at v5.7 42 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/bug.h> 14#include <linux/mm.h> 15#include <linux/mmu_notifier.h> 16#include <linux/preempt.h> 17#include <linux/msi.h> 18#include <linux/slab.h> 19#include <linux/vmalloc.h> 20#include <linux/rcupdate.h> 21#include <linux/ratelimit.h> 22#include <linux/err.h> 23#include <linux/irqflags.h> 24#include <linux/context_tracking.h> 25#include <linux/irqbypass.h> 26#include <linux/swait.h> 27#include <linux/refcount.h> 28#include <linux/nospec.h> 29#include <asm/signal.h> 30 31#include <linux/kvm.h> 32#include <linux/kvm_para.h> 33 34#include <linux/kvm_types.h> 35 36#include <asm/kvm_host.h> 37 38#ifndef KVM_MAX_VCPU_ID 39#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 40#endif 41 42/* 43 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 44 * in kvm, other bits are visible for userspace which are defined in 45 * include/linux/kvm_h. 46 */ 47#define KVM_MEMSLOT_INVALID (1UL << 16) 48 49/* 50 * Bit 63 of the memslot generation number is an "update in-progress flag", 51 * e.g. is temporarily set for the duration of install_new_memslots(). 52 * This flag effectively creates a unique generation number that is used to 53 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 54 * i.e. may (or may not) have come from the previous memslots generation. 55 * 56 * This is necessary because the actual memslots update is not atomic with 57 * respect to the generation number update. Updating the generation number 58 * first would allow a vCPU to cache a spte from the old memslots using the 59 * new generation number, and updating the generation number after switching 60 * to the new memslots would allow cache hits using the old generation number 61 * to reference the defunct memslots. 62 * 63 * This mechanism is used to prevent getting hits in KVM's caches while a 64 * memslot update is in-progress, and to prevent cache hits *after* updating 65 * the actual generation number against accesses that were inserted into the 66 * cache *before* the memslots were updated. 67 */ 68#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 69 70/* Two fragments for cross MMIO pages. */ 71#define KVM_MAX_MMIO_FRAGMENTS 2 72 73#ifndef KVM_ADDRESS_SPACE_NUM 74#define KVM_ADDRESS_SPACE_NUM 1 75#endif 76 77/* 78 * For the normal pfn, the highest 12 bits should be zero, 79 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 80 * mask bit 63 to indicate the noslot pfn. 81 */ 82#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 83#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 84#define KVM_PFN_NOSLOT (0x1ULL << 63) 85 86#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 87#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 88#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 89 90/* 91 * error pfns indicate that the gfn is in slot but faild to 92 * translate it to pfn on host. 93 */ 94static inline bool is_error_pfn(kvm_pfn_t pfn) 95{ 96 return !!(pfn & KVM_PFN_ERR_MASK); 97} 98 99/* 100 * error_noslot pfns indicate that the gfn can not be 101 * translated to pfn - it is not in slot or failed to 102 * translate it to pfn. 103 */ 104static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 105{ 106 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 107} 108 109/* noslot pfn indicates that the gfn is not in slot. */ 110static inline bool is_noslot_pfn(kvm_pfn_t pfn) 111{ 112 return pfn == KVM_PFN_NOSLOT; 113} 114 115/* 116 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 117 * provide own defines and kvm_is_error_hva 118 */ 119#ifndef KVM_HVA_ERR_BAD 120 121#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 122#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 123 124static inline bool kvm_is_error_hva(unsigned long addr) 125{ 126 return addr >= PAGE_OFFSET; 127} 128 129#endif 130 131#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 132 133static inline bool is_error_page(struct page *page) 134{ 135 return IS_ERR(page); 136} 137 138#define KVM_REQUEST_MASK GENMASK(7,0) 139#define KVM_REQUEST_NO_WAKEUP BIT(8) 140#define KVM_REQUEST_WAIT BIT(9) 141/* 142 * Architecture-independent vcpu->requests bit members 143 * Bits 4-7 are reserved for more arch-independent bits. 144 */ 145#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 146#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 147#define KVM_REQ_PENDING_TIMER 2 148#define KVM_REQ_UNHALT 3 149#define KVM_REQUEST_ARCH_BASE 8 150 151#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 152 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 153 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 154}) 155#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 156 157#define KVM_USERSPACE_IRQ_SOURCE_ID 0 158#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 159 160extern struct mutex kvm_lock; 161extern struct list_head vm_list; 162 163struct kvm_io_range { 164 gpa_t addr; 165 int len; 166 struct kvm_io_device *dev; 167}; 168 169#define NR_IOBUS_DEVS 1000 170 171struct kvm_io_bus { 172 int dev_count; 173 int ioeventfd_count; 174 struct kvm_io_range range[]; 175}; 176 177enum kvm_bus { 178 KVM_MMIO_BUS, 179 KVM_PIO_BUS, 180 KVM_VIRTIO_CCW_NOTIFY_BUS, 181 KVM_FAST_MMIO_BUS, 182 KVM_NR_BUSES 183}; 184 185int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 186 int len, const void *val); 187int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 188 gpa_t addr, int len, const void *val, long cookie); 189int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 190 int