at v5.7 34 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_GENERIC_PGTABLE_H 3#define _ASM_GENERIC_PGTABLE_H 4 5#include <linux/pfn.h> 6 7#ifndef __ASSEMBLY__ 8#ifdef CONFIG_MMU 9 10#include <linux/mm_types.h> 11#include <linux/bug.h> 12#include <linux/errno.h> 13#include <asm-generic/pgtable_uffd.h> 14 15#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \ 16 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS 17#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED 18#endif 19 20/* 21 * On almost all architectures and configurations, 0 can be used as the 22 * upper ceiling to free_pgtables(): on many architectures it has the same 23 * effect as using TASK_SIZE. However, there is one configuration which 24 * must impose a more careful limit, to avoid freeing kernel pgtables. 25 */ 26#ifndef USER_PGTABLES_CEILING 27#define USER_PGTABLES_CEILING 0UL 28#endif 29 30#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 31extern int ptep_set_access_flags(struct vm_area_struct *vma, 32 unsigned long address, pte_t *ptep, 33 pte_t entry, int dirty); 34#endif 35 36#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 37#ifdef CONFIG_TRANSPARENT_HUGEPAGE 38extern int pmdp_set_access_flags(struct vm_area_struct *vma, 39 unsigned long address, pmd_t *pmdp, 40 pmd_t entry, int dirty); 41extern int pudp_set_access_flags(struct vm_area_struct *vma, 42 unsigned long address, pud_t *pudp, 43 pud_t entry, int dirty); 44#else 45static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 46 unsigned long address, pmd_t *pmdp, 47 pmd_t entry, int dirty) 48{ 49 BUILD_BUG(); 50 return 0; 51} 52static inline int pudp_set_access_flags(struct vm_area_struct *vma, 53 unsigned long address, pud_t *pudp, 54 pud_t entry, int dirty) 55{ 56 BUILD_BUG(); 57 return 0; 58} 59#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 60#endif 61 62#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 63static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 64 unsigned long address, 65 pte_t *ptep) 66{ 67 pte_t pte = *ptep; 68 int r = 1; 69 if (!pte_young(pte)) 70 r = 0; 71 else 72 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 73 return r; 74} 75#endif 76 77#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 78#ifdef CONFIG_TRANSPARENT_HUGEPAGE 79static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 80 unsigned long address, 81 pmd_t *pmdp) 82{ 83 pmd_t pmd = *pmdp; 84 int r = 1; 85 if (!pmd_young(pmd)) 86 r = 0; 87 else 88 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 89 return r; 90} 91#else 92static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 93 unsigned long address, 94 pmd_t *pmdp) 95{ 96 BUILD_BUG(); 97 return 0; 98} 99#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 100#endif 101 102#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 103int ptep_clear_flush_young(struct vm_area_struct *vma, 104 unsigned long address, pte_t *ptep); 105#endif 106 107#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 108#ifdef CONFIG_TRANSPARENT_HUGEPAGE 109extern int pmdp_clear_flush_young(struct vm_area_struct *vma, 110 unsigned long address, pmd_t *pmdp); 111#else 112/* 113 * Despite relevant to THP only, this API is called from generic rmap code 114 * under PageTransHuge(), hence needs a dummy implementation for !THP 115 */ 116static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 117 unsigned long address, pmd_t *pmdp) 118{ 119 BUILD_BUG(); 120 return 0; 121} 122#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 123#endif 124 125#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 126static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 127 unsigned long address, 128 pte_t *ptep) 129{ 130 pte_t pte = *ptep; 131 pte_clear(mm, address, ptep); 132 return pte; 133} 134#endif 135 136#ifdef CONFIG_TRANSPARENT_HUGEPAGE 137#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 138static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 139 unsigned long address, 140 pmd_t *pmdp) 141{ 142 pmd_t pmd = *pmdp; 143 pmd_clear(pmdp); 144 return pmd; 145} 146#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */ 147#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR 148static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm, 149 unsigned long address, 150 pud_t *pudp) 151{ 152 pud_t pud = *pudp; 153 154 pud_clear(pudp); 155 return pud; 156} 157#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */ 158#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 159 160#ifdef CONFIG_TRANSPARENT_HUGEPAGE 161#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 162static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm, 163 unsigned long address, pmd_t *pmdp, 164 int full) 165{ 