at v5.7 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_TYPES_H 3#define _LINUX_MM_TYPES_H 4 5#include <linux/mm_types_task.h> 6 7#include <linux/auxvec.h> 8#include <linux/list.h> 9#include <linux/spinlock.h> 10#include <linux/rbtree.h> 11#include <linux/rwsem.h> 12#include <linux/completion.h> 13#include <linux/cpumask.h> 14#include <linux/uprobes.h> 15#include <linux/page-flags-layout.h> 16#include <linux/workqueue.h> 17 18#include <asm/mmu.h> 19 20#ifndef AT_VECTOR_SIZE_ARCH 21#define AT_VECTOR_SIZE_ARCH 0 22#endif 23#define AT_VECTOR_SIZE (2*(AT_VECTOR_SIZE_ARCH + AT_VECTOR_SIZE_BASE + 1)) 24 25 26struct address_space; 27struct mem_cgroup; 28 29/* 30 * Each physical page in the system has a struct page associated with 31 * it to keep track of whatever it is we are using the page for at the 32 * moment. Note that we have no way to track which tasks are using 33 * a page, though if it is a pagecache page, rmap structures can tell us 34 * who is mapping it. 35 * 36 * If you allocate the page using alloc_pages(), you can use some of the 37 * space in struct page for your own purposes. The five words in the main 38 * union are available, except for bit 0 of the first word which must be 39 * kept clear. Many users use this word to store a pointer to an object 40 * which is guaranteed to be aligned. If you use the same storage as 41 * page->mapping, you must restore it to NULL before freeing the page. 42 * 43 * If your page will not be mapped to userspace, you can also use the four 44 * bytes in the mapcount union, but you must call page_mapcount_reset() 45 * before freeing it. 46 * 47 * If you want to use the refcount field, it must be used in such a way 48 * that other CPUs temporarily incrementing and then decrementing the 49 * refcount does not cause problems. On receiving the page from 50 * alloc_pages(), the refcount will be positive. 51 * 52 * If you allocate pages of order > 0, you can use some of the fields 53 * in each subpage, but you may need to restore some of their values 54 * afterwards. 55 * 56 * SLUB uses cmpxchg_double() to atomically update its freelist and 57 * counters. That requires that freelist & counters be adjacent and 58 * double-word aligned. We align all struct pages to double-word 59 * boundaries, and ensure that 'freelist' is aligned within the 60 * struct. 61 */ 62#ifdef CONFIG_HAVE_ALIGNED_STRUCT_PAGE 63#define _struct_page_alignment __aligned(2 * sizeof(unsigned long)) 64#else 65#define _struct_page_alignment 66#endif 67 68struct page { 69 unsigned long flags; /* Atomic flags, some possibly 70 * updated asynchronously */ 71 /* 72 * Five words (20/40 bytes) are available in this union. 73 * WARNING: bit 0 of the first word is used for PageTail(). That 74 * means the other users of this union MUST NOT use the bit to 75 * avoid collision and false-positive PageTail(). 76 */ 77 union { 78 struct { /* Page cache and anonymous pages */ 79 /** 80 * @lru: Pageout list, eg. active_list protected by 81 * pgdat->lru_lock. Sometimes used as a generic list 82 * by the page owner. 83 */ 84 struct list_head lru; 85 /* See page-flags.h for PAGE_MAPPING_FLAGS */ 86 struct address_space *mapping; 87 pgoff_t index; /* Our offset within mapping. */ 88 /** 89 * @private: Mapping-private opaque data. 90 * Usually used for buffer_heads if PagePrivate. 91 * Used for swp_entry_t if PageSwapCache. 92 * Indicates order in the buddy system if PageBuddy. 93 */ 94 unsigned long private; 95 }; 96 struct { /* page_pool used by netstack */ 97 /** 98 * @dma_addr: might require a 64-bit value even on 99 * 32-bit architectures. 