at v5.7 102 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/range.h> 19#include <linux/pfn.h> 20#include <linux/percpu-refcount.h> 21#include <linux/bit_spinlock.h> 22#include <linux/shrinker.h> 23#include <linux/resource.h> 24#include <linux/page_ext.h> 25#include <linux/err.h> 26#include <linux/page_ref.h> 27#include <linux/memremap.h> 28#include <linux/overflow.h> 29#include <linux/sizes.h> 30#include <linux/sched.h> 31 32struct mempolicy; 33struct anon_vma; 34struct anon_vma_chain; 35struct file_ra_state; 36struct user_struct; 37struct writeback_control; 38struct bdi_writeback; 39 40void init_mm_internals(void); 41 42#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 43extern unsigned long max_mapnr; 44 45static inline void set_max_mapnr(unsigned long limit) 46{ 47 max_mapnr = limit; 48} 49#else 50static inline void set_max_mapnr(unsigned long limit) { } 51#endif 52 53extern atomic_long_t _totalram_pages; 54static inline unsigned long totalram_pages(void) 55{ 56 return (unsigned long)atomic_long_read(&_totalram_pages); 57} 58 59static inline void totalram_pages_inc(void) 60{ 61 atomic_long_inc(&_totalram_pages); 62} 63 64static inline void totalram_pages_dec(void) 65{ 66 atomic_long_dec(&_totalram_pages); 67} 68 69static inline void totalram_pages_add(long count) 70{ 71 atomic_long_add(count, &_totalram_pages); 72} 73 74extern void * high_memory; 75extern int page_cluster; 76 77#ifdef CONFIG_SYSCTL 78extern int sysctl_legacy_va_layout; 79#else 80#define sysctl_legacy_va_layout 0 81#endif 82 83#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 84extern const int mmap_rnd_bits_min; 85extern const int mmap_rnd_bits_max; 86extern int mmap_rnd_bits __read_mostly; 87#endif 88#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 89extern const int mmap_rnd_compat_bits_min; 90extern const int mmap_rnd_compat_bits_max; 91extern int mmap_rnd_compat_bits __read_mostly; 92#endif 93 94#include <asm/page.h> 95#include <asm/pgtable.h> 96#include <asm/processor.h> 97 98/* 99 * Architectures that support memory tagging (assigning tags to memory regions, 100 * embedding these tags into addresses that point to these memory regions, and 101 * checking that the memory and the pointer tags match on memory accesses) 102 * redefine this macro to strip tags from pointers. 103 * It's defined as noop for arcitectures that don't support memory tagging. 104 */ 105#ifndef untagged_addr 106#define untagged_addr(addr) (addr) 107#endif 108 109#ifndef __pa_symbol 110#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 111#endif 112 113#ifndef page_to_virt 114#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 115#endif 116 117#ifndef lm_alias 118#define lm_alias(x) __va(__pa_symbol(x)) 119#endif 120 121/* 122 * To prevent common memory management code establishing 123 * a zero page mapping on a read fault. 124 * This macro should be defined within <asm/pgtable.h>. 125 * s390 does this to prevent multiplexing of hardware bits 126 * related to the physical page in case of virtualization. 127 */ 128#ifndef mm_forbids_zeropage 129#define mm_forbids_zeropage(X) (0) 130#endif 131 132/* 133 * On some architectures it is expensive to call memset() for small sizes. 134 * If an architecture decides to implement their own version of 135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 136 * define their own version of this macro in <asm/pgtable.h> 137 */ 138#if BITS_PER_LONG == 64 139/* This function must be updated when the size of struct page grows above 80 140 * or reduces below 56. The idea that compiler optimizes out switch() 141 * statement, and only leaves move/store instructions. Also the compiler can 142 * combine write statments if they are both assignments and can be reordered, 143 * this can result in several of the writes here being dropped. 144 */ 145#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 146static inline void __mm_zero_struct_page(struct page *page) 147{ 148 unsigned long *_pp = (void *)page; 149 150 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 151 BUILD_BUG_ON(sizeof(struct page) & 7); 152 BUILD_BUG_ON(sizeof(struct page) < 56); 153 BUILD_BUG_ON(sizeof(struct page) > 80); 154 155 switch (sizeof(struct page)) { 156 case 80: 157 _pp[9] = 0; /* fallthrough */ 158 case 72: 159 _pp[8] = 0; /* fallthrough */ 160 case 64: 161 _pp[7] = 0; /* fallthrough */ 162 case 56: 163 _pp[6] = 0; 164 _pp[5] = 0; 165 _pp[4] = 0; 166 _pp[3] = 0; 167 _pp[2] = 0; 168 _pp[1] = 0; 169 _pp[0] = 0; 170 } 171} 172#else 173#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 174#endif 175 176/* 177 * Default maximum number of active map areas, this limits the number of vmas 178 * per mm struct. Users can overwrite this number by sysctl but there is a 179 * problem. 180 * 181 * When a program's coredump is generated as ELF format, a section is created 182 * per a vma. In ELF, the number of sections is represented in unsigned short. 183 * This means the number of sections should be smaller than 65535 at coredump. 184 * Because the kernel adds some informative sections to a image of program at 185 * generating coredump, we need some margin. The number of extra sections is 186 * 1-3 now and depends on arch. We use "5" as safe margin, here. 187 * 188 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 189 * not a hard limit any more. Although some userspace tools can be surprised by 190 * that. 191 */ 192#define MAPCOUNT_ELF_CORE_MARGIN (5) 193#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 194 195extern int sysctl_max_map_count; 196 197extern unsigned long sysctl_user_reserve_kbytes; 198extern unsigned long sysctl_admin_reserve_kbytes; 199 200extern int sysctl_overcommit_memory; 201extern int sysctl_overcommit_ratio; 202extern unsigned long sysctl_overcommit_kbytes; 203 204extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 205 size_t *, loff_t *); 206extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 207 size_t *, loff_t *); 208 209#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 210 211/* to align the pointer to the (next) page boundary */ 212#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 213 214/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 215#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 216 217#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 218 219/* 220 * Linux kernel virtual memory manager primitives. 221 * The idea being to have a "virtual" mm in the same way 222 * we have a virtual fs - giving a cleaner interface to the 223 * mm details, and allowing different kinds of memory mappings 224 * (from shared memory to executable loading to arbitrary 225 * mmap() functions). 226 */ 227 228struct vm_area_struct *vm_area_alloc(struct mm_struct *); 229struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 230void vm_area_free(struct vm_area_struct *); 231 232#ifndef CONFIG_MMU 233extern struct rb_root nommu_region_tree; 234extern struct rw_semaphore nommu_region_sem; 235 236extern unsigned int kobjsize(const void *objp); 237#endif 238 239/* 240 * vm_flags in vm_area_struct, see mm_types.h. 241 * When changing, update also include/trace/events/mmflags.h 242 */ 243#define VM_NONE 0x00000000 244 245#define VM_READ 0x00000001 /* currently active flags */ 246#define VM_WRITE 0x00000002 247#define VM_EXEC 0x00000004 248#define VM_SHARED 0x00000008 249 250/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 251#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 252#define VM_MAYWRITE 0x00000020 253#define VM_MAYEXEC 0x00000040 254#define VM_MAYSHARE 0x00000080 255 256#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 257#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 258#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 259#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 260#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 261 262#define VM_LOCKED 0x00002000 263#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 264 265 /* Used by sys_madvise() */ 266#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 267#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 268 269#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 270#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 271#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 272#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 273#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 274#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 275#define VM_SYNC 0x00800000 /* Synchronous page faults */ 276#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 277#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 278#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 279 280#ifdef CONFIG_MEM_SOFT_DIRTY 281# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 282#else 283# define VM_SOFTDIRTY 0 284#endif 285 286#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 287#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 288#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 289#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 290 291#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 292#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 293#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 294#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 295#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 296#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 297#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 298#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 299#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 300#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 301#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 302#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 303 304#ifdef CONFIG_ARCH_HAS_PKEYS 305# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 306# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 307# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 308# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 309# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 310#ifdef CONFIG_PPC 311# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 312#else 313# define VM_PKEY_BIT4 0 314#endif 315#endif /* CONFIG_ARCH_HAS_PKEYS */ 316 317#if defined(CONFIG_X86) 318# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 319#elif defined(CONFIG_PPC) 320# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 321#elif defined(CONFIG_PARISC) 322# define VM_GROWSUP VM_ARCH_1 323#elif defined(CONFIG_IA64) 324# define VM_GROWSUP VM_ARCH_1 325#elif defined(CONFIG_SPARC64) 326# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 327# define VM_ARCH_CLEAR VM_SPARC_ADI 328#elif !defined(CONFIG_MMU) 329# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 330#endif 331 332#if defined(CONFIG_X86_INTEL_MPX) 333/* MPX specific bounds table or bounds directory */ 334# define VM_MPX VM_HIGH_ARCH_4 335#else 336# define VM_MPX VM_NONE 337#endif 338 339#ifndef VM_GROWSUP 340# define VM_GROWSUP VM_NONE 341#endif 342 343/* Bits set in the VMA until the stack is in its final location */ 344#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 345 346#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 347 348/* Common data flag combinations */ 349#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 350 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 351#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 352 VM_MAYWRITE | VM_MAYEXEC) 353#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 354 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 355 356#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 357#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 358#endif 359 360#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 361#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 362#endif 363 364#ifdef CONFIG_STACK_GROWSUP 365#define VM_STACK VM_GROWSUP 366#else 367#define VM_STACK VM_GROWSDOWN 368#endif 369 370#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 371 372/* VMA basic access permission flags */ 373#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 374 375 376/* 377 * Special vmas that are non-mergable, non-mlock()able. 378 */ 379#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 380 381/* This mask prevents VMA from being scanned with khugepaged */ 382#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 383 384/* This mask defines which mm->def_flags a process can inherit its parent */ 385#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 386 387/* This mask is used to clear all the VMA flags used by mlock */ 388#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 389 390/* Arch-specific flags to clear when updating VM flags on protection change */ 391#ifndef VM_ARCH_CLEAR 392# define VM_ARCH_CLEAR VM_NONE 393#endif 394#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 395 396/* 397 * mapping from the currently active vm_flags protection bits (the 398 * low four bits) to a page protection mask.. 399 */ 400extern pgprot_t protection_map[16]; 401 402/** 403 * Fault flag definitions. 404 * 405 * @FAULT_FLAG_WRITE: Fault was a write fault. 406 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 407 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 408 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_sem and wait when retrying. 