Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct page;
27struct mm_struct;
28struct kmem_cache;
29
30/* Cgroup-specific page state, on top of universal node page state */
31enum memcg_stat_item {
32 MEMCG_CACHE = NR_VM_NODE_STAT_ITEMS,
33 MEMCG_RSS,
34 MEMCG_RSS_HUGE,
35 MEMCG_SWAP,
36 MEMCG_SOCK,
37 /* XXX: why are these zone and not node counters? */
38 MEMCG_KERNEL_STACK_KB,
39 MEMCG_NR_STAT,
40};
41
42enum memcg_memory_event {
43 MEMCG_LOW,
44 MEMCG_HIGH,
45 MEMCG_MAX,
46 MEMCG_OOM,
47 MEMCG_OOM_KILL,
48 MEMCG_SWAP_MAX,
49 MEMCG_SWAP_FAIL,
50 MEMCG_NR_MEMORY_EVENTS,
51};
52
53enum mem_cgroup_protection {
54 MEMCG_PROT_NONE,
55 MEMCG_PROT_LOW,
56 MEMCG_PROT_MIN,
57};
58
59struct mem_cgroup_reclaim_cookie {
60 pg_data_t *pgdat;
61 unsigned int generation;
62};
63
64#ifdef CONFIG_MEMCG
65
66#define MEM_CGROUP_ID_SHIFT 16
67#define MEM_CGROUP_ID_MAX USHRT_MAX
68
69struct mem_cgroup_id {
70 int id;
71 refcount_t ref;
72};
73
74/*
75 * Per memcg event counter is incremented at every pagein/pageout. With THP,
76 * it will be incremated by the number of pages. This counter is used for
77 * for trigger some periodic events. This is straightforward and better
78 * than using jiffies etc. to handle periodic memcg event.
79 */
80enum mem_cgroup_events_target {
81 MEM_CGROUP_TARGET_THRESH,
82 MEM_CGROUP_TARGET_SOFTLIMIT,
83 MEM_CGROUP_NTARGETS,
84};
85
86struct memcg_vmstats_percpu {
87 long stat[MEMCG_NR_STAT];
88 unsigned long events[NR_VM_EVENT_ITEMS];
89 unsigned long nr_page_events;
90 unsigned long targets[MEM_CGROUP_NTARGETS];
91};
92
93struct mem_cgroup_reclaim_iter {
94 struct mem_cgroup *position;
95 /* scan generation, increased every round-trip */
96 unsigned int generation;
97};
98
99struct lruvec_stat {
100 long count[NR_VM_NODE_STAT_ITEMS];
101};
102
103/*
104 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
105 * which have elements charged to this memcg.
106 */
107struct memcg_shrinker_map {
108 struct rcu_head rcu;
109 unsigned long map[];
110};
111
112/*
113 * per-node information in memory controller.
114 */
115struct mem_cgroup_per_node {
116 struct lruvec lruvec;
117
118 /* Legacy local VM stats */
119 struct lruvec_stat __percpu *lruvec_stat_local;
120
121 /* Subtree VM stats (batched updates) */
122 struct lruvec_stat __percpu *lruvec_stat_cpu;
123 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
124
125 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
126
127 struct mem_cgroup_reclaim_iter iter;
128
129 struct memcg_shrinker_map __rcu *shrinker_map;
130
131 struct rb_node tree_node; /* RB tree node */
132 unsigned long usage_in_excess;/* Set to the value by which */
133 /* the soft limit is exceeded*/
134 bool on_tree;
135 struct mem_cgroup *memcg; /* Back pointer, we cannot */
136 /* use container_of */
137};
138
139struct mem_cgroup_threshold {
140 struct eventfd_ctx *eventfd;
141 unsigned long threshold;
142};
143
144/* For threshold */
145struct mem_cgroup_threshold_ary {
146 /* An array index points to threshold just below or equal to usage. */
147 int current_threshold;
148 /* Size of entries[] */
149 unsigned int size;
150 /* Array of thresholds */
151 struct mem_cgroup_threshold entries[];
152};
153
154struct mem_cgroup_thresholds {
155 /* Primary thresholds array */
156 struct mem_cgroup_threshold_ary *primary;
157 /*
158 * Spare threshold array.
159 * This is needed to make mem_cgroup_unregister_event() "never fail".
160 * It must be able to store at least primary->size - 1 entries.
161 */
162 struct mem_cgroup_threshold_ary *spare;
163};
164
165enum memcg_kmem_state {
166 KMEM_NONE,
167 KMEM_ALLOCATED,
168 KMEM_ONLINE,
169};
170
171#if defined(CONFIG_SMP)
172struct memcg_padding {
173 char x[0];
174} ____cacheline_internodealigned_in_smp;
175#define MEMCG_PADDING(name) struct memcg_padding name;
176#else
177#define MEMCG_PADDING(name)
178#endif
179
180/*
181 * Remember four most recent foreign writebacks with dirty pages in this
182 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
183 * one in a given round, we're likely to catch it later if it keeps
184 * foreign-dirtying, so a fairly low count should be enough.