100 */ 101 dma_addr_t dma_addr; 102 }; 103 struct { /* slab, slob and slub */ 104 union { 105 struct list_head slab_list; 106 struct { /* Partial pages */ 107 struct page *next; 108#ifdef CONFIG_64BIT 109 int pages; /* Nr of pages left */ 110 int pobjects; /* Approximate count */ 111#else 112 short int pages; 113 short int pobjects; 114#endif 115 }; 116 }; 117 struct kmem_cache *slab_cache; /* not slob */ 118 /* Double-word boundary */ 119 void *freelist; /* first free object */ 120 union { 121 void *s_mem; /* slab: first object */ 122 unsigned long counters; /* SLUB */ 123 struct { /* SLUB */ 124 unsigned inuse:16; 125 unsigned objects:15; 126 unsigned frozen:1; 127 }; 128 }; 129 }; 130 struct { /* Tail pages of compound page */ 131 unsigned long compound_head; /* Bit zero is set */ 132 133 /* First tail page only */ 134 unsigned char compound_dtor; 135 unsigned char compound_order; 136 atomic_t compound_mapcount; 137 }; 138 struct { /* Second tail page of compound page */ 139 unsigned long _compound_pad_1; /* compound_head */ 140 atomic_t hpage_pinned_refcount; 141 /* For both global and memcg */ 142 struct list_head deferred_list; 143 }; 144 struct { /* Page table pages */ 145 unsigned long _pt_pad_1; /* compound_head */ 146 pgtable_t pmd_huge_pte; /* protected by page->ptl */ 147 unsigned long _pt_pad_2; /* mapping */ 148 union { 149 struct mm_struct *pt_mm; /* x86 pgds only */ 150 atomic_t pt_frag_refcount; /* powerpc */ 151 }; 152#if ALLOC_SPLIT_PTLOCKS 153 spinlock_t *ptl; 154#else 155 spinlock_t ptl; 156#endif 157 }; 158 struct { /* ZONE_DEVICE pages */ 159 /** @pgmap: Points to the hosting device page map. */ 160 struct dev_pagemap *pgmap; 161 void *zone_device_data; 162 /* 163 * ZONE_DEVICE private pages are counted as being 164 * mapped so the next 3 words hold the mapping, index, 165 * and private fields from the source anonymous or 166 * page cache page while the page is migrated to device 167 * private memory. 168 * ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also 169 * use the mapping, index, and private fields when 170 * pmem backed DAX files are mapped. 171 */ 172 }; 173 174 /** @rcu_head: You can use this to free a page by RCU. */ 175 struct rcu_head rcu_head; 176 }; 177 178 union { /* This union is 4 bytes in size. */ 179 /* 180 * If the page can be mapped to userspace, encodes the number 181 * of times this page is referenced by a page table. 182 */ 183 atomic_t _mapcount; 184 185 /* 186 * If the page is neither PageSlab nor mappable to userspace, 187 * the value stored here may help determine what this page 188 * is used for. See page-flags.h for a list of page types 189 * which are currently stored here. 190 */ 191 unsigned int page_type; 192 193 unsigned int active; /* SLAB */ 194 int units; /* SLOB */ 195 }; 196 197 /* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */ 198 atomic_t _refcount; 199 200#ifdef CONFIG_MEMCG 201 struct mem_cgroup *mem_cgroup; 202#endif 203 204 /* 205 * On machines where all RAM is mapped into kernel address space, 206 * we can simply calculate the virtual address. On machines with 207 * highmem some memory is mapped into kernel virtual memory 208 * dynamically, so we need a place to store that address. 