166 return pmdp_huge_get_and_clear(mm, address, pmdp); 167} 168#endif 169 170#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL 171static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm, 172 unsigned long address, pud_t *pudp, 173 int full) 174{ 175 return pudp_huge_get_and_clear(mm, address, pudp); 176} 177#endif 178#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 179 180#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 181static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 182 unsigned long address, pte_t *ptep, 183 int full) 184{ 185 pte_t pte; 186 pte = ptep_get_and_clear(mm, address, ptep); 187 return pte; 188} 189#endif 190 191/* 192 * Some architectures may be able to avoid expensive synchronization 193 * primitives when modifications are made to PTE's which are already 194 * not present, or in the process of an address space destruction. 195 */ 196#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 197static inline void pte_clear_not_present_full(struct mm_struct *mm, 198 unsigned long address, 199 pte_t *ptep, 200 int full) 201{ 202 pte_clear(mm, address, ptep); 203} 204#endif 205 206#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 207extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 208 unsigned long address, 209 pte_t *ptep); 210#endif 211 212#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 213extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 214 unsigned long address, 215 pmd_t *pmdp); 216extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma, 217 unsigned long address, 218 pud_t *pudp); 219#endif 220 221#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 222struct mm_struct; 223static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 224{ 225 pte_t old_pte = *ptep; 226 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 227} 228#endif 229 230#ifndef pte_savedwrite 231#define pte_savedwrite pte_write 232#endif 233 234#ifndef pte_mk_savedwrite 235#define pte_mk_savedwrite pte_mkwrite 236#endif 237 238#ifndef pte_clear_savedwrite 239#define pte_clear_savedwrite pte_wrprotect 240#endif 241 242#ifndef pmd_savedwrite 243#define pmd_savedwrite pmd_write 244#endif 245 246#ifndef pmd_mk_savedwrite 247#define pmd_mk_savedwrite pmd_mkwrite 248#endif 249 250#ifndef pmd_clear_savedwrite 251#define pmd_clear_savedwrite pmd_wrprotect 252#endif 253 254#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 255#ifdef CONFIG_TRANSPARENT_HUGEPAGE 256static inline void pmdp_set_wrprotect(struct mm_struct *mm, 257 unsigned long address, pmd_t *pmdp) 258{ 259 pmd_t old_pmd = *pmdp; 260 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 261} 262#else 263static inline void pmdp_set_wrprotect(struct mm_struct *mm, 264 unsigned long address, pmd_t *pmdp) 265{ 266 BUILD_BUG(); 267} 268#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 269#endif 270#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT 271#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD 272static inline void pudp_set_wrprotect(struct mm_struct *mm, 273 unsigned long address, pud_t *pudp) 274{ 275 pud_t old_pud = *pudp; 276 277 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud)); 278} 279#else 280static inline void pudp_set_wrprotect(struct mm_struct *mm, 281 unsigned long address, pud_t *pudp) 282{ 283 BUILD_BUG(); 284} 285#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 286#endif 287 288#ifndef pmdp_collapse_flush 289#ifdef CONFIG_TRANSPARENT_HUGEPAGE 290extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 291 unsigned long address, pmd_t *pmdp); 292#else 293static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 294 unsigned long address, 295 pmd_t *pmdp) 296{ 297 BUILD_BUG(); 298 return *pmdp; 299} 300#define pmdp_collapse_flush pmdp_collapse_flush 301#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 302#endif 303 304#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 305extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 306 pgtable_t pgtable); 307#endif 308 309#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 310extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 311#endif 312 313#ifdef CONFIG_TRANSPARENT_HUGEPAGE 314/* 315 * This is an implementation of pmdp_establish() that is only suitable for an 316 * architecture that doesn't have hardware dirty/accessed bits. In this case we 317 * can't race with CPU which sets these bits and non-atomic aproach is fine. 318 */ 319static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma, 320 unsigned long address, pmd_t *pmdp, pmd_t pmd) 321{ 322 pmd_t old_pmd = *pmdp; 323 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 324 return old_pmd; 325} 326#endif 327 328#ifndef __HAVE_ARCH_PMDP_INVALIDATE 329extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 330 pmd_t *pmdp); 331#endif 332 333#ifndef __HAVE_ARCH_PTE_SAME 334static inline int pte_same(pte_t pte_a, pte_t pte_b) 335{ 336 return pte_val(pte_a) == pte_val(pte_b); 337} 338#endif 339 340#ifndef __HAVE_ARCH_PTE_UNUSED 341/* 342 * Some architectures provide facilities to virtualization guests 343 * so that they can flag allocated pages as unused. This allows the 344 * host to transparently reclaim unused pages. This function returns 345 * whether the pte's page is unused. 