at v5.7 24 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_GFP_H 3#define __LINUX_GFP_H 4 5#include <linux/mmdebug.h> 6#include <linux/mmzone.h> 7#include <linux/stddef.h> 8#include <linux/linkage.h> 9#include <linux/topology.h> 10 11struct vm_area_struct; 12 13/* 14 * In case of changes, please don't forget to update 15 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c 16 */ 17 18/* Plain integer GFP bitmasks. Do not use this directly. */ 19#define ___GFP_DMA 0x01u 20#define ___GFP_HIGHMEM 0x02u 21#define ___GFP_DMA32 0x04u 22#define ___GFP_MOVABLE 0x08u 23#define ___GFP_RECLAIMABLE 0x10u 24#define ___GFP_HIGH 0x20u 25#define ___GFP_IO 0x40u 26#define ___GFP_FS 0x80u 27#define ___GFP_ZERO 0x100u 28#define ___GFP_ATOMIC 0x200u 29#define ___GFP_DIRECT_RECLAIM 0x400u 30#define ___GFP_KSWAPD_RECLAIM 0x800u 31#define ___GFP_WRITE 0x1000u 32#define ___GFP_NOWARN 0x2000u 33#define ___GFP_RETRY_MAYFAIL 0x4000u 34#define ___GFP_NOFAIL 0x8000u 35#define ___GFP_NORETRY 0x10000u 36#define ___GFP_MEMALLOC 0x20000u 37#define ___GFP_COMP 0x40000u 38#define ___GFP_NOMEMALLOC 0x80000u 39#define ___GFP_HARDWALL 0x100000u 40#define ___GFP_THISNODE 0x200000u 41#define ___GFP_ACCOUNT 0x400000u 42#ifdef CONFIG_LOCKDEP 43#define ___GFP_NOLOCKDEP 0x800000u 44#else 45#define ___GFP_NOLOCKDEP 0 46#endif 47/* If the above are modified, __GFP_BITS_SHIFT may need updating */ 48 49/* 50 * Physical address zone modifiers (see linux/mmzone.h - low four bits) 51 * 52 * Do not put any conditional on these. If necessary modify the definitions 53 * without the underscores and use them consistently. The definitions here may 54 * be used in bit comparisons. 55 */ 56#define __GFP_DMA ((__force gfp_t)___GFP_DMA) 57#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM) 58#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32) 59#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */ 60#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE) 61 62/** 63 * DOC: Page mobility and placement hints 64 * 65 * Page mobility and placement hints 66 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 67 * 68 * These flags provide hints about how mobile the page is. Pages with similar 69 * mobility are placed within the same pageblocks to minimise problems due 70 * to external fragmentation. 71 * 72 * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be 73 * moved by page migration during memory compaction or can be reclaimed. 74 * 75 * %__GFP_RECLAIMABLE is used for slab allocations that specify 76 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers. 77 * 78 * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible, 79 * these pages will be spread between local zones to avoid all the dirty 80 * pages being in one zone (fair zone allocation policy). 81 * 82 * %__GFP_HARDWALL enforces the cpuset memory allocation policy. 83 * 84 * %__GFP_THISNODE forces the allocation to be satisfied from the requested 85 * node with no fallbacks or placement policy enforcements. 86 * 87 * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg. 88 */ 89#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) 90#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) 91#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) 92#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE) 93#define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT) 94 95/** 96 * DOC: Watermark modifiers 97 * 98 * Watermark modifiers -- controls access to emergency reserves 99 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 100 * 101 * %__GFP_HIGH indicates that the caller is high-priority and that granting 102 * the request is necessary before the system can make forward progress. 103 * For example, creating an IO context to clean pages. 104 * 105 * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is 106 * high priority. Users are typically interrupt handlers. This may be 107 * used in conjunction with %__GFP_HIGH 108 * 109 * %__GFP_MEMALLOC allows access to all memory. This should only be used when 110 * the caller guarantees the allocation will allow more memory to be freed 111 * very shortly e.g. process exiting or swapping. Users either should 112 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS). 113 * 114 * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves. 115 * This takes precedence over the %__GFP_MEMALLOC flag if both are set. 116 */ 117#define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC) 118#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) 119#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC) 120#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) 121 122/** 123 * DOC: Reclaim modifiers 124 * 125 * Reclaim modifiers 126 * ~~~~~~~~~~~~~~~~~ 127 * Please note that all the following flags are only applicable to sleepable 128 * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them). 129 * 130 * %__GFP_IO can start physical IO. 131 * 132 * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the 133 * allocator recursing into the filesystem which might already be holding 134 * locks. 