409 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 410 * @FAULT_FLAG_TRIED: The fault has been tried once. 411 * @FAULT_FLAG_USER: The fault originated in userspace. 412 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 413 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 414 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 415 * 416 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 417 * whether we would allow page faults to retry by specifying these two 418 * fault flags correctly. Currently there can be three legal combinations: 419 * 420 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 421 * this is the first try 422 * 423 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 424 * we've already tried at least once 425 * 426 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 427 * 428 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 429 * be used. Note that page faults can be allowed to retry for multiple times, 430 * in which case we'll have an initial fault with flags (a) then later on 431 * continuous faults with flags (b). We should always try to detect pending 432 * signals before a retry to make sure the continuous page faults can still be 433 * interrupted if necessary. 434 */ 435#define FAULT_FLAG_WRITE 0x01 436#define FAULT_FLAG_MKWRITE 0x02 437#define FAULT_FLAG_ALLOW_RETRY 0x04 438#define FAULT_FLAG_RETRY_NOWAIT 0x08 439#define FAULT_FLAG_KILLABLE 0x10 440#define FAULT_FLAG_TRIED 0x20 441#define FAULT_FLAG_USER 0x40 442#define FAULT_FLAG_REMOTE 0x80 443#define FAULT_FLAG_INSTRUCTION 0x100 444#define FAULT_FLAG_INTERRUPTIBLE 0x200 445 446/* 447 * The default fault flags that should be used by most of the 448 * arch-specific page fault handlers. 449 */ 450#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 451 FAULT_FLAG_KILLABLE | \ 452 FAULT_FLAG_INTERRUPTIBLE) 453 454/** 455 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 456 * 457 * This is mostly used for places where we want to try to avoid taking 458 * the mmap_sem for too long a time when waiting for another condition 459 * to change, in which case we can try to be polite to release the 460 * mmap_sem in the first round to avoid potential starvation of other 461 * processes that would also want the mmap_sem. 462 * 463 * Return: true if the page fault allows retry and this is the first 464 * attempt of the fault handling; false otherwise. 465 */ 466static inline bool fault_flag_allow_retry_first(unsigned int flags) 467{ 468 return (flags & FAULT_FLAG_ALLOW_RETRY) && 469 (!(flags & FAULT_FLAG_TRIED)); 470} 471 472#define FAULT_FLAG_TRACE \ 473 { FAULT_FLAG_WRITE, "WRITE" }, \ 474 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 475 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 476 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 477 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 478 { FAULT_FLAG_TRIED, "TRIED" }, \ 479 { FAULT_FLAG_USER, "USER" }, \ 480 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 481 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 482 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 483 484/* 485 * vm_fault is filled by the the pagefault handler and passed to the vma's 486 * ->fault function. The vma's ->fault is responsible for returning a bitmask 487 * of VM_FAULT_xxx flags that give details about how the fault was handled. 488 * 489 * MM layer fills up gfp_mask for page allocations but fault handler might 490 * alter it if its implementation requires a different allocation context. 491 * 492 * pgoff should be used in favour of virtual_address, if possible. 493 */ 494struct vm_fault { 495 struct vm_area_struct *vma; /* Target VMA */ 496 unsigned int flags; /* FAULT_FLAG_xxx flags */ 497 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 498 pgoff_t pgoff; /* Logical page offset based on vma */ 499 unsigned long address; /* Faulting virtual address */ 500 pmd_t *pmd; /* Pointer to pmd entry matching 501 * the 'address' */ 502 pud_t *pud; /* Pointer to pud entry matching 503 * the 'address' 504 */ 505 pte_t orig_pte; /* Value of PTE at the time of fault */ 506 507 struct page *cow_page; /* Page handler may use for COW fault */ 508 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 509 struct page *page; /* ->fault handlers should return a 510 * page here, unless VM_FAULT_NOPAGE 511 * is set (which is also implied by 512 * VM_FAULT_ERROR). 513 */ 514 /* These three entries are valid only while holding ptl lock */ 515 pte_t *pte; /* Pointer to pte entry matching 516 * the 'address'. NULL if the page 517 * table hasn't been allocated. 518 */ 519 spinlock_t *ptl; /* Page table lock. 520 * Protects pte page table if 'pte' 521 * is not NULL, otherwise pmd. 522 */ 523 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 524 * vm_ops->map_pages() calls 525 * alloc_set_pte() from atomic context. 526 * do_fault_around() pre-allocates 527 * page table to avoid allocation from 528 * atomic context. 529 */ 530}; 531 532/* page entry size for vm->huge_fault() */ 533enum page_entry_size { 534 PE_SIZE_PTE = 0, 535 PE_SIZE_PMD, 536 PE_SIZE_PUD, 537}; 538 539/* 540 * These are the virtual MM functions - opening of an area, closing and 541 * unmapping it (needed to keep files on disk up-to-date etc), pointer 542 * to the functions called when a no-page or a wp-page exception occurs. 543 */ 544struct vm_operations_struct { 545 void (*open)(struct vm_area_struct * area); 546 void (*close)(struct vm_area_struct * area); 547 int (*split)(struct vm_area_struct * area, unsigned long addr); 548 int (*mremap)(struct vm_area_struct * area); 549 vm_fault_t (*fault)(struct vm_fault *vmf); 550 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 551 enum page_entry_size pe_size); 552 void (*map_pages)(struct vm_fault *vmf, 553 pgoff_t start_pgoff, pgoff_t end_pgoff); 554 unsigned long (*pagesize)(struct vm_area_struct * area); 555 556 /* notification that a previously read-only page is about to become 557 * writable, if an error is returned it will cause a SIGBUS */ 558 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 559 560 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 561 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 562 563 /* called by access_process_vm when get_user_pages() fails, typically 564 * for use by special VMAs that can switch between memory and hardware 565 */ 566 int (*access)(struct vm_area_struct *vma, unsigned long addr, 567 void *buf, int len, int write); 568 569 /* Called by the /proc/PID/maps code to ask the vma whether it 570 * has a special name. Returning non-NULL will also cause this 571 * vma to be dumped unconditionally. */ 572 const char *(*name)(struct vm_area_struct *vma); 573 574#ifdef CONFIG_NUMA 575 /* 576 * set_policy() op must add a reference to any non-NULL @new mempolicy 577 * to hold the policy upon return. Caller should pass NULL @new to 578 * remove a policy and fall back to surrounding context--i.e. do not 579 * install a MPOL_DEFAULT policy, nor the task or system default 580 * mempolicy. 581 */ 582 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 583 584 /* 585 * get_policy() op must add reference [mpol_get()] to any policy at 586 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 587 * in mm/mempolicy.c will do this automatically. 588 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 589 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 590 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 591 * must return NULL--i.e., do not "fallback" to task or system default 592 * policy. 593 */ 594 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 595 unsigned long addr); 596#endif 597 /* 598 * Called by vm_normal_page() for special PTEs to find the 599 * page for @addr. This is useful if the default behavior 600 * (using pte_page()) would not find the correct page. 601 */ 602 struct page *(*find_special_page)(struct vm_area_struct *vma, 603 unsigned long addr); 604}; 605 606static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 607{ 608 static const struct vm_operations_struct dummy_vm_ops = {}; 609 610 memset(vma, 0, sizeof(*vma)); 611 vma->vm_mm = mm; 612 vma->vm_ops = &dummy_vm_ops; 613 INIT_LIST_HEAD(&vma->anon_vma_chain); 614} 615 616static inline void vma_set_anonymous(struct vm_area_struct *vma) 617{ 618 vma->vm_ops = NULL; 619} 620 621static inline bool vma_is_anonymous(struct vm_area_struct *vma) 622{ 623 return !vma->vm_ops; 624} 625 626static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 627{ 628 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 629 630 if (!maybe_stack) 631 return false; 632 633 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 634 VM_STACK_INCOMPLETE_SETUP) 635 return true; 636 637 return false; 638} 639 640static inline bool vma_is_foreign(struct vm_area_struct *vma) 641{ 642 if (!current->mm) 643 return true; 644 645 if (current->mm != vma->vm_mm) 646 return true; 647 648 return false; 649} 650 651static inline bool vma_is_accessible(struct vm_area_struct *vma) 652{ 653 return vma->vm_flags & VM_ACCESS_FLAGS; 654} 655 656#ifdef CONFIG_SHMEM 657/* 658 * The vma_is_shmem is not inline because it is used only by slow 659 * paths in userfault. 660 */ 661bool vma_is_shmem(struct vm_area_struct *vma); 662#else 663static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 664#endif 665 666int vma_is_stack_for_current(struct vm_area_struct *vma); 667 668/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 669#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 670 671struct mmu_gather; 672struct inode; 673 674/* 675 * FIXME: take this include out, include page-flags.h in 676 * files which need it (119 of them) 677 */ 678#include <linux/page-flags.h> 679#include <linux/huge_mm.h> 680 681/* 682 * Methods to modify the page usage count. 683 * 684 * What counts for a page usage: 685 * - cache mapping (page->mapping) 686 * - private data (page->private) 687 * - page mapped in a task's page tables, each mapping 688 * is counted separately 689 * 690 * Also, many kernel routines increase the page count before a critical 691 * routine so they can be sure the page doesn't go away from under them. 692 */ 693 694/* 695 * Drop a ref, return true if the refcount fell to zero (the page has no users) 696 */ 697static inline int put_page_testzero(struct page *page) 698{ 699 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 700 return page_ref_dec_and_test(page); 701} 702 703/* 704 * Try to grab a ref unless the page has a refcount of zero, return false if 705 * that is the case. 706 * This can be called when MMU is off so it must not access 707 * any of the virtual mappings. 708 */ 709static inline int get_page_unless_zero(struct page *page) 710{ 711 return page_ref_add_unless(page, 1, 0); 712} 713 714extern int page_is_ram(unsigned long pfn); 715 716enum { 717 REGION_INTERSECTS, 718 REGION_DISJOINT, 719 REGION_MIXED, 720}; 721 722int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 723 unsigned long desc); 724 725/* Support for virtually mapped pages */ 726struct page *vmalloc_to_page(const void *addr); 727unsigned long vmalloc_to_pfn(const void *addr); 728 729/* 730 * Determine if an address is within the vmalloc range 731 * 732 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 733 * is no special casing required. 734 */ 735 736#ifndef is_ioremap_addr 737#define is_ioremap_addr(x) is_vmalloc_addr(x) 738#endif 739 740#ifdef CONFIG_MMU 741extern bool is_vmalloc_addr(const void *x); 742extern int is_vmalloc_or_module_addr(const void *x); 743#else 744static inline bool is_vmalloc_addr(const void *x) 745{ 746 return false; 747} 748static inline int is_vmalloc_or_module_addr(const void *x) 749{ 750 return 0; 751} 752#endif 753 754extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 755static inline void *kvmalloc(size_t size, gfp_t flags) 756{ 757 return kvmalloc_node(size, flags, NUMA_NO_NODE); 758} 759static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 760{ 761 return kvmalloc_node(size, flags | __GFP_ZERO, node); 762} 763static inline void *kvzalloc(size_t size, gfp_t flags) 764{ 765 return kvmalloc(size, flags | __GFP_ZERO); 766} 767 768static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 769{ 770 size_t bytes; 771 772 if (unlikely(check_mul_overflow(n, size, &bytes))) 773 return NULL; 774 775 return kvmalloc(bytes, flags); 776} 777 778static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 779{ 780 return kvmalloc_array(n, size, flags | __GFP_ZERO); 781} 782 783extern void kvfree(const void *addr); 784 785/* 786 * Mapcount of compound page as a whole, does not include mapped sub-pages. 787 * 788 * Must be called only for compound pages or any their tail sub-pages. 789 */ 790static inline int compound_mapcount(struct page *page) 791{ 792 VM_BUG_ON_PAGE(!PageCompound(page), page); 793 page = compound_head(page); 794 return atomic_read(compound_mapcount_ptr(page)) + 1; 795} 796 797/* 798 * The atomic page->_mapcount, starts from -1: so that transitions 799 * both from it and to it can be tracked, using atomic_inc_and_test 800 * and atomic_add_negative(-1). 801 */ 802static inline void page_mapcount_reset(struct page *page) 803{ 804 atomic_set(&(page)->_mapcount, -1); 805} 806 807int __page_mapcount(struct page *page); 808 809/* 810 * Mapcount of 0-order page; when compound sub-page, includes 811 * compound_mapcount(). 