185 *
186 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
187 */
188#define MEMCG_CGWB_FRN_CNT 4
189
190struct memcg_cgwb_frn {
191 u64 bdi_id; /* bdi->id of the foreign inode */
192 int memcg_id; /* memcg->css.id of foreign inode */
193 u64 at; /* jiffies_64 at the time of dirtying */
194 struct wb_completion done; /* tracks in-flight foreign writebacks */
195};
196
197/*
198 * The memory controller data structure. The memory controller controls both
199 * page cache and RSS per cgroup. We would eventually like to provide
200 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
201 * to help the administrator determine what knobs to tune.
202 */
203struct mem_cgroup {
204 struct cgroup_subsys_state css;
205
206 /* Private memcg ID. Used to ID objects that outlive the cgroup */
207 struct mem_cgroup_id id;
208
209 /* Accounted resources */
210 struct page_counter memory;
211 struct page_counter swap;
212
213 /* Legacy consumer-oriented counters */
214 struct page_counter memsw;
215 struct page_counter kmem;
216 struct page_counter tcpmem;
217
218 /* Upper bound of normal memory consumption range */
219 unsigned long high;
220
221 /* Range enforcement for interrupt charges */
222 struct work_struct high_work;
223
224 unsigned long soft_limit;
225
226 /* vmpressure notifications */
227 struct vmpressure vmpressure;
228
229 /*
230 * Should the accounting and control be hierarchical, per subtree?
231 */
232 bool use_hierarchy;
233
234 /*
235 * Should the OOM killer kill all belonging tasks, had it kill one?
236 */
237 bool oom_group;
238
239 /* protected by memcg_oom_lock */
240 bool oom_lock;
241 int under_oom;
242
243 int swappiness;
244 /* OOM-Killer disable */
245 int oom_kill_disable;
246
247 /* memory.events and memory.events.local */
248 struct cgroup_file events_file;
249 struct cgroup_file events_local_file;
250
251 /* handle for "memory.swap.events" */
252 struct cgroup_file swap_events_file;
253
254 /* protect arrays of thresholds */
255 struct mutex thresholds_lock;
256
257 /* thresholds for memory usage. RCU-protected */
258 struct mem_cgroup_thresholds thresholds;
259
260 /* thresholds for mem+swap usage. RCU-protected */
261 struct mem_cgroup_thresholds memsw_thresholds;
262
263 /* For oom notifier event fd */
264 struct list_head oom_notify;
265
266 /*
267 * Should we move charges of a task when a task is moved into this
268 * mem_cgroup ? And what type of charges should we move ?
269 */
270 unsigned long move_charge_at_immigrate;
271 /* taken only while moving_account > 0 */
272 spinlock_t move_lock;
273 unsigned long move_lock_flags;
274
275 MEMCG_PADDING(_pad1_);
276
277 /*
278 * set > 0 if pages under this cgroup are moving to other cgroup.
279 */
280 atomic_t moving_account;
281 struct task_struct *move_lock_task;
282
283 /* Legacy local VM stats and events */
284 struct memcg_vmstats_percpu __percpu *vmstats_local;
285
286 /* Subtree VM stats and events (batched updates) */
287 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
288
289 MEMCG_PADDING(_pad2_);
290
291 atomic_long_t vmstats[MEMCG_NR_STAT];
292 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
293
294 /* memory.events */
295 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
296 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
297
298 unsigned long socket_pressure;
299
300 /* Legacy tcp memory accounting */
301 bool tcpmem_active;
302 int tcpmem_pressure;
303
304#ifdef CONFIG_MEMCG_KMEM
305 /* Index in the kmem_cache->memcg_params.memcg_caches array */
306 int kmemcg_id;
307 enum memcg_kmem_state kmem_state;
308 struct list_head kmem_caches;
309#endif
310
311#ifdef CONFIG_CGROUP_WRITEBACK
312 struct list_head cgwb_list;
313 struct wb_domain cgwb_domain;
314 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
315#endif
316
317 /* List of events which userspace want to receive */
318 struct list_head event_list;
319 spinlock_t event_list_lock;
320
321#ifdef CONFIG_TRANSPARENT_HUGEPAGE
322 struct deferred_split deferred_split_queue;
323#endif
324
325 struct mem_cgroup_per_node *nodeinfo[0];
326 /* WARNING: nodeinfo must be the last member here */
327};
328
329/*
330 * size of first charge trial. "32" comes from vmscan.c's magic value.