209 * Note that this field could be 16 bits on x86 ... ;) 210 * 211 * Architectures with slow multiplication can define 212 * WANT_PAGE_VIRTUAL in asm/page.h 213 */ 214#if defined(WANT_PAGE_VIRTUAL) 215 void *virtual; /* Kernel virtual address (NULL if 216 not kmapped, ie. highmem) */ 217#endif /* WANT_PAGE_VIRTUAL */ 218 219#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 220 int _last_cpupid; 221#endif 222} _struct_page_alignment; 223 224static inline atomic_t *compound_mapcount_ptr(struct page *page) 225{ 226 return &page[1].compound_mapcount; 227} 228 229static inline atomic_t *compound_pincount_ptr(struct page *page) 230{ 231 return &page[2].hpage_pinned_refcount; 232} 233 234/* 235 * Used for sizing the vmemmap region on some architectures 236 */ 237#define STRUCT_PAGE_MAX_SHIFT (order_base_2(sizeof(struct page))) 238 239#define PAGE_FRAG_CACHE_MAX_SIZE __ALIGN_MASK(32768, ~PAGE_MASK) 240#define PAGE_FRAG_CACHE_MAX_ORDER get_order(PAGE_FRAG_CACHE_MAX_SIZE) 241 242#define page_private(page) ((page)->private) 243#define set_page_private(page, v) ((page)->private = (v)) 244 245struct page_frag_cache { 246 void * va; 247#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 248 __u16 offset; 249 __u16 size; 250#else 251 __u32 offset; 252#endif 253 /* we maintain a pagecount bias, so that we dont dirty cache line 254 * containing page->_refcount every time we allocate a fragment. 255 */ 256 unsigned int pagecnt_bias; 257 bool pfmemalloc; 258}; 259 260typedef unsigned long vm_flags_t; 261 262/* 263 * A region containing a mapping of a non-memory backed file under NOMMU 264 * conditions. These are held in a global tree and are pinned by the VMAs that 265 * map parts of them. 266 */ 267struct vm_region { 268 struct rb_node vm_rb; /* link in global region tree */ 269 vm_flags_t vm_flags; /* VMA vm_flags */ 270 unsigned long vm_start; /* start address of region */ 271 unsigned long vm_end; /* region initialised to here */ 272 unsigned long vm_top; /* region allocated to here */ 273 unsigned long vm_pgoff; /* the offset in vm_file corresponding to vm_start */ 274 struct file *vm_file; /* the backing file or NULL */ 275 276 int vm_usage; /* region usage count (access under nommu_region_sem) */ 277 bool vm_icache_flushed : 1; /* true if the icache has been flushed for 278 * this region */ 279}; 280 281#ifdef CONFIG_USERFAULTFD 282#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) { NULL, }) 283struct vm_userfaultfd_ctx { 284 struct userfaultfd_ctx *ctx; 285}; 286#else /* CONFIG_USERFAULTFD */ 287#define NULL_VM_UFFD_CTX ((struct vm_userfaultfd_ctx) {}) 288struct vm_userfaultfd_ctx {}; 289#endif /* CONFIG_USERFAULTFD */ 290 291/* 292 * This struct describes a virtual memory area. There is one of these 293 * per VM-area/task. A VM area is any part of the process virtual memory 294 * space that has a special rule for the page-fault handlers (ie a shared 295 * library, the executable area etc). 296 */ 297struct vm_area_struct { 298 /* The first cache line has the info for VMA tree walking. */ 299 300 unsigned long vm_start; /* Our start address within vm_mm. */ 301 unsigned long vm_end; /* The first byte after our end address 302 within vm_mm. */ 303 304 /* linked list of VM areas per task, sorted by address */ 305 struct vm_area_struct *vm_next, *vm_prev; 306 307 struct rb_node vm_rb; 308 309 /* 310 * Largest free memory gap in bytes to the left of this VMA. 311 * Either between this VMA and vma->vm_prev, or between one of the 312 * VMAs below us in the VMA rbtree and its ->vm_prev. This helps 313 * get_unmapped_area find a free area of the right size. 314 */ 315 unsigned long rb_subtree_gap; 316 317 /* Second cache line starts here. */ 318 319 struct mm_struct *vm_mm; /* The address space we belong to. */ 320 321 /* 322 * Access permissions of this VMA. 323 * See vmf_insert_mixed_prot() for discussion. 