135 * 136 * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim. 137 * This flag can be cleared to avoid unnecessary delays when a fallback 138 * option is available. 139 * 140 * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when 141 * the low watermark is reached and have it reclaim pages until the high 142 * watermark is reached. A caller may wish to clear this flag when fallback 143 * options are available and the reclaim is likely to disrupt the system. The 144 * canonical example is THP allocation where a fallback is cheap but 145 * reclaim/compaction may cause indirect stalls. 146 * 147 * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim. 148 * 149 * The default allocator behavior depends on the request size. We have a concept 150 * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER). 151 * !costly allocations are too essential to fail so they are implicitly 152 * non-failing by default (with some exceptions like OOM victims might fail so 153 * the caller still has to check for failures) while costly requests try to be 154 * not disruptive and back off even without invoking the OOM killer. 155 * The following three modifiers might be used to override some of these 156 * implicit rules 157 * 158 * %__GFP_NORETRY: The VM implementation will try only very lightweight 159 * memory direct reclaim to get some memory under memory pressure (thus 160 * it can sleep). It will avoid disruptive actions like OOM killer. The 161 * caller must handle the failure which is quite likely to happen under 162 * heavy memory pressure. The flag is suitable when failure can easily be 163 * handled at small cost, such as reduced throughput 164 * 165 * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim 166 * procedures that have previously failed if there is some indication 167 * that progress has been made else where. It can wait for other 168 * tasks to attempt high level approaches to freeing memory such as 169 * compaction (which removes fragmentation) and page-out. 170 * There is still a definite limit to the number of retries, but it is 171 * a larger limit than with %__GFP_NORETRY. 172 * Allocations with this flag may fail, but only when there is 173 * genuinely little unused memory. While these allocations do not 174 * directly trigger the OOM killer, their failure indicates that 175 * the system is likely to need to use the OOM killer soon. The 176 * caller must handle failure, but can reasonably do so by failing 177 * a higher-level request, or completing it only in a much less 178 * efficient manner. 179 * If the allocation does fail, and the caller is in a position to 180 * free some non-essential memory, doing so could benefit the system 181 * as a whole. 182 * 183 * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller 184 * cannot handle allocation failures. The allocation could block 185 * indefinitely but will never return with failure. Testing for 186 * failure is pointless. 187 * New users should be evaluated carefully (and the flag should be 188 * used only when there is no reasonable failure policy) but it is 189 * definitely preferable to use the flag rather than opencode endless 190 * loop around allocator. 191 * Using this flag for costly allocations is _highly_ discouraged. 192 */ 193#define __GFP_IO ((__force gfp_t)___GFP_IO) 194#define __GFP_FS ((__force gfp_t)___GFP_FS) 195#define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */ 196#define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */ 197#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM)) 198#define __GFP_RETRY_MAYFAIL ((__force gfp_t)___GFP_RETRY_MAYFAIL) 199#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) 200#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) 201 202/** 203 * DOC: Action modifiers 204 * 205 * Action modifiers 206 * ~~~~~~~~~~~~~~~~ 207 * 208 * %__GFP_NOWARN suppresses allocation failure reports. 209 * 210 * %__GFP_COMP address compound page metadata. 211 * 212 * %__GFP_ZERO returns a zeroed page on success. 213 */ 214#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) 215#define __GFP_COMP ((__force gfp_t)___GFP_COMP) 216#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) 217 218/* Disable lockdep for GFP context tracking */ 219#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP) 220 221/* Room for N __GFP_FOO bits */ 222#define __GFP_BITS_SHIFT (23 + IS_ENABLED(CONFIG_LOCKDEP)) 223#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1)) 224 225/** 226 * DOC: Useful GFP flag combinations 227 * 228 * Useful GFP flag combinations 229 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 230 * 231 * Useful GFP flag combinations that are commonly used. It is recommended 232 * that subsystems start with one of these combinations and then set/clear 233 * %__GFP_FOO flags as necessary. 234 * 235 * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower 236 * watermark is applied to allow access to "atomic reserves" 237 * 238 * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires 239 * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim. 240 * 241 * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is 242 * accounted to kmemcg. 