331 * TODO: maybe necessary to use big numbers in big irons.
332 */
333#define MEMCG_CHARGE_BATCH 32U
334
335extern struct mem_cgroup *root_mem_cgroup;
336
337static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
338{
339 return (memcg == root_mem_cgroup);
340}
341
342static inline bool mem_cgroup_disabled(void)
343{
344 return !cgroup_subsys_enabled(memory_cgrp_subsys);
345}
346
347static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg,
348 bool in_low_reclaim)
349{
350 if (mem_cgroup_disabled())
351 return 0;
352
353 if (in_low_reclaim)
354 return READ_ONCE(memcg->memory.emin);
355
356 return max(READ_ONCE(memcg->memory.emin),
357 READ_ONCE(memcg->memory.elow));
358}
359
360enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
361 struct mem_cgroup *memcg);
362
363int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
364 gfp_t gfp_mask, struct mem_cgroup **memcgp,
365 bool compound);
366int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
367 gfp_t gfp_mask, struct mem_cgroup **memcgp,
368 bool compound);
369void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
370 bool lrucare, bool compound);
371void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
372 bool compound);
373void mem_cgroup_uncharge(struct page *page);
374void mem_cgroup_uncharge_list(struct list_head *page_list);
375
376void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
377
378static struct mem_cgroup_per_node *
379mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
380{
381 return memcg->nodeinfo[nid];
382}
383
384/**
385 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
386 * @memcg: memcg of the wanted lruvec
387 *
388 * Returns the lru list vector holding pages for a given @memcg &
389 * @node combination. This can be the node lruvec, if the memory
390 * controller is disabled.
391 */
392static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
393 struct pglist_data *pgdat)
394{
395 struct mem_cgroup_per_node *mz;
396 struct lruvec *lruvec;
397
398 if (mem_cgroup_disabled()) {
399 lruvec = &pgdat->__lruvec;
400 goto out;
401 }
402
403 if (!memcg)
404 memcg = root_mem_cgroup;
405
406 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
407 lruvec = &mz->lruvec;
408out:
409 /*
410 * Since a node can be onlined after the mem_cgroup was created,
411 * we have to be prepared to initialize lruvec->pgdat here;
412 * and if offlined then reonlined, we need to reinitialize it.
413 */
414 if (unlikely(lruvec->pgdat != pgdat))
415 lruvec->pgdat = pgdat;
416 return lruvec;
417}
418
419struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
420
421struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
422
423struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
424
425struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
426
427static inline
428struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
429 return css ? container_of(css, struct mem_cgroup, css) : NULL;
430}
431
432static inline void mem_cgroup_put(struct mem_cgroup *memcg)
433{
434 if (memcg)
435 css_put(&memcg->css);
436}
437
438#define mem_cgroup_from_counter(counter, member) \
439 container_of(counter, struct mem_cgroup, member)
440
441struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
442 struct mem_cgroup *,
443 struct mem_cgroup_reclaim_cookie *);
444void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
445int mem_cgroup_scan_tasks(struct mem_cgroup *,
446 int (*)(struct task_struct *, void *), void *);
447
448static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
449{
450 if (mem_cgroup_disabled())
451 return 0;
452
453 return memcg->id.id;
454}
455struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
456
457static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
458{
459 return mem_cgroup_from_css(seq_css(m));
460}
461
462static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
463{
464 struct mem_cgroup_per_node *mz;
465
466 if (mem_cgroup_disabled())
467 return NULL;
468
469 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
470 return mz->memcg;
471}
472
473/**
474 * parent_mem_cgroup - find the accounting parent of a memcg
475 * @memcg: memcg whose parent to find
476 *
477 * Returns the parent memcg, or NULL if this is the root or the memory
478 * controller is in legacy no-hierarchy mode.
479 */
480static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
481{
482 if (!memcg->memory.parent)
483 return NULL;
484 return mem_cgroup_from_counter(memcg->memory.parent, memory);
485}
486
487static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
488 struct mem_cgroup *root)
489{
490 if (root == memcg)
491 return true;
492 if (!root->use_hierarchy)
493 return false;
494 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
495}
496
497static inline bool mm_match_cgroup(struct mm_struct *mm,
498 struct mem_cgroup *memcg)
499{
500 struct mem_cgroup *task_memcg;
501 bool match = false;
502
503 rcu_read_lock();
504 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
505 if (task_memcg)
506 match = mem_cgroup_is_descendant(task_memcg, memcg);
507 rcu_read_unlock();
508 return match;
509}
510
511struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
512ino_t page_cgroup_ino(struct page *page);
513
514static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
515{
516 if (mem_cgroup_disabled())
517 return true;
518 return !!(memcg->css.flags & CSS_ONLINE);
519}
520
521/*
522 * For memory reclaim.