812 * 813 * Result is undefined for pages which cannot be mapped into userspace. 814 * For example SLAB or special types of pages. See function page_has_type(). 815 * They use this place in struct page differently. 816 */ 817static inline int page_mapcount(struct page *page) 818{ 819 if (unlikely(PageCompound(page))) 820 return __page_mapcount(page); 821 return atomic_read(&page->_mapcount) + 1; 822} 823 824#ifdef CONFIG_TRANSPARENT_HUGEPAGE 825int total_mapcount(struct page *page); 826int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 827#else 828static inline int total_mapcount(struct page *page) 829{ 830 return page_mapcount(page); 831} 832static inline int page_trans_huge_mapcount(struct page *page, 833 int *total_mapcount) 834{ 835 int mapcount = page_mapcount(page); 836 if (total_mapcount) 837 *total_mapcount = mapcount; 838 return mapcount; 839} 840#endif 841 842static inline struct page *virt_to_head_page(const void *x) 843{ 844 struct page *page = virt_to_page(x); 845 846 return compound_head(page); 847} 848 849void __put_page(struct page *page); 850 851void put_pages_list(struct list_head *pages); 852 853void split_page(struct page *page, unsigned int order); 854 855/* 856 * Compound pages have a destructor function. Provide a 857 * prototype for that function and accessor functions. 858 * These are _only_ valid on the head of a compound page. 859 */ 860typedef void compound_page_dtor(struct page *); 861 862/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 863enum compound_dtor_id { 864 NULL_COMPOUND_DTOR, 865 COMPOUND_PAGE_DTOR, 866#ifdef CONFIG_HUGETLB_PAGE 867 HUGETLB_PAGE_DTOR, 868#endif 869#ifdef CONFIG_TRANSPARENT_HUGEPAGE 870 TRANSHUGE_PAGE_DTOR, 871#endif 872 NR_COMPOUND_DTORS, 873}; 874extern compound_page_dtor * const compound_page_dtors[]; 875 876static inline void set_compound_page_dtor(struct page *page, 877 enum compound_dtor_id compound_dtor) 878{ 879 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 880 page[1].compound_dtor = compound_dtor; 881} 882 883static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 884{ 885 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 886 return compound_page_dtors[page[1].compound_dtor]; 887} 888 889static inline unsigned int compound_order(struct page *page) 890{ 891 if (!PageHead(page)) 892 return 0; 893 return page[1].compound_order; 894} 895 896static inline bool hpage_pincount_available(struct page *page) 897{ 898 /* 899 * Can the page->hpage_pinned_refcount field be used? That field is in 900 * the 3rd page of the compound page, so the smallest (2-page) compound 901 * pages cannot support it. 902 */ 903 page = compound_head(page); 904 return PageCompound(page) && compound_order(page) > 1; 905} 906 907static inline int compound_pincount(struct page *page) 908{ 909 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 910 page = compound_head(page); 911 return atomic_read(compound_pincount_ptr(page)); 912} 913 914static inline void set_compound_order(struct page *page, unsigned int order) 915{ 916 page[1].compound_order = order; 917} 918 919/* Returns the number of pages in this potentially compound page. */ 920static inline unsigned long compound_nr(struct page *page) 921{ 922 return 1UL << compound_order(page); 923} 924 925/* Returns the number of bytes in this potentially compound page. */ 926static inline unsigned long page_size(struct page *page) 927{ 928 return PAGE_SIZE << compound_order(page); 929} 930 931/* Returns the number of bits needed for the number of bytes in a page */ 932static inline unsigned int page_shift(struct page *page) 933{ 934 return PAGE_SHIFT + compound_order(page); 935} 936 937void free_compound_page(struct page *page); 938 939#ifdef CONFIG_MMU 940/* 941 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 942 * servicing faults for write access. In the normal case, do always want 943 * pte_mkwrite. But get_user_pages can cause write faults for mappings 944 * that do not have writing enabled, when used by access_process_vm. 945 */ 946static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 947{ 948 if (likely(vma->vm_flags & VM_WRITE)) 949 pte = pte_mkwrite(pte); 950 return pte; 951} 952 953vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 954 struct page *page); 955vm_fault_t finish_fault(struct vm_fault *vmf); 956vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 957#endif 958 959/* 960 * Multiple processes may "see" the same page. E.g. for untouched 961 * mappings of /dev/null, all processes see the same page full of 962 * zeroes, and text pages of executables and shared libraries have 963 * only one copy in memory, at most, normally. 964 * 965 * For the non-reserved pages, page_count(page) denotes a reference count. 966 * page_count() == 0 means the page is free. page->lru is then used for 967 * freelist management in the buddy allocator. 968 * page_count() > 0 means the page has been allocated. 969 * 970 * Pages are allocated by the slab allocator in order to provide memory 971 * to kmalloc and kmem_cache_alloc. In this case, the management of the 972 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 973 * unless a particular usage is carefully commented. (the responsibility of 974 * freeing the kmalloc memory is the caller's, of course). 975 * 976 * A page may be used by anyone else who does a __get_free_page(). 977 * In this case, page_count still tracks the references, and should only 978 * be used through the normal accessor functions. The top bits of page->flags 979 * and page->virtual store page management information, but all other fields 980 * are unused and could be used privately, carefully. The management of this 981 * page is the responsibility of the one who allocated it, and those who have 982 * subsequently been given references to it. 983 * 984 * The other pages (we may call them "pagecache pages") are completely 985 * managed by the Linux memory manager: I/O, buffers, swapping etc. 986 * The following discussion applies only to them. 987 * 988 * A pagecache page contains an opaque `private' member, which belongs to the 989 * page's address_space. Usually, this is the address of a circular list of 990 * the page's disk buffers. PG_private must be set to tell the VM to call 991 * into the filesystem to release these pages. 992 * 993 * A page may belong to an inode's memory mapping. In this case, page->mapping 994 * is the pointer to the inode, and page->index is the file offset of the page, 995 * in units of PAGE_SIZE. 996 * 997 * If pagecache pages are not associated with an inode, they are said to be 998 * anonymous pages. These may become associated with the swapcache, and in that 999 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1000 * 1001 * In either case (swapcache or inode backed), the pagecache itself holds one 1002 * reference to the page. Setting PG_private should also increment the 1003 * refcount. The each user mapping also has a reference to the page. 1004 * 1005 * The pagecache pages are stored in a per-mapping radix tree, which is 1006 * rooted at mapping->i_pages, and indexed by offset. 1007 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1008 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1009 * 1010 * All pagecache pages may be subject to I/O: 1011 * - inode pages may need to be read from disk, 1012 * - inode pages which have been modified and are MAP_SHARED may need 1013 * to be written back to the inode on disk, 1014 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1015 * modified may need to be swapped out to swap space and (later) to be read 1016 * back into memory. 1017 */ 1018 1019/* 1020 * The zone field is never updated after free_area_init_core() 1021 * sets it, so none of the operations on it need to be atomic. 1022 */ 1023 1024/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1025#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1026#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1027#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1028#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1029#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1030 1031/* 1032 * Define the bit shifts to access each section. For non-existent 1033 * sections we define the shift as 0; that plus a 0 mask ensures 1034 * the compiler will optimise away reference to them. 1035 */ 1036#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1037#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1038#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1039#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1040#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1041 1042/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1043#ifdef NODE_NOT_IN_PAGE_FLAGS 1044#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1045#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1046 SECTIONS_PGOFF : ZONES_PGOFF) 1047#else 1048#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1049#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1050 NODES_PGOFF : ZONES_PGOFF) 1051#endif 1052 1053#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1054 1055#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1056#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1057#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1058#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1059#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1060#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1061 1062static inline enum zone_type page_zonenum(const struct page *page) 1063{ 1064 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1065} 1066 1067#ifdef CONFIG_ZONE_DEVICE 1068static inline bool is_zone_device_page(const struct page *page) 1069{ 1070 return page_zonenum(page) == ZONE_DEVICE; 1071} 1072extern void memmap_init_zone_device(struct zone *, unsigned long, 1073 unsigned long, struct dev_pagemap *); 1074#else 1075static inline bool is_zone_device_page(const struct page *page) 1076{ 1077 return false; 1078} 1079#endif 1080 1081#ifdef CONFIG_DEV_PAGEMAP_OPS 1082void free_devmap_managed_page(struct page *page); 1083DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1084 1085static inline bool page_is_devmap_managed(struct page *page) 1086{ 1087 if (!static_branch_unlikely(&devmap_managed_key)) 1088 return false; 1089 if (!is_zone_device_page(page)) 1090 return false; 1091 switch (page->pgmap->type) { 1092 case MEMORY_DEVICE_PRIVATE: 1093 case MEMORY_DEVICE_FS_DAX: 1094 return true; 1095 default: 1096 break; 1097 } 1098 return false; 1099} 1100 1101void put_devmap_managed_page(struct page *page); 1102 1103#else /* CONFIG_DEV_PAGEMAP_OPS */ 1104static inline bool page_is_devmap_managed(struct page *page) 1105{ 1106 return false; 1107} 1108 1109static inline void put_devmap_managed_page(struct page *page) 1110{ 1111} 1112#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1113 1114static inline bool is_device_private_page(const struct page *page) 1115{ 1116 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1117 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1118 is_zone_device_page(page) && 1119 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1120} 1121 1122static inline bool is_pci_p2pdma_page(const struct page *page) 1123{ 1124 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1125 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1126 is_zone_device_page(page) && 1127 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1128} 1129 1130/* 127: arbitrary random number, small enough to assemble well */ 1131#define page_ref_zero_or_close_to_overflow(page) \ 1132 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1133 1134static inline void get_page(struct page *page) 1135{ 1136 page = compound_head(page); 1137 /* 1138 * Getting a normal page or the head of a compound page 1139 * requires to already have an elevated page->_refcount. 1140 */ 1141 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1142 page_ref_inc(page); 1143} 1144 1145bool __must_check try_grab_page(struct page *page, unsigned int flags); 1146 1147static inline __must_check bool try_get_page(struct page *page) 1148{ 1149 page = compound_head(page); 1150 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1151 return false; 1152 page_ref_inc(page); 1153 return true; 1154} 1155 1156static inline void put_page(struct page *page) 1157{ 1158 page = compound_head(page); 1159 1160 /* 1161 * For devmap managed pages we need to catch refcount transition from 1162 * 2 to 1, when refcount reach one it means the page is free and we 1163 * need to inform the device driver through callback. See 1164 * include/linux/memremap.h and HMM for details. 1165 */ 1166 if (page_is_devmap_managed(page)) { 1167 put_devmap_managed_page(page); 1168 return; 1169 } 1170 1171 if (put_page_testzero(page)) 1172 __put_page(page); 1173} 1174 1175/* 1176 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1177 * the page's refcount so that two separate items are tracked: the original page 1178 * reference count, and also a new count of how many pin_user_pages() calls were 1179 * made against the page. ("gup-pinned" is another term for the latter). 