len, void *val); 191int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 192 int len, struct kvm_io_device *dev); 193void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 194 struct kvm_io_device *dev); 195struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 196 gpa_t addr); 197 198#ifdef CONFIG_KVM_ASYNC_PF 199struct kvm_async_pf { 200 struct work_struct work; 201 struct list_head link; 202 struct list_head queue; 203 struct kvm_vcpu *vcpu; 204 struct mm_struct *mm; 205 gpa_t cr2_or_gpa; 206 unsigned long addr; 207 struct kvm_arch_async_pf arch; 208 bool wakeup_all; 209}; 210 211void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 212void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 213int kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 214 unsigned long hva, struct kvm_arch_async_pf *arch); 215int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 216#endif 217 218enum { 219 OUTSIDE_GUEST_MODE, 220 IN_GUEST_MODE, 221 EXITING_GUEST_MODE, 222 READING_SHADOW_PAGE_TABLES, 223}; 224 225#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 226 227struct kvm_host_map { 228 /* 229 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 230 * a 'struct page' for it. When using mem= kernel parameter some memory 231 * can be used as guest memory but they are not managed by host 232 * kernel). 233 * If 'pfn' is not managed by the host kernel, this field is 234 * initialized to KVM_UNMAPPED_PAGE. 235 */ 236 struct page *page; 237 void *hva; 238 kvm_pfn_t pfn; 239 kvm_pfn_t gfn; 240}; 241 242/* 243 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 244 * directly to check for that. 245 */ 246static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 247{ 248 return !!map->hva; 249} 250 251/* 252 * Sometimes a large or cross-page mmio needs to be broken up into separate 253 * exits for userspace servicing. 254 */ 255struct kvm_mmio_fragment { 256 gpa_t gpa; 257 void *data; 258 unsigned len; 259}; 260 261struct kvm_vcpu { 262 struct kvm *kvm; 263#ifdef CONFIG_PREEMPT_NOTIFIERS 264 struct preempt_notifier preempt_notifier; 265#endif 266 int cpu; 267 int vcpu_id; /* id given by userspace at creation */ 268 int vcpu_idx; /* index in kvm->vcpus array */ 269 int srcu_idx; 270 int mode; 271 u64 requests; 272 unsigned long guest_debug; 273 274 int pre_pcpu; 275 struct list_head blocked_vcpu_list; 276 277 struct mutex mutex; 278 struct kvm_run *run; 279 280 struct swait_queue_head wq; 281 struct pid __rcu *pid; 282 int sigset_active; 283 sigset_t sigset; 284 struct kvm_vcpu_stat stat; 285 unsigned int halt_poll_ns; 286 bool valid_wakeup; 287 288#ifdef CONFIG_HAS_IOMEM 289 int mmio_needed; 290 int mmio_read_completed; 291 int mmio_is_write; 292 int mmio_cur_fragment; 293 int mmio_nr_fragments; 294 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 295#endif 296 297#ifdef CONFIG_KVM_ASYNC_PF 298 struct { 299 u32 queued; 300 struct list_head queue; 301 struct list_head done; 302 spinlock_t lock; 303 } async_pf; 304#endif 305 306#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 307 /* 308 * Cpu relax intercept or pause loop exit optimization 309 * in_spin_loop: set when a vcpu does a pause loop exit 310 * or cpu relax intercepted. 311 * dy_eligible: indicates whether vcpu is eligible for directed yield. 312 */ 313 struct { 314 bool in_spin_loop; 315 bool dy_eligible; 316 } spin_loop; 317#endif 318 bool preempted; 319 bool ready; 320 struct kvm_vcpu_arch arch; 321 struct dentry *debugfs_dentry; 322}; 323 324static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 325{ 326 /* 327 * The memory barrier ensures a previous write to vcpu->requests cannot 328 * be reordered with the read of vcpu->mode. It pairs with the general 329 * memory barrier following the write of vcpu->mode in VCPU RUN. 330 */ 331 smp_mb__before_atomic(); 332 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 333} 334 335/* 336 * Some of the bitops functions do not support too long bitmaps. 337 * This number must be determined not to exceed such limits. 338 */ 339#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 340 341struct kvm_memory_slot { 342 gfn_t base_gfn; 343 unsigned long npages; 344 unsigned long *dirty_bitmap; 345 struct kvm_arch_memory_slot arch; 346 unsigned long userspace_addr; 347 u32 flags; 348 short id; 349}; 350 351static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 352{ 353 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 354} 355 356static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 357{ 358 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 359 360 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 361} 362 363#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 364#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 365#endif 366 367struct kvm_s390_adapter_int { 368 u64 ind_addr; 369 u64 summary_addr; 370 u64 ind_offset; 371 u32 summary_offset; 372 u32 adapter_id; 373}; 374 375struct kvm_hv_sint { 376 u32 vcpu; 377 u32 sint; 378}; 379 380struct kvm_kernel_irq_routing_entry { 381 u32 gsi; 382 u32 type; 383 int (*set)(struct kvm_kernel_irq_routing_entry *e, 384 struct kvm *kvm, int irq_source_id, int level, 385 bool line_status); 386 union { 387 struct { 388 unsigned irqchip; 389 unsigned pin; 390 } irqchip; 391 struct { 392 u32 address_lo; 393 u32 address_hi; 394 u32 data; 395 u32 flags; 396 u32 devid; 397 } msi; 398 struct kvm_s390_adapter_int adapter; 399 struct kvm_hv_sint hv_sint; 400 }; 401 struct hlist_node link; 402}; 403 404#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 