523 */
524int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
525
526void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
527 int zid, int nr_pages);
528
529static inline
530unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
531 enum lru_list lru, int zone_idx)
532{
533 struct mem_cgroup_per_node *mz;
534
535 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
536 return mz->lru_zone_size[zone_idx][lru];
537}
538
539void mem_cgroup_handle_over_high(void);
540
541unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
542
543unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
544
545void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
546 struct task_struct *p);
547
548void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
549
550static inline void mem_cgroup_enter_user_fault(void)
551{
552 WARN_ON(current->in_user_fault);
553 current->in_user_fault = 1;
554}
555
556static inline void mem_cgroup_exit_user_fault(void)
557{
558 WARN_ON(!current->in_user_fault);
559 current->in_user_fault = 0;
560}
561
562static inline bool task_in_memcg_oom(struct task_struct *p)
563{
564 return p->memcg_in_oom;
565}
566
567bool mem_cgroup_oom_synchronize(bool wait);
568struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
569 struct mem_cgroup *oom_domain);
570void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
571
572#ifdef CONFIG_MEMCG_SWAP
573extern int do_swap_account;
574#endif
575
576struct mem_cgroup *lock_page_memcg(struct page *page);
577void __unlock_page_memcg(struct mem_cgroup *memcg);
578void unlock_page_memcg(struct page *page);
579
580/*
581 * idx can be of type enum memcg_stat_item or node_stat_item.
582 * Keep in sync with memcg_exact_page_state().
583 */
584static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
585{
586 long x = atomic_long_read(&memcg->vmstats[idx]);
587#ifdef CONFIG_SMP
588 if (x < 0)
589 x = 0;
590#endif
591 return x;
592}
593
594/*
595 * idx can be of type enum memcg_stat_item or node_stat_item.
596 * Keep in sync with memcg_exact_page_state().
597 */
598static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
599 int idx)
600{
601 long x = 0;
602 int cpu;
603
604 for_each_possible_cpu(cpu)
605 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
606#ifdef CONFIG_SMP
607 if (x < 0)
608 x = 0;
609#endif
610 return x;
611}
612
613void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
614
615/* idx can be of type enum memcg_stat_item or node_stat_item */
616static inline void mod_memcg_state(struct mem_cgroup *memcg,
617 int idx, int val)
618{
619 unsigned long flags;
620
621 local_irq_save(flags);
622 __mod_memcg_state(memcg, idx, val);
623 local_irq_restore(flags);
624}
625
626/**
627 * mod_memcg_page_state - update page state statistics
628 * @page: the page
629 * @idx: page state item to account
630 * @val: number of pages (positive or negative)
631 *
632 * The @page must be locked or the caller must use lock_page_memcg()
633 * to prevent double accounting when the page is concurrently being
634 * moved to another memcg:
635 *
636 * lock_page(page) or lock_page_memcg(page)
637 * if (TestClearPageState(page))
638 * mod_memcg_page_state(page, state, -1);
639 * unlock_page(page) or unlock_page_memcg(page)
640 *
641 * Kernel pages are an exception to this, since they'll never move.
642 */
643static inline void __mod_memcg_page_state(struct page *page,
644 int idx, int val)
645{
646 if (page->mem_cgroup)
647 __mod_memcg_state(page->mem_cgroup, idx, val);
648}
649
650static inline void mod_memcg_page_state(struct page *page,
651 int idx, int val)
652{
653 if (page->mem_cgroup)
654 mod_memcg_state(page->mem_cgroup, idx, val);
655}
656
657static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
658 enum node_stat_item idx)
659{
660 struct mem_cgroup_per_node *pn;
661 long x;
662
663 if (mem_cgroup_disabled())
664 return node_page_state(lruvec_pgdat(lruvec), idx);
665
666 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
667 x = atomic_long_read(&pn->lruvec_stat[idx]);
668#ifdef CONFIG_SMP
669 if (x < 0)
670 x = 0;
671#endif
672 return x;
673}
674
675static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
676 enum node_stat_item idx)
677{
678 struct mem_cgroup_per_node *pn;
679 long x = 0;
680 int cpu;
681
682 if (mem_cgroup_disabled())
683 return node_page_state(lruvec_pgdat(lruvec), idx);
684
685 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
686 for_each_possible_cpu(cpu)
687 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
688#ifdef CONFIG_SMP
689 if (x < 0)
690 x = 0;
691#endif
692 return x;
693}
694
695void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
696 int val);
697void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
698void mod_memcg_obj_state(void *p, int idx, int val);
699
700static inline void mod_lruvec_state(struct lruvec *lruvec,