1180 * 1181 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1182 * distinct from normal pages. As such, the unpin_user_page() call (and its 1183 * variants) must be used in order to release gup-pinned pages. 1184 * 1185 * Choice of value: 1186 * 1187 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1188 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1189 * simpler, due to the fact that adding an even power of two to the page 1190 * refcount has the effect of using only the upper N bits, for the code that 1191 * counts up using the bias value. This means that the lower bits are left for 1192 * the exclusive use of the original code that increments and decrements by one 1193 * (or at least, by much smaller values than the bias value). 1194 * 1195 * Of course, once the lower bits overflow into the upper bits (and this is 1196 * OK, because subtraction recovers the original values), then visual inspection 1197 * no longer suffices to directly view the separate counts. However, for normal 1198 * applications that don't have huge page reference counts, this won't be an 1199 * issue. 1200 * 1201 * Locking: the lockless algorithm described in page_cache_get_speculative() 1202 * and page_cache_gup_pin_speculative() provides safe operation for 1203 * get_user_pages and page_mkclean and other calls that race to set up page 1204 * table entries. 1205 */ 1206#define GUP_PIN_COUNTING_BIAS (1U << 10) 1207 1208void unpin_user_page(struct page *page); 1209void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1210 bool make_dirty); 1211void unpin_user_pages(struct page **pages, unsigned long npages); 1212 1213/** 1214 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1215 * 1216 * This function checks if a page has been pinned via a call to 1217 * pin_user_pages*(). 1218 * 1219 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1220 * because it means "definitely not pinned for DMA", but true means "probably 1221 * pinned for DMA, but possibly a false positive due to having at least 1222 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1223 * 1224 * False positives are OK, because: a) it's unlikely for a page to get that many 1225 * refcounts, and b) all the callers of this routine are expected to be able to 1226 * deal gracefully with a false positive. 1227 * 1228 * For huge pages, the result will be exactly correct. That's because we have 1229 * more tracking data available: the 3rd struct page in the compound page is 1230 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1231 * scheme). 1232 * 1233 * For more information, please see Documentation/vm/pin_user_pages.rst. 1234 * 1235 * @page: pointer to page to be queried. 1236 * @Return: True, if it is likely that the page has been "dma-pinned". 1237 * False, if the page is definitely not dma-pinned. 1238 */ 1239static inline bool page_maybe_dma_pinned(struct page *page) 1240{ 1241 if (hpage_pincount_available(page)) 1242 return compound_pincount(page) > 0; 1243 1244 /* 1245 * page_ref_count() is signed. If that refcount overflows, then 1246 * page_ref_count() returns a negative value, and callers will avoid 1247 * further incrementing the refcount. 1248 * 1249 * Here, for that overflow case, use the signed bit to count a little 1250 * bit higher via unsigned math, and thus still get an accurate result. 1251 */ 1252 return ((unsigned int)page_ref_count(compound_head(page))) >= 1253 GUP_PIN_COUNTING_BIAS; 1254} 1255 1256#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1257#define SECTION_IN_PAGE_FLAGS 1258#endif 1259 1260/* 1261 * The identification function is mainly used by the buddy allocator for 1262 * determining if two pages could be buddies. We are not really identifying 1263 * the zone since we could be using the section number id if we do not have 1264 * node id available in page flags. 1265 * We only guarantee that it will return the same value for two combinable 1266 * pages in a zone. 1267 */ 1268static inline int page_zone_id(struct page *page) 1269{ 1270 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1271} 1272 1273#ifdef NODE_NOT_IN_PAGE_FLAGS 1274extern int page_to_nid(const struct page *page); 1275#else 1276static inline int page_to_nid(const struct page *page) 1277{ 1278 struct page *p = (struct page *)page; 1279 1280 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1281} 1282#endif 1283 1284#ifdef CONFIG_NUMA_BALANCING 1285static inline int cpu_pid_to_cpupid(int cpu, int pid) 1286{ 1287 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1288} 1289 1290static inline int cpupid_to_pid(int cpupid) 1291{ 1292 return cpupid & LAST__PID_MASK; 1293} 1294 1295static inline int cpupid_to_cpu(int cpupid) 1296{ 1297 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1298} 1299 1300static inline int cpupid_to_nid(int cpupid) 1301{ 1302 return cpu_to_node(cpupid_to_cpu(cpupid)); 1303} 1304 1305static inline bool cpupid_pid_unset(int cpupid) 1306{ 1307 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1308} 1309 1310static inline bool cpupid_cpu_unset(int cpupid) 1311{ 1312 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1313} 1314 1315static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1316{ 1317 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1318} 1319 1320#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1321#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1322static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1323{ 1324 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1325} 1326 1327static inline int page_cpupid_last(struct page *page) 1328{ 1329 return page->_last_cpupid; 1330} 1331static inline void page_cpupid_reset_last(struct page *page) 1332{ 1333 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1334} 1335#else 1336static inline int page_cpupid_last(struct page *page) 1337{ 1338 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1339} 1340 1341extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1342 1343static inline void page_cpupid_reset_last(struct page *page) 1344{ 1345 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1346} 1347#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1348#else /* !CONFIG_NUMA_BALANCING */ 1349static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1350{ 1351 return page_to_nid(page); /* XXX */ 1352} 1353 1354static inline int page_cpupid_last(struct page *page) 1355{ 1356 return page_to_nid(page); /* XXX */ 1357} 1358 1359static inline int cpupid_to_nid(int cpupid) 1360{ 1361 return -1; 1362} 1363 1364static inline int cpupid_to_pid(int cpupid) 1365{ 1366 return -1; 1367} 1368 1369static inline int cpupid_to_cpu(int cpupid) 1370{ 1371 return -1; 1372} 1373 1374static inline int cpu_pid_to_cpupid(int nid, int pid) 1375{ 1376 return -1; 1377} 1378 1379static inline bool cpupid_pid_unset(int cpupid) 1380{ 1381 return 1; 1382} 1383 1384static inline void page_cpupid_reset_last(struct page *page) 1385{ 1386} 1387 1388static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1389{ 1390 return false; 1391} 1392#endif /* CONFIG_NUMA_BALANCING */ 1393 1394#ifdef CONFIG_KASAN_SW_TAGS 1395static inline u8 page_kasan_tag(const struct page *page) 1396{ 1397 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1398} 1399 1400static inline void page_kasan_tag_set(struct page *page, u8 tag) 1401{ 1402 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1403 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1404} 1405 1406static inline void page_kasan_tag_reset(struct page *page) 1407{ 1408 page_kasan_tag_set(page, 0xff); 1409} 1410#else 1411static inline u8 page_kasan_tag(const struct page *page) 1412{ 1413 return 0xff; 1414} 1415 1416static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1417static inline void page_kasan_tag_reset(struct page *page) { } 1418#endif 1419 1420static inline struct zone *page_zone(const struct page *page) 1421{ 1422 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1423} 1424 1425static inline pg_data_t *page_pgdat(const struct page *page) 1426{ 1427 return NODE_DATA(page_to_nid(page)); 1428} 1429 1430#ifdef SECTION_IN_PAGE_FLAGS 1431static inline void set_page_section(struct page *page, unsigned long section) 1432{ 1433 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1434 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1435} 1436 1437static inline unsigned long page_to_section(const struct page *page) 1438{ 1439 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1440} 1441#endif 1442 1443static inline void set_page_zone(struct page *page, enum zone_type zone) 1444{ 1445 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1446 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1447} 1448 1449static inline void set_page_node(struct page *page, unsigned long node) 1450{ 1451 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1452 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1453} 1454 1455static inline void set_page_links(struct page *page, enum zone_type zone, 1456 unsigned long node, unsigned long pfn) 1457{ 1458 set_page_zone(page, zone); 1459 set_page_node(page, node); 1460#ifdef SECTION_IN_PAGE_FLAGS 1461 set_page_section(page, pfn_to_section_nr(pfn)); 1462#endif 1463} 1464 1465#ifdef CONFIG_MEMCG 1466static inline struct mem_cgroup *page_memcg(struct page *page) 1467{ 1468 return page->mem_cgroup; 1469} 1470static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1471{ 1472 WARN_ON_ONCE(!rcu_read_lock_held()); 1473 return READ_ONCE(page->mem_cgroup); 1474} 1475#else 1476static inline struct mem_cgroup *page_memcg(struct page *page) 1477{ 1478 return NULL; 1479} 1480static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1481{ 1482 WARN_ON_ONCE(!rcu_read_lock_held()); 1483 return NULL; 1484} 1485#endif 1486 1487/* 1488 * Some inline functions in vmstat.h depend on page_zone() 1489 */ 1490#include <linux/vmstat.h> 1491 1492static __always_inline void *lowmem_page_address(const struct page *page) 1493{ 1494 return page_to_virt(page); 1495} 1496 1497#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1498#define HASHED_PAGE_VIRTUAL 1499#endif 1500 1501#if defined(WANT_PAGE_VIRTUAL) 1502static inline void *page_address(const struct page *page) 1503{ 1504 return page->virtual; 1505} 1506static inline void set_page_address(struct page *page, void *address) 1507{ 1508 page->virtual = address; 1509} 1510#define page_address_init() do { } while(0) 1511#endif 1512 1513#if defined(HASHED_PAGE_VIRTUAL) 1514void *page_address(const struct page *page); 1515void set_page_address(struct page *page, void *virtual); 1516void page_address_init(void); 1517#endif 1518 1519#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1520#define page_address(page) lowmem_page_address(page) 1521#define set_page_address(page, address) do { } while(0) 1522#define page_address_init() do { } while(0) 1523#endif 1524 1525extern void *page_rmapping(struct page *page); 1526extern struct anon_vma *page_anon_vma(struct page *page); 1527extern struct address_space *page_mapping(struct page *page); 1528 1529extern struct address_space *__page_file_mapping(struct page *); 1530 1531static inline 1532struct address_space *page_file_mapping(struct page *page) 1533{ 1534 if (unlikely(PageSwapCache(page))) 1535 return __page_file_mapping(page); 1536 1537 return page->mapping; 1538} 1539 1540extern pgoff_t __page_file_index(struct page *page); 1541 1542/* 1543 * Return the pagecache index of the passed page. Regular pagecache pages 1544 * use ->index whereas swapcache pages use swp_offset(->private) 1545 */ 1546static inline pgoff_t page_index(struct page *page) 1547{ 1548 if (unlikely(PageSwapCache(page))) 1549 return __page_file_index(page); 1550 return page->index; 1551} 1552 1553bool page_mapped(struct page *page); 1554struct address_space *page_mapping(struct page *page); 1555struct address_space *page_mapping_file(struct page *page); 1556 1557/* 1558 * Return true only if the page has been allocated with 1559 * ALLOC_NO_WATERMARKS and the low watermark was not 1560 * met implying that the system is under some pressure. 1561 */ 1562static inline bool page_is_pfmemalloc(struct page *page) 1563{ 1564 /* 1565 * Page index cannot be this large so this must be 1566 * a pfmemalloc page. 1567 */ 1568 return page->index == -1UL; 1569} 1570 1571/* 1572 * Only to be called by the page allocator on a freshly allocated 1573 * page. 1574 */ 1575static inline void set_page_pfmemalloc(struct page *page) 1576{ 1577 page->index = -1UL; 1578} 1579 1580static inline void clear_page_pfmemalloc(struct page *page) 1581{ 1582 page->index = 0; 1583} 1584 1585/* 1586 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1587 */ 1588extern void pagefault_out_of_memory(void); 1589 1590#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1591 1592/* 1593 * Flags passed to show_mem() and show_free_areas() to suppress output in 1594 * various contexts. 1595 */ 1596#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1597 1598extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1599 1600#ifdef CONFIG_MMU 1601extern bool can_do_mlock(void); 1602#else 1603static inline bool can_do_mlock(void) { return false; } 1604#endif 1605extern int user_shm_lock(size_t, struct user_struct *); 1606extern void user_shm_unlock(size_t, struct user_struct *); 1607 1608/* 1609 * Parameter block passed down to zap_pte_range in exceptional cases. 