324 */ 325 pgprot_t vm_page_prot; 326 unsigned long vm_flags; /* Flags, see mm.h. */ 327 328 /* 329 * For areas with an address space and backing store, 330 * linkage into the address_space->i_mmap interval tree. 331 */ 332 struct { 333 struct rb_node rb; 334 unsigned long rb_subtree_last; 335 } shared; 336 337 /* 338 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma 339 * list, after a COW of one of the file pages. A MAP_SHARED vma 340 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack 341 * or brk vma (with NULL file) can only be in an anon_vma list. 342 */ 343 struct list_head anon_vma_chain; /* Serialized by mmap_sem & 344 * page_table_lock */ 345 struct anon_vma *anon_vma; /* Serialized by page_table_lock */ 346 347 /* Function pointers to deal with this struct. */ 348 const struct vm_operations_struct *vm_ops; 349 350 /* Information about our backing store: */ 351 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE 352 units */ 353 struct file * vm_file; /* File we map to (can be NULL). */ 354 void * vm_private_data; /* was vm_pte (shared mem) */ 355 356#ifdef CONFIG_SWAP 357 atomic_long_t swap_readahead_info; 358#endif 359#ifndef CONFIG_MMU 360 struct vm_region *vm_region; /* NOMMU mapping region */ 361#endif 362#ifdef CONFIG_NUMA 363 struct mempolicy *vm_policy; /* NUMA policy for the VMA */ 364#endif 365 struct vm_userfaultfd_ctx vm_userfaultfd_ctx; 366} __randomize_layout; 367 368struct core_thread { 369 struct task_struct *task; 370 struct core_thread *next; 371}; 372 373struct core_state { 374 atomic_t nr_threads; 375 struct core_thread dumper; 376 struct completion startup; 377}; 378 379struct kioctx_table; 380struct mm_struct { 381 struct { 382 struct vm_area_struct *mmap; /* list of VMAs */ 383 struct rb_root mm_rb; 384 u64 vmacache_seqnum; /* per-thread vmacache */ 385#ifdef CONFIG_MMU 386 unsigned long (*get_unmapped_area) (struct file *filp, 387 unsigned long addr, unsigned long len, 388 unsigned long pgoff, unsigned long flags); 389#endif 390 unsigned long mmap_base; /* base of mmap area */ 391 unsigned long mmap_legacy_base; /* base of mmap area in bottom-up allocations */ 392#ifdef CONFIG_HAVE_ARCH_COMPAT_MMAP_BASES 393 /* Base adresses for compatible mmap() */ 394 unsigned long mmap_compat_base; 395 unsigned long mmap_compat_legacy_base; 396#endif 397 unsigned long task_size; /* size of task vm space */ 398 unsigned long highest_vm_end; /* highest vma end address */ 399 pgd_t * pgd; 400 401#ifdef CONFIG_MEMBARRIER 402 /** 403 * @membarrier_state: Flags controlling membarrier behavior. 404 * 405 * This field is close to @pgd to hopefully fit in the same 406 * cache-line, which needs to be touched by switch_mm(). 407 */ 408 atomic_t membarrier_state; 409#endif 410 411 /** 412 * @mm_users: The number of users including userspace. 413 * 414 * Use mmget()/mmget_not_zero()/mmput() to modify. When this 415 * drops to 0 (i.e. when the task exits and there are no other 416 * temporary reference holders), we also release a reference on 417 * @mm_count (which may then free the &struct mm_struct if 418 * @mm_count also drops to 0). 419 */ 420 atomic_t mm_users; 421 422 /** 423 * @mm_count: The number of references to &struct mm_struct 424 * (@mm_users count as 1). 425 * 426 * Use mmgrab()/mmdrop() to modify. When this drops to 0, the 427 * &struct mm_struct is freed. 428 */ 429 atomic_t mm_count; 430 431#ifdef CONFIG_MMU 432 atomic_long_t pgtables_bytes; /* PTE page table pages */ 433#endif 434 int map_count; /* number of VMAs */ 435 436 spinlock_t page_table_lock; /* Protects page tables and some 437 * counters 438 */ 439 struct rw_semaphore mmap_sem; 440 441 struct list_head mmlist; /* List of maybe swapped mm's. These 442 * are globally strung together off 443 * init_mm.mmlist, and are protected 444 * by mmlist_lock 445 */ 446 447 448 unsigned long hiwater_rss; /* High-watermark of RSS usage */ 449 unsigned long hiwater_vm; /* High-water