243 * 244 * %GFP_NOWAIT is for kernel allocations that should not stall for direct 245 * reclaim, start physical IO or use any filesystem callback. 246 * 247 * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages 248 * that do not require the starting of any physical IO. 249 * Please try to avoid using this flag directly and instead use 250 * memalloc_noio_{save,restore} to mark the whole scope which cannot 251 * perform any IO with a short explanation why. All allocation requests 252 * will inherit GFP_NOIO implicitly. 253 * 254 * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces. 255 * Please try to avoid using this flag directly and instead use 256 * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't 257 * recurse into the FS layer with a short explanation why. All allocation 258 * requests will inherit GFP_NOFS implicitly. 259 * 260 * %GFP_USER is for userspace allocations that also need to be directly 261 * accessibly by the kernel or hardware. It is typically used by hardware 262 * for buffers that are mapped to userspace (e.g. graphics) that hardware 263 * still must DMA to. cpuset limits are enforced for these allocations. 264 * 265 * %GFP_DMA exists for historical reasons and should be avoided where possible. 266 * The flags indicates that the caller requires that the lowest zone be 267 * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but 268 * it would require careful auditing as some users really require it and 269 * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the 270 * lowest zone as a type of emergency reserve. 271 * 272 * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit 273 * address. 274 * 275 * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace, 276 * do not need to be directly accessible by the kernel but that cannot 277 * move once in use. An example may be a hardware allocation that maps 278 * data directly into userspace but has no addressing limitations. 279 * 280 * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not 281 * need direct access to but can use kmap() when access is required. They 282 * are expected to be movable via page reclaim or page migration. Typically, 283 * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE. 284 * 285 * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They 286 * are compound allocations that will generally fail quickly if memory is not 287 * available and will not wake kswapd/kcompactd on failure. The _LIGHT 288 * version does not attempt reclaim/compaction at all and is by default used 289 * in page fault path, while the non-light is used by khugepaged. 290 */ 291#define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM) 292#define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS) 293#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT) 294#define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM) 295#define GFP_NOIO (__GFP_RECLAIM) 296#define GFP_NOFS (__GFP_RECLAIM | __GFP_IO) 297#define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL) 298#define GFP_DMA __GFP_DMA 299#define GFP_DMA32 __GFP_DMA32 300#define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM) 301#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE) 302#define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \ 303 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM) 304#define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM) 305 306/* Convert GFP flags to their corresponding migrate type */ 307#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE) 308#define GFP_MOVABLE_SHIFT 3 309 310static inline int gfpflags_to_migratetype(const gfp_t gfp_flags) 311{ 312 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); 313 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE); 314 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE); 315 316 if (unlikely(page_group_by_mobility_disabled)) 317 return MIGRATE_UNMOVABLE; 318 319 /* Group based on mobility */ 320 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT; 321} 322#undef GFP_MOVABLE_MASK 323#undef GFP_MOVABLE_SHIFT 324 325static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags) 326{ 327 return !!(gfp_flags & __GFP_DIRECT_RECLAIM); 328} 329 330/** 331 * gfpflags_normal_context - is gfp_flags a normal sleepable context? 332 * @gfp_flags: gfp_flags to test 333 * 334 * Test whether @gfp_flags indicates that the allocation is from the 335 * %current context and allowed to sleep. 336 * 337 * An allocation being allowed to block doesn't mean it owns the %current 338 * context. When direct reclaim path tries to allocate memory, the 339 * allocation context is nested inside whatever %current was doing at the 340 * time of the original allocation. The nested allocation may be allowed 341 * to block but modifying anything %current owns can corrupt the outer 342 * context's expectations. 