1610 */ 1611struct zap_details { 1612 struct address_space *check_mapping; /* Check page->mapping if set */ 1613 pgoff_t first_index; /* Lowest page->index to unmap */ 1614 pgoff_t last_index; /* Highest page->index to unmap */ 1615}; 1616 1617struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1618 pte_t pte); 1619struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1620 pmd_t pmd); 1621 1622void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1623 unsigned long size); 1624void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1625 unsigned long size); 1626void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1627 unsigned long start, unsigned long end); 1628 1629struct mmu_notifier_range; 1630 1631void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1632 unsigned long end, unsigned long floor, unsigned long ceiling); 1633int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1634 struct vm_area_struct *vma); 1635int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1636 struct mmu_notifier_range *range, 1637 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1638int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1639 unsigned long *pfn); 1640int follow_phys(struct vm_area_struct *vma, unsigned long address, 1641 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1642int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1643 void *buf, int len, int write); 1644 1645extern void truncate_pagecache(struct inode *inode, loff_t new); 1646extern void truncate_setsize(struct inode *inode, loff_t newsize); 1647void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1648void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1649int truncate_inode_page(struct address_space *mapping, struct page *page); 1650int generic_error_remove_page(struct address_space *mapping, struct page *page); 1651int invalidate_inode_page(struct page *page); 1652 1653#ifdef CONFIG_MMU 1654extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1655 unsigned long address, unsigned int flags); 1656extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1657 unsigned long address, unsigned int fault_flags, 1658 bool *unlocked); 1659void unmap_mapping_pages(struct address_space *mapping, 1660 pgoff_t start, pgoff_t nr, bool even_cows); 1661void unmap_mapping_range(struct address_space *mapping, 1662 loff_t const holebegin, loff_t const holelen, int even_cows); 1663#else 1664static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1665 unsigned long address, unsigned int flags) 1666{ 1667 /* should never happen if there's no MMU */ 1668 BUG(); 1669 return VM_FAULT_SIGBUS; 1670} 1671static inline int fixup_user_fault(struct task_struct *tsk, 1672 struct mm_struct *mm, unsigned long address, 1673 unsigned int fault_flags, bool *unlocked) 1674{ 1675 /* should never happen if there's no MMU */ 1676 BUG(); 1677 return -EFAULT; 1678} 1679static inline void unmap_mapping_pages(struct address_space *mapping, 1680 pgoff_t start, pgoff_t nr, bool even_cows) { } 1681static inline void unmap_mapping_range(struct address_space *mapping, 1682 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1683#endif 1684 1685static inline void unmap_shared_mapping_range(struct address_space *mapping, 1686 loff_t const holebegin, loff_t const holelen) 1687{ 1688 unmap_mapping_range(mapping, holebegin, holelen, 0); 1689} 1690 1691extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1692 void *buf, int len, unsigned int gup_flags); 1693extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1694 void *buf, int len, unsigned int gup_flags); 1695extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1696 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1697 1698long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1699 unsigned long start, unsigned long nr_pages, 1700 unsigned int gup_flags, struct page **pages, 1701 struct vm_area_struct **vmas, int *locked); 1702long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1703 unsigned long start, unsigned long nr_pages, 1704 unsigned int gup_flags, struct page **pages, 1705 struct vm_area_struct **vmas, int *locked); 1706long get_user_pages(unsigned long start, unsigned long nr_pages, 1707 unsigned int gup_flags, struct page **pages, 1708 struct vm_area_struct **vmas); 1709long pin_user_pages(unsigned long start, unsigned long nr_pages, 1710 unsigned int gup_flags, struct page **pages, 1711 struct vm_area_struct **vmas); 1712long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1713 unsigned int gup_flags, struct page **pages, int *locked); 1714long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1715 struct page **pages, unsigned int gup_flags); 1716 1717int get_user_pages_fast(unsigned long start, int nr_pages, 1718 unsigned int gup_flags, struct page **pages); 1719int pin_user_pages_fast(unsigned long start, int nr_pages, 1720 unsigned int gup_flags, struct page **pages); 1721 1722int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1723int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1724 struct task_struct *task, bool bypass_rlim); 1725 1726/* Container for pinned pfns / pages */ 1727struct frame_vector { 1728 unsigned int nr_allocated; /* Number of frames we have space for */ 1729 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1730 bool got_ref; /* Did we pin pages by getting page ref? */ 1731 bool is_pfns; /* Does array contain pages or pfns? */ 1732 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1733 * pfns_vector_pages() or pfns_vector_pfns() 1734 * for access */ 1735}; 1736 1737struct frame_vector *frame_vector_create(unsigned int nr_frames); 1738void frame_vector_destroy(struct frame_vector *vec); 1739int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1740 unsigned int gup_flags, struct frame_vector *vec); 1741void put_vaddr_frames(struct frame_vector *vec); 1742int frame_vector_to_pages(struct frame_vector *vec); 1743void frame_vector_to_pfns(struct frame_vector *vec); 1744 1745static inline unsigned int frame_vector_count(struct frame_vector *vec) 1746{ 1747 return vec->nr_frames; 1748} 1749 1750static inline struct page **frame_vector_pages(struct frame_vector *vec) 1751{ 1752 if (vec->is_pfns) { 1753 int err = frame_vector_to_pages(vec); 1754 1755 if (err) 1756 return ERR_PTR(err); 1757 } 1758 return (struct page **)(vec->ptrs); 1759} 1760 1761static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1762{ 1763 if (!vec->is_pfns) 1764 frame_vector_to_pfns(vec); 1765 return (unsigned long *)(vec->ptrs); 1766} 1767 1768struct kvec; 1769int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1770 struct page **pages); 1771int get_kernel_page(unsigned long start, int write, struct page **pages); 1772struct page *get_dump_page(unsigned long addr); 1773 1774extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1775extern void do_invalidatepage(struct page *page, unsigned int offset, 1776 unsigned int length); 1777 1778void __set_page_dirty(struct page *, struct address_space *, int warn); 1779int __set_page_dirty_nobuffers(struct page *page); 1780int __set_page_dirty_no_writeback(struct page *page); 1781int redirty_page_for_writepage(struct writeback_control *wbc, 1782 struct page *page); 1783void account_page_dirtied(struct page *page, struct address_space *mapping); 1784void account_page_cleaned(struct page *page, struct address_space *mapping, 1785 struct bdi_writeback *wb); 1786int set_page_dirty(struct page *page); 1787int set_page_dirty_lock(struct page *page); 1788void __cancel_dirty_page(struct page *page); 1789static inline void cancel_dirty_page(struct page *page) 1790{ 1791 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1792 if (PageDirty(page)) 1793 __cancel_dirty_page(page); 1794} 1795int clear_page_dirty_for_io(struct page *page); 1796 1797int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1798 1799extern unsigned long move_page_tables(struct vm_area_struct *vma, 1800 unsigned long old_addr, struct vm_area_struct *new_vma, 1801 unsigned long new_addr, unsigned long len, 1802 bool need_rmap_locks); 1803 1804/* 1805 * Flags used by change_protection(). For now we make it a bitmap so 1806 * that we can pass in multiple flags just like parameters. However 1807 * for now all the callers are only use one of the flags at the same 1808 * time. 1809 */ 1810/* Whether we should allow dirty bit accounting */ 1811#define MM_CP_DIRTY_ACCT (1UL << 0) 1812/* Whether this protection change is for NUMA hints */ 1813#define MM_CP_PROT_NUMA (1UL << 1) 1814/* Whether this change is for write protecting */ 1815#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1816#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1817#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1818 MM_CP_UFFD_WP_RESOLVE) 1819 1820extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1821 unsigned long end, pgprot_t newprot, 1822 unsigned long cp_flags); 1823extern int mprotect_fixup(struct vm_area_struct *vma, 1824 struct vm_area_struct **pprev, unsigned long start, 1825 unsigned long end, unsigned long newflags); 1826 1827/* 1828 * doesn't attempt to fault and will return short. 1829 */ 1830int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1831 struct page **pages); 1832/* 1833 * per-process(per-mm_struct) statistics. 1834 */ 1835static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1836{ 1837 long val = atomic_long_read(&mm->rss_stat.count[member]); 1838 1839#ifdef SPLIT_RSS_COUNTING 1840 /* 1841 * counter is updated in asynchronous manner and may go to minus. 1842 * But it's never be expected number for users. 1843 */ 1844 if (val < 0) 1845 val = 0; 1846#endif 1847 return (unsigned long)val; 1848} 1849 1850void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1851 1852static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1853{ 1854 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1855 1856 mm_trace_rss_stat(mm, member, count); 1857} 1858 1859static inline void inc_mm_counter(struct mm_struct *mm, int member) 1860{ 1861 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1862 1863 mm_trace_rss_stat(mm, member, count); 1864} 1865 1866static inline void dec_mm_counter(struct mm_struct *mm, int member) 1867{ 1868 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1869 1870 mm_trace_rss_stat(mm, member, count); 1871} 1872 1873/* Optimized variant when page is already known not to be PageAnon */ 1874static inline int mm_counter_file(struct page *page) 1875{ 1876 if (PageSwapBacked(page)) 1877 return MM_SHMEMPAGES; 1878 return MM_FILEPAGES; 1879} 1880 1881static inline int mm_counter(struct page *page) 1882{ 1883 if (PageAnon(page)) 1884 return MM_ANONPAGES; 1885 return mm_counter_file(page); 1886} 1887 1888static inline unsigned long get_mm_rss(struct mm_struct *mm) 1889{ 1890 return get_mm_counter(mm, MM_FILEPAGES) + 1891 get_mm_counter(mm, MM_ANONPAGES) + 1892 get_mm_counter(mm, MM_SHMEMPAGES); 1893} 1894 1895static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1896{ 1897 return max(mm->hiwater_rss, get_mm_rss(mm)); 1898} 1899 1900static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1901{ 1902 return max(mm->hiwater_vm, mm->total_vm); 1903} 1904 1905static inline void update_hiwater_rss(struct mm_struct *mm) 1906{ 1907 unsigned long _rss = get_mm_rss(mm); 1908 1909 if ((mm)->hiwater_rss < _rss) 1910 (mm)->hiwater_rss = _rss; 1911} 1912 1913static inline void update_hiwater_vm(struct mm_struct *mm) 1914{ 1915 if (mm->hiwater_vm < mm->total_vm) 1916 mm->hiwater_vm = mm->total_vm; 1917} 1918 1919static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1920{ 1921 mm->hiwater_rss = get_mm_rss(mm); 1922} 1923 1924static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1925 struct mm_struct *mm) 1926{ 1927 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1928 1929 if (*maxrss < hiwater_rss) 1930 *maxrss = hiwater_rss; 1931} 1932 1933#if defined(SPLIT_RSS_COUNTING) 1934void sync_mm_rss(struct mm_struct *mm); 1935#else 1936static inline void sync_mm_rss(struct mm_struct *mm) 1937{ 1938} 1939#endif 1940 1941#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1942static inline int pte_special(pte_t pte) 1943{ 1944 return 0; 1945} 1946 1947static inline pte_t pte_mkspecial(pte_t pte) 1948{ 1949 return pte; 1950} 1951#endif 1952 1953#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1954static inline int pte_devmap(pte_t pte) 1955{ 1956 return 0; 1957} 1958#endif 1959 1960int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1961 1962extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1963 spinlock_t **ptl); 1964static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1965 spinlock_t **ptl) 1966{ 1967 pte_t *ptep; 1968 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1969 return ptep; 1970} 1971 1972#ifdef __PAGETABLE_P4D_FOLDED 1973static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1974 unsigned long address) 1975{ 1976 return 0; 1977} 1978#else 1979int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1980#endif 1981 1982#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1983static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1984 unsigned long address) 1985{ 1986 return 0; 1987} 1988static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1989static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1990 1991#else 1992int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1993 