virtual memory usage */ 450 451 unsigned long total_vm; /* Total pages mapped */ 452 unsigned long locked_vm; /* Pages that have PG_mlocked set */ 453 atomic64_t pinned_vm; /* Refcount permanently increased */ 454 unsigned long data_vm; /* VM_WRITE & ~VM_SHARED & ~VM_STACK */ 455 unsigned long exec_vm; /* VM_EXEC & ~VM_WRITE & ~VM_STACK */ 456 unsigned long stack_vm; /* VM_STACK */ 457 unsigned long def_flags; 458 459 spinlock_t arg_lock; /* protect the below fields */ 460 unsigned long start_code, end_code, start_data, end_data; 461 unsigned long start_brk, brk, start_stack; 462 unsigned long arg_start, arg_end, env_start, env_end; 463 464 unsigned long saved_auxv[AT_VECTOR_SIZE]; /* for /proc/PID/auxv */ 465 466 /* 467 * Special counters, in some configurations protected by the 468 * page_table_lock, in other configurations by being atomic. 469 */ 470 struct mm_rss_stat rss_stat; 471 472 struct linux_binfmt *binfmt; 473 474 /* Architecture-specific MM context */ 475 mm_context_t context; 476 477 unsigned long flags; /* Must use atomic bitops to access */ 478 479 struct core_state *core_state; /* coredumping support */ 480 481#ifdef CONFIG_AIO 482 spinlock_t ioctx_lock; 483 struct kioctx_table __rcu *ioctx_table; 484#endif 485#ifdef CONFIG_MEMCG 486 /* 487 * "owner" points to a task that is regarded as the canonical 488 * user/owner of this mm. All of the following must be true in 489 * order for it to be changed: 490 * 491 * current == mm->owner 492 * current->mm != mm 493 * new_owner->mm == mm 494 * new_owner->alloc_lock is held 495 */ 496 struct task_struct __rcu *owner; 497#endif 498 struct user_namespace *user_ns; 499 500 /* store ref to file /proc/<pid>/exe symlink points to */ 501 struct file __rcu *exe_file; 502#ifdef CONFIG_MMU_NOTIFIER 503 struct mmu_notifier_subscriptions *notifier_subscriptions; 504#endif 505#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS 506 pgtable_t pmd_huge_pte; /* protected by page_table_lock */ 507#endif 508#ifdef CONFIG_NUMA_BALANCING 509 /* 510 * numa_next_scan is the next time that the PTEs will be marked 511 * pte_numa. NUMA hinting faults will gather statistics and 512 * migrate pages to new nodes if necessary. 513 */ 514 unsigned long numa_next_scan; 515 516 /* Restart point for scanning and setting pte_numa */ 517 unsigned long numa_scan_offset; 518 519 /* numa_scan_seq prevents two threads setting pte_numa */ 520 int numa_scan_seq; 521#endif 522 /* 523 * An operation with batched TLB flushing is going on. Anything 524 * that can move process memory needs to flush the TLB when 525 * moving a PROT_NONE or PROT_NUMA mapped page. 526 */ 527 atomic_t tlb_flush_pending; 528#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 529 /* See flush_tlb_batched_pending() */ 530 bool tlb_flush_batched; 531#endif 532 struct uprobes_state uprobes_state; 533#ifdef CONFIG_HUGETLB_PAGE 534 atomic_long_t hugetlb_usage; 535#endif 536 struct work_struct async_put_work; 537 } __randomize_layout; 538 539 /* 540 * The mm_cpumask needs to be at the end of mm_struct, because it 541 * is dynamically sized based on nr_cpu_ids. 542 */ 543 unsigned long cpu_bitmap[]; 544}; 545 546extern struct mm_struct init_mm; 547 548/* Pointer magic because the dynamic array size confuses some compilers. */ 549static inline void mm_init_cpumask(struct mm_struct *mm) 550{ 551 unsigned long cpu_bitmap = (unsigned long)mm; 552 553 cpu_bitmap += offsetof(struct mm_struct, cpu_bitmap); 554 cpumask_clear((struct cpumask *)cpu_bitmap); 555} 556 557/* Future-safe accessor for struct mm_struct's cpu_vm_mask. */ 558static inline cpumask_t *mm_cpumask(struct mm_struct *mm) 559{ 