343 * 344 * %true result from this function indicates that the allocation context 345 * can sleep and use anything that's associated with %current. 346 */ 347static inline bool gfpflags_normal_context(const gfp_t gfp_flags) 348{ 349 return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) == 350 __GFP_DIRECT_RECLAIM; 351} 352 353#ifdef CONFIG_HIGHMEM 354#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM 355#else 356#define OPT_ZONE_HIGHMEM ZONE_NORMAL 357#endif 358 359#ifdef CONFIG_ZONE_DMA 360#define OPT_ZONE_DMA ZONE_DMA 361#else 362#define OPT_ZONE_DMA ZONE_NORMAL 363#endif 364 365#ifdef CONFIG_ZONE_DMA32 366#define OPT_ZONE_DMA32 ZONE_DMA32 367#else 368#define OPT_ZONE_DMA32 ZONE_NORMAL 369#endif 370 371/* 372 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the 373 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT 374 * bits long and there are 16 of them to cover all possible combinations of 375 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM. 376 * 377 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA. 378 * But GFP_MOVABLE is not only a zone specifier but also an allocation 379 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid. 380 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1". 381 * 382 * bit result 383 * ================= 384 * 0x0 => NORMAL 385 * 0x1 => DMA or NORMAL 386 * 0x2 => HIGHMEM or NORMAL 387 * 0x3 => BAD (DMA+HIGHMEM) 388 * 0x4 => DMA32 or NORMAL 389 * 0x5 => BAD (DMA+DMA32) 390 * 0x6 => BAD (HIGHMEM+DMA32) 391 * 0x7 => BAD (HIGHMEM+DMA32+DMA) 392 * 0x8 => NORMAL (MOVABLE+0) 393 * 0x9 => DMA or NORMAL (MOVABLE+DMA) 394 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too) 395 * 0xb => BAD (MOVABLE+HIGHMEM+DMA) 396 * 0xc => DMA32 or NORMAL (MOVABLE+DMA32) 397 * 0xd => BAD (MOVABLE+DMA32+DMA) 398 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM) 399 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA) 400 * 401 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms. 402 */ 403 404#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4 405/* ZONE_DEVICE is not a valid GFP zone specifier */ 406#define GFP_ZONES_SHIFT 2 407#else 408#define GFP_ZONES_SHIFT ZONES_SHIFT 409#endif 410 411#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG 412#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer 413#endif 414 415#define GFP_ZONE_TABLE ( \ 416 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \ 417 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \ 418 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \ 419 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \ 420 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \ 421 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \ 422 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\ 423 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\ 424) 425 426/* 427 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32 428 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per 429 * entry starting with bit 0. Bit is set if the combination is not 430 * allowed. 431 */ 432#define GFP_ZONE_BAD ( \ 433 1 << (___GFP_DMA | ___GFP_HIGHMEM) \ 434 | 1 << (___GFP_DMA | ___GFP_DMA32) \ 435 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \ 436 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 437 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \ 438 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \ 439 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 440 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \ 441) 442 443static inline enum zone_type gfp_zone(gfp_t flags) 444{ 445 enum zone_type z; 446 int bit = (__force int) (flags & GFP_ZONEMASK); 447 448 z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) & 449 ((1 << GFP_ZONES_SHIFT) - 1); 450 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1); 451 return z; 452} 453 454/* 455 * There is only one page-allocator function, and two main namespaces to 456 * it. The alloc_page*() variants return 'struct page *' and as such 457 * can allocate highmem pages, the *get*page*() variants return 458 * virtual kernel addresses to the allocated page(s). 459 */ 460 461static inline int gfp_zonelist(gfp_t flags) 462{ 463#ifdef CONFIG_NUMA 464 if (unlikely(flags & __GFP_THISNODE)) 465 return ZONELIST_NOFALLBACK; 466#endif 467 return ZONELIST_FALLBACK; 468} 469 470/* 471 * We get the zone list from the current node and the gfp_mask. 472 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones. 473 * There are two zonelists per node, one for all zones with memory and 474 * one containing just zones from the node the zonelist belongs to. 475 * 476 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets 477 * optimized to &contig_page_data at compile-time. 478 */ 479static inline struct zonelist *node_zonelist(int nid, gfp_t flags) 480{ 481 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags); 482} 483 484#ifndef HAVE_ARCH_FREE_PAGE 485static inline void arch_free_page(struct page *page, int order) { } 486#endif 487#ifndef HAVE_ARCH_ALLOC_PAGE 488static inline void arch_alloc_page(struct page *page, int order) { } 489#endif 490#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 491static inline int arch_make_page_accessible(struct page *page) 492{ 493 return 0; 494} 495#endif 496 497struct page * 498__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 499 nodemask_t *nodemask); 500 501static inline struct page * 502__alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid) 503{ 504 return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL); 505} 506 507/* 508 * Allocate pages, preferring the node given as nid. The node must be valid and 509 * online. For more general interface, see alloc_pages_node(). 