1994static inline void mm_inc_nr_puds(struct mm_struct *mm) 1995{ 1996 if (mm_pud_folded(mm)) 1997 return; 1998 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1999} 2000 2001static inline void mm_dec_nr_puds(struct mm_struct *mm) 2002{ 2003 if (mm_pud_folded(mm)) 2004 return; 2005 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2006} 2007#endif 2008 2009#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2010static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2011 unsigned long address) 2012{ 2013 return 0; 2014} 2015 2016static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2017static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2018 2019#else 2020int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2021 2022static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2023{ 2024 if (mm_pmd_folded(mm)) 2025 return; 2026 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2027} 2028 2029static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2030{ 2031 if (mm_pmd_folded(mm)) 2032 return; 2033 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2034} 2035#endif 2036 2037#ifdef CONFIG_MMU 2038static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2039{ 2040 atomic_long_set(&mm->pgtables_bytes, 0); 2041} 2042 2043static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2044{ 2045 return atomic_long_read(&mm->pgtables_bytes); 2046} 2047 2048static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2049{ 2050 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2051} 2052 2053static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2054{ 2055 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2056} 2057#else 2058 2059static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2060static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2061{ 2062 return 0; 2063} 2064 2065static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2066static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2067#endif 2068 2069int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2070int __pte_alloc_kernel(pmd_t *pmd); 2071 2072#if defined(CONFIG_MMU) 2073 2074/* 2075 * The following ifdef needed to get the 5level-fixup.h header to work. 2076 * Remove it when 5level-fixup.h has been removed. 2077 */ 2078#ifndef __ARCH_HAS_5LEVEL_HACK 2079static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2080 unsigned long address) 2081{ 2082 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2083 NULL : p4d_offset(pgd, address); 2084} 2085 2086static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2087 unsigned long address) 2088{ 2089 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2090 NULL : pud_offset(p4d, address); 2091} 2092#endif /* !__ARCH_HAS_5LEVEL_HACK */ 2093 2094static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2095{ 2096 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2097 NULL: pmd_offset(pud, address); 2098} 2099#endif /* CONFIG_MMU */ 2100 2101#if USE_SPLIT_PTE_PTLOCKS 2102#if ALLOC_SPLIT_PTLOCKS 2103void __init ptlock_cache_init(void); 2104extern bool ptlock_alloc(struct page *page); 2105extern void ptlock_free(struct page *page); 2106 2107static inline spinlock_t *ptlock_ptr(struct page *page) 2108{ 2109 return page->ptl; 2110} 2111#else /* ALLOC_SPLIT_PTLOCKS */ 2112static inline void ptlock_cache_init(void) 2113{ 2114} 2115 2116static inline bool ptlock_alloc(struct page *page) 2117{ 2118 return true; 2119} 2120 2121static inline void ptlock_free(struct page *page) 2122{ 2123} 2124 2125static inline spinlock_t *ptlock_ptr(struct page *page) 2126{ 2127 return &page->ptl; 2128} 2129#endif /* ALLOC_SPLIT_PTLOCKS */ 2130 2131static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2132{ 2133 return ptlock_ptr(pmd_page(*pmd)); 2134} 2135 2136static inline bool ptlock_init(struct page *page) 2137{ 2138 /* 2139 * prep_new_page() initialize page->private (and therefore page->ptl) 2140 * with 0. Make sure nobody took it in use in between. 2141 * 2142 * It can happen if arch try to use slab for page table allocation: 2143 * slab code uses page->slab_cache, which share storage with page->ptl. 2144 */ 2145 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2146 if (!ptlock_alloc(page)) 2147 return false; 2148 spin_lock_init(ptlock_ptr(page)); 2149 return true; 2150} 2151 2152#else /* !USE_SPLIT_PTE_PTLOCKS */ 2153/* 2154 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2155 */ 2156static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2157{ 2158 return &mm->page_table_lock; 2159} 2160static inline void ptlock_cache_init(void) {} 2161static inline bool ptlock_init(struct page *page) { return true; } 2162static inline void ptlock_free(struct page *page) {} 2163#endif /* USE_SPLIT_PTE_PTLOCKS */ 2164 2165static inline void pgtable_init(void) 2166{ 2167 ptlock_cache_init(); 2168 pgtable_cache_init(); 2169} 2170 2171static inline bool pgtable_pte_page_ctor(struct page *page) 2172{ 2173 if (!ptlock_init(page)) 2174 return false; 2175 __SetPageTable(page); 2176 inc_zone_page_state(page, NR_PAGETABLE); 2177 return true; 2178} 2179 2180static inline void pgtable_pte_page_dtor(struct page *page) 2181{ 2182 ptlock_free(page); 2183 __ClearPageTable(page); 2184 dec_zone_page_state(page, NR_PAGETABLE); 2185} 2186 2187#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2188({ \ 2189 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2190 pte_t *__pte = pte_offset_map(pmd, address); \ 2191 *(ptlp) = __ptl; \ 2192 spin_lock(__ptl); \ 2193 __pte; \ 2194}) 2195 2196#define pte_unmap_unlock(pte, ptl) do { \ 2197 spin_unlock(ptl); \ 2198 pte_unmap(pte); \ 2199} while (0) 2200 2201#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2202 2203#define pte_alloc_map(mm, pmd, address) \ 2204 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2205 2206#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2207 (pte_alloc(mm, pmd) ? \ 2208 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2209 2210#define pte_alloc_kernel(pmd, address) \ 2211 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2212 NULL: pte_offset_kernel(pmd, address)) 2213 2214#if USE_SPLIT_PMD_PTLOCKS 2215 2216static struct page *pmd_to_page(pmd_t *pmd) 2217{ 2218 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2219 return virt_to_page((void *)((unsigned long) pmd & mask)); 2220} 2221 2222static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2223{ 2224 return ptlock_ptr(pmd_to_page(pmd)); 2225} 2226 2227static inline bool pgtable_pmd_page_ctor(struct page *page) 2228{ 2229#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2230 page->pmd_huge_pte = NULL; 2231#endif 2232 return ptlock_init(page); 2233} 2234 2235static inline void pgtable_pmd_page_dtor(struct page *page) 2236{ 2237#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2238 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2239#endif 2240 ptlock_free(page); 2241} 2242 2243#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2244 2245#else 2246 2247static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2248{ 2249 return &mm->page_table_lock; 2250} 2251 2252static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2253static inline void pgtable_pmd_page_dtor(struct page *page) {} 2254 2255#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2256 2257#endif 2258 2259static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2260{ 2261 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2262 spin_lock(ptl); 2263 return ptl; 2264} 2265 2266/* 2267 * No scalability reason to split PUD locks yet, but follow the same pattern 2268 * as the PMD locks to make it easier if we decide to. The VM should not be 2269 * considered ready to switch to split PUD locks yet; there may be places 2270 * which need to be converted from page_table_lock. 2271 */ 2272static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2273{ 2274 return &mm->page_table_lock; 2275} 2276 2277static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2278{ 2279 spinlock_t *ptl = pud_lockptr(mm, pud); 2280 2281 spin_lock(ptl); 2282 return ptl; 2283} 2284 2285extern void __init pagecache_init(void); 2286extern void free_area_init(unsigned long * zones_size); 2287extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2288 unsigned long zone_start_pfn, unsigned long *zholes_size); 2289extern void free_initmem(void); 2290 2291/* 2292 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2293 * into the buddy system. The freed pages will be poisoned with pattern 2294 * "poison" if it's within range [0, UCHAR_MAX]. 2295 * Return pages freed into the buddy system. 2296 */ 2297extern unsigned long free_reserved_area(void *start, void *end, 2298 int poison, const char *s); 2299 2300#ifdef CONFIG_HIGHMEM 2301/* 2302 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2303 * and totalram_pages. 2304 */ 2305extern void free_highmem_page(struct page *page); 2306#endif 2307 2308extern void adjust_managed_page_count(struct page *page, long count); 2309extern void mem_init_print_info(const char *str); 2310 2311extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2312 2313/* Free the reserved page into the buddy system, so it gets managed. */ 2314static inline void __free_reserved_page(struct page *page) 2315{ 2316 ClearPageReserved(page); 2317 init_page_count(page); 2318 __free_page(page); 2319} 2320 2321static inline void free_reserved_page(struct page *page) 2322{ 2323 __free_reserved_page(page); 2324 adjust_managed_page_count(page, 1); 2325} 2326 2327static inline void mark_page_reserved(struct page *page) 2328{ 2329 SetPageReserved(page); 2330 adjust_managed_page_count(page, -1); 2331} 2332 2333/* 2334 * Default method to free all the __init memory into the buddy system. 2335 * The freed pages will be poisoned with pattern "poison" if it's within 2336 * range [0, UCHAR_MAX]. 2337 * Return pages freed into the buddy system. 2338 */ 2339static inline unsigned long free_initmem_default(int poison) 2340{ 2341 extern char __init_begin[], __init_end[]; 2342 2343 return free_reserved_area(&__init_begin, &__init_end, 2344 poison, "unused kernel"); 2345} 2346 2347static inline unsigned long get_num_physpages(void) 2348{ 2349 int nid; 2350 unsigned long phys_pages = 0; 2351 2352 for_each_online_node(nid) 2353 phys_pages += node_present_pages(nid); 2354 2355 return phys_pages; 2356} 2357 2358#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2359/* 2360 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2361 * zones, allocate the backing mem_map and account for memory holes in a more 2362 * architecture independent manner. This is a substitute for creating the 2363 * zone_sizes[] and zholes_size[] arrays and passing them to 2364 * free_area_init_node() 2365 * 2366 * An architecture is expected to register range of page frames backed by 2367 * physical memory with memblock_add[_node]() before calling 2368 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2369 * usage, an architecture is expected to do something like 2370 * 2371 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2372 * max_highmem_pfn}; 2373 * for_each_valid_physical_page_range() 2374 * memblock_add_node(base, size, nid) 2375 * free_area_init_nodes(max_zone_pfns); 2376 * 2377 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2378 * registered physical page range. Similarly 2379 * sparse_memory_present_with_active_regions() calls memory_present() for 2380 * each range when SPARSEMEM is enabled. 