346 */ 347static inline int pte_unused(pte_t pte) 348{ 349 return 0; 350} 351#endif 352 353#ifndef pte_access_permitted 354#define pte_access_permitted(pte, write) \ 355 (pte_present(pte) && (!(write) || pte_write(pte))) 356#endif 357 358#ifndef pmd_access_permitted 359#define pmd_access_permitted(pmd, write) \ 360 (pmd_present(pmd) && (!(write) || pmd_write(pmd))) 361#endif 362 363#ifndef pud_access_permitted 364#define pud_access_permitted(pud, write) \ 365 (pud_present(pud) && (!(write) || pud_write(pud))) 366#endif 367 368#ifndef p4d_access_permitted 369#define p4d_access_permitted(p4d, write) \ 370 (p4d_present(p4d) && (!(write) || p4d_write(p4d))) 371#endif 372 373#ifndef pgd_access_permitted 374#define pgd_access_permitted(pgd, write) \ 375 (pgd_present(pgd) && (!(write) || pgd_write(pgd))) 376#endif 377 378#ifndef __HAVE_ARCH_PMD_SAME 379static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 380{ 381 return pmd_val(pmd_a) == pmd_val(pmd_b); 382} 383 384static inline int pud_same(pud_t pud_a, pud_t pud_b) 385{ 386 return pud_val(pud_a) == pud_val(pud_b); 387} 388#endif 389 390#ifndef __HAVE_ARCH_P4D_SAME 391static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b) 392{ 393 return p4d_val(p4d_a) == p4d_val(p4d_b); 394} 395#endif 396 397#ifndef __HAVE_ARCH_PGD_SAME 398static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b) 399{ 400 return pgd_val(pgd_a) == pgd_val(pgd_b); 401} 402#endif 403 404/* 405 * Use set_p*_safe(), and elide TLB flushing, when confident that *no* 406 * TLB flush will be required as a result of the "set". For example, use 407 * in scenarios where it is known ahead of time that the routine is 408 * setting non-present entries, or re-setting an existing entry to the 409 * same value. Otherwise, use the typical "set" helpers and flush the 410 * TLB. 411 */ 412#define set_pte_safe(ptep, pte) \ 413({ \ 414 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \ 415 set_pte(ptep, pte); \ 416}) 417 418#define set_pmd_safe(pmdp, pmd) \ 419({ \ 420 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \ 421 set_pmd(pmdp, pmd); \ 422}) 423 424#define set_pud_safe(pudp, pud) \ 425({ \ 426 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \ 427 set_pud(pudp, pud); \ 428}) 429 430#define set_p4d_safe(p4dp, p4d) \ 431({ \ 432 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \ 433 set_p4d(p4dp, p4d); \ 434}) 435 436#define set_pgd_safe(pgdp, pgd) \ 437({ \ 438 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \ 439 set_pgd(pgdp, pgd); \ 440}) 441 442#ifndef __HAVE_ARCH_DO_SWAP_PAGE 443/* 444 * Some architectures support metadata associated with a page. When a 445 * page is being swapped out, this metadata must be saved so it can be 446 * restored when the page is swapped back in. SPARC M7 and newer 447 * processors support an ADI (Application Data Integrity) tag for the 448 * page as metadata for the page. arch_do_swap_page() can restore this 449 * metadata when a page is swapped back in. 450 */ 451static inline void arch_do_swap_page(struct mm_struct *mm, 452 struct vm_area_struct *vma, 453 unsigned long addr, 454 pte_t pte, pte_t oldpte) 455{ 456 457} 458#endif 459 460#ifndef __HAVE_ARCH_UNMAP_ONE 461/* 462 * Some architectures support metadata associated with a page. When a 463 * page is being swapped out, this metadata must be saved so it can be 464 * restored when the page is swapped back in. SPARC M7 and newer 465 * processors support an ADI (Application Data Integrity) tag for the 466 * page as metadata for the page. arch_unmap_one() can save this 467 * metadata on a swap-out of a page. 468 */ 469static inline int arch_unmap_one(struct mm_struct *mm, 470 struct vm_area_struct *vma, 471 unsigned long addr, 472 pte_t orig_pte) 473{ 474 return 0; 475} 476#endif 477 478#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 479#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 480#endif 481 482#ifndef __HAVE_ARCH_MOVE_PTE 483#define move_pte(pte, prot, old_addr, new_addr) (pte) 484#endif 485 486#ifndef pte_accessible 487# define pte_accessible(mm, pte) ((void)(pte), 1) 488#endif 489 490#ifndef flush_tlb_fix_spurious_fault 