701 enum node_stat_item idx, int val)
702{
703 unsigned long flags;
704
705 local_irq_save(flags);
706 __mod_lruvec_state(lruvec, idx, val);
707 local_irq_restore(flags);
708}
709
710static inline void __mod_lruvec_page_state(struct page *page,
711 enum node_stat_item idx, int val)
712{
713 pg_data_t *pgdat = page_pgdat(page);
714 struct lruvec *lruvec;
715
716 /* Untracked pages have no memcg, no lruvec. Update only the node */
717 if (!page->mem_cgroup) {
718 __mod_node_page_state(pgdat, idx, val);
719 return;
720 }
721
722 lruvec = mem_cgroup_lruvec(page->mem_cgroup, pgdat);
723 __mod_lruvec_state(lruvec, idx, val);
724}
725
726static inline void mod_lruvec_page_state(struct page *page,
727 enum node_stat_item idx, int val)
728{
729 unsigned long flags;
730
731 local_irq_save(flags);
732 __mod_lruvec_page_state(page, idx, val);
733 local_irq_restore(flags);
734}
735
736unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
737 gfp_t gfp_mask,
738 unsigned long *total_scanned);
739
740void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
741 unsigned long count);
742
743static inline void count_memcg_events(struct mem_cgroup *memcg,
744 enum vm_event_item idx,
745 unsigned long count)
746{
747 unsigned long flags;
748
749 local_irq_save(flags);
750 __count_memcg_events(memcg, idx, count);
751 local_irq_restore(flags);
752}
753
754static inline void count_memcg_page_event(struct page *page,
755 enum vm_event_item idx)
756{
757 if (page->mem_cgroup)
758 count_memcg_events(page->mem_cgroup, idx, 1);
759}
760
761static inline void count_memcg_event_mm(struct mm_struct *mm,
762 enum vm_event_item idx)
763{
764 struct mem_cgroup *memcg;
765
766 if (mem_cgroup_disabled())
767 return;
768
769 rcu_read_lock();
770 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
771 if (likely(memcg))
772 count_memcg_events(memcg, idx, 1);
773 rcu_read_unlock();
774}
775
776static inline void memcg_memory_event(struct mem_cgroup *memcg,
777 enum memcg_memory_event event)
778{
779 atomic_long_inc(&memcg->memory_events_local[event]);
780 cgroup_file_notify(&memcg->events_local_file);
781
782 do {
783 atomic_long_inc(&memcg->memory_events[event]);
784 cgroup_file_notify(&memcg->events_file);
785
786 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
787 break;
788 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
789 break;
790 } while ((memcg = parent_mem_cgroup(memcg)) &&
791 !mem_cgroup_is_root(memcg));
792}
793
794static inline void memcg_memory_event_mm(struct mm_struct *mm,
795 enum memcg_memory_event event)
796{
797 struct mem_cgroup *memcg;
798
799 if (mem_cgroup_disabled())
800 return;
801
802 rcu_read_lock();
803 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
804 if (likely(memcg))
805 memcg_memory_event(memcg, event);
806 rcu_read_unlock();
807}
808
809#ifdef CONFIG_TRANSPARENT_HUGEPAGE
810void mem_cgroup_split_huge_fixup(struct page *head);
811#endif
812
813#else /* CONFIG_MEMCG */
814
815#define MEM_CGROUP_ID_SHIFT 0
816#define MEM_CGROUP_ID_MAX 0
817
818struct mem_cgroup;
819
820static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
821{
822 return true;
823}
824
825static inline bool mem_cgroup_disabled(void)
826{
827 return true;
828}
829
830static inline void memcg_memory_event(struct mem_cgroup *memcg,
831 enum memcg_memory_event event)
832{
833}
834
835static inline void memcg_memory_event_mm(struct mm_struct *mm,
836 enum memcg_memory_event event)
837{
838}
839
840static inline unsigned long mem_cgroup_protection(struct mem_cgroup *memcg,
841 bool in_low_reclaim)
842{
843 return 0;
844}
845
846static inline enum mem_cgroup_protection mem_cgroup_protected(
847 struct mem_cgroup *root, struct mem_cgroup *memcg)
848{
849 return MEMCG_PROT_NONE;
850}
851
852static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
853 gfp_t gfp_mask,
854 struct mem_cgroup **memcgp,
855 bool compound)
856{
857 *memcgp = NULL;
858 return 0;
859}
860
861static inline int mem_cgroup_try_charge_delay(struct page *page,
862 struct mm_struct *mm,
863 gfp_t gfp_mask,
864 struct mem_cgroup **memcgp,
865 bool compound)
866{
867 *memcgp = NULL;
868 return 0;
869}
870
871static inline void mem_cgroup_commit_charge(struct page *page,
872 struct mem_cgroup *memcg,
873 bool lrucare, bool compound)
874{
875}
876
877static inline void mem_cgroup_cancel_charge(struct page *page,
878 struct mem_cgroup *memcg,
879 bool compound)
880{
881}
882
883static inline void mem_cgroup_uncharge(struct page *page)
884{
885}
886
887static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
888{
889}
890
891static inline void mem_cgroup_migrate(struct page *old, struct page *new)
892{
893}
894
895static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
896 struct pglist_data *pgdat)
897{
898 return &pgdat->__lruvec;
899}
900
901static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
902 struct pglist_data *pgdat)