2381 * 2382 * See mm/page_alloc.c for more information on each function exposed by 2383 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2384 */ 2385extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2386unsigned long node_map_pfn_alignment(void); 2387unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2388 unsigned long end_pfn); 2389extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2390 unsigned long end_pfn); 2391extern void get_pfn_range_for_nid(unsigned int nid, 2392 unsigned long *start_pfn, unsigned long *end_pfn); 2393extern unsigned long find_min_pfn_with_active_regions(void); 2394extern void free_bootmem_with_active_regions(int nid, 2395 unsigned long max_low_pfn); 2396extern void sparse_memory_present_with_active_regions(int nid); 2397 2398#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2399 2400#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2401 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2402static inline int __early_pfn_to_nid(unsigned long pfn, 2403 struct mminit_pfnnid_cache *state) 2404{ 2405 return 0; 2406} 2407#else 2408/* please see mm/page_alloc.c */ 2409extern int __meminit early_pfn_to_nid(unsigned long pfn); 2410/* there is a per-arch backend function. */ 2411extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2412 struct mminit_pfnnid_cache *state); 2413#endif 2414 2415extern void set_dma_reserve(unsigned long new_dma_reserve); 2416extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2417 enum memmap_context, struct vmem_altmap *); 2418extern void setup_per_zone_wmarks(void); 2419extern int __meminit init_per_zone_wmark_min(void); 2420extern void mem_init(void); 2421extern void __init mmap_init(void); 2422extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2423extern long si_mem_available(void); 2424extern void si_meminfo(struct sysinfo * val); 2425extern void si_meminfo_node(struct sysinfo *val, int nid); 2426#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2427extern unsigned long arch_reserved_kernel_pages(void); 2428#endif 2429 2430extern __printf(3, 4) 2431void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2432 2433extern void setup_per_cpu_pageset(void); 2434 2435/* page_alloc.c */ 2436extern int min_free_kbytes; 2437extern int watermark_boost_factor; 2438extern int watermark_scale_factor; 2439 2440/* nommu.c */ 2441extern atomic_long_t mmap_pages_allocated; 2442extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2443 2444/* interval_tree.c */ 2445void vma_interval_tree_insert(struct vm_area_struct *node, 2446 struct rb_root_cached *root); 2447void vma_interval_tree_insert_after(struct vm_area_struct *node, 2448 struct vm_area_struct *prev, 2449 struct rb_root_cached *root); 2450void vma_interval_tree_remove(struct vm_area_struct *node, 2451 struct rb_root_cached *root); 2452struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2453 unsigned long start, unsigned long last); 2454struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2455 unsigned long start, unsigned long last); 2456 2457#define vma_interval_tree_foreach(vma, root, start, last) \ 2458 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2459 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2460 2461void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2462 struct rb_root_cached *root); 2463void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2464 struct rb_root_cached *root); 2465struct anon_vma_chain * 2466anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2467 unsigned long start, unsigned long last); 2468struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2469 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2470#ifdef CONFIG_DEBUG_VM_RB 2471void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2472#endif 2473 2474#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2475 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2476 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2477 2478/* mmap.c */ 2479extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2480extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2481 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2482 struct vm_area_struct *expand); 2483static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2484 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2485{ 2486 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2487} 2488extern struct vm_area_struct *vma_merge(struct mm_struct *, 2489 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2490 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2491 struct mempolicy *, struct vm_userfaultfd_ctx); 2492extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2493extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2494 unsigned long addr, int new_below); 2495extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2496 unsigned long addr, int new_below); 2497extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2498extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2499 struct rb_node **, struct rb_node *); 2500extern void unlink_file_vma(struct vm_area_struct *); 2501extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2502 unsigned long addr, unsigned long len, pgoff_t pgoff, 2503 bool *need_rmap_locks); 2504extern void exit_mmap(struct mm_struct *); 2505 2506static inline int check_data_rlimit(unsigned long rlim, 2507 unsigned long new, 2508 unsigned long start, 2509 unsigned long end_data, 2510 unsigned long start_data) 2511{ 2512 if (rlim < RLIM_INFINITY) { 2513 if (((new - start) + (end_data - start_data)) > rlim) 2514 return -ENOSPC; 2515 } 2516 2517 return 0; 2518} 2519 2520extern int mm_take_all_locks(struct mm_struct *mm); 2521extern void mm_drop_all_locks(struct mm_struct *mm); 2522 2523extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2524extern struct file *get_mm_exe_file(struct mm_struct *mm); 2525extern struct file *get_task_exe_file(struct task_struct *task); 2526 2527extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2528extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2529 2530extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2531 const struct vm_special_mapping *sm); 2532extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2533 unsigned long addr, unsigned long len, 2534 unsigned long flags, 2535 const struct vm_special_mapping *spec); 2536/* This is an obsolete alternative to _install_special_mapping. */ 2537extern int install_special_mapping(struct mm_struct *mm, 2538 unsigned long addr, unsigned long len, 2539 unsigned long flags, struct page **pages); 2540 2541unsigned long randomize_stack_top(unsigned long stack_top); 2542 2543extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2544 2545extern unsigned long mmap_region(struct file *file, unsigned long addr, 2546 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2547 struct list_head *uf); 2548extern unsigned long do_mmap(struct file *file, unsigned long addr, 2549 unsigned long len, unsigned long prot, unsigned long flags, 2550 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2551 struct list_head *uf); 2552extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2553 struct list_head *uf, bool downgrade); 2554extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2555 struct list_head *uf); 2556extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2557 2558static inline unsigned long 2559do_mmap_pgoff(struct file *file, unsigned long addr, 2560 unsigned long len, unsigned long prot, unsigned long flags, 2561 unsigned long pgoff, unsigned long *populate, 2562 struct list_head *uf) 2563{ 2564 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2565} 2566 2567#ifdef CONFIG_MMU 2568extern int __mm_populate(unsigned long addr, unsigned long len, 2569 int ignore_errors); 2570static inline void mm_populate(unsigned long addr, unsigned long len) 2571{ 2572 /* Ignore errors */ 2573 (void) __mm_populate(addr, len, 1); 2574} 2575#else 2576static inline void mm_populate(unsigned long addr, unsigned long len) {} 2577#endif 2578 2579/* These take the mm semaphore themselves */ 2580extern int __must_check vm_brk(unsigned long, unsigned long); 2581extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2582extern int vm_munmap(unsigned long, size_t); 2583extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2584 unsigned long, unsigned long, 2585 unsigned long, unsigned long); 2586 2587struct vm_unmapped_area_info { 2588#define VM_UNMAPPED_AREA_TOPDOWN 1 2589 unsigned long flags; 2590 unsigned long length; 2591 unsigned long low_limit; 2592 unsigned long high_limit; 2593 unsigned long align_mask; 2594 unsigned long align_offset; 2595}; 2596 2597extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2598 2599/* truncate.c */ 2600extern void truncate_inode_pages(struct address_space *, loff_t); 2601extern void truncate_inode_pages_range(struct address_space *, 2602 loff_t lstart, loff_t lend); 2603extern void truncate_inode_pages_final(struct address_space *); 2604 2605/* generic vm_area_ops exported for stackable file systems */ 2606extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2607extern void filemap_map_pages(struct vm_fault *vmf, 2608 pgoff_t start_pgoff, pgoff_t end_pgoff); 2609extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2610 2611/* mm/page-writeback.c */ 2612int __must_check write_one_page(struct page *page); 2613void task_dirty_inc(struct task_struct *tsk); 2614 2615/* readahead.c */ 2616#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2617 2618int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2619 pgoff_t offset, unsigned long nr_to_read); 2620 2621void page_cache_sync_readahead(struct address_space *mapping, 2622 struct file_ra_state *ra, 2623 struct file *filp, 2624 pgoff_t offset, 2625 unsigned long size); 2626 2627void page_cache_async_readahead(struct address_space *mapping, 2628 struct file_ra_state *ra, 2629 struct file *filp, 2630 struct page *pg, 2631 pgoff_t offset, 2632 unsigned long size); 2633 2634extern unsigned long stack_guard_gap; 2635/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2636extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2637 2638/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2639extern int expand_downwards(struct vm_area_struct *vma, 2640 unsigned long address); 2641#if VM_GROWSUP 2642extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2643#else 2644 #define expand_upwards(vma, address) (0) 2645#endif 2646 2647/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2648extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2649extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2650 struct vm_area_struct **pprev); 2651 2652/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2653 NULL if none. Assume start_addr < end_addr. */ 2654static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2655{ 2656 struct vm_area_struct * vma = find_vma(mm,start_addr); 2657 2658 if (vma && end_addr <= vma->vm_start) 2659 vma = NULL; 2660 return vma; 2661} 2662 2663static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2664{ 2665 unsigned long vm_start = vma->vm_start; 2666 2667 if (vma->vm_flags & VM_GROWSDOWN) { 2668 vm_start -= stack_guard_gap; 2669 if (vm_start > vma->vm_start) 2670 vm_start = 0; 2671 } 2672 return vm_start; 2673} 2674 2675static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2676{ 2677 unsigned long vm_end = vma->vm_end; 2678 2679 if (vma->vm_flags & VM_GROWSUP) { 2680 vm_end += stack_guard_gap; 2681 if (vm_end < vma->vm_end) 2682 vm_end = -PAGE_SIZE; 2683 } 2684 return vm_end; 2685} 2686 2687static inline unsigned long vma_pages(struct vm_area_struct *vma) 2688{ 2689 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2690} 2691 2692/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2693static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2694 unsigned long vm_start, unsigned long vm_end) 2695{ 2696 struct vm_area_struct *vma = find_vma(mm, vm_start); 2697 2698 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2699 vma = NULL; 2700 2701 return vma; 2702} 2703 2704static inline bool range_in_vma(struct vm_area_struct *vma, 2705 unsigned long start, unsigned long end) 2706{ 2707 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2708} 2709 2710#ifdef CONFIG_MMU 2711pgprot_t vm_get_page_prot(unsigned long vm_flags); 2712void vma_set_page_prot(struct vm_area_struct *vma); 2713#else 2714static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2715{ 2716 return __pgprot(0); 2717} 2718static inline void vma_set_page_prot(struct vm_area_struct *vma) 2719{ 2720 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2721} 2722#endif 2723 2724#ifdef CONFIG_NUMA_BALANCING 2725unsigned long change_prot_numa(struct vm_area_struct *vma, 2726 unsigned long start, unsigned long end); 2727#endif 2728 2729struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2730int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2731 unsigned long pfn, unsigned long size, pgprot_t); 2732int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2733int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2734 struct page **pages, unsigned long *num); 2735int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2736 unsigned long num); 2737int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2738 unsigned long num); 2739vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2740 unsigned long pfn); 2741vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2742 unsigned long pfn, pgprot_t pgprot); 2743vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2744 pfn_t pfn); 2745vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2746 pfn_t pfn, pgprot_t pgprot); 2747vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2748 unsigned long addr, pfn_t pfn); 2749int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2750 2751static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2752 unsigned long addr, struct page *page) 2753{ 2754 int err = vm_insert_page(vma, addr, page); 2755 2756 if (err == -ENOMEM) 2757 return VM_FAULT_OOM; 2758 if (err < 0 && err != -EBUSY) 2759 return VM_FAULT_SIGBUS; 2760 2761 return VM_FAULT_NOPAGE; 2762} 2763 2764static inline vm_fault_t vmf_error(int err) 2765{ 2766 if (err == -ENOMEM) 2767 return VM_FAULT_OOM; 2768 return VM_FAULT_SIGBUS; 2769} 2770 2771struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2772 unsigned int foll_flags); 2773 2774#define FOLL_WRITE 0x01 /* check pte is writable */ 2775#define FOLL_TOUCH 0x02 /* mark page accessed */ 2776#define FOLL_GET 0x04 /* do get_page on page */ 2777#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2778#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2779#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2780 * and return without waiting upon it */ 2781#define FOLL_POPULATE 0x40 /* fault in page */ 2782#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2783#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2784#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2785#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2786#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2787#define FOLL_MLOCK 0x1000 /* lock present pages */ 2788#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2789#define FOLL_COW 0x4000 /* internal GUP flag */ 2790#define FOLL_ANON 0x8000 /* don't do file mappings */ 2791#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2792#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2793#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2794 2795/* 2796 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2797 * other. Here is what they mean, and how to use them: 2798 * 2799 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2800 * period _often_ under userspace control. This is in contrast to 2801 * iov_iter_get_pages(), whose usages are transient. 