset: region offset
80 * @length: region length
81 *
82 * This structure describes a region of the OOB area, and is used
83 * to retrieve ECC or free bytes sections.
84 * Each section is defined by an offset within the OOB area and a
85 * length.
86 */
87struct mtd_oob_region {
88 u32 offset;
89 u32 length;
90};
91
92/*
93 * struct mtd_ooblayout_ops - NAND OOB layout operations
94 * @ecc: function returning an ECC region in the OOB area.
95 * Should return -ERANGE if %section exceeds the total number of
96 * ECC sections.
97 * @free: function returning a free region in the OOB area.
98 * Should return -ERANGE if %section exceeds the total number of
99 * free sections.
100 */
101struct mtd_ooblayout_ops {
102 int (*ecc)(struct mtd_info *mtd, int section,
103 struct mtd_oob_region *oobecc);
104 int (*free)(struct mtd_info *mtd, int section,
105 struct mtd_oob_region *oobfree);
106};
107
108/**
109 * struct mtd_pairing_info - page pairing information
110 *
111 * @pair: pair id
112 * @group: group id
113 *
114 * The term "pair" is used here, even though TLC NANDs might group pages by 3
115 * (3 bits in a single cell). A pair should regroup all pages that are sharing
116 * the same cell. Pairs are then indexed in ascending order.
117 *
118 * @group is defining the position of a page in a given pair. It can also be
119 * seen as the bit position in the cell: page attached to bit 0 belongs to
120 * group 0, page attached to bit 1 belongs to group 1, etc.
121 *
122 * Example:
123 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
124 *
125 * group-0 group-1
126 *
127 * pair-0 page-0 page-4
128 * pair-1 page-1 page-5
129 * pair-2 page-2 page-8
130 * ...
131 * pair-127 page-251 page-255
132 *
133 *
134 * Note that the "group" and "pair" terms were extracted from Samsung and
135 * Hynix datasheets, and might be referenced under other names in other
136 * datasheets (Micron is describing this concept as "shared pages").
137 */
138struct mtd_pairing_info {
139 int pair;
140 int group;
141};
142
143/**
144 * struct mtd_pairing_scheme - page pairing scheme description
145 *
146 * @ngroups: number of groups. Should be related to the number of bits
147 * per cell.
148 * @get_info: converts a write-unit (page number within an erase block) into
149 * mtd_pairing information (pair + group). This function should
150 * fill the info parameter based on the wunit index or return
151 * -EINVAL if the wunit parameter is invalid.
152 * @get_wunit: converts pairing information into a write-unit (page) number.
153 * This function should return the wunit index pointed by the
154 * pairing information described in the info argument. It should
155 * return -EINVAL, if there's no wunit corresponding to the
156 * passed pairing information.
157 *
158 * See mtd_pairing_info documentation for a detailed explanation of the
159 * pair and group concepts.
160 *
161 * The mtd_pairing_scheme structure provides a generic solution to represent
162 * NAND page pairing scheme. Instead of exposing two big tables to do the
163 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
164 * implement the ->get_info() and ->get_wunit() functions.
165 *
166 * MTD users will then be able to query these information by using the
167 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
168 *
169 * @ngroups is here to help MTD users iterating over all the pages in a
170 * given pair. This value can be retrieved by MTD users using the
171 * mtd_pairing_groups() helper.
172 *
173 * Examples are given in the mtd_pairing_info_to_wunit() and
174 * mtd_wunit_to_pairing_info() documentation.
175 */
176struct mtd_pairing_scheme {
177 int ngroups;
178 int (*get_info)(struct mtd_info *mtd, int wunit,
179 struct mtd_pairing_info *info);
180 int (*get_wunit)(struct mtd_info *mtd,
181 const struct mtd_pairing_info *info);
182};
183
184struct module; /* only needed for owner field in mtd_info */
185
186/**
187 * struct mtd_debug_info - debugging information for an MTD device.
188 *
189 * @dfs_dir: direntry object of the MTD device debugfs directory
190 */
191struct mtd_debug_info {
192 struct dentry *dfs_dir;
193
194 const char *partname;
195 const char *partid;
196};
197
198/**
199 * struct mtd_part - MTD partition specific fields
200 *
201 * @node: list node used to add an MTD partition to the parent partition list
202 * @offset: offset of the partition relatively to the parent offset
203 * @flags: original flags (before the mtdpart logic decided to tweak them based
204 * on flash constraints, like eraseblock/pagesize alignment)
205 *
206 * This struct is embedded in mtd_info and contains partition-specific
207 * properties/fields.
