Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2#ifndef _LINUX_MEMBLOCK_H
3#define _LINUX_MEMBLOCK_H
4#ifdef __KERNEL__
5
6/*
7 * Logical memory blocks.
8 *
9 * Copyright (C) 2001 Peter Bergner, IBM Corp.
10 */
11
12#include <linux/init.h>
13#include <linux/mm.h>
14#include <asm/dma.h>
15
16extern unsigned long max_low_pfn;
17extern unsigned long min_low_pfn;
18
19/*
20 * highest page
21 */
22extern unsigned long max_pfn;
23/*
24 * highest possible page
25 */
26extern unsigned long long max_possible_pfn;
27
28/**
29 * enum memblock_flags - definition of memory region attributes
30 * @MEMBLOCK_NONE: no special request
31 * @MEMBLOCK_HOTPLUG: hotpluggable region
32 * @MEMBLOCK_MIRROR: mirrored region
33 * @MEMBLOCK_NOMAP: don't add to kernel direct mapping
34 */
35enum memblock_flags {
36 MEMBLOCK_NONE = 0x0, /* No special request */
37 MEMBLOCK_HOTPLUG = 0x1, /* hotpluggable region */
38 MEMBLOCK_MIRROR = 0x2, /* mirrored region */
39 MEMBLOCK_NOMAP = 0x4, /* don't add to kernel direct mapping */
40};
41
42/**
43 * struct memblock_region - represents a memory region
44 * @base: physical address of the region
45 * @size: size of the region
46 * @flags: memory region attributes
47 * @nid: NUMA node id
48 */
49struct memblock_region {
50 phys_addr_t base;
51 phys_addr_t size;
52 enum memblock_flags flags;
53#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
54 int nid;
55#endif
56};
57
58/**
59 * struct memblock_type - collection of memory regions of certain type
60 * @cnt: number of regions
61 * @max: size of the allocated array
62 * @total_size: size of all regions
63 * @regions: array of regions
64 * @name: the memory type symbolic name
65 */
66struct memblock_type {
67 unsigned long cnt;
68 unsigned long max;
69 phys_addr_t total_size;
70 struct memblock_region *regions;
71 char *name;
72};
73
74/**
75 * struct memblock - memblock allocator metadata
76 * @bottom_up: is bottom up direction?
77 * @current_limit: physical address of the current allocation limit
78 * @memory: usabe memory regions
79 * @reserved: reserved memory regions
80 * @physmem: all physical memory
81 */
82struct memblock {
83 bool bottom_up; /* is bottom up direction? */
84 phys_addr_t current_limit;
85 struct memblock_type memory;
86 struct memblock_type reserved;
87#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
88 struct memblock_type physmem;
89#endif
90};
91
92extern struct memblock memblock;
93extern int memblock_debug;
94
95#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
96#define __init_memblock __meminit
97#define __initdata_memblock __meminitdata
98void memblock_discard(void);
99#else
100#define __init_memblock
101#define __initdata_memblock
102static inline void memblock_discard(void) {}
103#endif
104
105#define memblock_dbg(fmt, ...) \
106 if (memblock_debug) printk(KERN_INFO pr_fmt(fmt), ##__VA_ARGS__)
107
108phys_addr_t memblock_find_in_range(phys_addr_t start, phys_addr_t end,
109 phys_addr_t size, phys_addr_t align);
110void memblock_allow_resize(void);
111int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid);
112int memblock_add(phys_addr_t base, phys_addr_t size);
113int memblock_remove(phys_addr_t base, phys_addr_t size);
114int memblock_free(phys_addr_t base, phys_addr_t size);
115int memblock_reserve(phys_addr_t base, phys_addr_t size);
116#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
117int memblock_physmem_add(phys_addr_t base, phys_addr_t size);
118#endif
119void memblock_trim_memory(phys_addr_t align);
120bool memblock_overlaps_region(struct memblock_type *type,
121 phys_addr_t base, phys_addr_t size);
122int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size);
123int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size);
124int memblock_mark_mirror(phys_addr_t base, phys_addr_t size);
125int memblock_mark_nomap(phys_addr_t base, phys_addr_t size);
126int memblock_clear_nomap(phys_addr_t base, phys_addr_t size);
127
128unsigned long memblock_free_all(void);
129void reset_node_managed_pages(pg_data_t *pgdat);
130void reset_all_zones_managed_pages(void);
131
132/* Low level functions */
133void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
134 struct memblock_type *type_a,
135 struct memblock_type *type_b, phys_addr_t *out_start,
136 phys_addr_t *out_end, int *out_nid);
137
138void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags,
139 struct memblock_type *type_a,
140 struct memblock_type *type_b, phys_addr_t *out_start,
141 phys_addr_t *out_end, int *out_nid);
142
143void __next_reserved_mem_region(u64 *idx, phys_addr_t *out_start,
144 phys_addr_t *out_end);
145
146void __memblock_free_late(phys_addr_t base, phys_addr_t size);
147
148/**
149 * for_each_mem_range - iterate through memblock areas from type_a and not
150 * included in type_b. Or just type_a if type_b is NULL.