2802 * 2803 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2804 * lifetime enforced by the filesystem and we need guarantees that longterm 2805 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2806 * the filesystem. Ideas for this coordination include revoking the longterm 2807 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2808 * added after the problem with filesystems was found FS DAX VMAs are 2809 * specifically failed. Filesystem pages are still subject to bugs and use of 2810 * FOLL_LONGTERM should be avoided on those pages. 2811 * 2812 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2813 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2814 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2815 * is due to an incompatibility with the FS DAX check and 2816 * FAULT_FLAG_ALLOW_RETRY. 2817 * 2818 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2819 * that region. And so, CMA attempts to migrate the page before pinning, when 2820 * FOLL_LONGTERM is specified. 2821 * 2822 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2823 * but an additional pin counting system) will be invoked. This is intended for 2824 * anything that gets a page reference and then touches page data (for example, 2825 * Direct IO). This lets the filesystem know that some non-file-system entity is 2826 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2827 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2828 * a call to unpin_user_page(). 2829 * 2830 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2831 * and separate refcounting mechanisms, however, and that means that each has 2832 * its own acquire and release mechanisms: 2833 * 2834 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2835 * 2836 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2837 * 2838 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2839 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2840 * calls applied to them, and that's perfectly OK. This is a constraint on the 2841 * callers, not on the pages.) 2842 * 2843 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2844 * directly by the caller. That's in order to help avoid mismatches when 2845 * releasing pages: get_user_pages*() pages must be released via put_page(), 2846 * while pin_user_pages*() pages must be released via unpin_user_page(). 2847 * 2848 * Please see Documentation/vm/pin_user_pages.rst for more information. 2849 */ 2850 2851static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2852{ 2853 if (vm_fault & VM_FAULT_OOM) 2854 return -ENOMEM; 2855 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2856 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2857 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2858 return -EFAULT; 2859 return 0; 2860} 2861 2862typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2863extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2864 unsigned long size, pte_fn_t fn, void *data); 2865extern int apply_to_existing_page_range(struct mm_struct *mm, 2866 unsigned long address, unsigned long size, 2867 pte_fn_t fn, void *data); 2868 2869#ifdef CONFIG_PAGE_POISONING 2870extern bool page_poisoning_enabled(void); 2871extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2872#else 2873static inline bool page_poisoning_enabled(void) { return false; } 2874static inline void kernel_poison_pages(struct page *page, int numpages, 2875 int enable) { } 2876#endif 2877 2878#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2879DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2880#else 2881DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2882#endif 2883static inline bool want_init_on_alloc(gfp_t flags) 2884{ 2885 if (static_branch_unlikely(&init_on_alloc) && 2886 !page_poisoning_enabled()) 2887 return true; 2888 return flags & __GFP_ZERO; 2889} 2890 2891#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2892DECLARE_STATIC_KEY_TRUE(init_on_free); 2893#else 2894DECLARE_STATIC_KEY_FALSE(init_on_free); 2895#endif 2896static inline bool want_init_on_free(void) 2897{ 2898 return static_branch_unlikely(&init_on_free) && 2899 !page_poisoning_enabled(); 2900} 2901 2902#ifdef CONFIG_DEBUG_PAGEALLOC 2903extern void init_debug_pagealloc(void); 2904#else 2905static inline void init_debug_pagealloc(void) {} 2906#endif 2907extern bool _debug_pagealloc_enabled_early; 2908DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2909 2910static inline bool debug_pagealloc_enabled(void) 2911{ 2912 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2913 _debug_pagealloc_enabled_early; 2914} 2915 2916/* 2917 * For use in fast paths after init_debug_pagealloc() has run, or when a 2918 * false negative result is not harmful when called too early. 2919 */ 2920static inline bool debug_pagealloc_enabled_static(void) 2921{ 2922 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2923 return false; 2924 2925 return static_branch_unlikely(&_debug_pagealloc_enabled); 2926} 2927 2928#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2929extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2930 2931/* 2932 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2933 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2934 */ 2935static inline void 2936kernel_map_pages(struct page *page, int numpages, int enable) 2937{ 2938 __kernel_map_pages(page, numpages, enable); 2939} 2940#ifdef CONFIG_HIBERNATION 2941extern bool kernel_page_present(struct page *page); 2942#endif /* CONFIG_HIBERNATION */ 2943#else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2944static inline void 2945kernel_map_pages(struct page *page, int numpages, int enable) {} 2946#ifdef CONFIG_HIBERNATION 2947static inline bool kernel_page_present(struct page *page) { return true; } 2948#endif /* CONFIG_HIBERNATION */ 2949#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2950 2951#ifdef __HAVE_ARCH_GATE_AREA 2952extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2953extern int in_gate_area_no_mm(unsigned long addr); 2954extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2955#else 2956static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2957{ 2958 return NULL; 2959} 2960static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2961static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2962{ 2963 return 0; 2964} 2965#endif /* __HAVE_ARCH_GATE_AREA */ 2966 2967extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2968 2969#ifdef CONFIG_SYSCTL 2970extern int sysctl_drop_caches; 2971int drop_caches_sysctl_handler(struct ctl_table *, int, 2972 void __user *, size_t *, loff_t *); 2973#endif 2974 2975void drop_slab(void); 2976void drop_slab_node(int nid); 2977 2978#ifndef CONFIG_MMU 2979#define randomize_va_space 0 2980#else 2981extern int randomize_va_space; 2982#endif 2983 2984const char * arch_vma_name(struct vm_area_struct *vma); 2985#ifdef CONFIG_MMU 2986void print_vma_addr(char *prefix, unsigned long rip); 2987#else 2988static inline void print_vma_addr(char *prefix, unsigned long rip) 2989{ 2990} 2991#endif 2992 2993void *sparse_buffer_alloc(unsigned long size); 2994struct page * __populate_section_memmap(unsigned long pfn, 2995 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2996pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2997p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2998pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2999pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3000pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 3001void *vmemmap_alloc_block(unsigned long size, int node); 3002struct vmem_altmap; 3003void *vmemmap_alloc_block_buf(unsigned long size, int node); 3004void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 3005void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3006int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3007 int node); 3008int vmemmap_populate(unsigned long start, unsigned long end, int node, 3009 struct vmem_altmap *altmap); 3010void vmemmap_populate_print_last(void); 3011#ifdef CONFIG_MEMORY_HOTPLUG 3012void vmemmap_free(unsigned long start, unsigned long end, 3013 struct vmem_altmap *altmap); 3014#endif 3015void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3016 unsigned long nr_pages); 3017 3018enum mf_flags { 3019 MF_COUNT_INCREASED = 1 << 0, 3020 MF_ACTION_REQUIRED = 1 << 1, 3021 MF_MUST_KILL = 1 << 2, 3022 MF_SOFT_OFFLINE = 1 << 3, 3023}; 3024extern int memory_failure(unsigned long pfn, int flags); 3025extern void memory_failure_queue(unsigned long pfn, int flags); 3026extern int unpoison_memory(unsigned long pfn); 3027extern int get_hwpoison_page(struct page *page); 3028#define put_hwpoison_page(page) put_page(page) 3029extern int sysctl_memory_failure_early_kill; 3030extern int sysctl_memory_failure_recovery; 3031extern void shake_page(struct page *p, int access); 3032extern atomic_long_t num_poisoned_pages __read_mostly; 3033extern int soft_offline_page(unsigned long pfn, int flags); 3034 3035 3036/* 3037 * Error handlers for various types of pages. 3038 */ 3039enum mf_result { 3040 MF_IGNORED, /* Error: cannot be handled */ 3041 MF_FAILED, /* Error: handling failed */ 3042 MF_DELAYED, /* Will be handled later */ 3043 MF_RECOVERED, /* Successfully recovered */ 3044}; 3045 3046enum mf_action_page_type { 3047 MF_MSG_KERNEL, 3048 MF_MSG_KERNEL_HIGH_ORDER, 3049 MF_MSG_SLAB, 3050 MF_MSG_DIFFERENT_COMPOUND, 3051 MF_MSG_POISONED_HUGE, 3052 MF_MSG_HUGE, 3053 MF_MSG_FREE_HUGE, 3054 MF_MSG_NON_PMD_HUGE, 3055 MF_MSG_UNMAP_FAILED, 3056 MF_MSG_DIRTY_SWAPCACHE, 3057 MF_MSG_CLEAN_SWAPCACHE, 3058 MF_MSG_DIRTY_MLOCKED_LRU, 3059 MF_MSG_CLEAN_MLOCKED_LRU, 3060 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3061 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3062 MF_MSG_DIRTY_LRU, 3063 MF_MSG_CLEAN_LRU, 3064 MF_MSG_TRUNCATED_LRU, 3065 MF_MSG_BUDDY, 3066 MF_MSG_BUDDY_2ND, 3067 MF_MSG_DAX, 3068 MF_MSG_UNKNOWN, 3069}; 3070 3071#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3072extern void clear_huge_page(struct page *page, 3073 unsigned long addr_hint, 3074 unsigned int pages_per_huge_page); 3075extern void copy_user_huge_page(struct page *dst, struct page *src, 3076 unsigned long addr_hint, 3077 struct vm_area_struct *vma, 3078 unsigned int pages_per_huge_page); 3079extern long copy_huge_page_from_user(struct page *dst_page, 3080 const void __user *usr_src, 3081 unsigned int pages_per_huge_page, 3082 bool allow_pagefault); 3083 3084/** 3085 * vma_is_special_huge - Are transhuge page-table entries considered special? 3086 * @vma: Pointer to the struct vm_area_struct to consider 3087 * 3088 * Whether transhuge page-table entries are considered "special" following 3089 * the definition in vm_normal_page(). 3090 * 3091 * Return: true if transhuge page-table entries should be considered special, 3092 * false otherwise. 3093 */ 3094static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3095{ 3096 return vma_is_dax(vma) || (vma->vm_file && 3097 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3098} 3099 3100#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3101 3102#ifdef CONFIG_DEBUG_PAGEALLOC 3103extern unsigned int _debug_guardpage_minorder; 3104DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3105 3106static inline unsigned int debug_guardpage_minorder(void) 3107{ 3108 return _debug_guardpage_minorder; 3109} 3110 3111static inline bool debug_guardpage_enabled(void) 3112{ 3113 return static_branch_unlikely(&_debug_guardpage_enabled); 3114} 3115 3116static inline bool page_is_guard(struct page *page) 3117{ 3118 if (!debug_guardpage_enabled()) 3119 return false; 3120 3121 return PageGuard(page); 3122} 3123#else 3124static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3125static inline bool debug_guardpage_enabled(void) { return false; } 3126static inline bool page_is_guard(struct page *page) { return false; } 3127#endif /* CONFIG_DEBUG_PAGEALLOC */ 3128 3129#if MAX_NUMNODES > 1 3130void __init setup_nr_node_ids(void); 3131#else 3132static inline void setup_nr_node_ids(void) {} 3133#endif 3134 3135extern int memcmp_pages(struct page *page1, struct page *page2); 3136 3137static inline int pages_identical(struct page *page1, struct page *page2) 3138{ 3139 return !memcmp_pages(page1, page2); 3140} 3141 3142#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3143unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3144 pgoff_t first_index, pgoff_t nr, 3145 pgoff_t bitmap_pgoff, 3146 unsigned long *bitmap, 3147 pgoff_t *start, 3148 pgoff_t *end); 3149 3150unsigned long wp_shared_mapping_range(struct address_space *mapping, 3151 pgoff_t first_index, pgoff_t nr); 3152#endif 3153 3154#endif /* __KERNEL__ */ 3155#endif /* _LINUX_MM_H */