405struct kvm_irq_routing_table { 406 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 407 u32 nr_rt_entries; 408 /* 409 * Array indexed by gsi. Each entry contains list of irq chips 410 * the gsi is connected to. 411 */ 412 struct hlist_head map[0]; 413}; 414#endif 415 416#ifndef KVM_PRIVATE_MEM_SLOTS 417#define KVM_PRIVATE_MEM_SLOTS 0 418#endif 419 420#ifndef KVM_MEM_SLOTS_NUM 421#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS) 422#endif 423 424#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 425static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 426{ 427 return 0; 428} 429#endif 430 431/* 432 * Note: 433 * memslots are not sorted by id anymore, please use id_to_memslot() 434 * to get the memslot by its id. 435 */ 436struct kvm_memslots { 437 u64 generation; 438 /* The mapping table from slot id to the index in memslots[]. */ 439 short id_to_index[KVM_MEM_SLOTS_NUM]; 440 atomic_t lru_slot; 441 int used_slots; 442 struct kvm_memory_slot memslots[]; 443}; 444 445struct kvm { 446 spinlock_t mmu_lock; 447 struct mutex slots_lock; 448 struct mm_struct *mm; /* userspace tied to this vm */ 449 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 450 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 451 452 /* 453 * created_vcpus is protected by kvm->lock, and is incremented 454 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 455 * incremented after storing the kvm_vcpu pointer in vcpus, 456 * and is accessed atomically. 457 */ 458 atomic_t online_vcpus; 459 int created_vcpus; 460 int last_boosted_vcpu; 461 struct list_head vm_list; 462 struct mutex lock; 463 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 464#ifdef CONFIG_HAVE_KVM_EVENTFD 465 struct { 466 spinlock_t lock; 467 struct list_head items; 468 struct list_head resampler_list; 469 struct mutex resampler_lock; 470 } irqfds; 471 struct list_head ioeventfds; 472#endif 473 struct kvm_vm_stat stat; 474 struct kvm_arch arch; 475 refcount_t users_count; 476#ifdef CONFIG_KVM_MMIO 477 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 478 spinlock_t ring_lock; 479 struct list_head coalesced_zones; 480#endif 481 482 struct mutex irq_lock; 483#ifdef CONFIG_HAVE_KVM_IRQCHIP 484 /* 485 * Update side is protected by irq_lock. 486 */ 487 struct kvm_irq_routing_table __rcu *irq_routing; 488#endif 489#ifdef CONFIG_HAVE_KVM_IRQFD 490 struct hlist_head irq_ack_notifier_list; 491#endif 492 493#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 494 struct mmu_notifier mmu_notifier; 495 unsigned long mmu_notifier_seq; 496 long mmu_notifier_count; 497#endif 498 long tlbs_dirty; 499 struct list_head devices; 500 u64 manual_dirty_log_protect; 501 struct dentry *debugfs_dentry; 502 struct kvm_stat_data **debugfs_stat_data; 503 struct srcu_struct srcu; 504 struct srcu_struct irq_srcu; 505 pid_t userspace_pid; 506}; 507 508#define kvm_err(fmt, ...) \ 509 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 510#define kvm_info(fmt, ...) \ 511 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 512#define kvm_debug(fmt, ...) \ 513 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 514#define kvm_debug_ratelimited(fmt, ...) \ 515 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 516 ## __VA_ARGS__) 517#define kvm_pr_unimpl(fmt, ...) \ 518 pr_err_ratelimited("kvm [%i]: " fmt, \ 519 task_tgid_nr(current), ## __VA_ARGS__) 520 521/* The guest did something we don't support. */ 522#define vcpu_unimpl(vcpu, fmt, ...) \ 523 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 524 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 525 526#define vcpu_debug(vcpu, fmt, ...) \ 527 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 528#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 529 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 530 ## __VA_ARGS__) 531#define vcpu_err(vcpu, fmt, ...) \ 532 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 533 534static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 535{ 536 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 537} 538 539static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 540{ 541 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 542 lockdep_is_held(&kvm->slots_lock) || 543 !refcount_read(&kvm->users_count)); 544} 545 546static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 547{ 548 int num_vcpus = atomic_read(&kvm->online_vcpus); 549 i = array_index_nospec(i, num_vcpus); 550 551 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 552 smp_rmb(); 553 return kvm->vcpus[i]; 554} 555 556#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 557 for (idx = 0; \ 558 idx < atomic_read(&kvm->online_vcpus) && \ 559 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 560 idx++) 561 562static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 563{ 564 struct kvm_vcpu *vcpu = NULL; 565 int i; 566 567 if (id < 0) 568 return NULL; 569 if (id < KVM_MAX_VCPUS) 570 vcpu = kvm_get_vcpu(kvm, id); 571 if (vcpu && vcpu->vcpu_id == id) 572 return vcpu; 573 kvm_for_each_vcpu(i, vcpu, kvm) 574 if (vcpu->vcpu_id == id) 575 return vcpu; 576 return NULL; 577} 578 579static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 580{ 581 return vcpu->vcpu_idx; 582} 583 584#define kvm_for_each_memslot(memslot, slots) \ 585 for (memslot = &slots->memslots[0]; \ 586 memslot < slots->memslots + slots->used_slots; memslot++) \ 587 if (WARN_ON_ONCE(!memslot->npages)) { \ 588 } else 589 590void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 