903{
904 return &pgdat->__lruvec;
905}
906
907static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
908{
909 return NULL;
910}
911
912static inline bool mm_match_cgroup(struct mm_struct *mm,
913 struct mem_cgroup *memcg)
914{
915 return true;
916}
917
918static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
919{
920 return NULL;
921}
922
923static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
924{
925 return NULL;
926}
927
928static inline void mem_cgroup_put(struct mem_cgroup *memcg)
929{
930}
931
932static inline struct mem_cgroup *
933mem_cgroup_iter(struct mem_cgroup *root,
934 struct mem_cgroup *prev,
935 struct mem_cgroup_reclaim_cookie *reclaim)
936{
937 return NULL;
938}
939
940static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
941 struct mem_cgroup *prev)
942{
943}
944
945static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
946 int (*fn)(struct task_struct *, void *), void *arg)
947{
948 return 0;
949}
950
951static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
952{
953 return 0;
954}
955
956static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
957{
958 WARN_ON_ONCE(id);
959 /* XXX: This should always return root_mem_cgroup */
960 return NULL;
961}
962
963static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
964{
965 return NULL;
966}
967
968static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
969{
970 return NULL;
971}
972
973static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
974{
975 return true;
976}
977
978static inline
979unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
980 enum lru_list lru, int zone_idx)
981{
982 return 0;
983}
984
985static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
986{
987 return 0;
988}
989
990static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
991{
992 return 0;
993}
994
995static inline void
996mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
997{
998}
999
1000static inline void
1001mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1002{
1003}
1004
1005static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1006{
1007 return NULL;
1008}
1009
1010static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1011{
1012}
1013
1014static inline void unlock_page_memcg(struct page *page)
1015{
1016}
1017
1018static inline void mem_cgroup_handle_over_high(void)
1019{
1020}
1021
1022static inline void mem_cgroup_enter_user_fault(void)
1023{
1024}
1025
1026static inline void mem_cgroup_exit_user_fault(void)
1027{
1028}
1029
1030static inline bool task_in_memcg_oom(struct task_struct *p)
1031{
1032 return false;
1033}
1034
1035static inline bool mem_cgroup_oom_synchronize(bool wait)
1036{
1037 return false;
1038}
1039
1040static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1041 struct task_struct *victim, struct mem_cgroup *oom_domain)
1042{
1043 return NULL;
1044}
1045
1046static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1047{
1048}
1049
1050static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1051{
1052 return 0;
1053}
1054
1055static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1056 int idx)
1057{
1058 return 0;
1059}
1060
1061static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1062 int idx,
1063 int nr)
1064{
1065}
1066
1067static inline void mod_memcg_state(struct mem_cgroup *memcg,
1068 int idx,
1069 int nr)
1070{
1071}
1072
1073static inline void __mod_memcg_page_state(struct page *page,
1074 int idx,
1075 int nr)
1076{
1077}
1078
1079static inline void mod_memcg_page_state(struct page *page,
1080 int idx,
1081 int nr)
1082{
1083}
1084
1085static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1086 enum node_stat_item idx)
1087{
1088 return node_page_state(lruvec_pgdat(lruvec), idx);
1089}
1090
1091static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1092 enum node_stat_item idx)
1093{
1094 return node_page_state(lruvec_pgdat(lruvec), idx);
1095}
1096
1097static inline void __mod_lruvec_state(struct lruvec *lruvec,
1098 enum node_stat_item idx, int val)
1099{
1100 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1101}
1102
1103static inline void mod_lruvec_state(struct lruvec *lruvec,
1104 enum node_stat_item idx, int val)
1105{
1106 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1107}
1108
1109static inline void __mod_lruvec_page_state(struct page *page,
1110 enum node_stat_item idx, int val)
1111{
1112 __mod_node_page_state(page_pgdat(page), idx, val);
1113}
1114
1115static inline void mod_lruvec_page_state(struct page *page,
1116 enum node_stat_item idx, int val)
1117{
1118 mod_node_page_state(page_pgdat(page), idx, val);
1119}
1120
1121static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1122 int val)
1123{
1124 struct page *page = virt_to_head_page(p);
1125
1126 __mod_node_page_state(page_pgdat(page), idx, val);
1127}
1128