151 * @i: u64 used as loop variable
152 * @type_a: ptr to memblock_type to iterate
153 * @type_b: ptr to memblock_type which excludes from the iteration
154 * @nid: node selector, %NUMA_NO_NODE for all nodes
155 * @flags: pick from blocks based on memory attributes
156 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
157 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
158 * @p_nid: ptr to int for nid of the range, can be %NULL
159 */
160#define for_each_mem_range(i, type_a, type_b, nid, flags, \
161 p_start, p_end, p_nid) \
162 for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b, \
163 p_start, p_end, p_nid); \
164 i != (u64)ULLONG_MAX; \
165 __next_mem_range(&i, nid, flags, type_a, type_b, \
166 p_start, p_end, p_nid))
167
168/**
169 * for_each_mem_range_rev - reverse iterate through memblock areas from
170 * type_a and not included in type_b. Or just type_a if type_b is NULL.
171 * @i: u64 used as loop variable
172 * @type_a: ptr to memblock_type to iterate
173 * @type_b: ptr to memblock_type which excludes from the iteration
174 * @nid: node selector, %NUMA_NO_NODE for all nodes
175 * @flags: pick from blocks based on memory attributes
176 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
177 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
178 * @p_nid: ptr to int for nid of the range, can be %NULL
179 */
180#define for_each_mem_range_rev(i, type_a, type_b, nid, flags, \
181 p_start, p_end, p_nid) \
182 for (i = (u64)ULLONG_MAX, \
183 __next_mem_range_rev(&i, nid, flags, type_a, type_b,\
184 p_start, p_end, p_nid); \
185 i != (u64)ULLONG_MAX; \
186 __next_mem_range_rev(&i, nid, flags, type_a, type_b, \
187 p_start, p_end, p_nid))
188
189/**
190 * for_each_reserved_mem_region - iterate over all reserved memblock areas
191 * @i: u64 used as loop variable
192 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
193 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
194 *
195 * Walks over reserved areas of memblock. Available as soon as memblock
196 * is initialized.
197 */
198#define for_each_reserved_mem_region(i, p_start, p_end) \
199 for (i = 0UL, __next_reserved_mem_region(&i, p_start, p_end); \
200 i != (u64)ULLONG_MAX; \
201 __next_reserved_mem_region(&i, p_start, p_end))
202
203static inline bool memblock_is_hotpluggable(struct memblock_region *m)
204{
205 return m->flags & MEMBLOCK_HOTPLUG;
206}
207
208static inline bool memblock_is_mirror(struct memblock_region *m)
209{
210 return m->flags & MEMBLOCK_MIRROR;
211}
212
213static inline bool memblock_is_nomap(struct memblock_region *m)
214{
215 return m->flags & MEMBLOCK_NOMAP;
216}
217
218#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
219int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn,
220 unsigned long *end_pfn);
221void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
222 unsigned long *out_end_pfn, int *out_nid);
223
224/**
225 * for_each_mem_pfn_range - early memory pfn range iterator
226 * @i: an integer used as loop variable
227 * @nid: node selector, %MAX_NUMNODES for all nodes
228 * @p_start: ptr to ulong for start pfn of the range, can be %NULL
229 * @p_end: ptr to ulong for end pfn of the range, can be %NULL
230 * @p_nid: ptr to int for nid of the range, can be %NULL
231 *
232 * Walks over configured memory ranges.
233 */
234#define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid) \
235 for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
236 i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
237#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
238
239#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
240void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
241 unsigned long *out_spfn,
242 unsigned long *out_epfn);
243/**
244 * for_each_free_mem_range_in_zone - iterate through zone specific free
245 * memblock areas
246 * @i: u64 used as loop variable
247 * @zone: zone in which all of the memory blocks reside
248 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
249 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
250 *
251 * Walks over free (memory && !reserved) areas of memblock in a specific
252 * zone. Available once memblock and an empty zone is initialized. The main
253 * assumption is that the zone start, end, and pgdat have been associated.
254 * This way we can use the zone to determine NUMA node, and if a given part
255 * of the memblock is valid for the zone.
256 */
257#define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end) \
258 for (i = 0, \
259 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end); \
260 i != U64_MAX; \
261 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
262
263/**
264 * for_each_free_mem_range_in_zone_from - iterate through zone specific
265 * free memblock areas from a given point
266 * @i: u64 used as loop variable
267 * @zone: zone in which all of the memory blocks reside
268 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
269 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
270 *
271 * Walks over free (memory && !reserved) areas of memblock in a specific
272 * zone, continuing from current position. Available as soon as memblock is
273 * initialized.