591 592void vcpu_load(struct kvm_vcpu *vcpu); 593void vcpu_put(struct kvm_vcpu *vcpu); 594 595#ifdef __KVM_HAVE_IOAPIC 596void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 597void kvm_arch_post_irq_routing_update(struct kvm *kvm); 598#else 599static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 600{ 601} 602static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 603{ 604} 605#endif 606 607#ifdef CONFIG_HAVE_KVM_IRQFD 608int kvm_irqfd_init(void); 609void kvm_irqfd_exit(void); 610#else 611static inline int kvm_irqfd_init(void) 612{ 613 return 0; 614} 615 616static inline void kvm_irqfd_exit(void) 617{ 618} 619#endif 620int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 621 struct module *module); 622void kvm_exit(void); 623 624void kvm_get_kvm(struct kvm *kvm); 625void kvm_put_kvm(struct kvm *kvm); 626void kvm_put_kvm_no_destroy(struct kvm *kvm); 627 628static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 629{ 630 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 631 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 632 lockdep_is_held(&kvm->slots_lock) || 633 !refcount_read(&kvm->users_count)); 634} 635 636static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 637{ 638 return __kvm_memslots(kvm, 0); 639} 640 641static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 642{ 643 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 644 645 return __kvm_memslots(vcpu->kvm, as_id); 646} 647 648static inline 649struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 650{ 651 int index = slots->id_to_index[id]; 652 struct kvm_memory_slot *slot; 653 654 if (index < 0) 655 return NULL; 656 657 slot = &slots->memslots[index]; 658 659 WARN_ON(slot->id != id); 660 return slot; 661} 662 663/* 664 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 665 * - create a new memory slot 666 * - delete an existing memory slot 667 * - modify an existing memory slot 668 * -- move it in the guest physical memory space 669 * -- just change its flags 670 * 671 * Since flags can be changed by some of these operations, the following 672 * differentiation is the best we can do for __kvm_set_memory_region(): 673 */ 674enum kvm_mr_change { 675 KVM_MR_CREATE, 676 KVM_MR_DELETE, 677 KVM_MR_MOVE, 678 KVM_MR_FLAGS_ONLY, 679}; 680 681int kvm_set_memory_region(struct kvm *kvm, 682 const struct kvm_userspace_memory_region *mem); 683int __kvm_set_memory_region(struct kvm *kvm, 684 const struct kvm_userspace_memory_region *mem); 685void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 686void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 687int kvm_arch_prepare_memory_region(struct kvm *kvm, 688 struct kvm_memory_slot *memslot, 689 const struct kvm_userspace_memory_region *mem, 690 enum kvm_mr_change change); 691void kvm_arch_commit_memory_region(struct kvm *kvm, 692 const struct kvm_userspace_memory_region *mem, 693 struct kvm_memory_slot *old, 694 const struct kvm_memory_slot *new, 695 enum kvm_mr_change change); 696/* flush all memory translations */ 697void kvm_arch_flush_shadow_all(struct kvm *kvm); 698/* flush memory translations pointing to 'slot' */ 699void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 700 struct kvm_memory_slot *slot); 701 702int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 703 struct page **pages, int nr_pages); 704 705struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 706unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 707unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 708unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 709unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 710 bool *writable); 711void kvm_release_page_clean(struct page *page); 712void kvm_release_page_dirty(struct page *page); 713void kvm_set_page_accessed(struct page *page); 714 715kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 716kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 717 bool *writable); 718kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 719kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 720kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 721 bool atomic, bool *async, bool write_fault, 722 bool *writable); 723 724void kvm_release_pfn_clean(kvm_pfn_t pfn); 725void kvm_release_pfn_dirty(kvm_pfn_t pfn); 726void kvm_set_pfn_dirty(kvm_pfn_t pfn); 727void kvm_set_pfn_accessed(kvm_pfn_t pfn); 728void kvm_get_pfn(kvm_pfn_t pfn); 729 730void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 731int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 732 int len); 733int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 734int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 735 void *data, unsigned long len); 736int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 737 int offset, int len); 738int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 739 unsigned long len); 740int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 741 void *data, unsigned long len); 742int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 743 void *data, unsigned int offset, 744 unsigned long len); 745int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 746 gpa_t gpa, unsigned long len); 747 748#define __kvm_put_guest(kvm, gfn, offset, value, type) \ 749({ \ 750 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 751 type __user *__uaddr = (type __user *)(__addr + offset); \ 752 int __ret = -EFAULT; \ 753 \ 754 if (!kvm_is_error_hva(__addr)) \ 755 __ret = put_user(value, __uaddr); \ 756 if (!