1129static inline void mod_memcg_obj_state(void *p, int idx, int val)
1130{
1131}
1132
1133static inline
1134unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1135 gfp_t gfp_mask,
1136 unsigned long *total_scanned)
1137{
1138 return 0;
1139}
1140
1141static inline void mem_cgroup_split_huge_fixup(struct page *head)
1142{
1143}
1144
1145static inline void count_memcg_events(struct mem_cgroup *memcg,
1146 enum vm_event_item idx,
1147 unsigned long count)
1148{
1149}
1150
1151static inline void __count_memcg_events(struct mem_cgroup *memcg,
1152 enum vm_event_item idx,
1153 unsigned long count)
1154{
1155}
1156
1157static inline void count_memcg_page_event(struct page *page,
1158 int idx)
1159{
1160}
1161
1162static inline
1163void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1164{
1165}
1166#endif /* CONFIG_MEMCG */
1167
1168/* idx can be of type enum memcg_stat_item or node_stat_item */
1169static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1170 int idx)
1171{
1172 __mod_memcg_state(memcg, idx, 1);
1173}
1174
1175/* idx can be of type enum memcg_stat_item or node_stat_item */
1176static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1177 int idx)
1178{
1179 __mod_memcg_state(memcg, idx, -1);
1180}
1181
1182/* idx can be of type enum memcg_stat_item or node_stat_item */
1183static inline void __inc_memcg_page_state(struct page *page,
1184 int idx)
1185{
1186 __mod_memcg_page_state(page, idx, 1);
1187}
1188
1189/* idx can be of type enum memcg_stat_item or node_stat_item */
1190static inline void __dec_memcg_page_state(struct page *page,
1191 int idx)
1192{
1193 __mod_memcg_page_state(page, idx, -1);
1194}
1195
1196static inline void __inc_lruvec_state(struct lruvec *lruvec,
1197 enum node_stat_item idx)
1198{
1199 __mod_lruvec_state(lruvec, idx, 1);
1200}
1201
1202static inline void __dec_lruvec_state(struct lruvec *lruvec,
1203 enum node_stat_item idx)
1204{
1205 __mod_lruvec_state(lruvec, idx, -1);
1206}
1207
1208static inline void __inc_lruvec_page_state(struct page *page,
1209 enum node_stat_item idx)
1210{
1211 __mod_lruvec_page_state(page, idx, 1);
1212}
1213
1214static inline void __dec_lruvec_page_state(struct page *page,
1215 enum node_stat_item idx)
1216{
1217 __mod_lruvec_page_state(page, idx, -1);
1218}
1219
1220static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1221{
1222 __mod_lruvec_slab_state(p, idx, 1);
1223}
1224
1225static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1226{
1227 __mod_lruvec_slab_state(p, idx, -1);
1228}
1229
1230/* idx can be of type enum memcg_stat_item or node_stat_item */
1231static inline void inc_memcg_state(struct mem_cgroup *memcg,
1232 int idx)
1233{
1234 mod_memcg_state(memcg, idx, 1);
1235}
1236
1237/* idx can be of type enum memcg_stat_item or node_stat_item */
1238static inline void dec_memcg_state(struct mem_cgroup *memcg,
1239 int idx)
1240{
1241 mod_memcg_state(memcg, idx, -1);
1242}
1243
1244/* idx can be of type enum memcg_stat_item or node_stat_item */
1245static inline void inc_memcg_page_state(struct page *page,
1246 int idx)
1247{
1248 mod_memcg_page_state(page, idx, 1);
1249}
1250
1251/* idx can be of type enum memcg_stat_item or node_stat_item */
1252static inline void dec_memcg_page_state(struct page *page,
1253 int idx)
1254{
1255 mod_memcg_page_state(page, idx, -1);
1256}
1257
1258static inline void inc_lruvec_state(struct lruvec *lruvec,
1259 enum node_stat_item idx)
1260{
1261 mod_lruvec_state(lruvec, idx, 1);
1262}
1263
1264static inline void dec_lruvec_state(struct lruvec *lruvec,
1265 enum node_stat_item idx)
1266{
1267 mod_lruvec_state(lruvec, idx, -1);
1268}
1269
1270static inline void inc_lruvec_page_state(struct page *page,
1271 enum node_stat_item idx)
1272{
1273 mod_lruvec_page_state(page, idx, 1);
1274}
1275
1276static inline void dec_lruvec_page_state(struct page *page,
1277 enum node_stat_item idx)
1278{
1279 mod_lruvec_page_state(page, idx, -1);
1280}
1281
1282#ifdef CONFIG_CGROUP_WRITEBACK
1283
1284struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1285void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1286 unsigned long *pheadroom, unsigned long *pdirty,
1287 unsigned long *pwriteback);
1288
1289void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1290 struct bdi_writeback *wb);
1291
1292static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1293 struct bdi_writeback *wb)
1294{
1295 if (mem_cgroup_disabled())
1296 return;
1297
1298 if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1299 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1300}
1301
1302void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1303
1304#else /* CONFIG_CGROUP_WRITEBACK */
1305
1306static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1307{
1308 return NULL;
1309}
1310
1311static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1312 unsigned long *pfilepages,