274 */
275#define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \
276 for (; i != U64_MAX; \
277 __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
278#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
279
280/**
281 * for_each_free_mem_range - iterate through free memblock areas
282 * @i: u64 used as loop variable
283 * @nid: node selector, %NUMA_NO_NODE for all nodes
284 * @flags: pick from blocks based on memory attributes
285 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
286 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
287 * @p_nid: ptr to int for nid of the range, can be %NULL
288 *
289 * Walks over free (memory && !reserved) areas of memblock. Available as
290 * soon as memblock is initialized.
291 */
292#define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid) \
293 for_each_mem_range(i, &memblock.memory, &memblock.reserved, \
294 nid, flags, p_start, p_end, p_nid)
295
296/**
297 * for_each_free_mem_range_reverse - rev-iterate through free memblock areas
298 * @i: u64 used as loop variable
299 * @nid: node selector, %NUMA_NO_NODE for all nodes
300 * @flags: pick from blocks based on memory attributes
301 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
302 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
303 * @p_nid: ptr to int for nid of the range, can be %NULL
304 *
305 * Walks over free (memory && !reserved) areas of memblock in reverse
306 * order. Available as soon as memblock is initialized.
307 */
308#define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end, \
309 p_nid) \
310 for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \
311 nid, flags, p_start, p_end, p_nid)
312
313#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
314int memblock_set_node(phys_addr_t base, phys_addr_t size,
315 struct memblock_type *type, int nid);
316
317static inline void memblock_set_region_node(struct memblock_region *r, int nid)
318{
319 r->nid = nid;
320}
321
322static inline int memblock_get_region_node(const struct memblock_region *r)
323{
324 return r->nid;
325}
326#else
327static inline void memblock_set_region_node(struct memblock_region *r, int nid)
328{
329}
330
331static inline int memblock_get_region_node(const struct memblock_region *r)
332{
333 return 0;
334}
335#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
336
337/* Flags for memblock allocation APIs */
338#define MEMBLOCK_ALLOC_ANYWHERE (~(phys_addr_t)0)
339#define MEMBLOCK_ALLOC_ACCESSIBLE 0
340#define MEMBLOCK_ALLOC_KASAN 1
341
342/* We are using top down, so it is safe to use 0 here */
343#define MEMBLOCK_LOW_LIMIT 0
344
345#ifndef ARCH_LOW_ADDRESS_LIMIT
346#define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
347#endif
348
349phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align,
350 phys_addr_t start, phys_addr_t end);
351phys_addr_t memblock_alloc_range_nid(phys_addr_t size,
352 phys_addr_t align, phys_addr_t start,
353 phys_addr_t end, int nid, bool exact_nid);
354phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
355
356static inline phys_addr_t memblock_phys_alloc(phys_addr_t size,
357 phys_addr_t align)
358{
359 return memblock_phys_alloc_range(size, align, 0,
360 MEMBLOCK_ALLOC_ACCESSIBLE);
361}
362
363void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align,
364 phys_addr_t min_addr, phys_addr_t max_addr,
365 int nid);
366void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
367 phys_addr_t min_addr, phys_addr_t max_addr,
368 int nid);
369void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align,
370 phys_addr_t min_addr, phys_addr_t max_addr,
371 int nid);
372
373static inline void * __init memblock_alloc(phys_addr_t size, phys_addr_t align)
374{
375 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
376 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
377}
378
379static inline void * __init memblock_alloc_raw(phys_addr_t size,
380 phys_addr_t align)
381{
382 return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT,
383 MEMBLOCK_ALLOC_ACCESSIBLE,
384 NUMA_NO_NODE);
385}
386
387static inline void * __init memblock_alloc_from(phys_addr_t size,
388 phys_addr_t align,
389 phys_addr_t min_addr)
390{
391 return memblock_alloc_try_nid(size, align, min_addr,
392 MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
393}
394
395static inline void * __init memblock_alloc_low(phys_addr_t size,
396 phys_addr_t align)
397{
398 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
399 ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE);
400}
401
402static inline void * __init memblock_alloc_node(phys_addr_t size,
403 phys_addr_t align, int nid)
404{
405 return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
406 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
407}
408
409static inline void __init memblock_free_early(phys_addr_t base,
410 phys_addr_t size)
411{
412 memblock_free(base, size);
413}
414
415static inline void __init memblock_free_early_nid(phys_addr_t base,
416 phys_addr_t size, int nid)
417{
418 memblock_free(base, size);
419}
420
421static inline void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
422{
423 __memblock_free_late(base, size);
424}
425
426/*
427 * Set the allocation direction to bottom-up or top-down.