208 */
209struct mtd_part {
210 struct list_head node;
211 u64 offset;
212 u32 flags;
213};
214
215/**
216 * struct mtd_master - MTD master specific fields
217 *
218 * @partitions_lock: lock protecting accesses to the partition list. Protects
219 * not only the master partition list, but also all
220 * sub-partitions.
221 * @suspended: et to 1 when the device is suspended, 0 otherwise
222 *
223 * This struct is embedded in mtd_info and contains master-specific
224 * properties/fields. The master is the root MTD device from the MTD partition
225 * point of view.
226 */
227struct mtd_master {
228 struct mutex partitions_lock;
229 unsigned int suspended : 1;
230};
231
232struct mtd_info {
233 u_char type;
234 uint32_t flags;
235 uint64_t size; // Total size of the MTD
236
237 /* "Major" erase size for the device. Naïve users may take this
238 * to be the only erase size available, or may use the more detailed
239 * information below if they desire
240 */
241 uint32_t erasesize;
242 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
243 * though individual bits can be cleared), in case of NAND flash it is
244 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
245 * it is of ECC block size, etc. It is illegal to have writesize = 0.
246 * Any driver registering a struct mtd_info must ensure a writesize of
247 * 1 or larger.
248 */
249 uint32_t writesize;
250
251 /*
252 * Size of the write buffer used by the MTD. MTD devices having a write
253 * buffer can write multiple writesize chunks at a time. E.g. while
254 * writing 4 * writesize bytes to a device with 2 * writesize bytes
255 * buffer the MTD driver can (but doesn't have to) do 2 writesize
256 * operations, but not 4. Currently, all NANDs have writebufsize
257 * equivalent to writesize (NAND page size). Some NOR flashes do have
258 * writebufsize greater than writesize.
259 */
260 uint32_t writebufsize;
261
262 uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
263 uint32_t oobavail; // Available OOB bytes per block
264
265 /*
266 * If erasesize is a power of 2 then the shift is stored in
267 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
268 */
269 unsigned int erasesize_shift;
270 unsigned int writesize_shift;
271 /* Masks based on erasesize_shift and writesize_shift */
272 unsigned int erasesize_mask;
273 unsigned int writesize_mask;
274
275 /*
276 * read ops return -EUCLEAN if max number of bitflips corrected on any
277 * one region comprising an ecc step equals or exceeds this value.
278 * Settable by driver, else defaults to ecc_strength. User can override
279 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed;
280 * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
281 */
282 unsigned int bitflip_threshold;
283
284 /* Kernel-only stuff starts here. */
285 const char *name;
286 int index;
287
288 /* OOB layout description */
289 const struct mtd_ooblayout_ops *ooblayout;
290
291 /* NAND pairing scheme, only provided for MLC/TLC NANDs */
292 const struct mtd_pairing_scheme *pairing;
293
294 /* the ecc step size. */
295 unsigned int ecc_step_size;
296
297 /* max number of correctible bit errors per ecc step */
298 unsigned int ecc_strength;
299
300 /* Data for variable erase regions. If numeraseregions is zero,
301 * it means that the whole device has erasesize as given above.
302 */
303 int numeraseregions;
304 struct mtd_erase_region_info *eraseregions;
305
306 /*
307 * Do not call via these pointers, use corresponding mtd_*()
308 * wrappers instead.
309 */
310 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
311 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
312 size_t *retlen, void **virt, resource_size_t *phys);
313 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
314 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
315 size_t *retlen, u_char *buf);
316 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
317 size_t *retlen, const u_char *buf);
318 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
319 size_t *retlen, const u_char *buf);
320 int (*_read_oob) (struct mtd_info *mtd, loff_t from,
321 struct mtd_oob_ops *ops);
322 int (*_write_oob) (struct mtd_info *mtd, loff_t to,
323 struct mtd_oob_ops *ops);
324 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
325 size_t *retlen, struct otp_info *buf);
326 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
327 size_t len, size_t *retlen, u_char *buf);
328 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
329 size_t *retlen, struct otp_info *buf);
330 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
331 size_t len, size_t *retlen, u_char *buf);
332 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
333 size_t len, size_t *retlen, u_char *buf);
334 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
335 size_t len);
336 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
337 unsigned long count, loff_t to, size_t *retlen);
338 void (*_sync) (struct mtd_info *mtd);
339 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
340 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
341 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
342 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
343 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
344 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
345 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
346 int (*_suspend) (struct mtd_info *mtd);
347 void (*_resume) (struct mtd_info *mtd);
348 void (*_reboot) (struct mtd_info *mtd);
349 /*
350 * If the driver is something smart, like UBI, it may need to maintain
351 * its own reference counting. The below functions are only for driver.