__ret) \ 757 mark_page_dirty(kvm, gfn); \ 758 __ret; \ 759}) 760 761#define kvm_put_guest(kvm, gpa, value, type) \ 762({ \ 763 gpa_t __gpa = gpa; \ 764 struct kvm *__kvm = kvm; \ 765 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 766 offset_in_page(__gpa), (value), type); \ 767}) 768 769int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len); 770int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 771struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 772bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 773unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 774void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 775 776struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 777struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 778kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 779kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 780int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 781int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 782 struct gfn_to_pfn_cache *cache, bool atomic); 783struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 784void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 785int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 786 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 787unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 788unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 789int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 790 int len); 791int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 792 unsigned long len); 793int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 794 unsigned long len); 795int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 796 int offset, int len); 797int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 798 unsigned long len); 799void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 800 801void kvm_sigset_activate(struct kvm_vcpu *vcpu); 802void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 803 804void kvm_vcpu_block(struct kvm_vcpu *vcpu); 805void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 806void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 807bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 808void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 809int kvm_vcpu_yield_to(struct kvm_vcpu *target); 810void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 811 812void kvm_flush_remote_tlbs(struct kvm *kvm); 813void kvm_reload_remote_mmus(struct kvm *kvm); 814 815bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 816 struct kvm_vcpu *except, 817 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 818bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 819bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 820 struct kvm_vcpu *except); 821bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 822 unsigned long *vcpu_bitmap); 823 824long kvm_arch_dev_ioctl(struct file *filp, 825 unsigned int ioctl, unsigned long arg); 826long kvm_arch_vcpu_ioctl(struct file *filp, 827 unsigned int ioctl, unsigned long arg); 828vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 829 830int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 831 832void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 833 struct kvm_memory_slot *slot, 834 gfn_t gfn_offset, 835 unsigned long mask); 836void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 837 838#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 839void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 840 struct kvm_memory_slot *memslot); 841#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 842int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 843int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 844 int *is_dirty, struct kvm_memory_slot **memslot); 845#endif 846 847int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 848 bool line_status); 849int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 850 struct kvm_enable_cap *cap); 851long kvm_arch_vm_ioctl(struct file *filp, 852 unsigned int ioctl, unsigned long arg); 853 854int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 855int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 856 857int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 858 struct kvm_translation *tr); 859 860int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 861int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 862int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 863 struct kvm_sregs *sregs); 864int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 865 struct kvm_sregs *sregs); 866int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 867 struct kvm_mp_state *mp_state); 868int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 869 struct kvm_mp_state *mp_state); 870int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 871 struct kvm_guest_debug *dbg); 872int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run); 873 874int kvm_arch_init(void *opaque); 875void kvm_arch_exit(void); 876 877void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 878 879void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 880void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 881int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 882int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 883void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 884void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 885 886#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 887void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu); 888#endif 889 890int kvm_arch_hardware_enable(void); 891void kvm_arch_hardware_disable(void); 892int kvm_arch_hardware_setup(void *opaque); 893void kvm_arch_hardware_unsetup(void); 894int kvm_arch_check_processor_compat(void *opaque); 895int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 896bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 897int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 898bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 899int kvm_arch_post_init_vm(struct kvm *kvm); 900void kvm_arch_pre_destroy_vm(struct kvm *kvm); 901 902#ifndef __KVM_HAVE_ARCH_VM_ALLOC 903/* 904 * All architectures that want to use vzalloc currently also 905 * need their own kvm_arch_alloc_vm implementation. 