491#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 492#endif 493 494#ifndef pgprot_noncached 495#define pgprot_noncached(prot) (prot) 496#endif 497 498#ifndef pgprot_writecombine 499#define pgprot_writecombine pgprot_noncached 500#endif 501 502#ifndef pgprot_writethrough 503#define pgprot_writethrough pgprot_noncached 504#endif 505 506#ifndef pgprot_device 507#define pgprot_device pgprot_noncached 508#endif 509 510#ifndef pgprot_modify 511#define pgprot_modify pgprot_modify 512static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot) 513{ 514 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot))) 515 newprot = pgprot_noncached(newprot); 516 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot))) 517 newprot = pgprot_writecombine(newprot); 518 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot))) 519 newprot = pgprot_device(newprot); 520 return newprot; 521} 522#endif 523 524/* 525 * When walking page tables, get the address of the next boundary, 526 * or the end address of the range if that comes earlier. Although no 527 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 528 */ 529 530#define pgd_addr_end(addr, end) \ 531({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 532 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 533}) 534 535#ifndef p4d_addr_end 536#define p4d_addr_end(addr, end) \ 537({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \ 538 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 539}) 540#endif 541 542#ifndef pud_addr_end 543#define pud_addr_end(addr, end) \ 544({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 545 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 546}) 547#endif 548 549#ifndef pmd_addr_end 550#define pmd_addr_end(addr, end) \ 551({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 552 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 553}) 554#endif 555 556/* 557 * When walking page tables, we usually want to skip any p?d_none entries; 558 * and any p?d_bad entries - reporting the error before resetting to none. 559 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 560 */ 561void pgd_clear_bad(pgd_t *); 562 563#ifndef __PAGETABLE_P4D_FOLDED 564void p4d_clear_bad(p4d_t *); 565#else 566#define p4d_clear_bad(p4d) do { } while (0) 567#endif 568 569#ifndef __PAGETABLE_PUD_FOLDED 570void pud_clear_bad(pud_t *); 571#else 572#define pud_clear_bad(p4d) do { } while (0) 573#endif 574 575void pmd_clear_bad(pmd_t *); 576 577static inline int pgd_none_or_clear_bad(pgd_t *pgd) 578{ 579 if (pgd_none(*pgd)) 580 return 1; 581 if (unlikely(pgd_bad(*pgd))) { 582 pgd_clear_bad(pgd); 583 return 1; 584 } 585 return 0; 586} 587 588static inline int p4d_none_or_clear_bad(p4d_t *p4d) 589{ 590 if (p4d_none(*p4d)) 591 return 1; 592 if (unlikely(p4d_bad(*p4d))) { 593 p4d_clear_bad(p4d); 594 return 1; 595 } 596 return 0; 597} 598 599static inline int pud_none_or_clear_bad(pud_t *pud) 600{ 601 if (pud_none(*pud)) 602 return 1; 603 if (unlikely(pud_bad(*pud))) { 604 pud_clear_bad(pud); 605 return 1; 606 } 607 return 0; 608} 609 610static inline int pmd_none_or_clear_bad(pmd_t *pmd) 611{ 612 if (pmd_none(*pmd)) 613 return 1; 614 if (unlikely(pmd_bad(*pmd))) { 615 pmd_clear_bad(pmd); 616 return 1; 617 } 618 return 0; 619} 620 621static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma, 622 unsigned long addr, 623 pte_t *ptep) 624{ 625 /* 626 * Get the current pte state, but zero it out to make it 627 * non-present, preventing the hardware from asynchronously 628 * updating it. 629 */ 630 return ptep_get_and_clear(vma->vm_mm, addr, ptep); 631} 632 633static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma, 634 unsigned long addr, 635 pte_t *ptep, pte_t pte) 636{ 637 /* 638 * The pte is non-present, so there's no hardware state to 639 * preserve. 640 */ 641 set_pte_at(vma->vm_mm, addr, ptep, pte); 642} 643 644#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 645/* 646 * Start a pte protection read-modify-write transaction, which 647 * protects against asynchronous hardware modifications to the pte. 648 * The intention is not to prevent the hardware from making pte 649 * updates, but to prevent any updates it may make from being lost. 650 * 651 * This does not protect against other software modifications of the 652 * pte; the appropriate pte lock must be held over the transation. 653 * 654 * Note that this interface is intended to be batchable, meaning that 655 * ptep_modify_prot_commit may not actually update the pte, but merely 656 * queue the update to be done at some later time. The update must be 657 * actually committed before the pte lock is released, however. 