1313 unsigned long *pheadroom,
1314 unsigned long *pdirty,
1315 unsigned long *pwriteback)
1316{
1317}
1318
1319static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1320 struct bdi_writeback *wb)
1321{
1322}
1323
1324static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1325{
1326}
1327
1328#endif /* CONFIG_CGROUP_WRITEBACK */
1329
1330struct sock;
1331bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1332void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1333#ifdef CONFIG_MEMCG
1334extern struct static_key_false memcg_sockets_enabled_key;
1335#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1336void mem_cgroup_sk_alloc(struct sock *sk);
1337void mem_cgroup_sk_free(struct sock *sk);
1338static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1339{
1340 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1341 return true;
1342 do {
1343 if (time_before(jiffies, memcg->socket_pressure))
1344 return true;
1345 } while ((memcg = parent_mem_cgroup(memcg)));
1346 return false;
1347}
1348
1349extern int memcg_expand_shrinker_maps(int new_id);
1350
1351extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1352 int nid, int shrinker_id);
1353#else
1354#define mem_cgroup_sockets_enabled 0
1355static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1356static inline void mem_cgroup_sk_free(struct sock *sk) { };
1357static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1358{
1359 return false;
1360}
1361
1362static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1363 int nid, int shrinker_id)
1364{
1365}
1366#endif
1367
1368struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep);
1369void memcg_kmem_put_cache(struct kmem_cache *cachep);
1370
1371#ifdef CONFIG_MEMCG_KMEM
1372int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1373 unsigned int nr_pages);
1374void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1375int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1376void __memcg_kmem_uncharge_page(struct page *page, int order);
1377
1378extern struct static_key_false memcg_kmem_enabled_key;
1379extern struct workqueue_struct *memcg_kmem_cache_wq;
1380
1381extern int memcg_nr_cache_ids;
1382void memcg_get_cache_ids(void);
1383void memcg_put_cache_ids(void);
1384
1385/*
1386 * Helper macro to loop through all memcg-specific caches. Callers must still
1387 * check if the cache is valid (it is either valid or NULL).
1388 * the slab_mutex must be held when looping through those caches
1389 */
1390#define for_each_memcg_cache_index(_idx) \
1391 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1392
1393static inline bool memcg_kmem_enabled(void)
1394{
1395 return static_branch_unlikely(&memcg_kmem_enabled_key);
1396}
1397
1398static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1399 int order)
1400{
1401 if (memcg_kmem_enabled())
1402 return __memcg_kmem_charge_page(page, gfp, order);
1403 return 0;
1404}
1405
1406static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1407{
1408 if (memcg_kmem_enabled())
1409 __memcg_kmem_uncharge_page(page, order);
1410}
1411
1412static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1413 unsigned int nr_pages)
1414{
1415 if (memcg_kmem_enabled())
1416 return __memcg_kmem_charge(memcg, gfp, nr_pages);
1417 return 0;
1418}
1419
1420static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
1421 unsigned int nr_pages)
1422{
1423 if (memcg_kmem_enabled())
1424 __memcg_kmem_uncharge(memcg, nr_pages);
1425}
1426
1427/*
1428 * helper for accessing a memcg's index. It will be used as an index in the
1429 * child cache array in kmem_cache, and also to derive its name. This function
1430 * will return -1 when this is not a kmem-limited memcg.
1431 */
1432static inline int memcg_cache_id(struct mem_cgroup *memcg)
1433{
1434 return memcg ? memcg->kmemcg_id : -1;
1435}
1436
1437struct mem_cgroup *mem_cgroup_from_obj(void *p);
1438
1439#else
1440
1441static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1442 int order)
1443{
1444 return 0;
1445}
1446
1447static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1448{
1449}
1450
1451static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1452 int order)
1453{
1454 return 0;
1455}
1456
1457static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1458{
1459}
1460
1461#define for_each_memcg_cache_index(_idx) \
1462 for (; NULL; )
1463
1464static inline bool memcg_kmem_enabled(void)
1465{
1466 return false;
1467}
1468
1469static inline int memcg_cache_id(struct mem_cgroup *memcg)
1470{
1471 return -1;
1472}
1473
1474static inline void memcg_get_cache_ids(void)
1475{
1476}
1477
1478static inline void memcg_put_cache_ids(void)
1479{
1480}
1481
1482static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1483{
1484 return NULL;
1485}
1486
1487#endif /* CONFIG_MEMCG_KMEM */
1488
1489#endif /* _LINUX_MEMCONTROL_H */