906 */ 907static inline struct kvm *kvm_arch_alloc_vm(void) 908{ 909 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 910} 911 912static inline void kvm_arch_free_vm(struct kvm *kvm) 913{ 914 kfree(kvm); 915} 916#endif 917 918#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 919static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 920{ 921 return -ENOTSUPP; 922} 923#endif 924 925#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 926void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 927void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 928bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 929#else 930static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 931{ 932} 933 934static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 935{ 936} 937 938static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 939{ 940 return false; 941} 942#endif 943#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 944void kvm_arch_start_assignment(struct kvm *kvm); 945void kvm_arch_end_assignment(struct kvm *kvm); 946bool kvm_arch_has_assigned_device(struct kvm *kvm); 947#else 948static inline void kvm_arch_start_assignment(struct kvm *kvm) 949{ 950} 951 952static inline void kvm_arch_end_assignment(struct kvm *kvm) 953{ 954} 955 956static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 957{ 958 return false; 959} 960#endif 961 962static inline struct swait_queue_head *kvm_arch_vcpu_wq(struct kvm_vcpu *vcpu) 963{ 964#ifdef __KVM_HAVE_ARCH_WQP 965 return vcpu->arch.wqp; 966#else 967 return &vcpu->wq; 968#endif 969} 970 971#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 972/* 973 * returns true if the virtual interrupt controller is initialized and 974 * ready to accept virtual IRQ. On some architectures the virtual interrupt 975 * controller is dynamically instantiated and this is not always true. 976 */ 977bool kvm_arch_intc_initialized(struct kvm *kvm); 978#else 979static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 980{ 981 return true; 982} 983#endif 984 985int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 986void kvm_arch_destroy_vm(struct kvm *kvm); 987void kvm_arch_sync_events(struct kvm *kvm); 988 989int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 990 991bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 992bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 993bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 994 995struct kvm_irq_ack_notifier { 996 struct hlist_node link; 997 unsigned gsi; 998 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 999}; 1000 1001int kvm_irq_map_gsi(struct kvm *kvm, 1002 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1003int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1004 1005int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1006 bool line_status); 1007int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1008 int irq_source_id, int level, bool line_status); 1009int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1010 struct kvm *kvm, int irq_source_id, 1011 int level, bool line_status); 1012bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1013void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1014void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1015void kvm_register_irq_ack_notifier(struct kvm *kvm, 1016 struct kvm_irq_ack_notifier *kian); 1017void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1018 struct kvm_irq_ack_notifier *kian); 1019int kvm_request_irq_source_id(struct kvm *kvm); 1020void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1021bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1022 1023/* 1024 * search_memslots() and __gfn_to_memslot() are here because they are 1025 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1026 * gfn_to_memslot() itself isn't here as an inline because that would 1027 * bloat other code too much. 1028 * 1029 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1030 */ 1031static inline struct kvm_memory_slot * 1032search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1033{ 1034 int start = 0, end = slots->used_slots; 1035 int slot = atomic_read(&slots->lru_slot); 1036 struct kvm_memory_slot *memslots = slots->memslots; 1037 1038 if (unlikely(!slots->used_slots)) 1039 return NULL; 1040 1041 if (gfn >= memslots[slot].base_gfn && 1042 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1043 return &memslots[slot]; 1044 1045 while (start < end) { 1046 slot = start + (end - start) / 2; 1047 1048 if (gfn >= memslots[slot].base_gfn) 1049 end = slot; 1050 else 1051 start = slot + 1; 1052 } 1053 1054 if (start < slots->used_slots && gfn >= memslots[start].base_gfn && 1055 gfn < memslots[start].base_gfn + memslots[start].npages) { 1056 atomic_set(&slots->lru_slot, start); 1057 return &memslots[start]; 1058 } 1059 1060 return NULL; 1061} 1062 1063static inline struct kvm_memory_slot * 1064__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1065{ 1066 return search_memslots(slots, gfn); 1067} 1068 1069static inline unsigned long 1070__gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn) 1071{ 1072 return slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE; 1073} 1074 1075static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1076{ 1077 return gfn_to_memslot(kvm, gfn)->id; 1078} 1079 1080static inline gfn_t 1081hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1082{ 1083 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1084 1085 return slot->base_gfn + gfn_offset; 1086} 1087 1088static inline gpa_t gfn_to_gpa(gfn_t gfn) 1089{ 1090 return (gpa_t)gfn << PAGE_SHIFT; 1091} 1092 1093static inline gfn_t gpa_to_gfn(gpa_t gpa) 1094{ 1095 return (gfn_t)(gpa >> PAGE_SHIFT); 1096} 1097 1098static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1099{ 1100 return (hpa_t)pfn << PAGE_SHIFT; 1101} 1102 1103static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1104 gpa_t gpa) 1105{ 1106 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1107} 1108 1109static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1110{ 1111 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1112 1113 return kvm_is_error_hva(hva); 1114} 1115 1116enum kvm_stat_kind { 1117 KVM_STAT_VM, 1118 KVM_STAT_VCPU, 1119}; 1120 1121struct kvm_stat_data { 1122 struct kvm *kvm; 1123 struct kvm_stats_debugfs_item *dbgfs_item; 1124}; 1125 1126struct kvm_stats_debugfs_item { 1127 const char *name; 1128 int offset; 1129 enum kvm_stat_kind kind; 1130 int mode; 1131}; 1132 1133#define KVM_DBGFS_GET_MODE(dbgfs_item) \ 1134 ((dbgfs_item)->mode ? (dbgfs_item)->mode : 0644) 1135 1136extern struct kvm_stats_debugfs_item debugfs_entries[]; 1137extern struct dentry *kvm_debugfs_dir; 1138 1139#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1140static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1141{ 1142 if (unlikely(kvm->mmu_notifier_count)) 1143 return 1; 1144 /* 1145 * Ensure the read of mmu_notifier_count happens before the read 1146 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1147 * mmu_notifier_invalidate_range_end to make sure that the caller 1148 * either sees the old (non-zero) value of mmu_notifier_count or 1149 * the new (incremented) value of mmu_notifier_seq. 1150 * PowerPC Book3s HV KVM calls this under a per-page lock 1151 * rather than under kvm->mmu_lock, for scalability, so 1152 * can't rely on kvm->mmu_lock to keep things ordered. 1153 */ 1154 smp_rmb(); 1155 if (kvm->mmu_notifier_seq != mmu_seq) 1156 return 1; 1157 return 0; 1158} 1159#endif 1160 1161#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1162 1163#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1164 1165bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1166int kvm_set_irq_routing(struct kvm *kvm, 1167 const struct kvm_irq_routing_entry *entries, 1168 unsigned nr, 1169 unsigned flags); 1170int kvm_set_routing_entry(struct kvm *kvm, 1171 struct kvm_kernel_irq_routing_entry *e, 1172 const struct kvm_irq_routing_entry *ue); 1173void kvm_free_irq_routing(struct kvm *kvm); 1174 1175#else 1176 1177static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1178 1179#endif 1180 1181int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1182 1183#ifdef CONFIG_HAVE_KVM_EVENTFD 1184 1185void kvm_eventfd_init(struct kvm *kvm); 1186int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1187 1188#ifdef CONFIG_HAVE_KVM_IRQFD 1189int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1190void kvm_irqfd_release(struct kvm *kvm); 1191void kvm_irq_routing_update(struct kvm *); 1192#else 1193static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1194{ 1195 return -EINVAL; 1196} 1197 1198static inline void kvm_irqfd_release(struct kvm *kvm) {} 1199#endif 1200 1201#else 1202 1203static inline void kvm_eventfd_init(struct kvm *kvm) {} 1204 1205static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1206{ 1207 return -EINVAL; 1208} 1209 1210static inline void kvm_irqfd_release(struct kvm *kvm) {} 1211 1212#ifdef CONFIG_HAVE_KVM_IRQCHIP 1213static inline void kvm_irq_routing_update(struct kvm *kvm) 1214{ 1215} 1216#endif 1217 1218static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1219{ 1220 return -ENOSYS; 1221} 1222 1223#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1224 1225void kvm_arch_irq_routing_update(struct kvm *kvm); 1226 1227static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1228{ 1229 /* 1230 * Ensure the rest of the request is published to kvm_check_request's 1231 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1232 */ 1233 smp_wmb(); 1234 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1235} 1236 1237static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1238{ 1239 return READ_ONCE(vcpu->requests); 1240} 1241 1242static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1243{ 1244 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1245} 1246 1247static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1248{ 1249 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1250} 1251 1252static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1253{ 1254 if (kvm_test_request(req, vcpu)) { 1255 kvm_clear_request(req, vcpu); 1256 1257 /* 1258 * Ensure the rest of the request is visible to kvm_check_request's 1259 * caller. Paired with the smp_wmb in kvm_make_request. 