658 */ 659static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma, 660 unsigned long addr, 661 pte_t *ptep) 662{ 663 return __ptep_modify_prot_start(vma, addr, ptep); 664} 665 666/* 667 * Commit an update to a pte, leaving any hardware-controlled bits in 668 * the PTE unmodified. 669 */ 670static inline void ptep_modify_prot_commit(struct vm_area_struct *vma, 671 unsigned long addr, 672 pte_t *ptep, pte_t old_pte, pte_t pte) 673{ 674 __ptep_modify_prot_commit(vma, addr, ptep, pte); 675} 676#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 677#endif /* CONFIG_MMU */ 678 679/* 680 * No-op macros that just return the current protection value. Defined here 681 * because these macros can be used used even if CONFIG_MMU is not defined. 682 */ 683#ifndef pgprot_encrypted 684#define pgprot_encrypted(prot) (prot) 685#endif 686 687#ifndef pgprot_decrypted 688#define pgprot_decrypted(prot) (prot) 689#endif 690 691/* 692 * A facility to provide lazy MMU batching. This allows PTE updates and 693 * page invalidations to be delayed until a call to leave lazy MMU mode 694 * is issued. Some architectures may benefit from doing this, and it is 695 * beneficial for both shadow and direct mode hypervisors, which may batch 696 * the PTE updates which happen during this window. Note that using this 697 * interface requires that read hazards be removed from the code. A read 698 * hazard could result in the direct mode hypervisor case, since the actual 699 * write to the page tables may not yet have taken place, so reads though 700 * a raw PTE pointer after it has been modified are not guaranteed to be 701 * up to date. This mode can only be entered and left under the protection of 702 * the page table locks for all page tables which may be modified. In the UP 703 * case, this is required so that preemption is disabled, and in the SMP case, 704 * it must synchronize the delayed page table writes properly on other CPUs. 705 */ 706#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 707#define arch_enter_lazy_mmu_mode() do {} while (0) 708#define arch_leave_lazy_mmu_mode() do {} while (0) 709#define arch_flush_lazy_mmu_mode() do {} while (0) 710#endif 711 712/* 713 * A facility to provide batching of the reload of page tables and 714 * other process state with the actual context switch code for 715 * paravirtualized guests. By convention, only one of the batched 716 * update (lazy) modes (CPU, MMU) should be active at any given time, 717 * entry should never be nested, and entry and exits should always be 718 * paired. This is for sanity of maintaining and reasoning about the 719 * kernel code. In this case, the exit (end of the context switch) is 720 * in architecture-specific code, and so doesn't need a generic 721 * definition. 722 */ 723#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 724#define arch_start_context_switch(prev) do {} while (0) 725#endif 726 727#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY 728#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION 729static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 730{ 731 return pmd; 732} 733 734static inline int pmd_swp_soft_dirty(pmd_t pmd) 735{ 736 return 0; 737} 738 739static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 740{ 741 return pmd; 742} 743#endif 744#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */ 745static inline int pte_soft_dirty(pte_t pte) 746{ 747 return 0; 748} 749 750static inline int pmd_soft_dirty(pmd_t pmd) 751{ 752 return 0; 753} 754 755static inline pte_t pte_mksoft_dirty(pte_t pte) 756{ 757 return pte; 758} 759 760static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 761{ 762 return pmd; 763} 764 765static inline pte_t pte_clear_soft_dirty(pte_t pte) 766{ 767 return pte; 768} 769 770static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 771{ 772 return pmd; 773} 774 775static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 776{ 777 return pte; 778} 779 780static inline int pte_swp_soft_dirty(pte_t pte) 781{ 782 return 0; 783} 784 785static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 786{ 787 return pte; 788} 789 790static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd) 791{ 792 return pmd; 793} 794 795static inline int pmd_swp_soft_dirty(pmd_t pmd) 796{ 797 return 0; 798} 799 800static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd) 801{ 802 return pmd; 803} 804#endif 805 806#ifndef __HAVE_PFNMAP_TRACKING 807/* 808 * Interfaces that can be used by architecture code to keep track of 809 * memory type of pfn mappings specified by the remap_pfn_range, 810 * vmf_insert_pfn. 811 */ 812 813/* 814 * track_pfn_remap is called when a _new_ pfn mapping is being established 815 * by remap_pfn_range() for physical range indicated by pfn and size. 816 */ 817static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 818 unsigned long pfn, unsigned long addr, 819 unsigned long size) 820{ 821 return 0; 822} 823 824/* 825 * track_pfn_insert is called when a _new_ single pfn is established 826 * by vmf_insert_pfn(). 