352 */
353 int (*_get_device) (struct mtd_info *mtd);
354 void (*_put_device) (struct mtd_info *mtd);
355
356 /*
357 * flag indicates a panic write, low level drivers can take appropriate
358 * action if required to ensure writes go through
359 */
360 bool oops_panic_write;
361
362 struct notifier_block reboot_notifier; /* default mode before reboot */
363
364 /* ECC status information */
365 struct mtd_ecc_stats ecc_stats;
366 /* Subpage shift (NAND) */
367 int subpage_sft;
368
369 void *priv;
370
371 struct module *owner;
372 struct device dev;
373 int usecount;
374 struct mtd_debug_info dbg;
375 struct nvmem_device *nvmem;
376
377 /*
378 * Parent device from the MTD partition point of view.
379 *
380 * MTD masters do not have any parent, MTD partitions do. The parent
381 * MTD device can itself be a partition.
382 */
383 struct mtd_info *parent;
384
385 /* List of partitions attached to this MTD device */
386 struct list_head partitions;
387
388 union {
389 struct mtd_part part;
390 struct mtd_master master;
391 };
392};
393
394static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd)
395{
396 while (mtd->parent)
397 mtd = mtd->parent;
398
399 return mtd;
400}
401
402static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs)
403{
404 while (mtd->parent) {
405 ofs += mtd->part.offset;
406 mtd = mtd->parent;
407 }
408
409 return ofs;
410}
411
412static inline bool mtd_is_partition(const struct mtd_info *mtd)
413{
414 return mtd->parent;
415}
416
417static inline bool mtd_has_partitions(const struct mtd_info *mtd)
418{
419 return !list_empty(&mtd->partitions);
420}
421
422int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
423 struct mtd_oob_region *oobecc);
424int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
425 int *section,
426 struct mtd_oob_region *oobregion);
427int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
428 const u8 *oobbuf, int start, int nbytes);
429int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
430 u8 *oobbuf, int start, int nbytes);
431int mtd_ooblayout_free(struct mtd_info *mtd, int section,
432 struct mtd_oob_region *oobfree);
433int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
434 const u8 *oobbuf, int start, int nbytes);
435int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
436 u8 *oobbuf, int start, int nbytes);
437int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
438int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
439
440static inline void mtd_set_ooblayout(struct mtd_info *mtd,
441 const struct mtd_ooblayout_ops *ooblayout)
442{
443 mtd->ooblayout = ooblayout;
444}
445
446static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
447 const struct mtd_pairing_scheme *pairing)
448{
449 mtd->pairing = pairing;
450}
451
452static inline void mtd_set_of_node(struct mtd_info *mtd,
453 struct device_node *np)
454{
455 mtd->dev.of_node = np;
456 if (!mtd->name)
457 of_property_read_string(np, "label", &mtd->name);
458}
459
460static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
461{
462 return dev_of_node(&mtd->dev);
463}
464
465static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
466{
467 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
468}
469
470static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
471 loff_t ofs, size_t len)
472{
473 struct mtd_info *master = mtd_get_master(mtd);
474
475 if (!master->_max_bad_blocks)
476 return -ENOTSUPP;
477
478 if (mtd->size < (len + ofs) || ofs < 0)
479 return -EINVAL;
480
481 return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs),
482 len);
483}
484
485int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
486 struct mtd_pairing_info *info);
487int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
488 const struct mtd_pairing_info *info);
489int mtd_pairing_groups(struct mtd_info *mtd);
490int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
491int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
492 void **virt, resource_size_t *phys);
493int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
494unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
495 unsigned long offset, unsigned long flags);
496int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
497 u_char *buf);
498int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
499 const u_char *buf);
500int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
501 const u_char *buf);
502
503int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
504int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
505
506int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
507 struct otp_info *buf);
508int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
509 size_t *retlen, u_char *buf);
510int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
511 struct otp_info *buf);
512int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
513 size_t *retlen, u_char *buf);
514int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
515 size_t *retlen, u_char *buf);
516int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
517
518int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
519 unsigned long count, loff_t to, size_t *retlen);
520
521static inline void mtd_sync(struct mtd_info *mtd)
522{
523 struct mtd_info *master = mtd_get_master(mtd);
524
525 if (master->_sync)
526 master->_sync(master);
527}
528
529int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
530int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
531int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
532int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
533int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
534int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
535
536static inline int mtd_suspend(struct mtd_info *mtd)
537{
538 struct mtd_info *master = mtd_get_master(mtd);
539 int ret;
540
541 if (master->master.suspended)
542 return 0;
543
544 ret = master->_suspend ? master->_suspend(master) : 0;
545 if (ret)
546 return ret;
547
548 master->master.suspended = 1;
549 return 0;
550}
551
552static inline void mtd_resume(struct mtd_info *mtd)
553{
554 struct mtd_info *master = mtd_get_master(mtd);
555
556 if (!master->master.suspended)
557 return;
558
559 if (master->_resume)
560 master->_resume(master);
561
562 master->master.suspended = 0;
563}
564
565static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
566{
567 if (mtd->erasesize_shift)
568 return sz >> mtd->erasesize_shift;
569 do_div(sz, mtd->erasesize);
570 return sz;
571}
572
573static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
574{
575 if (mtd->erasesize_shift)
576 return sz & mtd->erasesize_mask;
577 return do_div(sz, mtd->erasesize);
578}
579
580/**
581 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
582 * boundaries.