1260 */ 1261 smp_mb__after_atomic(); 1262 return true; 1263 } else { 1264 return false; 1265 } 1266} 1267 1268extern bool kvm_rebooting; 1269 1270extern unsigned int halt_poll_ns; 1271extern unsigned int halt_poll_ns_grow; 1272extern unsigned int halt_poll_ns_grow_start; 1273extern unsigned int halt_poll_ns_shrink; 1274 1275struct kvm_device { 1276 const struct kvm_device_ops *ops; 1277 struct kvm *kvm; 1278 void *private; 1279 struct list_head vm_node; 1280}; 1281 1282/* create, destroy, and name are mandatory */ 1283struct kvm_device_ops { 1284 const char *name; 1285 1286 /* 1287 * create is called holding kvm->lock and any operations not suitable 1288 * to do while holding the lock should be deferred to init (see 1289 * below). 1290 */ 1291 int (*create)(struct kvm_device *dev, u32 type); 1292 1293 /* 1294 * init is called after create if create is successful and is called 1295 * outside of holding kvm->lock. 1296 */ 1297 void (*init)(struct kvm_device *dev); 1298 1299 /* 1300 * Destroy is responsible for freeing dev. 1301 * 1302 * Destroy may be called before or after destructors are called 1303 * on emulated I/O regions, depending on whether a reference is 1304 * held by a vcpu or other kvm component that gets destroyed 1305 * after the emulated I/O. 1306 */ 1307 void (*destroy)(struct kvm_device *dev); 1308 1309 /* 1310 * Release is an alternative method to free the device. It is 1311 * called when the device file descriptor is closed. Once 1312 * release is called, the destroy method will not be called 1313 * anymore as the device is removed from the device list of 1314 * the VM. kvm->lock is held. 1315 */ 1316 void (*release)(struct kvm_device *dev); 1317 1318 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1319 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1320 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1321 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1322 unsigned long arg); 1323 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1324}; 1325 1326void kvm_device_get(struct kvm_device *dev); 1327void kvm_device_put(struct kvm_device *dev); 1328struct kvm_device *kvm_device_from_filp(struct file *filp); 1329int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1330void kvm_unregister_device_ops(u32 type); 1331 1332extern struct kvm_device_ops kvm_mpic_ops; 1333extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1334extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1335 1336#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1337 1338static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1339{ 1340 vcpu->spin_loop.in_spin_loop = val; 1341} 1342static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1343{ 1344 vcpu->spin_loop.dy_eligible = val; 1345} 1346 1347#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1348 1349static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1350{ 1351} 1352 1353static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1354{ 1355} 1356#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1357 1358struct kvm_vcpu *kvm_get_running_vcpu(void); 1359struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1360 1361#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1362bool kvm_arch_has_irq_bypass(void); 1363int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1364 struct irq_bypass_producer *); 1365void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1366 struct irq_bypass_producer *); 1367void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1368void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1369int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1370 uint32_t guest_irq, bool set); 1371#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1372 1373#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1374/* If we wakeup during the poll time, was it a sucessful poll? */ 1375static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1376{ 1377 return vcpu->valid_wakeup; 1378} 1379 1380#else 1381static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1382{ 1383 return true; 1384} 1385#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1386 1387#ifdef CONFIG_HAVE_KVM_NO_POLL 1388/* Callback that tells if we must not poll */ 1389bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1390#else 1391static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1392{ 1393 return false; 1394} 1395#endif /* CONFIG_HAVE_KVM_NO_POLL */ 1396 1397#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1398long kvm_arch_vcpu_async_ioctl(struct file *filp, 1399 unsigned int ioctl, unsigned long arg); 1400#else 1401static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1402 unsigned int ioctl, 1403 unsigned long arg) 1404{ 1405 return -ENOIOCTLCMD; 1406} 1407#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1408 1409int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1410 unsigned long start, unsigned long end, bool blockable); 1411 1412#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1413int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1414#else 1415static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1416{ 1417 return 0; 1418} 1419#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1420 1421typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1422 1423int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1424 uintptr_t data, const char *name, 1425 struct task_struct **thread_ptr); 1426 1427#endif