510 */ 511static inline struct page * 512__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 513{ 514 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); 515 VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid)); 516 517 return __alloc_pages(gfp_mask, order, nid); 518} 519 520/* 521 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE, 522 * prefer the current CPU's closest node. Otherwise node must be valid and 523 * online. 524 */ 525static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, 526 unsigned int order) 527{ 528 if (nid == NUMA_NO_NODE) 529 nid = numa_mem_id(); 530 531 return __alloc_pages_node(nid, gfp_mask, order); 532} 533 534#ifdef CONFIG_NUMA 535extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order); 536 537static inline struct page * 538alloc_pages(gfp_t gfp_mask, unsigned int order) 539{ 540 return alloc_pages_current(gfp_mask, order); 541} 542extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order, 543 struct vm_area_struct *vma, unsigned long addr, 544 int node, bool hugepage); 545#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 546 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true) 547#else 548#define alloc_pages(gfp_mask, order) \ 549 alloc_pages_node(numa_node_id(), gfp_mask, order) 550#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\ 551 alloc_pages(gfp_mask, order) 552#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 553 alloc_pages(gfp_mask, order) 554#endif 555#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0) 556#define alloc_page_vma(gfp_mask, vma, addr) \ 557 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false) 558#define alloc_page_vma_node(gfp_mask, vma, addr, node) \ 559 alloc_pages_vma(gfp_mask, 0, vma, addr, node, false) 560 561extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order); 562extern unsigned long get_zeroed_page(gfp_t gfp_mask); 563 564void *alloc_pages_exact(size_t size, gfp_t gfp_mask); 565void free_pages_exact(void *virt, size_t size); 566void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask); 567 568#define __get_free_page(gfp_mask) \ 569 __get_free_pages((gfp_mask), 0) 570 571#define __get_dma_pages(gfp_mask, order) \ 572 __get_free_pages((gfp_mask) | GFP_DMA, (order)) 573 574extern void __free_pages(struct page *page, unsigned int order); 575extern void free_pages(unsigned long addr, unsigned int order); 576extern void free_unref_page(struct page *page); 577extern void free_unref_page_list(struct list_head *list); 578 579struct page_frag_cache; 580extern void __page_frag_cache_drain(struct page *page, unsigned int count); 581extern void *page_frag_alloc(struct page_frag_cache *nc, 582 unsigned int fragsz, gfp_t gfp_mask); 583extern void page_frag_free(void *addr); 584 585#define __free_page(page) __free_pages((page), 0) 586#define free_page(addr) free_pages((addr), 0) 587 588void page_alloc_init(void); 589void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp); 590void drain_all_pages(struct zone *zone); 591void drain_local_pages(struct zone *zone); 592 593void page_alloc_init_late(void); 594 595/* 596 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what 597 * GFP flags are used before interrupts are enabled. Once interrupts are 598 * enabled, it is set to __GFP_BITS_MASK while the system is running. During 599 * hibernation, it is used by PM to avoid I/O during memory allocation while 600 * devices are suspended. 601 */ 602extern gfp_t gfp_allowed_mask; 603 604/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */ 605bool gfp_pfmemalloc_allowed(gfp_t gfp_mask); 606 607extern void pm_restrict_gfp_mask(void); 608extern void pm_restore_gfp_mask(void); 609 610#ifdef CONFIG_PM_SLEEP 611extern bool pm_suspended_storage(void); 612#else 613static inline bool pm_suspended_storage(void) 614{ 615 return false; 616} 617#endif /* CONFIG_PM_SLEEP */ 618 619#ifdef CONFIG_CONTIG_ALLOC 620/* The below functions must be run on a range from a single zone. */ 621extern int alloc_contig_range(unsigned long start, unsigned long end, 622 unsigned migratetype, gfp_t gfp_mask); 623extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 624 int nid, nodemask_t *nodemask); 625#endif 626void free_contig_range(unsigned long pfn, unsigned int nr_pages); 627 628#ifdef CONFIG_CMA 629/* CMA stuff */ 630extern void init_cma_reserved_pageblock(struct page *page); 631#endif 632 633#endif /* __LINUX_GFP_H */