827 */ 828static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 829 pfn_t pfn) 830{ 831} 832 833/* 834 * track_pfn_copy is called when vma that is covering the pfnmap gets 835 * copied through copy_page_range(). 836 */ 837static inline int track_pfn_copy(struct vm_area_struct *vma) 838{ 839 return 0; 840} 841 842/* 843 * untrack_pfn is called while unmapping a pfnmap for a region. 844 * untrack can be called for a specific region indicated by pfn and size or 845 * can be for the entire vma (in which case pfn, size are zero). 846 */ 847static inline void untrack_pfn(struct vm_area_struct *vma, 848 unsigned long pfn, unsigned long size) 849{ 850} 851 852/* 853 * untrack_pfn_moved is called while mremapping a pfnmap for a new region. 854 */ 855static inline void untrack_pfn_moved(struct vm_area_struct *vma) 856{ 857} 858#else 859extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 860 unsigned long pfn, unsigned long addr, 861 unsigned long size); 862extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 863 pfn_t pfn); 864extern int track_pfn_copy(struct vm_area_struct *vma); 865extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 866 unsigned long size); 867extern void untrack_pfn_moved(struct vm_area_struct *vma); 868#endif 869 870#ifdef __HAVE_COLOR_ZERO_PAGE 871static inline int is_zero_pfn(unsigned long pfn) 872{ 873 extern unsigned long zero_pfn; 874 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 875 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 876} 877 878#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 879 880#else 881static inline int is_zero_pfn(unsigned long pfn) 882{ 883 extern unsigned long zero_pfn; 884 return pfn == zero_pfn; 885} 886 887static inline unsigned long my_zero_pfn(unsigned long addr) 888{ 889 extern unsigned long zero_pfn; 890 return zero_pfn; 891} 892#endif 893 894#ifdef CONFIG_MMU 895 896#ifndef CONFIG_TRANSPARENT_HUGEPAGE 897static inline int pmd_trans_huge(pmd_t pmd) 898{ 899 return 0; 900} 901#ifndef pmd_write 902static inline int pmd_write(pmd_t pmd) 903{ 904 BUG(); 905 return 0; 906} 907#endif /* pmd_write */ 908#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 909 910#ifndef pud_write 911static inline int pud_write(pud_t pud) 912{ 913 BUG(); 914 return 0; 915} 916#endif /* pud_write */ 917 918#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 919static inline int pmd_devmap(pmd_t pmd) 920{ 921 return 0; 922} 923static inline int pud_devmap(pud_t pud) 924{ 925 return 0; 926} 927static inline int pgd_devmap(pgd_t pgd) 928{ 929 return 0; 930} 931#endif 932 933#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \ 934 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 935 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)) 936static inline int pud_trans_huge(pud_t pud) 937{ 938 return 0; 939} 940#endif 941 942/* See pmd_none_or_trans_huge_or_clear_bad for discussion. */ 943static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud) 944{ 945 pud_t pudval = READ_ONCE(*pud); 946 947 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval)) 948 return 1; 949 if (unlikely(pud_bad(pudval))) { 950 pud_clear_bad(pud); 951 return 1; 952 } 953 return 0; 954} 955 956/* See pmd_trans_unstable for discussion. */ 957static inline int pud_trans_unstable(pud_t *pud) 958{ 959#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 960 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 961 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud); 962#else 963 return 0; 964#endif 965} 966 967#ifndef pmd_read_atomic 968static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 969{ 970 /* 971 * Depend on compiler for an atomic pmd read. NOTE: this is 972 * only going to work, if the pmdval_t isn't larger than 973 * an unsigned long. 974 */ 975 return *pmdp; 976} 977#endif 978 979#ifndef arch_needs_pgtable_deposit 980#define arch_needs_pgtable_deposit() (false) 981#endif 982/* 983 * This function is meant to be used by sites walking pagetables with 984 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 985 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 986 * into a null pmd and the transhuge page fault can convert a null pmd 987 * into an hugepmd or into a regular pmd (if the hugepage allocation 988 * fails). While holding the mmap_sem in read mode the pmd becomes 989 * stable and stops changing under us only if it's not null and not a 990 * transhuge pmd. When those races occurs and this function makes a 991 * difference vs the standard pmd_none_or_clear_bad, the result is 992 * undefined so behaving like if the pmd was none is safe (because it 993 * can return none anyway). The compiler level barrier() is critically 994 * important to compute the two checks atomically on the same pmdval. 