428 */
429static inline void __init memblock_set_bottom_up(bool enable)
430{
431 memblock.bottom_up = enable;
432}
433
434/*
435 * Check if the allocation direction is bottom-up or not.
436 * if this is true, that said, memblock will allocate memory
437 * in bottom-up direction.
438 */
439static inline bool memblock_bottom_up(void)
440{
441 return memblock.bottom_up;
442}
443
444phys_addr_t memblock_phys_mem_size(void);
445phys_addr_t memblock_reserved_size(void);
446phys_addr_t memblock_mem_size(unsigned long limit_pfn);
447phys_addr_t memblock_start_of_DRAM(void);
448phys_addr_t memblock_end_of_DRAM(void);
449void memblock_enforce_memory_limit(phys_addr_t memory_limit);
450void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size);
451void memblock_mem_limit_remove_map(phys_addr_t limit);
452bool memblock_is_memory(phys_addr_t addr);
453bool memblock_is_map_memory(phys_addr_t addr);
454bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size);
455bool memblock_is_reserved(phys_addr_t addr);
456bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size);
457
458extern void __memblock_dump_all(void);
459
460static inline void memblock_dump_all(void)
461{
462 if (memblock_debug)
463 __memblock_dump_all();
464}
465
466/**
467 * memblock_set_current_limit - Set the current allocation limit to allow
468 * limiting allocations to what is currently
469 * accessible during boot
470 * @limit: New limit value (physical address)
471 */
472void memblock_set_current_limit(phys_addr_t limit);
473
474
475phys_addr_t memblock_get_current_limit(void);
476
477/*
478 * pfn conversion functions
479 *
480 * While the memory MEMBLOCKs should always be page aligned, the reserved
481 * MEMBLOCKs may not be. This accessor attempt to provide a very clear
482 * idea of what they return for such non aligned MEMBLOCKs.
483 */
484
485/**
486 * memblock_region_memory_base_pfn - get the lowest pfn of the memory region
487 * @reg: memblock_region structure
488 *
489 * Return: the lowest pfn intersecting with the memory region
490 */
491static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg)
492{
493 return PFN_UP(reg->base);
494}
495
496/**
497 * memblock_region_memory_end_pfn - get the end pfn of the memory region
498 * @reg: memblock_region structure
499 *
500 * Return: the end_pfn of the reserved region
501 */
502static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg)
503{
504 return PFN_DOWN(reg->base + reg->size);
505}
506
507/**
508 * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region
509 * @reg: memblock_region structure
510 *
511 * Return: the lowest pfn intersecting with the reserved region
512 */
513static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg)
514{
515 return PFN_DOWN(reg->base);
516}
517
518/**
519 * memblock_region_reserved_end_pfn - get the end pfn of the reserved region
520 * @reg: memblock_region structure
521 *
522 * Return: the end_pfn of the reserved region
523 */
524static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg)
525{
526 return PFN_UP(reg->base + reg->size);
527}
528
529#define for_each_memblock(memblock_type, region) \
530 for (region = memblock.memblock_type.regions; \
531 region < (memblock.memblock_type.regions + memblock.memblock_type.cnt); \
532 region++)
533
534#define for_each_memblock_type(i, memblock_type, rgn) \
535 for (i = 0, rgn = &memblock_type->regions[0]; \
536 i < memblock_type->cnt; \
537 i++, rgn = &memblock_type->regions[i])
538
539extern void *alloc_large_system_hash(const char *tablename,
540 unsigned long bucketsize,
541 unsigned long numentries,
542 int scale,
543 int flags,
544 unsigned int *_hash_shift,
545 unsigned int *_hash_mask,
546 unsigned long low_limit,
547 unsigned long high_limit);
548
549#define HASH_EARLY 0x00000001 /* Allocating during early boot? */
550#define HASH_SMALL 0x00000002 /* sub-page allocation allowed, min
551 * shift passed via *_hash_shift */
552#define HASH_ZERO 0x00000004 /* Zero allocated hash table */
553
554/* Only NUMA needs hash distribution. 64bit NUMA architectures have
555 * sufficient vmalloc space.
556 */
557#ifdef CONFIG_NUMA
558#define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT)
559extern int hashdist; /* Distribute hashes across NUMA nodes? */
560#else
561#define hashdist (0)
562#endif
563
564#ifdef CONFIG_MEMTEST
565extern void early_memtest(phys_addr_t start, phys_addr_t end);
566#else
567static inline void early_memtest(phys_addr_t start, phys_addr_t end)
568{
569}
570#endif
571
572#endif /* __KERNEL__ */
573
574#endif /* _LINUX_MEMBLOCK_H */