560 return (struct cpumask *)&mm->cpu_bitmap; 561} 562 563struct mmu_gather; 564extern void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 565 unsigned long start, unsigned long end); 566extern void tlb_finish_mmu(struct mmu_gather *tlb, 567 unsigned long start, unsigned long end); 568 569static inline void init_tlb_flush_pending(struct mm_struct *mm) 570{ 571 atomic_set(&mm->tlb_flush_pending, 0); 572} 573 574static inline void inc_tlb_flush_pending(struct mm_struct *mm) 575{ 576 atomic_inc(&mm->tlb_flush_pending); 577 /* 578 * The only time this value is relevant is when there are indeed pages 579 * to flush. And we'll only flush pages after changing them, which 580 * requires the PTL. 581 * 582 * So the ordering here is: 583 * 584 * atomic_inc(&mm->tlb_flush_pending); 585 * spin_lock(&ptl); 586 * ... 587 * set_pte_at(); 588 * spin_unlock(&ptl); 589 * 590 * spin_lock(&ptl) 591 * mm_tlb_flush_pending(); 592 * .... 593 * spin_unlock(&ptl); 594 * 595 * flush_tlb_range(); 596 * atomic_dec(&mm->tlb_flush_pending); 597 * 598 * Where the increment if constrained by the PTL unlock, it thus 599 * ensures that the increment is visible if the PTE modification is 600 * visible. After all, if there is no PTE modification, nobody cares 601 * about TLB flushes either. 602 * 603 * This very much relies on users (mm_tlb_flush_pending() and 604 * mm_tlb_flush_nested()) only caring about _specific_ PTEs (and 605 * therefore specific PTLs), because with SPLIT_PTE_PTLOCKS and RCpc 606 * locks (PPC) the unlock of one doesn't order against the lock of 607 * another PTL. 608 * 609 * The decrement is ordered by the flush_tlb_range(), such that 610 * mm_tlb_flush_pending() will not return false unless all flushes have 611 * completed. 612 */ 613} 614 615static inline void dec_tlb_flush_pending(struct mm_struct *mm) 616{ 617 /* 618 * See inc_tlb_flush_pending(). 619 * 620 * This cannot be smp_mb__before_atomic() because smp_mb() simply does 621 * not order against TLB invalidate completion, which is what we need. 622 * 623 * Therefore we must rely on tlb_flush_*() to guarantee order. 624 */ 625 atomic_dec(&mm->tlb_flush_pending); 626} 627 628static inline bool mm_tlb_flush_pending(struct mm_struct *mm) 629{ 630 /* 631 * Must be called after having acquired the PTL; orders against that 632 * PTLs release and therefore ensures that if we observe the modified 633 * PTE we must also observe the increment from inc_tlb_flush_pending(). 634 * 635 * That is, it only guarantees to return true if there is a flush 636 * pending for _this_ PTL. 637 */ 638 return atomic_read(&mm->tlb_flush_pending); 639} 640 641static inline bool mm_tlb_flush_nested(struct mm_struct *mm) 642{ 643 /* 644 * Similar to mm_tlb_flush_pending(), we must have acquired the PTL 645 * for which there is a TLB flush pending in order to guarantee 646 * we've seen both that PTE modification and the increment. 647 * 648 * (no requirement on actually still holding the PTL, that is irrelevant) 649 */ 650 return atomic_read(&mm->tlb_flush_pending) > 1; 651} 652 653struct vm_fault; 654 655/** 656 * typedef vm_fault_t - Return type for page fault handlers. 657 * 658 * Page fault handlers return a bitmask of %VM_FAULT values. 