995 * 996 * For 32bit kernels with a 64bit large pmd_t this automatically takes 997 * care of reading the pmd atomically to avoid SMP race conditions 998 * against pmd_populate() when the mmap_sem is hold for reading by the 999 * caller (a special atomic read not done by "gcc" as in the generic 1000 * version above, is also needed when THP is disabled because the page 1001 * fault can populate the pmd from under us). 1002 */ 1003static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 1004{ 1005 pmd_t pmdval = pmd_read_atomic(pmd); 1006 /* 1007 * The barrier will stabilize the pmdval in a register or on 1008 * the stack so that it will stop changing under the code. 1009 * 1010 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 1011 * pmd_read_atomic is allowed to return a not atomic pmdval 1012 * (for example pointing to an hugepage that has never been 1013 * mapped in the pmd). The below checks will only care about 1014 * the low part of the pmd with 32bit PAE x86 anyway, with the 1015 * exception of pmd_none(). So the important thing is that if 1016 * the low part of the pmd is found null, the high part will 1017 * be also null or the pmd_none() check below would be 1018 * confused. 1019 */ 1020#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1021 barrier(); 1022#endif 1023 /* 1024 * !pmd_present() checks for pmd migration entries 1025 * 1026 * The complete check uses is_pmd_migration_entry() in linux/swapops.h 1027 * But using that requires moving current function and pmd_trans_unstable() 1028 * to linux/swapops.h to resovle dependency, which is too much code move. 1029 * 1030 * !pmd_present() is equivalent to is_pmd_migration_entry() currently, 1031 * because !pmd_present() pages can only be under migration not swapped 1032 * out. 1033 * 1034 * pmd_none() is preseved for future condition checks on pmd migration 1035 * entries and not confusing with this function name, although it is 1036 * redundant with !pmd_present(). 1037 */ 1038 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) || 1039 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval))) 1040 return 1; 1041 if (unlikely(pmd_bad(pmdval))) { 1042 pmd_clear_bad(pmd); 1043 return 1; 1044 } 1045 return 0; 1046} 1047 1048/* 1049 * This is a noop if Transparent Hugepage Support is not built into 1050 * the kernel. Otherwise it is equivalent to 1051 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 1052 * places that already verified the pmd is not none and they want to 1053 * walk ptes while holding the mmap sem in read mode (write mode don't 1054 * need this). If THP is not enabled, the pmd can't go away under the 1055 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 1056 * run a pmd_trans_unstable before walking the ptes after 1057 * split_huge_pmd returns (because it may have run when the pmd become 1058 * null, but then a page fault can map in a THP and not a regular page). 1059 */ 1060static inline int pmd_trans_unstable(pmd_t *pmd) 1061{ 1062#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1063 return pmd_none_or_trans_huge_or_clear_bad(pmd); 1064#else 1065 return 0; 1066#endif 1067} 1068 1069#ifndef CONFIG_NUMA_BALANCING 1070/* 1071 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but 1072 * the only case the kernel cares is for NUMA balancing and is only ever set 1073 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked 1074 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It 1075 * is the responsibility of the caller to distinguish between PROT_NONE 1076 * protections and NUMA hinting fault protections. 1077 */ 1078static inline int pte_protnone(pte_t pte) 1079{ 1080 return 0; 1081} 1082 1083static inline int pmd_protnone(pmd_t pmd) 1084{ 1085 return 0; 1086} 1087#endif /* CONFIG_NUMA_BALANCING */ 1088 1089#endif /* CONFIG_MMU */ 1090 1091#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP 1092 1093#ifndef __PAGETABLE_P4D_FOLDED 1094int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot); 1095int p4d_clear_huge(p4d_t *p4d); 1096#else 1097static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1098{ 1099 return 0; 1100} 1101static inline int p4d_clear_huge(p4d_t *p4d) 1102{ 1103 return 0; 1104} 1105#endif /* !