583 * @mtd: the MTD device this erase request applies on
584 * @req: the erase request to adjust
585 *
586 * This function will adjust @req->addr and @req->len to align them on
587 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
588 */
589static inline void mtd_align_erase_req(struct mtd_info *mtd,
590 struct erase_info *req)
591{
592 u32 mod;
593
594 if (WARN_ON(!mtd->erasesize))
595 return;
596
597 mod = mtd_mod_by_eb(req->addr, mtd);
598 if (mod) {
599 req->addr -= mod;
600 req->len += mod;
601 }
602
603 mod = mtd_mod_by_eb(req->addr + req->len, mtd);
604 if (mod)
605 req->len += mtd->erasesize - mod;
606}
607
608static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
609{
610 if (mtd->writesize_shift)
611 return sz >> mtd->writesize_shift;
612 do_div(sz, mtd->writesize);
613 return sz;
614}
615
616static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
617{
618 if (mtd->writesize_shift)
619 return sz & mtd->writesize_mask;
620 return do_div(sz, mtd->writesize);
621}
622
623static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
624{
625 return mtd->erasesize / mtd->writesize;
626}
627
628static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
629{
630 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
631}
632
633static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
634 int wunit)
635{
636 return base + (wunit * mtd->writesize);
637}
638
639
640static inline int mtd_has_oob(const struct mtd_info *mtd)
641{
642 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
643
644 return master->_read_oob && master->_write_oob;
645}
646
647static inline int mtd_type_is_nand(const struct mtd_info *mtd)
648{
649 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
650}
651
652static inline int mtd_can_have_bb(const struct mtd_info *mtd)
653{
654 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
655
656 return !!master->_block_isbad;
657}
658
659 /* Kernel-side ioctl definitions */
660
661struct mtd_partition;
662struct mtd_part_parser_data;
663
664extern int mtd_device_parse_register(struct mtd_info *mtd,
665 const char * const *part_probe_types,
666 struct mtd_part_parser_data *parser_data,
667 const struct mtd_partition *defparts,
668 int defnr_parts);
669#define mtd_device_register(master, parts, nr_parts) \
670 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
671extern int mtd_device_unregister(struct mtd_info *master);
672extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
673extern int __get_mtd_device(struct mtd_info *mtd);
674extern void __put_mtd_device(struct mtd_info *mtd);
675extern struct mtd_info *get_mtd_device_nm(const char *name);
676extern void put_mtd_device(struct mtd_info *mtd);
677
678
679struct mtd_notifier {
680 void (*add)(struct mtd_info *mtd);
681 void (*remove)(struct mtd_info *mtd);
682 struct list_head list;
683};
684
685
686extern void register_mtd_user (struct mtd_notifier *new);
687extern int unregister_mtd_user (struct mtd_notifier *old);
688void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
689
690static inline int mtd_is_bitflip(int err) {
691 return err == -EUCLEAN;
692}
693
694static inline int mtd_is_eccerr(int err) {
695 return err == -EBADMSG;
696}
697
698static inline int mtd_is_bitflip_or_eccerr(int err) {
699 return mtd_is_bitflip(err) || mtd_is_eccerr(err);
700}
701
702unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
703
704#endif /* __MTD_MTD_H__ */