659 */ 660typedef __bitwise unsigned int vm_fault_t; 661 662/** 663 * enum vm_fault_reason - Page fault handlers return a bitmask of 664 * these values to tell the core VM what happened when handling the 665 * fault. Used to decide whether a process gets delivered SIGBUS or 666 * just gets major/minor fault counters bumped up. 667 * 668 * @VM_FAULT_OOM: Out Of Memory 669 * @VM_FAULT_SIGBUS: Bad access 670 * @VM_FAULT_MAJOR: Page read from storage 671 * @VM_FAULT_WRITE: Special case for get_user_pages 672 * @VM_FAULT_HWPOISON: Hit poisoned small page 673 * @VM_FAULT_HWPOISON_LARGE: Hit poisoned large page. Index encoded 674 * in upper bits 675 * @VM_FAULT_SIGSEGV: segmentation fault 676 * @VM_FAULT_NOPAGE: ->fault installed the pte, not return page 677 * @VM_FAULT_LOCKED: ->fault locked the returned page 678 * @VM_FAULT_RETRY: ->fault blocked, must retry 679 * @VM_FAULT_FALLBACK: huge page fault failed, fall back to small 680 * @VM_FAULT_DONE_COW: ->fault has fully handled COW 681 * @VM_FAULT_NEEDDSYNC: ->fault did not modify page tables and needs 682 * fsync() to complete (for synchronous page faults 683 * in DAX) 684 * @VM_FAULT_HINDEX_MASK: mask HINDEX value 685 * 686 */ 687enum vm_fault_reason { 688 VM_FAULT_OOM = (__force vm_fault_t)0x000001, 689 VM_FAULT_SIGBUS = (__force vm_fault_t)0x000002, 690 VM_FAULT_MAJOR = (__force vm_fault_t)0x000004, 691 VM_FAULT_WRITE = (__force vm_fault_t)0x000008, 692 VM_FAULT_HWPOISON = (__force vm_fault_t)0x000010, 693 VM_FAULT_HWPOISON_LARGE = (__force vm_fault_t)0x000020, 694 VM_FAULT_SIGSEGV = (__force vm_fault_t)0x000040, 695 VM_FAULT_NOPAGE = (__force vm_fault_t)0x000100, 696 VM_FAULT_LOCKED = (__force vm_fault_t)0x000200, 697 VM_FAULT_RETRY = (__force vm_fault_t)0x000400, 698 VM_FAULT_FALLBACK = (__force vm_fault_t)0x000800, 699 VM_FAULT_DONE_COW = (__force vm_fault_t)0x001000, 700 VM_FAULT_NEEDDSYNC = (__force vm_fault_t)0x002000, 701 VM_FAULT_HINDEX_MASK = (__force vm_fault_t)0x0f0000, 702}; 703 704/* Encode hstate index for a hwpoisoned large page */ 705#define VM_FAULT_SET_HINDEX(x) ((__force vm_fault_t)((x) << 16)) 706#define VM_FAULT_GET_HINDEX(x) (((__force unsigned int)(x) >> 16) & 0xf) 707 708#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | \ 709 VM_FAULT_SIGSEGV | VM_FAULT_HWPOISON | \ 710 VM_FAULT_HWPOISON_LARGE | VM_FAULT_FALLBACK) 711 712#define VM_FAULT_RESULT_TRACE \ 713 { VM_FAULT_OOM, "OOM" }, \ 714 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 715 { VM_FAULT_MAJOR, "MAJOR" }, \ 716 { VM_FAULT_WRITE, "WRITE" }, \ 717 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 718 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 719 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 720 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 721 { VM_FAULT_LOCKED, "LOCKED" }, \ 722 { VM_FAULT_RETRY, "RETRY" }, \ 723 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 724 { VM_FAULT_DONE_COW, "DONE_COW" }, \ 725 { VM_FAULT_NEEDDSYNC, "NEEDDSYNC" } 726 727struct vm_special_mapping { 728 const char *name; /* The name, e.g. "[vdso]". */ 729 730 /* 731 * If .fault is not provided, this points to a 732 * NULL-terminated array of pages that back the special mapping. 733 * 734 * This must not be NULL unless .fault is provided. 735 */ 736 struct page **pages; 737 738 /* 739 * If non-NULL, then this is called to resolve page faults 740 * on the special mapping. If used, .pages is not checked. 741 */ 742 vm_fault_t (*fault)(const struct vm_special_mapping *sm, 743 struct vm_area_struct *vma, 744 struct vm_fault *vmf); 745 746 int (*mremap)(const struct vm_special_mapping *sm, 747 struct vm_area_struct *new_vma); 748}; 749 750enum tlb_flush_reason { 751 TLB_FLUSH_ON_TASK_SWITCH, 752 TLB_REMOTE_SHOOTDOWN, 753 TLB_LOCAL_SHOOTDOWN, 754 TLB_LOCAL_MM_SHOOTDOWN, 755 TLB_REMOTE_SEND_IPI, 756 NR_TLB_FLUSH_REASONS, 757}; 758 759 /* 760 * A swap entry has to fit into a "unsigned long", as the entry is hidden 761 * in the "index" field of the swapper address space. 762 */ 763typedef struct { 764 unsigned long val; 765} swp_entry_t; 766 767#endif /* _LINUX_MM_TYPES_H */