__PAGETABLE_P4D_FOLDED */ 1106 1107int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot); 1108int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot); 1109int pud_clear_huge(pud_t *pud); 1110int pmd_clear_huge(pmd_t *pmd); 1111int p4d_free_pud_page(p4d_t *p4d, unsigned long addr); 1112int pud_free_pmd_page(pud_t *pud, unsigned long addr); 1113int pmd_free_pte_page(pmd_t *pmd, unsigned long addr); 1114#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */ 1115static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot) 1116{ 1117 return 0; 1118} 1119static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot) 1120{ 1121 return 0; 1122} 1123static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot) 1124{ 1125 return 0; 1126} 1127static inline int p4d_clear_huge(p4d_t *p4d) 1128{ 1129 return 0; 1130} 1131static inline int pud_clear_huge(pud_t *pud) 1132{ 1133 return 0; 1134} 1135static inline int pmd_clear_huge(pmd_t *pmd) 1136{ 1137 return 0; 1138} 1139static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr) 1140{ 1141 return 0; 1142} 1143static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr) 1144{ 1145 return 0; 1146} 1147static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr) 1148{ 1149 return 0; 1150} 1151#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */ 1152 1153#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 1154#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1155/* 1156 * ARCHes with special requirements for evicting THP backing TLB entries can 1157 * implement this. Otherwise also, it can help optimize normal TLB flush in 1158 * THP regime. stock flush_tlb_range() typically has optimization to nuke the 1159 * entire TLB TLB if flush span is greater than a threshold, which will 1160 * likely be true for a single huge page. Thus a single thp flush will 1161 * invalidate the entire TLB which is not desitable. 1162 * e.g. see arch/arc: flush_pmd_tlb_range 1163 */ 1164#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1165#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end) 1166#else 1167#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG() 1168#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG() 1169#endif 1170#endif 1171 1172struct file; 1173int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn, 1174 unsigned long size, pgprot_t *vma_prot); 1175 1176#ifndef CONFIG_X86_ESPFIX64 1177static inline void init_espfix_bsp(void) { } 1178#endif 1179 1180extern void __init pgtable_cache_init(void); 1181 1182#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED 1183static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot) 1184{ 1185 return true; 1186} 1187 1188static inline bool arch_has_pfn_modify_check(void) 1189{ 1190 return false; 1191} 1192#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */ 1193 1194/* 1195 * Architecture PAGE_KERNEL_* fallbacks 1196 * 1197 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either 1198 * because they really don't support them, or the port needs to be updated to 1199 * reflect the required functionality. Below are a set of relatively safe 1200 * fallbacks, as best effort, which we can count on in lieu of the architectures 1201 * not defining them on their own yet. 1202 */ 1203 1204#ifndef PAGE_KERNEL_RO 1205# define PAGE_KERNEL_RO PAGE_KERNEL 1206#endif 1207 1208#ifndef PAGE_KERNEL_EXEC 1209# define PAGE_KERNEL_EXEC PAGE_KERNEL 1210#endif 1211 1212#endif /* !__ASSEMBLY__ */ 1213 1214#ifndef io_remap_pfn_range 1215#define io_remap_pfn_range remap_pfn_range 1216#endif 1217 1218#ifndef has_transparent_hugepage 1219#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1220#define has_transparent_hugepage() 1 1221#else 1222#define has_transparent_hugepage() 0 1223#endif 1224#endif 1225 1226/* 1227 * On some architectures it depends on the mm if the p4d/pud or pmd 1228 * layer of the page table hierarchy is folded or not. 1229 */ 1230#ifndef mm_p4d_folded 1231#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED) 1232#endif 1233 1234#ifndef mm_pud_folded 1235#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED) 1236#endif 1237 1238#ifndef mm_pmd_folded 1239#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED) 1240#endif 1241 1242/* 1243 * p?d_leaf() - true if this entry is a final mapping to a physical address. 1244 * This differs from p?d_huge() by the fact that they are always available (if 1245 * the architecture supports large pages at the appropriate level) even 1246 * if CONFIG_HUGETLB_PAGE is not defined. 1247 * Only meaningful when called on a valid entry. 1248 */ 1249#ifndef pgd_leaf 1250#define pgd_leaf(x) 0 1251#endif 1252#ifndef p4d_leaf 1253#define p4d_leaf(x) 0 1254#endif 1255#ifndef pud_leaf 1256#define pud_leaf(x) 0 1257#endif 1258#ifndef pmd_leaf 1259#define pmd_leaf(x) 0 1260#endif 1261 1262#endif /* _ASM_GENERIC_PGTABLE_H */